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Abstract
Generalized conditional gradient method has re-
gained increasing research interest as an alterna-
tive to another popular proximal gradient method
for sparse optimization problems. For particular
tasks, its low computation cost of linear subprob-
lem evaluation on each iteration leads to superior
practical performance. However, the inferior iter-
ation complexity incurs excess number of gradi-
ent evaluations, which can counteract the efficiency
gained by solving low cost linear subproblem. In
this paper, we therefore propose a novel algorithm
that requires optimal graduate evaluations as prox-
imal gradient. We also present a refined variant for
a type of gauge regularized problem where approx-
imation techniques are allowed to further acceler-
ate linear subproblem computation. Experiments of
CUR-like matrix factorization problem with group
lasso penalty on four real-world datasets demon-
strate the efficiency of the proposed method.

1 Introduction
This paper studies unconstrained composite optimization
problems of the form

min
x∈X

F (x) = l(x) + r(x), (1)

where X is a general vector space equipped with inner prod-
uct (e.g. Rd equipped with `2 norm). l(x) is a smooth con-
vex loss function, i.e. it is continuously differentiable with
L-Lipschitz continuous gradient:

||∇l(x)−∇l(y)|| ≤ L

2
||x− y||, ∀x, y ∈ X . (2)

r(x) stands for the regularizer which is a nonsmooth closed
proper convex function. Problem (1) is of vital importance in
machine learning because many sparse estimation problems
fit into this model. For example, in convex relaxed low rank
matrix completion problem [Candès and Recht, 2009], l(x) is
the Frobenius norm between the observed matrix and the low
rank estimation matrix, and r(x) is the trace norm of the low
rank estimation matrix. In regularized empirical risk mini-
mization problem, l(x) can be logistic loss or least square

loss, and r(x) can vary from simple ones like `1 norm [Tib-
shirani, 1996] to very complex form such as graph-guided
lasso [Kim and Xing, 2009] and group lasso [Yuan and Lin,
2006] for inducing structured sparsity.

Many different lines of methods exist for solving such
sparse optimization problems, among them is the popular
proximal gradient (PG) based approach ([Beck and Teboulle,
2009]; [Nesterov, 2013]). This kind of methods can achieve
the optimal rate of convergence under certain problem set-
tings, hence it enjoys low iteration complexity. The per-
iteration cost mainly comes from gradient evaluation and a
proximal map (PM) related to the type of the regularizer. On
the one hand, due to the optimal iteration complexity, the
number of gradient evaluations is optimal for PG method. On
the other hand, the proximal map itself is a quadratic opti-
mization problem composed by r(x) and a quadratic term.
For particular regularizers, it admits efficient evaluation. For
example, the proximal map related to the lasso regularizer is
simply the soft-thresholding. However, in some cases, evalu-
ating the proximal map can be quite computational demand-
ing. For instance, to solve the proximal map related the trace
norm regularizer, it requires a full singular value decomposi-
tion (SVD) in each iteration [Candès and Recht, 2009]. As a
result, the high per-iteration cost raised by the proximal map
becomes the bottleneck of the PG method for those problems.

To address the high per-iteration cost raised by the PM,
generalized conditional gradient method (GCG) ([Jaggi,
2013]; [Yu et al., 2014]; [Jaggi, 2011]; [Clarkson, 2010]), has
been receiving increasing research interest. It only requires to
evaluate a linear operator (LO) in each iteration, which is in-
tuitively much easier to solve than the quadratic subproblem
of PM. In fact, this intuition is elaborated by many structured
sparse regularizer, e.g. LO requiring spectral norm versus PM
requiring full SVD for trace norm regularized problem, in
which the former is much more computational efficient [Yu
et al., 2014]. As a result, although the iteration complexity
of GCG based methods are inferior to their PG counterpart
[Dudik et al., 2012], some studies have found that the low
per-iteration cost can sometimes compensate for the extra it-
erations leading to less overall execution time than PG. Nev-
ertheless, the inferior iteration complexity leads to extra gra-
dient evaluations. Although the per-iteration cost for LO can
be small enough to afford excess iterations, the increased de-
mand for gradient evaluation can raise an inevitable trade-off,
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especially for large scale problems. In addition, the conver-
gence results become weaker when approximation techniques
are introduced to solve LO. As a result, these approximation
techniques also bring about an increased count of gradient
evaluations, which can counteract the efficiency gained from
the accelerated LO evaluations.

