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Abstract. Extracting features from incomplete tensors is a challenging
task which is not well explored. Due to the data with missing entries,
existing feature extraction methods are not applicable. Although tensor
completion techniques can estimate the missing entries well, they focus
on data recovery and do not consider the relationships among tensor
samples for effective feature extraction. To solve this problem of feature
extraction for incomplete data, we propose an unsupervised method,
TDVM, which incorporates low-rank Tucker Decomposition with fea-
ture Variance Maximization in a unified framework. Based on Tucker
decomposition, we impose nuclear norm regularization on the core ten-
sors while minimizing reconstruction errors, and meanwhile maximize
the variance of core tensors (i.e., extracted features). Here, the rela-
tionships among tensor samples are explored via variance maximization
while estimating the missing entries. We thus can simultaneously obtain
lower-dimensional core tensors and informative features directly from
observed entries. The alternating direction method of multipliers app-
roach is utilized to solve the optimization objective. We evaluate the
features extracted from two real data with different missing entries for
face recognition tasks. Experimental results illustrate the superior per-
formance of our method with a significant improvement over the state-
of-the-art methods.

Keywords: Missing data · Feature extraction
Low-rank tucker decomposition · Variance maximization

1 Introduction

This paper aims to extract features directly from data with missing entries.
Many real-world data are multi-dimensional, in the form of tensors, which are
ubiquitous such as multichannel images and have become increasingly popu-
lar [1]. Tucker decomposition is widely used to solve tensor learning problems,
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which decomposes a tensor into a core tensor with factor matrices [2]. Based
on Tucker decomposition, many tensor methods are proposed for feature extrac-
tion (dimension reduction) [3–7]. For example, multilinear principal component
analysis (MPCA) [3] extracts features directly from tensors, which is a popular
extension of classical Principal Component Analysis (PCA) [8]. Furthermore,
some robust methods such as robust tensor PCA (TRPCA) [9] are well studied
for data with corruptions (e.g., noise and outliers) [9–11].

In practice, some entries of tensors are often missing due to the problems in
the acquisition process or costly experiments etc. [12]. This missing data problem
appears in a wide range of fields such as social sciences, computer vision and
medical systems [13]. For example, partial responses in surveys are common
in the social sciences, leading to incomplete datasets with arbitrary patterns
[14]. Moreover, some images are corrupted during the image acquisition and
partial entries are missing [15]. In these scenarios, the above existing feature
learning methods cannot work well. How to correctly handle missing data is a
fundamental yet challenging problem in machine learning [16], and the problem
of extracting features from incomplete tensors is not well explored.

One natural solution to solving this problem is to recover the missing data
and then view the recovered tensors as the extracted features. Tensor comple-
tion techniques are widely used for missing data problems and has drawn much
attention in many applications such as image recovery [17] and video completion
[18]. For example, a high accuracy low-rank tensor completion algorithm (HaL-
RTC) [17] is proposed to estimate missing values in tensors of visual data, and
a generalized higher-order orthogonal iteration (gHOI) [19] achieves simultane-
ous low-rank Tucker decomposition and completion efficiently. Although these
tensor completion methods can recover the missing entries well under certain
conditions, they only focus on data recovery without exploring the relationships
among samples for effective feature extraction. Besides, taking recovered data
as features, the dimension of features cannot be reduced.

Another straightforward solution is a “two-step” strategy, i.e., “tensor com-
pletion methods + feature extraction methods”: the missing entries are first
recovered by the former and then the features are extracted from the completed
data by the latter. For example, LRANTD [20] performs nonnegative Tucker
decomposition (NTD) for incomplete tensors by realizing “low-rank represen-
tation (LRA) + nonnegative feature extraction”. It needs a tensor completion
method to estimate the missing values in the preceding LRA step. However, this
“two-step” strategy probably amplifies the reconstruction errors as the missing
entries and features are not learned in one stage, and the errors from tensor
completion methods can deteriorate the performance of feature extraction in
the succeeding step. Moreover, this approach is generally not computationally
efficient.

Recently, a few works apply tensor completion methods to feature classifica-
tion by incorporating completion model with discriminant analysis [21,22]. These
methods are supervised and require labels which are expensive and difficult to
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obtain. To the best of our knowledge, there is no an unsupervised method to
extract features directly from tensors with missing entries.

To solve the problem of extracting features from incomplete tensors,
we propose an unsupervised method, i.e., incorporating Low-rank Tucker
Decomposition with feature Variance Maximization in a unified framework,
namely TDVM. In this framework, based on Tucker decomposition with
orthonormal factor matrices (a.k.a., higher-order singular value decomposition
(HOSVD) [23]), we impose nuclear norm regularization on the core tensors while
minimizing the reconstruction error, and meanwhile maximize the variance of
core tensors. In this paper, the learned core tensors (analogous to the singular
values of a matrix) are viewed as the extracted features. Compared with tensor
completion methods and “two-step” strategies:

– Although Tucker decomposition-based tensor completion methods can also
obtain core tensors, these core tensors are learned with aiming to recover the
tensor samples and without exploring the relationships among samples for
effective feature extraction. Unlike these tensor completion methods, here we
focus on low-dimensional feature extraction rather than missing data recovery.
Besides, we incorporate a specific term (feature variance maximization) to
enhance the discriminative properties of learned core tensors.

