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Abstract—Most Cross-modal hashing methods do not suffi-
ciently exploit the discrimination power of semantic information
when learning hash codes, while often involving time-consuming
training procedures for large-scale dataset. To tackle these
issues, we first formulate the learning of similarity-preserving
hash codes in terms of orthogonally rotating the semantic data
to hamming space, and then propose a novel Fast Semantic
Preserving Hashing (FSePH) approach to large-scale cross-modal
retrieval. Specifically, FSePH introduces an orthonormal basis
to regress the targeted hash codes of training examples to
their corresponding reasonably relaxed class labels, featuring
significantly reducing the quantization error. Meanwhile, an
effective optimization algorithm is derived for modality-specific
projection function learning and an efficient closed-form solution
for hash code learning, which are computationally tractable.
Extensive experiments have shown that the proposed FSePH
approach runs sufficiently fast, and also significantly improves
the retrieval performances over the state-of-the-arts.

Index Terms—Cross-modal hashing, fast semantic preserving,
orthonormal basis, bi-Lipschitz continuity

I. INTRODUCTION

With the tremendous explosion of multimedia data, cross-

modal retrieval has attracted increasing attention to approx-

imate nearest neighbors search across different modalities,

such as using image to search the relevant text documents

or using text to search the relevant images [1]. Nevertheless,

the heterogeneous property within multi-modal data has been

widely considered as a great challenge to cross-modal retrieval.

To address this issue, early studies [2, 3] learn a common

latent subspace to minimize their heterogeneity. However,

these subspace methods are computationally expensive to deal

with the large-scale and high dimensional media data.

Hashing, favored for its low storage cost and fast re-

trieval speed, has received considerable attention for indexing

of large-scale multimedia data [4]. In recent years, various
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kinds of cross-modal hashing methods have been proposed

in unsupervised fashion [5, 6, 7, 8] and supervised fashion

[9, 10, 11, 12, 13, 14]. Since the label information is helpful

to construct the correlations across different modalities, the su-

pervised methods can well mitigate the semantic gap between

heterogeneous modalities for better performances. In recent

years, deep cross-modal hashing approaches [15, 16, 17],

integrating feature learning and hashing code learning, have

yielded outstanding performance, but they always involve

computational complexity for learning optimum parameters.

In spite of some supervised methods have achieved promis-

ing retrieval performance, several intrinsic issues have not been

well tackled. Firstly, most supervised methods only consider

the semantic-preserving property provided by labels, but which

fail to explore the discrimination power of labels. Secondly,

some popular supervised methods convert the original discrete

optimization problem into the continuous one by relaxing

binary constraint into real number field, which may accumulate

large quantization error as the code length increases. Thirdly,

recent supervised discrete hashing methods attempt to learn

the hash code bit by bit, which involves large iterations in

learning process. Note that Fast Supervised Discrete Hashing

(FSDH) [18] can update the whole hash code by a close form

solution, however, it is a unimodal hashing work. Therefore, it

is still desirable to study a fast cross-modal hashing method,

while achieving high performance.

In this paper, we present a Fast Semantic Preserving Hash-

ing (FSePH) to facilitate efficient retrieval across differen-

t modalities, and the main contributions are three-fold: 1)

The learning of similarity-preserving hash codes is newly

formulated in terms of orthogonally rotating the semantic

data, whereby the quantization loss of mapping such data to

hamming space can be significantly minimized; 2) The label

values are reasonably relaxed to reduce the quantization error

and speed up the learning process; 3) An effective optimization

algorithm is proposed for projection function learning and a

very efficient closed-form solution for hash code learning. The

experiments have shown its outstanding performance.

The remaining part is organized as follows: Section II briefly

surveys the related works, and Section III elaborates FSePH in

detail. The experimental results and discussions are provided

in Section IV. Finally, we draw a conclusion in Section V.
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II. RELATED WORK

A. Latent Subspace Learning

Due to the heterogeneous structure of multimodal data, it

is difficult to implement cross-modal retrieval in their original

feature space. To tackle this problem, Canonical Correlation

Analysis (CCA) [2] learns a common latent subspace to

maximize the correlation between heterogeneous modalities

and achieves cross-modal retrieval. Similarly, Partial Least

Square (PLS) [3] also learns a common latent subspace for

cross-modal retrieval. Remarkably, these unsupervised meth-

ods ignore the semantic labels for discriminative learning.