In this paper, we therefore propose a novel algorithm
called Generalized Conditional Gradient with Gradient Slid-
ing (GCG-GS) and its refined variant for gauge regularized
problems. We first extend a recent optimization scheme
called gradient sliding to general unconstrained composite
convex optimization problems. Instead of evaluating gradi-
ent on each iteration, we skip it from time to time, which can
be viewed as many LO evaluations sharing the same gradi-
ent value. For gauge regularized problem ([Jaggi, 2013]; [Yu
et al., 2014]), where efficient approximation techniques ex-
ist for handling r(x), we present an improved variant of the
general GCG-GS algorithm to incorporate these techniques
to further accelerate the algorithm. As a result, our algo-
rithm has optimal count of gradient evaluations as their PG
counterpart, and more importantly, it allows efficient approx-
imation techniques to be used without increasing the optimal
count of gradient evaluation. Experiments of CUR-like ma-
trix factorization problem with group lasso penalty on four
real-world datasets have demonstrated the efficiency of the
proposed method.

2 Background
2.1 Generalized Conditional Gradient
Generalized conditional gradient method (GCG) is suitable
for Problem (1). It is a generalization of the classic condi-
tional gradient method (CG) [Frank and Wolfe, 1956], which
solves constraint problem on a subset of X , e.g. convex com-
pact set [Jaggi, 2013]. Also, to keep the nonsmooth part in-
tact, GCG defines the following alternative duality gap at it-
eration k ([Yu et al., 2014]; [Bredies et al., 2005]),

G(xk) =l(xk) + r(xk)

− inf
x∈X
{(l(xk) + 〈x− xk,∇l(xk)〉+ r(x))},

=r(xk)− inf
x∈X
{r(x) + 〈x− xk,∇l(xk)〉}

= sup
x∈X
{r(xk)− r(x)− 〈x− xk,∇l(xk)〉},

(3)

instead of taking the sub-differential of nonsmooth r(x) as
some CG methods proposed [Jaggi, 2013]. The duality gap
is essential for constructing the linear operator because it is
related to the optimal necessary condition and is always an
upper bound approximation to the primal gap F (x)−F (x∗),
as described in the following lemma [Yu et al., 2014]:

Lemma 1. For Problem 1 with any x ∈ X , the duality gap
G(x) ≥ 0 and G(x) = 0 iff x satisfies the necessary optimal
condition1. Also, the duality gap is always an upper bound of
the primal gap thatG(x) ≥ F (x)−F (x∗), where x∗ denotes
the global optimal point.

1We say that x satisfies the necessary optimal condition if 0 ∈
∇l(x) + ∂r(x).

Hence, GCG solves Problem (1) by minimizing the duality
gap on each iteration, which amounts to evaluating a linear
operator (LO), i.e.

dk = arg max
x∈X

r(xk)− r(x)− 〈x− xk,∇l(xk)〉,

⇔dk = arg min
x∈X
〈x,∇l(xk)〉+ r(x).

(4)

Note that additional assumptions should be made to F (x),
otherwise the above linear subproblem may diverge. To avoid
introducing additional complexity, we assume that the solu-
tion sequences dk and xk (also at and ut to be introduced
later) are finite whose maximum distance between each other
is upper bounded by a positive constant Ds. This assumption
is the same as Assumption 3 in [Yu et al., 2014], where more
sophisticated equivalent assumptions are also discussed (see
Proposition 3 in [Yu et al., 2014]).

Then, the next step xk+1 can be obtained by

xk+1 = (1− αk)xk + αkdk, (5)

where the step size αk can be set to deterministic sequence
for example of orderO( 1

k ) or choosing by optimizing the fol-
lowing problem,

αk = arg min
α∈[0,1]

F ((1− α)xk + αdk). (6)

GCG method has O( 1
K ) convergence rate for Problem (1),

where K is the total number of iterations. Or equivalently,
it needs O( 1

ε ) iterations to find an ε accurate solution.2 Ap-
parently, this incurs additional count of gradient evaluations
than their PG counterpart based on this one gradient evalua-
tion per-iteration scheme.