– Different from the “two-step” strategies, we simultaneously learn the missing
entries and features directly from observed entries in the unified framework.
Besides, TDVM directly learns low-dimensional features in one step, which
saves computational cost.

We optimize our model using alternating direction method of multipliers
(ADMM) [24]. After feature extraction, we evaluate the extracted features for
face recognition, which empirically demonstrates that TDVM outperforms the
competing methods consistently. In a nutshell, the contributions of this paper
are twofold:

– We propose an efficient unsupervised feature extraction method, TDVM,
based on low-rank Tucker decomposition. TDVM can simultaneously obtain
low-dimensional core tensors and features for incomplete data.

– We incorporate nuclear norm regularization with variance maximization on
core tensors (features) to explore the relationships among tensor samples
while estimating missing entries, leading to informative features extracted
directly from observed entries.

2 Preliminaries and Backgrounds

2.1 Notations and Operations

The number of dimensions of a tensor is the order and each dimension is a mode
of it. A vector (i.e. first-order tensor) is denoted by a bold lower-case letter
x ∈ R

I . A matrix (i.e. second-order tensor) is denoted by a bold capital letter
X ∈ R

I1×I2 . A higher-order (N ≥ 3) tensor is denoted by a calligraphic letter
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X ∈ R
I1×···×IN . The ith entry of a vector a ∈ R

I is denoted by ai, and the
(i, j)th entry of a matrix X ∈ R

I1×I2 is denoted by Xi,j . The (i1, · · · , iN )th
entry of an Nth-order tensor X is denoted by Xi1,··· ,iN , where in ∈ {1, · · · , In}
and n ∈ {1, · · · , N}. The Frobenius norm of a tensor X is defined by ‖X‖F =
〈X ,X〉1/2 [25]. Ω ∈ R

I1×I2 is a binary index set: Ωi1,··· ,iN = 1 if Xi1,··· ,iN is
observed, and Ωi1,··· ,iN = 0 otherwise. PΩ is the associated sampling operator
which acquires only the entries indexed by Ω, defined as:

(PΩ (X ))i1,··· ,iN =
{

Xi1,··· ,iN , if(i1, · · · , iN ) ∈ Ω
0, if(i1, · · · , iN ) ∈ Ωc , (1)

where Ωc is the complement of Ω, and PΩ (X ) + PΩ c(X ) = X .

Definition 1 Mode-n Product. A mode-n product between a tensor X ∈
R

I1×···×IN and a matrix/vector U ∈ R
In×Jn is denoted by Y = X ×n UT .

The size of Y is I1 × · · · × In−1 × Jn × In+1 × · · · × IN , with entries given
by Yi1···in−1jnin+1···iN =

∑
in

Xi1···in−1inin+1···iNUin,jn , and we have Y(n) =
UT X(n)[25].

Definition 2 Mode-n Unfolding. Unfolding, a.k.a., matricization or flatten-
ing, is the process of reordering the elements of a tensor into matrices along each
mode [1]. A mode-n unfolding matrix of a tensor X ∈ R

I1×···×IN is denoted as
X(n) ∈ R

In×Πn∗�=nIn∗.

2.2 Tucker Decomposition

A tensor X ∈ R
I1×I2×···×IN is represented as a core tensor with factor matrices

in Tucker decomposition model [1]:

X = G×1U(1)×2U(2) · · · ×NU(N), (2)

where {U(n) ∈ R
In×Rn , n = 1, 2 · · · N, and Rn < In} are factor matrices with

orthogonal columns and G ∈ R
R1×R2×···×RN is the core tensor with smaller

dimension. Tucker-rank of an Nth-order tensor X is an N -dimensional vector,
denoted as (R1, · · · , RN ), where RN is the rank of the mode-n unfolded matrix
X(n) of X . Figure 1 illustrates this decomposition. In this paper, we regard the
core tensor consists of the extracted features of a tensor.

Fig. 1. The Tucker decomposition of tensors (a third-order tensor X shown for illus-
tration).
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3 Feature Extraction for Incomplete Data

3.1 Problem Definition

Given M tensor samples {T1, · · · , Tm, · · · , TM} with missing entries in each
sample Tm ∈ R

I1×···×IN . In is the mode-n dimension. We denote T = [T1, · · · ,
Tm, · · · TM ] ∈ R

I1×···×IN×M , where the M are the number of tensor samples
concatenated along the mode-(N + 1) of T . For feature extraction (dimen-
sion reduction), we aim to directly extract low-dimensional features G =
[G1, · · · ,Gm, · · · GM ] ∈ R

R1×···×RN×M (Rn < In, n = 1, · · · , N) from the given
high-dimensional incomplete tensors T .