Therefore, the supervised extension of CCA, like GMA [19],

cluster-CCA [20] and ml-CCA [21] are developed to improve

the retrieval performance. To capture the nonlinear correlation

between heterogeneous modalities, some deep methods, e.g.,

deep CCA [22], have also been proposed for cross-modal

retrieval. Remarkably, these methods are generally unsuitable

for processing large-scale and high-dimensional data.

B. Cross-modal Hashing

Cross-modal hashing has recently attracted much attention

in recent years due to its low storage cost and fast query speed,

which mainly fall into unsupervised and supervised cases.

Unsupervised hashing methods directly learn the projection

functions to map the original feature spaces into hamming

spaces. Accordingly, Inter-media Hashing (IMH) [5] obtains

a common hamming space by preserving the inter-view and

intra-view consistency, while Collective Matrix Factorization

Hashing (CMFH) [6] jointly learns unified hash codes and

hash functions by collective matrix factorization. Similarly,

Latent Semantic Sparse Hashing (LSSH) [7] first utilizes s-

parse coding and matrix factorization to extract latent semantic

features, and then mapping the latent semantic feature to a

joint abstraction space. Although these methods have achieve

promising performance, the available class label information

remains unexplored and the learned hash codes are not dis-

criminative enough for high retrieval performance.

Supervised cross-modal hashing methods can well mitigate

the semantic gap between heterogeneous modalities, and could

produce more effective hash codes to improve the retrieval

performance. For instance, Supervised Matrix Factorization

Hashing (SMFH) [11] utilizes the label supervision to produce

unified hash codes, while maintaining the label consisten-

cy and local geometric consistency. In addition, Semantic

Correlation Maximization (SCM) [9] seamlessly integrates

the label information into the hash code learning procedure,

while Semantic Preserved Hashing (SePH) [10] and Gener-

alized Semantic Preserving Hashing (GSePH) [13] construct

an affinity matrix by label supervision to approximate hash

codes. Similarly, Discrete Cross-modal Hashing (DCH) [14]

directly updates hash codes bit by bit while retaining the

discrete constraints for more compact hash codes. Although

these supervised methods are able to achieve efficient cross-

modal retrieval, they do not fully exploit the discrimination

power of semantic information when learning hash codes, and

often involve huge iterations in training procedures. With label

embedding, recent deep cross-modal hashing works [15, 16]

jointly learns the high-level features and hash code in an

integrated way, but which are unsuitable for processing large-

scale multi-modal database.

III. FAST SEMANTIC PRESERVING HASHING

For ease of presentation, this section describes the proposed

FSePH with only two modalities (i.e., image and text), which

can be easily extended to three or more modalities.

A. Problem Formulation

Let n be the number of training image-text pairs, denoted

as X
(t) = {x

(t)
i }

n
i=1, t = 1, 2, where x

(t)
i is the i-th sample in

t-th modality. In practice, the original features are assumed to

be zero-centered. i.e.,
∑n

i=1 x
(t)
i =0, and the provided training

labels are L∈{0, 1}c×n, where c is the number of semantic

categories, Li,j=1 indicates that the j-th sample fall into the

i-th class (in general each sample belongs to no less than one

class), otherwise, Li,j=0. The goal of cross-modal hashing

is to learn binary codes matrix H = {hi}
n
i=1 for training

instances, and modality-specific projection matrices {P1,P2}
for respectively linking the original image&text feature spaces

and the common hamming space, where hi ∈ {−1, 1}
q is q

bits hash code of the i-th sample.

B. The Proposed FSePH Methodology

For cross-modal hashing, it is necessary to produce an

efficient code in which the bits are pairwise uncorrelated. As

pointed in [23], the learning of similarity-preserving binary

codes can be successfully formulated in terms of orthogonally

rotating zero-centered PCA-projected data, so as to minimize

the quantization error of mapping that data to the vertices

of a zero-centered binary hypercube. Geometrically, it is not

difficult to find that hamming space is consistent with the

vertices of unit hypercube. Accordingly, we introduce an

orthonormal basis C={ξi}
c
i=1 to seamlessly joint the semantic

preserving and quantization error reduction. More specifically,

we propose to orthogonally rotate L to reduce the quantization

error and ensure the semantic subspace CL to be as close

as possible to the vertices of unit hypercube, whereby the

optimal orthogonal basis C can be obtained by minimizing

the following quantization error:

min
C

n∑
i=1

‖sgn(CLi)−CLi‖
2
2 s.t. CT

C = Ic (1)

where Ic is c-order identity matrix. Fig. 1 is a geometric

example for semantic subspace illustration, where �s1 and �s2
are semantic vectors formed by an orthonormal orthogonal

basis C = {ξ1, ξ2, ξ3} and label vectors L1 = (1, 1, 0)T,

L2 = (1, 0, 1)T. The minimum quantization error is attainted

by computing the sum of the length of �e1, �e2. Accordingly,

the learning of semantic-preserving binary codes can be for-

mulated in terms of orthogonally rotating the semantic data to

minimize the quantization loss, and we can rewrite Eq. (1) as:

min
H,C

‖H−CL‖
2
F , s.t. H∈{−1, 1}q×n, C

T
C = Ic (2)
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Fig. 1: A geometric example of the semantic subspace.

According to the orthogonal constraint, Eq. (2) can be

equivalently transformed into following form.

min
H,C

∥∥L−C
T
H
∥∥2

F
, s.t. H∈{−1, 1}q×n, C

T
C = Ic (3)

The above formulation is a typical regression problem,

which regress H to L. However, it is difficult to regress

L accurately due to the binary variable H and orthogonal

constraint. Besides, for one-hot label matrix L, the margins

between the true labels (belong to the classes) and wrong

labels (not belong to the classes) are very small (only 1), which

may cause false positive and false negative. To tackle these

problems, we relax the true label and wrong label respectively

onto [1,+∞) and (−∞, 0] to produce a large margin. For

simplicity, we utilize Y (initial Y = L) instead of L as the

regression target to learn hash codes H:

min
Y,C,H

∥∥Y −C
T
H
∥∥2

F
+ δ ‖Y‖

2
F

s.t. H ∈ {−1, 1}q×n, C
T
C = Ic

∀i Yi,j∈{Li=0} ≤ 0, Yi,j∈{Li=1} ≥ 1

(4)

where δ is weight coefficient to control the degree of relax-

ation. For instance, as shown in Fig. 1, the label L2 = (1, 0, 1)
is relaxed as L2 = (1, 0, 1+ ε), and the semantic vector �s2 is

updated to �s′2. Accordingly, the resulted length of �e′2 is smaller

than the original one of �e2, and the total quantization error is

reduced by |�e2| − |�e′2|. Considering the extension for out-of-

sample data, we impose the projection item in Eq. (4), and the

final objective function is defined as following:

min
H,C,Y,P1,P2

G(H,C,Y,P1,P2)

s.t. H ∈ {−1, 1}q×n, C
T
C = Ic

∀i Yi,j∈{Li=0} ≤ 0, Yi,j∈{Li=1} ≥ 1

(5)

where

G =
∥∥Y −C

T
H
∥∥2

F
+ λ

∑
t=1,2

∥∥∥H−Ptφ(X
(t))

∥∥∥2

F

+ δ ‖Y‖
2
F + γ�(P1,P2)

(6)

where λ and γ are trade-off parameters, �(·) = ‖·‖
2
F is the

regularization term to avoid overfitting, φ(·) is the RBF kernel

[24] which could better capture the underlying nonlinear

information in feature space.

C. Optimization for FSePH

To solve the non-convex problem in Eq. (5), we propose an

iterative approach that solving any one variable while fixing

the others, and the optimization procedures are shown below.

Update P1,P2: removing the terms that are irrelevant to

P1,P2, Eq. (5) can be rewritten as following:

min
Pt

G(Pt)=λ
∥∥∥H−Ptφ(X

(t))
∥∥∥2

F
+γ ‖Pt‖

2
F , t=1, 2 (7)

It is easy to verify that G(Pt), t = 1, 2 is a convex function,

and the optimal solution of Pt can be computed by:

Pt = Hφ(X(t))T (φ(X(t))φ(X(t))T + γ/λI)−1, t = 1, 2
(8)

Update C: removing the terms that are irrelevant to C,

Eq. (5) can be rewritten as follows:

min
C

G(C) =
∥∥Y −C

T
H
∥∥2

F
, s.t. CT

C = Ic (9)

The objective function in Eq. (9) is a typical Orthogonal

Procrustes Problem, which can be well solved by computing

the Singular Value Decomposition (SVD) of the q×q matrix

HY
T, i.e., HY

T = UΣV, then, updating C = UV
T.