2.2 Approximation Techniques for Accelerating
Linear Operator Evaluation

The linear operator in Eq.(4) admits low per-iteration cost that
allows them to afford excess count of iterations, which is the
major motivation for adopting GCG method rather than PG
method for some tasks. This evaluation can be further ac-
celerated by various approximation techniques. Specifically,
we consider the case when r(x) is the so-called generalized
gauge function [Yu et al., 2014] defined as

r(x) = h(κ(x)), (7)

where h(·) is a convex increasing function and κ(x) is a
gauge function (convex, positively homogeneous, also see
[Friedlander et al., 2014] for detail) satisfying

κ(a) = inf{ρ : a ∈ ρC}. (8)

The convex compact subset C is the unit ball of the gauge
κ(x), namely

C = {a ∈ X : κ(a) ≤ 1}. (9)

This formal definition of r(x) is a little complicated. Indeed,
one can simply take it as a generalized norm function.

The key idea to accelerate LO evaluation is to circumvent
direct computation of κ(x) by approximation techniques.

2The ε accurate solution refers to a solution x having the primal
gap no larger than ε.
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Following [Yu et al., 2014], we convert Eq.(4) to a con-
strained form, it gives

dk = arg min
x:r(x)≤ζ

〈x,∇l(xk)〉. (10)

To avoid estimating ζ, it derives dk by direction and scalar
separately. For estimating the direction ak, it follows
ak = arg min

a:κ(a)≤1
〈a,∇l(xk)〉 = arg min

a∈C
〈a,∇l(xk)〉. (11)

We leave the derivation of scalar later when used.
The approximation for accelerating the evaluation of LO

lies in two parts. The first is to allow dk or ak to be calculated
approximately, i.e. ak is relaxed to satisfy:

〈ak,∇l(xk)〉 ≤ εk + min
a∈C
〈a,∇l(xk)〉. (12)

This approximation can further reduce the per-iteration cost
of LO evaluation, and thus the reduction of overall running
time is observed practically [Jaggi, 2013]. However, with
such approximation, the iteration complexity guarantee is
weakened by a factor associated with the degree of approxi-
mation allowed [Jaggi, 2011]. As a result, the count of gradi-
ent evaluations is increased which entails a trade-off between
the time increase of gradient evaluation and the decrease of
LO evaluation, especially for large scale problems whose gra-
dient are expensive to compute.

The other approximation is related to the constraint set.
When C is a convex hull of atomic domain A, Eq.(11) can
be equivalently solved on A:

min
a∈C
〈a,∇l(xk)〉 = min

a∈A
〈a,∇l(xk)〉 = −κo(−∇l(xk)),

(13)
where κo(−∇l(xk)) = maxa∈A〈a,−∇l(xk)〉 is called the
polar operator [Zhang et al., 2013]. Hence, the evaluation
of LO is converted to the evaluation of the polar operator,
which is more efficient to deal with than κ(x) itself and is
the actual form adopted practically. A simple example of this
polar operator is, when κ(x) is a norm, we can immediately
find the associated κo(g) is its dual norm.

2.3 Conditional Gradient Sliding Algorithm
(CGS)

Paper [Lan and Zhou, 2014] has proposed a gradient sliding
technique for constraint smooth objective function to reduce
gradient evaluations of CG algorithm. Under CG framework,
although the requirement for solving linear operator is still
O( 1

ε ), gradient evaluations can be surprisingly reduced to
match the iteration complexity of PG counterpart under the
same problem settings.

The CGS separates into outer and inner iteration. On
each outer iteration, two additional sequences are maintained.
It can be seen as a variant to Nesterov’s optimal gradient
method [Nesterov, 2013], with the modification of the step
(16) calling a CG subroutine rather than a gradient descent or
proximal mapping procedure for PG, as shown in the follow-
ing:

zk+1 = (1− γk)yk + γkxk; (14)
gk = ∇F (zk+1); (15)

xk+1 = CG(gk, xk, βk, ηk); (16)
yk+1 = (1− γk)yk + γkxk+1. (17)

The inner loop, namely the CG subroutine, applies the classic
CG algorithm to optimize the following subproblem:

φ(v) = 〈v, gk〉+
βk
2
||v − xk||2. (18)

According to CG method, on each inner iteration, it optimizes
the duality gap:

vt = arg max
v∈D

G(ut, v) = arg max
v∈D
〈ut − v,∇φ(ut)〉, (19)

where ut is the solution sequence of the inner loop subrou-
tine3, and D is the constraint set of the problem [Lan and
Zhou, 2014] considers. Here, we have slightly extend the no-
tation of the duality gap to incorporate the additional variable
v. The subprocess returns the latest ut once the duality gap is
less than ηk. That is, it returns utk when

G(utk , vtk) ≤ ηk. (20)

As a result, it can be viewed as if many LO evaluations can
share the same gradient to maintain the same convergence
rate, instead of updating the gradient for each LO evaluation.