Remark: This problem is different from the case of data with corruptions (e.g.,
noise and outliers) widely studied in [9,26–28]: Only if the corruptions are arbi-
trary, missing data could be regarded as a special case of corruptions (with the
location of corruption being known). However, the magnitudes of corruptions in
reality are not arbitrarily large. In other words, here we study a new problem
and existing feature extraction methods are not applicable.

3.2 Formulation of the Proposed Method: TDVM

To solve this problem, we propose an unsupervised feature extraction method.
Based on Tucker decomposition, we impose the nuclear norm on the core tensors
of observed tensors while minimizing reconstruction errors, and meanwhile max-
imize the variance of core tensors (features), i.e., incorporating low-rank Tucker
Decomposition with feature Variance Maximization, namely TDVM. Thus, the
objective function of TDVM is:

min
Xm,Gm,Sm,U(n)

M∑
m=1

1
2
‖Xm − Gm×1U(1) · · · ×NU(N)‖2F

+
M∑

m=1

‖Gm‖∗ − 1
2

M∑
m=1

‖Gm − Ḡ‖2F ,

s.t. PΩ (Xm) = PΩ (Tm),U(n)�U(n) = I.

(3)

where {U(n) ∈ R
In×Rn}N

n=1 are common factor matrices with orthonormal
columns. I ∈ R

Rn×Rn is an identity matrix. Gm is the core tensor which consists
of the extracted features (analogous to the singular values of a matrix) of an
incomplete tensor Tm with observed entries in Ω. ‖Gm‖∗ is the nuclear norm of
Gm (i.e., the summation of the singular values of the unfolded matrices along
modes of Gm [17]). Ḡ = 1

M

∑M
m=1 Gm is the mean of core tensors (extracted

features).

Remark: Our objective function (3) integrates three terms into a unified
framework:

– The first term: minimizing
∑M

m=1
1
2‖Xm − Gm×1U(1) · · · ×NU(N)‖2F , aims to

minimize the reconstruction error based on given observed entries.
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– The second term: minimizing
∑M

m=1 ‖Gm‖∗, aims to obtain low-dimensional
features. It is proved that imposing the nuclear norm on a core tensor Gm is
essentially equivalent to that on its original tensor Xm [19]. We thus obtain a
low-rank solution, i.e. Rn can be small (Rn < In). Thus, the learned feature
subspace is naturally low-dimensional. Besides, imposing nuclear norm on
core tensors Gm instead of original Xm saves computational cost.

– The third term: minimizing −
∑M

m=1
1
2‖Gm − Ḡ‖2F , is equivalent to maximize

the variance of extracted features (core tensors) following PCA. We thus
explore the relationships of incomplete tensors via variance maximization
while estimating the missing entries via the first and second term (low-rank
Tucker decomposition).

By this unified framework, we can efficiently extract low-dimensional infor-
mative features directly from observed entries, which is different from tensor
completion methods (only focusing on data recovery without considering the
relationships among samples for effective feature extraction) and “two-step”
strategies (the reconstruction error from tensor completion step probably dete-
riorates the performance of feature extraction in the succeeding step, and com-
bining two methods is generally time consuming).

3.3 Optimization by ADMM

To optimize (3) using ADMM, we apply the variable splitting technique and
introduce a set of auxiliary variables {Sm ∈ R

R1×···×RN ,m = 1 · · · M,n =
1, · · · , N}, and then reformulate (3) as:

min
Xm,Gm,Sm,U(n)

M∑
m=1

1
2
‖Xm − Gm×1U(1) · · · ×NU(N)‖2F

+
M∑

m=1

‖Sm‖∗ − 1
2

M∑
m=1

‖Gm − Ḡ‖2F ,

s.t. PΩ (Xm) = PΩ (Tm),Sm = Gm,U(n)�U(n) = I.

(4)

For easy derivation of (4), we reformulate it by unfolding each tensor variable
along mode-n and absorbing the constraints. Thus, we get the Lagrange function
as follows:

L =
M∑

m=1

N∑
n=1

(1
2
‖X(n)

m − U(n)G(n)
m P(n)�‖2F + ‖S(n)

m ‖∗

+ 〈Ymn,G(n)
m − S(n)

m 〉 +
μ

2
‖G(n)

m − S(n)
m ‖2F − 1

2
‖G(n)

m − Ḡ(n)‖2F
)
(5)

where P(n) = U(N)
⊗

· · ·
⊗

U(n+1)
⊗

U(n−1) · · ·
⊗

U(1) ∈ R

∏
j �=n Ij×∏

j �=n Rj

and {Ymn ∈ R
Rn×∏

j �=n Rj , n = 1, · · · , N,m = 1, · · · ,M} are the matrices of
Lagrange multipliers. μ > 0 is a penalty parameter. X(n)

m ∈ R
In×∏

j �=n Ij and
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{G(n)
m ,S(n)

m , Ḡ(n)} ∈ R
Rn×∏

j �=n Rj are the mode-n unfolded matrices of tensor
Xm and {core tensor Gm, auxiliary variable Sm, mean of features Ḡ}, respectively.