Update H: removing the terms that are irrelevant to H,

Eq. (5) can be simplified as:

min
H

G(H) =
∥∥Y −C

T
H
∥∥2

F
+ λ

∑
t=1,2

∥∥∥H−Ptφ(X
(t))

∥∥∥2

F

=(1 + 2λ) ‖H‖
2
F︸ ︷︷ ︸

const

−2tr(HT(CY + λ
∑
t=1,2

Ptφ(X
(t))))

(10)

The discrete solution of H can be computed through an

efficient close-form solution:

H = sgn(CY + λ(P1φ(X
(1)) +P2φ(X

(2)))) (11)

Update Y: removing the terms that are irrelevant to Y,

Eq. (5) can be rewritten as:

min
Y

G(Y) = tr
(
(HT −Y

T
C

T)(H−CY)+δYT
Y
)

= ‖H‖
2
F︸ ︷︷ ︸

const

+tr
(
Y

T
(
(1 + δ)Y − 2CT

H
))

∀i Yi,j∈{Li=0} ≤ 0, Yi,j∈{Li=1} ≥ 1

(12)

For any wrong label Yij , we aim to relax it onto (−∞, 0]
, thus the subproblem of Eq. (12) can be simplified as:

min
Yij∈(−∞,0]

G(Yij)=const+(1+δ)Y2
ij−2YijC

T
i Hj (13)

The subproblem of Eq. (13) is a convex problem, which

involves the minimization of a quadratic function over an

interval. Let the gradient of G(Yij) equal to zero, its un-

constrained minimum is attained at Ŷij = 1
1+δ

C
T
i Hj . Since

the quadratic coefficient is a positive, the unique point of the
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minimum of Eq. (13) is attained by mapping Ŷij to (−∞, 0],
and the updating scheme is regularized as:

Yij =

{
0, if Ŷij> 0

Ŷij , if Ŷij ≤ 0
(14)

For any true label Yij , we aim to relax it onto [1,+∞),
thus the subproblem of Eq. (12) can be rewritten as:

min
Yij∈[1,+∞)

G(Yij) = const+(1+δ)Y2
ij−2YijC

T
i Hj (15)

Similarly, the subproblem of true labels is also a convex

problem. By setting the gradient of G(Yij) equal to zero,

the unconstrained minimum of Eq. (15) is attained at Ŷij =
1

1+δ
C

T
i Hj with the mapping interval at [1,+∞). Therefore,

the updating scheme is regularized as:

Yij =

{
Ŷij , if Ŷij> 1

1, if Ŷij ≤ 1
(16)

D. Out-of-Sample Extension

According to Eq. (5), we can directly generate hash code

for any unseen query samples via the learned modality-specific

projections, and the formula as follows:

hq = sgn(Ptφ(x
(t)
i )) (17)

where, x
(t)
i is the t-th modality of query sample, and hq is

the corresponding hash code.

E. Theoretical Analysis

Efficiency of Complexity Analysis: The computational

complexity of FSePH mainly involves RBF mapping and

the optimization. For RBF mapping, whose complexity is

O(m2 + kdn), where d = max(d1, d2), m is the number

of instances selected to compute the kernel width, and k

is the number of anchor points. For solving Eq. (5), whose

complexity is O(n(q+c+qd+qc+d2+q2)+q3+qd2+d3). S-

ince c≤q<d	n, the former complexity can be simplified as

O(n(q+c+d2)+d3). Let t be the iterative number to converge,

the overall complexity is approximated as O(m2+kdn+((q+
c+d2)n+d3)t), which is linear to n and competitive to existing

methods. The iteration t is always less than 30 in experiments.

IV. EXPERIMENTS

A. Experimental Settings

1) Data sets: In the experiment, the popular MIRFlickr

[25] and NUS-WIDE [26] datasets are selected for testing. The

features are kept as the same as in work [27]. For MIRFlickr,

we keep 20015 image-text pairs whose textual tags appear

more than 20 times, and randomly select 2000 instances as

a test set and the rest as training set. For NUS-WIDE, we

remain 186577 image-text pairs which belong to most frequent

concepts, and randomly select 1866 instances as a test set,

while the rest is selected as training set.