3 The Proposed Algorithm
In this section, we propose our novel algorithm for Problem
(1), called Generalized Conditional Gradient with Gradient
Sliding (GCG-GS). We first present the GCG-GS for gen-
eral regularizer. Our algorithm is related to [Lan and Zhou,
2014], but it can suit to more general composite optimization
problems with the unconstrained domain. Although for some
problems it can be equivalently transformed between regular-
ization and constraint form by Lagrangian duality, the reg-
ularization form we consider here allows additional heuris-
tic local optimization, which is hardly known for constraint
form. More importantly, we will propose a refined GCG-GS
algorithm, which admits various approximation techniques
for further accelerating the LO evaluation. When the approxi-
mation techniques are involved, neither [Lan and Zhou, 2014]
nor our general GCG-GS are applicable. This issue is mainly
because the stopping criteria of Eq.(20) is either no longer
computable, or computationally expensive to obtain. Our re-
fined GCG-GS will handle this issue.

3.1 General GCG-GS
Algorithm Description:
To involve the gradient sliding scheme, our algorithm also
separates into outer and inner loops. In the outer loop, we
evaluate the gradient of the smooth part gk = ∇l(zk+1).
Then the subroutine is called. As for the subroutine, we con-
sider Φ(v) composed of φ(v) = 〈v, g〉 + β

2 ||v − u||2 and
nonsmooth r(v), i.e. Φ(v) = φ(v) + r(v). We use a differ-
ent definition of G(ut, v) according to Eq.(3), which is to be
optimized as follows:

G(ut, vt) = max
v∈X
{r(ut)− r(v)− 〈v − ut,∇φ(ut)〉}. (21)

Note that G(ut, vt) is the duality gap of Φ(v) at ut. Thus, the
subroutine actually solves the minimization problem of Φ(v)

3We use k to represent sequences related to outer loop and t for
inner loop in this paper.
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by GCG algorithm until certain duality gap is obtained. In
addition, αt can be optimally chosen by solving
αt = arg min

α∈[0,1]
φ((1− α)ut + αvt) + r((1− α)ut + αvt).

(22)
Finally, the next variable is obtained by

ut+1 = (1− αt)ut + αtvt. (23)
For clarity, we summarize the general GCG-GS in Algo-

rithm (1) and Algorithm (2).

Algorithm 1 General-GCG-GS
Require: x0,K, γk, βk, ηk

1: for k = 0, 1, ...,K − 1 do
2: zk+1 = (1− γk)yk + γkxk;
3: gk = ∇l(zk+1);
4: xk+1 = GCG(gk, xk, βk, ηk);
5: yk+1 = (1− γk)yk + γkxk+1;
6: end for

Ensure: yK

Algorithm 2 GCG: General-GCG-GS subroutine
Require: g, u, β, η

1: let φ(x) = 〈g, x〉+ β
2 ||x− u||

2, u0 = u;
2: for t = 0, 1, ..., do
3: G(ut, v) = r(ut)− r(v)− 〈v − ut,∇φ(ut)〉;
4: vt = arg maxv∈X G(ut, v);
5: if G(ut, vt) ≤ η then
6: break;
7: end if
8: αt = arg minα∈[0,1] φ((1 − α)ut + αvt) + r((1 −

α)ut + αvt);
9: ut+1 = (1− αt)ut + αtvt;

10: end for
11: Return: u+ = ut;

Convergence Analysis:
For the general GCG-GS algorithm, we have the following
convergence guarantee. We first introduce the following no-
tation:

Γ0 = 1; Γk = Πk
i=1(1− γi), k = 1, 2, ... (24)

Theorem 1. Under finite solution sequence assumptions, ap-
ply GCG-GS to Problem (1),
a) for any x, the output yK satisfies,

F (yK)− F (x) ≤ ΓK−1(1− γ0)(F (y0)− F (x))

+
K−1∑
k=0

ΓK−1γkβk
2Γk

(||xk − x||2 − ||xk+1 − x||2)

+
K−1∑
k=0

ΓK−1γkηk
Γk

;

(25)

b) consider the inner loop, namely the LO evaluations, for a
particular stage k, denote β = βk, the duality gap satisfies,

t
min
i=0

G(ui, vi) ≤
6βDs

t+ 2
, (26)

where Ds is the upper bound of the solution sequence.