ADMM solves the problem (5) by successively minimizing L over
{X(n)

m ,G(n)
m ,S(n)

m ,U(n)}, and then updating Ymn.

Update S(n)
m . The Lagrange function (5) with respect to S(n)

m is,

L
S

(n)
m

=
M∑

m=1

N∑
n=1

(
‖S(n)

m ‖∗ +
μ

2
‖(G(n)

m + Ymn/μ) − S(n)
m ‖2F

)
. (6)

To solve (6), we use the spectral soft-thresholding operation [29] to
update S(n)

m :

S(n)
m = prox1/μ(G(n)

m + Ymn/μ) = Udiag(max σ − 1
μ

, 0)V�, (7)

where prox is the soft-thresholding operation and Udiag(max σ − 1
μ , 0)V� is the

Singular Value Decomposition (SVD) of (G(n)
m + Ymn/μ).

Update U(n). The Lagrange function (5) with respect to U(n) is:

LU(n) =
M∑

m=1

N∑
n=1

1
2
‖X(n)

m − U(n)G(n)
m P(n)�‖2F , s.t. U(n)�U(n) = I, (8)

According to the Theorem 4 in [30], the minimization of the problem (8) over
the matrices {U(1), · · · ,U(N)} having orthonormal columns is equivalent to the
maximization of the following problem:

U(n) = arg max trace
(
U(n)�X(n)

m (G(n)
m P(n)�)

�) (9)

where trace() is the trace of a matrix, and we denote W(n) = G(n)
m P(n)�.

The problem (9) is actually the well-known orthogonal procrustes problem
[31], whose global optimal solution is given by the SVD of X(n)

m W(n)�, i.e.,

U(n) = Û(n)(V̂(n))
�

, (10)

where Û(n) and V̂(n) are the left and right singular vectors of SVD of
X(n)

m W(n)�, respectively.

Update G(n)
m . The Lagrange function (5) with respect to G(n)

m is:

L
G

(n)
m

= ‖X(n)
m − U(n)G(n)

m P(n)�‖2F +
μ

2
‖G(n)

m S(n)
m + Ymn/μ‖2F

−1
2
‖(1 − 1

M
)G(n)

m − 1
M

M∑
j �=m

G(n)
j ‖2F

)
.

(11)
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Algorithm 1. Low-rank Tucker Decomposition with Feature Variance Maximization
(TDVM)

1: Input: Incomplete tensors T = [T1, · · · , Tm, · · · TM ], Ω, μ, and the maximum iter-
ations K, the dimension of core tensors (features) D = [R1, · · · , RN ], and stopping
tolerance tol.

2: Initialization: Set PΩ (Xm) = PΩ (Tm), PΩ c(Xm) = 0, m = 1, · · · , M ; initialize
{Gm}M

m=1 and {U(n)}N
n=1 randomly; μ0 = 5, ρ = 10, μmax = 1e10.

3: for m = 1 to M do
4: for k = 1 to K do
5: for n = 1 to N do
6: Update S

(n)
m , U(n) and G

(n)
m by (7), (10) and (12) respectively.

7: Update Y
(n)
m by Y

(n)
m = Y

(n)
m + μ(G

(n)
m − S

(n)
m ).

8: end for
9: Update Xm by (13).

10: Update μk+1 = min(ρμk, μmax).
11: end for
12: If ‖Gm − Sm‖2

F /‖Gm‖2
F < tol, break; otherwise, continue.

13: end for
14: Output: Extracted features (core tensors): G = [G1, · · · , Gm, · · · GM ].

Then we set the partial derivative
∂L

G
(n)
m

∂G
(n)
m

to zero, and get:

G(n)
m =

M2

M2μ + 2M − 1

(
μS(n)

m − Ymn + U(n)�X(n)
m P(n)

)

−
(
(

1
M

− 1
M2

)
M∑

j �=m

G(n)
j

)
.

(12)

Update Xm . The Lagrange function (5) with respect to X is:

LXm
=

1
2

M∑
m=1

‖Xm − Gm×1U(1) · · · ×NU(N)‖2F ,

s.t. PΩ (Xm) = PΩ (Tm),

(13)

By deriving the Karush-Kuhn-Tucker (KKT) conditions for function (13), we can
update Xm by Xm = PΩ (Xm) + PΩ c(Zm), where Zm = Gm×1U(1) · · · ×NU(N).

We summarize the proposed method, TDVM, in Algorithm1.

3.4 Complexity Analysis

We analyze the complexity of TDVM following [32]. For simplicity, we assume
the size of tensor is I1 = · · · = IN = I, and the feature dimensions are
R1 = · · · = RN = R. At each iteration, the time complexity of performing the
soft-thresholding operator (7) is O(MNRN+1). The time complexities of some
multiplication operators in (10)/(12) and (13) are O(MNRIN ) and O(MRIN ),
respectively. Hence, the total time complexity of TDVM is O(M(N + 1)RIN )
per iteration.
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4 Experimental Results

We implemented TDVM1 in MATLAB and all experiments were performed on
a PC (Intel Xeon(R) 4.0 GHz, 64 GB).