Corollary 1. With the sequences setting as βk = 2L
k+1 , γk =

2
k+2 , ηk = 2LD0

K(k+1) and denoting D0 = ||x0 − x||2, we have:
a)

F (yK)− F (x) ≤ 6LD0

K(K + 1)
. (27)

For finding an ε solution, we get:

K =

√
6LD0

ε
. (28)

b) the total number of inner LO evaluations is

TK =
6Ds

D0
K2 +K. (29)

For finding an ε solution, we have:

TK =
36LDs

ε
+

√
6LD0

ε
. (30)

Discussion:
There are various assignment of sequence, please see [Lan
and Zhou, 2014]. For the particular sequence we adopt here,
it is apparent that our number of gradient evaluations for find-

ing an ε solution is O(
√

1
ε ), which is the same as those op-

timal complexity of PG methods for Problem (1). In addi-
tion, in terms of the total number of LO evaluations TK , the
proposed method maintains the same order of complexity as
those plain GCG methods which is also optimal for GCG.

However, the above algorithm is only conceptual in some
sense. Note that both the Subproblems (21) and (22) can be
difficult to solve for some r(x). Also, even they were solv-
able, we often prefer avoiding directly computing r(x) by
considering more efficient substitution such as polar operator
in Section 2.2. Inspired by this, we will propose the refined
GCG-GS algorithm in the next subsection to allow more effi-
cient inner loop execution.

3.2 Refined GCG-GS for Gauge Regularized
Problem

In this subsection, we follow the assumption as in Section 2.2,
where the regularizer is a generalized gauge function defined
by Eq.(7). Note that most practically used sparsity inducing
and rank minimization regularizers can be seen as generalized
gauge function.

Efficient Approximation Techniques:
Essentially, we apply the efficient approximation techniques
introduced in Section 2.2 to minimize Φ(v). To efficiently
minimize Eq.(21), we first convert it to constraint form:

vt ∈ arg min
v:h(κ(v))≤ζ

〈v,∇φ(ut)〉. (31)

Then we update vt by solving the direction and scalar sep-
arately, namely αtvt ≈ θtat (θt denotes the approximate
scalar). The direction is updated by

at ∈ arg min
a:κ(a)≤1

〈a,∇φ(ut)〉. (32)
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Incorporating the approximation Eq.(12) and solving it on
atomic domain A, we can obtain at more efficiently by

〈at,∇φ(ut)〉 ≤ εt + min
a∈A
〈a,∇φ(ut)〉 = εt − κo(−∇φ(ut)).

(33)
The scalar, denoted as θt, would be originally chosen as

θt = arg min
θ
φ((1−αt)ut+ θat) +h(κ((1−αt)ut+ θat)),

(34)
where αt is a deterministic sequence to be specified in our
next theorem. Again, to avoid direct evaluation of κ(ut), an
upper substitution ρt is used as in [Yu et al., 2014]. This
is achieved by choosing ρ0 ≥ κ(u0) and the update scheme
ρt+1 = (1 − αt)ρt + θt. Then ρt ≥ κ(ut) can be held it-
eratively, see [Yu et al., 2014]. Thus, by alternatively using
h(ρt) provided that h(·) is increasing convex and κ(·) is con-
vex, θt can be obtained by

θt = arg min
θ
φ((1−αt)ut+θat)+(1−αt)h(ρt)+αth(

θ

αt
).

(35)
Finally, an additional local heuristic optimization can be
adopted to further improve the practical performance, which
is another motivation for using the regularized form rather
than constrained form. Denoting such re-optimization by Im-
prove, we adopt the following conceptual requirement for it,
which is Relaxed assumption according to [Yu et al., 2014]:

φ(ut+1) + h(ρt+1) ≤ φ(ut) + 〈ũt+1 − ut,∇φ(ut)〉

+
β

2
||ũt+1 − ut||2 + (1− αt)h(ρt) + αth(

θt
αt

))
;

ρt+1 ≥ κ(ut+1).
(36)

Weighted Average as Return Value:
An important issue with the above approximation is that the
duality gap Eq.(21) is either no longer computable, or even
when we can compute it, it is unreasonable for us to directly
evaluate it because we do all the above approximations to
avoid computing κ(v) directly. As a result, the stopping crite-
ria in general GCG-GS algorithm (also CGS algorithm) can-
not be used. Furthermore, the choice of return value becomes
a problem because the previous bound on duality gap only
guarantees the minimum one. Again, as we cannot directly
compute the duality gap, it also becomes unknown that on
which particular ut the duality gap is small enough.

To solve the above stopping criteria problem, we propose
a simple alternative by estimating a maximum iteration count
m of the inner LO evaluation loop. As shown in our conver-
gence analysis, different outer loops can share the same m.

As for the choice of return value, instead of returning a
particular ut, we propose using the weighted average of ut as
the returned value. We show such averaged ūm can guaran-
tee G(ūm, x) to be smaller than the desired η as long as the
proper approximated m is used. In detail, the return value to
the outer loop is

ūm =
m−1∑
t=0

νtut, νt =
2

m(m+ 1)
(t+ 1). (37)

Intuitively, variables of later iterations gain more weights.
This intuition is compatible to the analysis in [Jaggi, 2011],
where the one achieving the smallest duality gap lies in the
last third iterations. This average scheme is by observing the
special construct of φ, namely, the corresponding G(ut, x) is
convex in ut for arbitrary yet fixed x. Note that it also al-
lows an online update ūt+1 = (1− 2

t+2 )ūt+ 2
t+2ut, which is

exactly what has been shown in the algorithm. We note that
[Lacoste-Julien et al., 2013] has used the same weighted av-
erage as an update option in block coordinate conditional gra-
dient method. To summarize together, Algorithm (3) and Al-
gorithm (4) show the implementation details of the Refined-
GCG-GS.

Algorithm 3 Refined-GCG-GS
Require: x0,m, βk, γk

1: for k = 0, 1, ...,K − 1 do
2: zk+1 = (1− γk)yk + γkxk;
3: gk = ∇l(zk+1);
4: xk+1 = Re-GCG(gk, xk, βk,m);
5: yk+1 = (1− γk)yk + γkxk+1;
6: end for

Ensure: yK

Algorithm 4 Re-GCG:Refined-GCG-GS subroutine
Require: Input from outer loop: g, u, β,m; Sequence αt

1: let φ(x) = 〈g, x〉+ β
2 ||x− u||

2
2, u0 = u;

2: for t = 0, 1, ...,m− 1 do
3: choose at satisfy 〈at,∇φ(ut)〉 ≤ εt − κo(−∇φ(ut));
4: θt = arg minθ φ((1−αt)ut+ θat) + (1−αt)h(ρt) +

αth( θ
αt

));
5: ũt+1 = (1− αt)ut + θtat;
6: ρ̃t+1 = (1− αt)ρt + θt;
7: (ut+1, ρt+1) = Improve(ũt+1, ρ̃t+1, φ, r);
8: ūt+1 = (1− 2

t+2 )ūt + 2
t+2ut+1;

9: end for
10: Return: u+ = ūm;

Convergence Analysis:4

Theorem 2. Let the sequence settings be βk = 2L
k+1 ,

γk = 2
k+2 , αt = 2

t+2 and the inner loop count m =⌈
6K
(
Ds+δκ(x)

)
D0

⌉
, where Ds is an upper bound on the dis-

tance of the solution path, D0 is the distance between x0 and
x, δ is the constant satisfies εt ≤ δβkαt

2 . Then the following
results hold for the above algorithm for any x in X .
a) After K outer loops, the output yK satisfies

F (yK)− F (x) ≤ 6LD0

K(K + 1)
; (38)

4We provide the proof in an anony-
mous dropbox folder for interested reader.
https://www.dropbox.com/sh/xhfmrxr0xss1mxl/AAC00-
hytB5tncUssuKRMyxca?dl=0
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for finding an ε solution, and the number of FO evaluation
requires

K =

√
6LD0

ε
. (39)

b) The total number of LO evaluation TK for finding an ε
solution requires

TK =
36L(Ds + δκ(x))

ε
+

√
6LD0

ε
. (40)

Discussion:
The outer loop complexity in this subsection is exactly the
same as the one in the previous subsection, despite all the ap-
proximation we make to efficiently evaluate LO. As a result,
the count of gradient evaluation keeps unchanged. As a sharp
comparison, the convergence rate of [Jaggi, 2011] is degen-
erated by a factor of 2 when dk is evaluated approximately.
Apparently, the approximations made to the LO lead to the
increasing count of evaluations of gradient.