4.1 Experimental Setup

Compared Methods: We compare our TDVM with nine methods in three
categories:

– Two tensor completion methods based on Tucker-decomposition: HaLRTC
[17] and gHOI [19]. The recovered tensor are regarded as the features.

– Six {tensor completion methods + feature extraction methods} (i.e., “two-
step” strategies): HaLRTC + PCA [8], gHOI + PCA, HaLRTC + MPCA
[3], gHOI + MPCA, HaLRTC + LRANTD [20] and gHOI + LRANTD.

– One robust tensor feature learning method: TRPCA [9].

After feature extraction stage, we use the Nearest Neighbors Classifier (NNC)
to evaluate the extracted features on two real data for face recognition. We had
also evaluated TDVM on MNIST handwritten digits [33] for object classification,
and TDVM obtains the best results in all cases. We do not report here due to
limited space.

Data: We evaluate the proposed TDVM on two real data for face recognition
tasks. One is a subset of Facial Recognition Technology database (FERET)2

[34], which has 721 face samples from 70 subjects. Each subject has 8–31 faces
with at most 15◦ of pose variation and each face image is normalized to a 80×60
gray image. The other is a subset of extended Yale Face Database B (YaleB)3

[35], which has 2414 face samples from 38 subjects. Each subject has 59–64 near
frontal images under different illuminations and each face image is normalized
to a 32 × 32 gray image.

Missing Data Settings: We set the tensors with two types of missing data:

– Pixel-based missing: we uniformly select 10% − 90% pixels (entries) of
tensors as missing at random. Pixel-based missing setting is widely used in
tensor completion domain. One example (e.g., missing 50% entries) is shown
in Fig. 2(b).

– Block-based missing: we randomly select B1 × B2 block pixels of each
tensor sample as missing. The missing block is random in each sample. One
example (e.g., {B1 = 40, B2 = 30} for FERET and {B1 = 16, B2 = 16} for
YaleB) is shown in Fig. 2(c). In practice, some parts of a face can be covered
by some objects such as a sunglass, which can be regarded as the block-based
missing case.

1 Codes and data: https://www.dropbox.com/sh/h4k07sstdmthd80/AABMPFEqD
Dz-NzKWXIhDnLL0a/Qiquan TDVM(ECML 198)?dl=0.

2 http://www.dsp.utoronto.ca/∼haiping/MSL.html.
3 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

https://www.dropbox.com/sh/h4k07sstdmthd80/AABMPFEqDDz-NzKWXIhDnLL0a/Qiquan_TDVM(ECML_198)?dl=0
https://www.dropbox.com/sh/h4k07sstdmthd80/AABMPFEqDDz-NzKWXIhDnLL0a/Qiquan_TDVM(ECML_198)?dl=0
http://www.dsp.utoronto.ca/~haiping/MSL.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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(a) (b) (c)

Fig. 2. One example of (a) original images of FERET and YaleB with (b) 50% pixel-
based and with (c) 40 × 30 and 16 × 16 block-based missing entries, respectively.

Intuitively, handling data with block-based missing is more difficult than that
with pixel-based missing if same number of entries are missing.

Parameter Settings: We set the maximum iterations K = 200, tol = 1e−5 for
all methods and set the feature dimension D = R1 ×R2 = {40× 30, 16× 16} for
TDVM, gHOI and LRANTD on {FERET, YaleB} respectively. In other words,
we directly learn 40×30×721 features from FERET (80×60×721) and extract
16 × 16 × 2414 features from YaleB (32 × 32 × 2414). Other parameters of the
compared methods have followed the original papers.

Applying extracted features for face recognition using NNC, we randomly
select L = {1, 2, · · · , 7} extracted feature samples from each subject (with 8–
31 samples) of FERET for training in NNC. On YaleB, we randomly select
L = {5, 10, · · · , 50} extracted feature samples from each subject (with 59–64
samples) for training.

4.2 Parameter Sensitivity and Convergence Study

Effect of Feature Dimension D: We study the effect of TDVM with different
feature dimensions (size of each core tensor) for face recognition on FERET.
We set the feature dimension D of each face sample as R1 × R2 in TDVM and
show the corresponding face recognition results. Figure 3 shows that TDVM with
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Fig. 3. Recognition results on FERET via TDVM with different feature dimension Ds.
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on FERET with (a) pixel-based/(b) block-based missing entries.
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Fig. 5. Convergence curves of feature extraction on FERET with pixel-based
(50%)/block-based (40 × 30) missing entries via TDVM with ten different values of
μ0 and ρ, respectively.

different feature dimensions stably yields similar recognition results on FERET
in both pixel-based and block-based missing cases, excepting D = 5 × 5 (i.e.,
only 25 features are extracted from each 80×60 face image) where the number of
features are too limited to achieve good results. Since a larger D costs more time
and we aim to learn low-dimensional features, here we set D = R1×R2 = 40×30
and 16×16 for TDVM to extract features from FERET and YaleB, respectively.
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Fig. 6. Recognition results on FERET with pixel-based (50%)/block-based (40 × 30)
missing entries via TDVM with ten different values of μ0 and ρ, respectively.