We point out that, by properly restarting GCG-GS, this al-
gorithm can also obtain optimal count of gradient evaluation
for strongly convex problem [Lan and Zhou, 2014]. In this
paper, we only discuss the problem under convex assumption
due to space limitation. In fact, the extension to strongly con-
vex case is straightforward in some sense.

4 Experiment
In this section, we demonstrate the efficiency of the proposed
algorithm by a CUR-like matrix factorization task ([Mahoney
and Drineas, 2009]; [Mairal et al., 2011]) regularized by
group lasso penalty. This experiment was conducted by us-
ing MATLAB on a laptop computer of Intel Core i7 2.7GHz
processor with 8 GB RAM.

Experimental Setup:
We consider the following CUR-like matrix factorization
problem [Mairal et al., 2011].

min
X

1

2
||D −DXD||2F + λ(

∑
i

||Xi:||∞ +
∑
j

||X:j ||∞),

(41)
where D is the input data matrix, Xi: and X:j denote the
row vectors and column vectors, respectively, and || · ||∞ is
the max norm. We set λ = 5 × 10−4 in our experiment.
We utilized the following four real datasets as used in [Yu et
al., 2014]: SRBCT, Brain Tumor 2, 9 Tumor and Leukemia
5, which are of sizes 83 × 2308, 50 × 10367, 60 × 5762,
and 72 × 11225, respectively. For comparison, we utilized
GCG TUM algorithm in [Yu et al., 2014] 6. For our GCG-
GS algorithm, we implemented the outer loop routine, which
then called the same polar operator of GCG TUM for inner
loop subroutine. Hence, the improved performance is gained
purely from the gradient sliding scheme. We set our inner
loop estimation m to 3 for all four datasets. Other input se-
quences were assigned exactly as the theoretical part. Note
that we did not compare with PG based methods because they
have already been shown to be less efficient than GCG TUM
in [Yu et al., 2014].

5Download from http://www.gems-system.org.
6Download from http://users.cecs.anu.edu.au/∼xzhang/GCG.
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Figure 1: Objective function value versus total running time,
polar operator time only, and gradient time only.

Experimental Result:
Figure 1 shows the experimental results, where three sets of
plots are drawn: objective function value versus total run-
ning time, versus polar operator evaluation time only and
versus gradient evaluation time only. We sampled every 30
iterations for GCG TUM and every 10 outer loop iterations
for GCG-GS. In general, our algorithm is much faster than
GCG TUM algorithm in terms of convergence speed, as il-
lustrated by the curve of objective function value versus total
running time. Also, our algorithm requires much less time on
gradient evaluation to achieve certain decrease of objective
function value on all four datasets. Finally, the time require-
ments for polar operator evaluation of our algorithm are sim-
ilar to GCG TUM on Brain Tumor 2 and SRBCT, superior
than GCG TUM on Leucamia and inferior than GCG TUM
on 9 Tumor.

Choice of Inner Iteration Count m:
In this subsection, we study the effect of different estimates
of m. We run the GCG-GS algorithm with 400 outer loops
on the four datasets, while vary the maximum inner iteration
from 2 to 7. Figure 2 plots the objective function value ver-
sus number of iterations. With the different inner iteration
number, the algorithm actually converges at similar outer loop
count. To be specific, all lines begin to converge around 50
numbers of outer iteration. Although the algorithm converges
to different objective function value with different m, the dif-
ference is below 0.005. In addition, we observed that m = 3
always yields relatively superior performance. Hence, m is
not hard to tune practically.

5 Conclusion
In this paper, we have proposed a new algorithm under GCG
framework. Our algorithm has optimal count of gradient eval-
uations as those PG method, which is an order superior than
plain GCG methods. Also, it admits the incorporation of ef-
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Figure 2: Objective function value versus number of outer
iterations for different choice of inner loop count m.

ficient approximation techniques for accelerating the evalua-
tion of linear operator that CGS lacks. Meanwhile, this count
of gradient requirement remains unchanged. Experiment on
a CUR-like matrix factorization task with group lasso penalty
on four real datasets have demonstrated the efficiency of the
proposed method.
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