Convergence: We study the convergence of TDVM in terms of Relative Error :
‖Gm − Sm‖2F /‖Gm‖2F on FERET with pixel/block-based missing entries. Here,
we set μ0 = 5 and ρ = 10 for TDVM. Figure 4 shows that the relative error
dramatically decreases to a very small value (around 10−13 order) with about 10
iterations. In other words, the proposed TDVM converges fast within 5 iterations
if we set tol = 1e − 5.

Sensitivity Analysis of Parameter μ0 and ρ : In line 10 of Algorithm1, we
iteratively update the penalty parameter μ with a step size ρ from an initial μ0,
which has been widely used in many methods such as [9] and makes the algorithm
converges faster. Figures 5 and 6 show the convergence curves and corresponding
recognition results on FERET with 50% missing pixels and 40×30 missing block
via TDVM with different μ0 and ρ respectively. As seen from Figs. 5(a) and (b),
with different μ0, TDVM stably converges to a small value (around 10−13 order)
with around 10 iterations. In terms of ρ, the relative errors converge to a small
value faster if TDVM with a larger ρ (e.g., ρ = 10), as shown in Figs. 5(c) and
(d). Figures 6(a) and (c) show that the feature extraction performance of our
TDVM is stable and not sensitive to the values of μ0 and ρ on FERET with
50% missing pixels. Besides, as seen from Figs. 6(b) and (d), with a larger μ0

(μ0 > 1) and ρ (ρ > 1.5) for TVDM on FERET with 40×30 block-based missing
entries, the corresponding face recognition results are similar and stable.
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In general, we do not need to carefully tune the parameter μ0 and ρ for the
proposed TDVM. In this paper, we set μ0 = 5 and ρ = 10 in Algorithm 1 for all
tests.

4.3 Evaluate Features Extracted from Data with Pixel/Block-Based
Missing

To save space, for pixel-based missing case, we report the results of FERET
and YaleB with {10%, 30%, 50%, 90%} missing pixels in Table 1. For block-based
missing case, we report the results of FERET with {5 × 10, 20 × 20, 40 × 30,
55 × 55} missing block and YaleB with {5 × 5, 8 × 10, 16 × 16, 30 × 25} missing
block in Table 2 respectively. In each pixel/block-based missing case, we report
the recognition rates of randomly selecting L = {1, 7} and L = {5, 50} extracted
feature samples from each subject of FERET and YaleB for training in NNC,
respectively. We highlight the best results in bold fonts and second best in
underline respectively. We repeat the runs 10 times of feature extraction and of
recognition separately, and report the average results.

Face Recognition Results on FERET/YaleB with Pixel-Based Miss-
ing. TDVM outperforms the other nine methods by {34.69%, 35.72%, 35.19%,
46.65%} in all cases of FERET with {10%, 30%, 50%, 90%} missing pixels on
average respectively, as shown in the left half of Table 1. Besides, TRPCA
achieves the second best results in six cases given more than 50% observations

Table 1. Face recognition results (average recognition rates %) on the FERET and
YaleB with {10%, 30%, 50%, 90%} pixel-based missing entries.

Data FERET (Image size 80 × 60) YaleB (Image size 32 × 32)

Missing Pixels 10% 30% 50% 90% 10% 30% 50% 90%

L 1 7 1 7 1 7 1 7 5 50 5 50 5 50 5 50

HaLRTC 36.44 73.59 36.50 73.07 35.75 72.42 21.75 44.03 35.85 76.71 34.78 75.08 31.55 71.77 12.87 31.83

gHOI 36.41 73.94 36.52 73.94 36.53 74.07 29.65 63.72 35.42 76.38 33.40 73.74 28.68 66.91 10.51 19.82

HaLRTC + PCA 32.23 69.74 26.37 63.38 25.56 59.91 6.84 9.05 22.22 51.26 20.70 48.00 16.47 36.63 13.75 32.59

gHOI + PCA 32.24 68.96 28.74 63.51 26.41 61.26 13.90 24.68 29.71 51.79 15.63 36.69 18.42 41.96 4.95 6.75

HaLRTC +MPCA 40.49 75.37 40.08 73.68 38.94 72.77 4.79 7.62 30.23 73.07 29.62 71.36 28.57 69.34 14.45 38.62

gHOI +MPCA 41.18 75.97 41.01 75.89 40.14 74.68 8.76 14.16 30.02 72.59 27.37 68.07 13.71 43.25 4.79 6.17

HaLRTC + LRANTD 34.85 73.64 34.64 72.60 33.89 71.86 15.73 27.88 23.13 55.93 22.03 52.53 20.52 48.79 9.53 22.55

gHOI + LRANTD 36.44 74.11 36.44 74.07 36.68 74.33 30.06 64.42 22.66 54.30 21.64 52.20 21.28 50.33 10.06 20.53

TRPCA 51.27 84.33 46.24 82.08 41.71 79.09 4.61 10.39 32.66 71.83 29.51 68.72 22.56 53.99 2.65 2.72

TDVM 85.50 96.23 84.62 95.58 82.01 94.59 58.39 79.57 93.21 98.40 92.28 98.91 91.93 98.13 87.15 97.20
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Table 2. Face recognition results (average recognition rates %) on the FERET and
YaleB with block-based missing entries.

Data FERET (Image size 80 × 60) YaleB (Image size 32 × 32)

Missing Block 5 × 10 20 × 20 40 × 30 55 × 55 5 × 5 8 × 10 16 × 16 30 × 25

L 1 7 1 7 1 7 1 7 5 50 5 50 5 50 5 50

HaLRTC 36.37 73.64 35.75 72.77 33.96 71.21 27.24 59.31 36.02 76.73 35.27 76.30 33.08 74.38 27.43 67.06

gHOI 36.44 73.55 35.53 72.86 31.55 68.10 22.70 52.12 32.86 74.07 31.24 72.86 30.67 70.27 20.13 49.14

HaLRTC + PCA 31.32 66.67 31.27 65.41 20.14 52.68 17.22 40.22 43.49 83.54 33.61 57.57 19.94 46.61 15.06 35.21

gHOI + PCA 26.82 60.13 20.49 47.92 10.86 25.19 5.38 10.48 21.69 58.72 19.52 52.43 13.27 31.89 6.88 11.95

HaLRTC +MPCA 41.09 76.06 41.38 76.32 21.11 53.64 22.52 53.20 30.31 73.56 29.53 71.54 27.46 68.17 17.52 46.01

gHOI +MPCA 41.43 76.58 22.89 56.80 10.81 21.47 18.08 36.32 24.14 64.81 21.37 60.88 9.32 21.01 7.58 16.23

HaLRTC + LRANTD 36.41 73.98 35.73 73.55 33.72 70.39 26.90 58.53 22.27 53.66 21.47 51.63 21.20 50.00 11.98 30.43

gHOI + LRANTD 36.53 74.16 35.12 74.29 31.31 68.27 21.83 50.69 21.45 52.12 20.69 49.92 19.98 47.68 11.26 24.61

TRPCA 39.63 77.40 36.67 74.98 30.55 63.64 21.89 45.97 33.21 72.20 32.09 70.88 30.21 68.35 25.90 58.85

TDVM 84.21 96.45 81.67 94.81 76.82 91.99 75.04 91.95 82.51 95.76 75.54 95.14 72.79 95.29 59.91 94.63

while its performance drops dramatically when missing 90% pixels, where the
gHOI + LRANTD takes the second place. Moreover, with less training features
(e.g. L = 1) in NNC, our TDVM has more advantage as it aims to extract
low-dimensional informative features.

The right half of Table 1 shows that TDVM outperforms the best perform-
ing existing algorithm (HaLRTC) in all cases of YaleB with {10%, 30%, 50%}
missing pixels by {39.52%, 40.67%, 43.37%} on average, respectively. When the
missing rate achieves 90%, the performance of compared methods drop sharply,
excepting HaLRTC + MPCA which wins other existing methods in this scenario,
where our TDVM keeps the best performance with 77.45% over all the existing
methods.

Face Recognition Results on FERET/YaleB with Block-Based Miss-
ing. The left half of Table 2 shows that TDVM outperforms all competing meth-
ods by {35.99%, 37.70%, 44.48%, 50.68%} in all cases of FERET with {5 × 10,
20 × 20, 40 × 30, 55 × 55} missing blocks on average, respectively. Furthermore,
gHOI/HaLRTC + MPCA and HaLRTC share the second place in these cases.

As shown in the right half of Table 2: TDVM outperforms the nine state-
of-the-art methods by {40.53%, 40.40%, 46.07%, 50.42%} in all cases of YaleB
with {5 × 5, 8 × 10, 16 × 16, 30 × 25} missing blocks on average, respectively.
Specifically, HaLRTC is the best performing existing algorithm in the cases of
missing {8 × 10, 16 × 16, 30 × 25} block, but our TDVM outperforms it by
{29.55%, 30.31%, 30.02%} respectively there.
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4.4 Computational Cost

We report the average time cost of feature extraction in Table 3. As shown in
Table 3, TDVM is much more efficient than all the compared methods in all cases,
as we impose nuclear norm on core tensors instead of original tensors to learn
low-dimensional features. Specifically, HaLRTC is the second fastest methods on
FERET with block-based missing entries while slower than gHOI and HaLRTC
+ PCA in two pixel-based missing cases. Besides, HaLRTC is also the second
efficient method on YaleB with pixel-based missing entries excepting the case of
missing 90% pixels. In the block-based missing cases of YaleB, TRPCA is faster
than TDVM, but it yields worse results. Moreover, the “two-step” strategies
such as gHOI + MPCA/LRANTD are the most time consuming (more than 10
times slower than TDVM on average).

Table 3. Time cost (seconds) of feature extraction on the FERET and YaleB with
pixel/block-based missing entries.

Data Missing HaLRTC gHOI HaLRTC + gHOI + HaLRTC + gHOI + HaLRTC + gHOI + TRPCA TDVM

Pixels/Block [17] [30] PCA [8] PCA MPCA [3] MPCA LRANTD [20] LRANTD [9]

10% 101.6 67.2 112.7 99.4 270.4 289.9 237.1 383.1 231.0 32.6

30% 114.2 149.8 120.8 310.5 313.3 516.8 289.6 413.9 269.2 33.3

FERET 50% 123.7 230.4 129.9 533.6 332.6 687.5 325.0 612.9 212.7 23.7

90% 120.0 175.3 104.1 442.1 132.1 654.8 111.2 563.6 118.2 20.1

5 × 10 103.1 521.3 114.8 166.5 191.5 254.5 445.5 521.3 170.0 29.3

20 × 20 110.5 599.7 120.4 220.2 178.7 299.1 459.9 599.7 165.9 24.0

FERET 40 × 30 119.1 555.1 129.9 221.7 209.5 220.2 479.0 555.1 139.8 21.7

55 × 55 166.6 465.9 117.3 208.2 245.0 213.1 377.5 465.9 144.5 30.3

10% 127.8 318.2 183.6 721.8 619.6 1095.0 494.6 674.3 156.5 45.9

30% 150.8 631.3 203.5 1423.9 650.6 2202.0 575.2 1645.2 160.0 45.5

YaleB 50% 160.9 624.6 216.1 1304.9 684.5 1783.6 565.0 2218.2 160.2 45.3

90% 241.0 1052.8 223.4 1030.3 425.5 1152.7 590.0 997.6 118.7 49.6

5 × 5 177.0 516.3 179.1 653.6 610.7 788.1 499.7 2422.6 160.4 49.5

8 × 10 169.3 598.9 206.6 601.9 573.2 1483.3 502.1 1576.4 163.6 47.0

YaleB 16 × 16 210.9 611.2 226.8 611.0 682.8 1600.7 571.7 880.8 161.8 52.5

30 × 25 175.4 568.0 212.1 569.0 426.3 1453.0 513.5 548.7 133.6 45.2

4.5 Summary of Experimental Results

– TDVM outperforms the nine competing methods in all cases of face recogni-
tion on two real data, especially on data with more missing entries. Besides,
our method is much more efficient than all compared methods. Moreover,
with less training features (e.g. L = 1 for FERET and L = 5 for YaleB) in
NNC, TDVM shows more advantage as it extracts low-dimensional informa-
tive features. These results verifies the superiority of incorporating low-rank
Tucker decomposition with feature variance maximization.
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– The tensor learning method (TRPCA) is the best performing existing algo-
rithm in six cases of FERET with pixel-based missing entries. However, it
works much worse than TDVM on data with increasing missing entries. For
example, on YaleB with 90% missing pixels, TRPCA loses up to 94.48% than
TDVM on average.

– Tensor completion methods (HaLRTC and gHOI) obtain similar results in
most cases and HaLRTC achieves the second best results in about half of all
cases, while TDVM outperforms these two methods by 34.92% and 41.71% on
average on FERET and YaleB respectively. These results echo our claim: ten-
sor completion methods focus on recovering missing data and do not explore
the relationships among samples for effective feature extraction.

– The “two-step” strategies (e.g., gHOI + PCA/MPCA) do not have much
improvement and even perform worse than using only tensor completion
methods (e.g., gHOI), as we claimed that reconstruction errors from comple-
tion step can deteriorate the performance in feature extraction step. Although
gHOI + LRANTD/MPCA and HaLRTC + PCA/MPCA achieve the second
best results in a few cases, TDVM outperforms the “two-step” strategies in
all cases as we extracts informative features directly from observed entries.

5 Conclusion

In this paper, we have proposed an unsupervised feature extraction method, i.e.
TDVM, which solves the problem of feature extraction for tensors with missing
data. TDVM incorporates low-rank Tucker decomposition with feature variance
maximization in a unified framework, which results in low-dimensional informa-
tive features extracted directly from observed entries. We have evaluated the
proposed method on two real datasets with different pixel/block-based miss-
ing entries and applied the extracted features for face recognition. Experimental
results have shown the superiority of TDVM in both pixel-based and block-based
missing cases, where the proposed method consistently outperforms the nine
competing methods in all cases, especially on data with more missing entries.
Moreover, TDVM is not sensitive to parameters and more efficient than the
compared methods.
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