2) Baseline methods: We compare the proposed FSePH with

state-of-the-art unsupervised methods (i.e., CMFH [6], IMH

[5]) and supervised methods (SCM [9], SePH [10], GSePH

[13], DCH [14]). It is noted that CMFH, GSePH and SePH are

too computationally intensive in training, especially when the

dataset is large (i.e., NUS-WIDE). Therefore, to avoid highly

computational cost on NUS-WIDE, following the setting of

literature [10, 14], we randomly select 10000 instances from

its retrieval set to form the new training sets for these methods,

and set the number of RBF anchor as 800 for SePH and

GSePH. For all the baselines, we utilize the source codes

kindly provided by the respective authors.

3) Evaluation Metric: Mean of average precision (mAP@R)

and topK-precision are utilized to evaluate the retrieval perfor-

mance, including retrieving text with given image (I→T) and

retrieving image with given text (T→I).

B. Results and Discussions

1) Results of retrieval tasks: The MAP scores and top50

precisions tested with different datasets are shown in Table I,

while the comparisons of topK-precision curves on different

datasets are shown in Fig. 2, respectively. Meanwhile, we

perform the ablation studies of FSePH without relaxation for

label value (abbreviated as FSePH WR) and without RBF

mapping for input data (abbreviated as FSePH NR).

As shown in Table I, it can be observed that FSePH always

outperforms the competing baselines. Evidently, the retrieval

performances obtained by the proposed FSePH are much

better than the results generated by unsupervised methods, i.e.,

CMFH and IMH. The main reason lies that CMFH and IMH

learn the hash code by preserving the feature similarities. By

contrast, the proposed FSePH, SCM, SePH km, GSePH km

and DCH produce the hash code by preserving the semantic

similarities. It means that the semantic information is really

helpful to improve the cross-modal retrieval performance.

Compared with the best semantic-preserving baselines, the F-

SePH has also significantly improved the cross-modal retrieval

performance. As shown in Fig. 2, FSePH always yields the

highest precision scores than the baselines at different number

of retrieved instances. That is, the proposed FSePH approach

is able to search much more similar samples in the beginning,

which is very important for a practical retrieval system [28].

2) Results of ablation studies: We heuristically evaluate the

effectiveness of the proposed FSePH with different learning

modules. As illustrated in Table I, the MAP scores attained by

FSePH WR and FSePH NR have also delivered very compet-

itive performances, especially tested on NUS-WIDE dataset.

That is, the reasonable relaxation of label values is able to

reduce the quantization error, while the utilization of RBF

mapping can capture the nonlinear structure of data to improve

retrieval performance. Importantly, the MAP scores obtained

by FSePH are higher than that produced by FSePH WR and

FSePH NR in most cases. That is, the integration of relaxed

label value and RBF mapping could yield more discriminative

hash codes for performance improvements.

3) Results of training time: We perform all experiments on

different subsets of NUS-WIDE dataset and record the training

time when the code length is set at 128 bits, as shown in

Table II. It is noted that the recent competing methods, i.e.,
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TABLE I: The MAP scores and top50 precisions tested on handcrafted features.

Method/Dataset

MAP Top50 precision
MIRFlickr NUS-WIDE MIRFlickr NUS-WIDE

32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

I→T

CMFH 0.5722 0.5582 0.5581 0.3429 0.3433 0.3431 0.6361 0.5924 0.5879 0.4201 0.4235 0.4240
IMH 0.5718 0.5685 0.5650 0.3738 0.3609 0.3548 0.6383 0.6321 0.6288 0.5086 0.4770 0.4632
SCM 0.6201 0.6287 0.5774 0.5023 0.5097 0.5083 0.6784 0.6847 0.6478 0.5552 0.5528 0.5483

SePH km 0.6679 0.6713 0.6710 0.5628 0.5752 0.5811 0.7240 0.7344 0.7312 0.5908 0.6115 0.6217
GSePH km 0.6570 0.6649 0.6694 0.5565 0.5710 0.5769 0.7204 0.7325 0.7391 0.6045 0.6129 0.6202

DCH 0.6906 0.7017 0.6974 0.6398 0.6443 0.6626 0.7523 0.7523 0.7598 0.6633 0.6209 0.6515
FSePH WR 0.7097 0.7101 0.7042 0.6876 0.7066 0.7060 0.7387 0.7524 0.7228 0.8073 0.8259 0.8298
FSePH NR 0.6981 0.7070 0.7130 0.6630 0.6659 0.6677 0.7602 0.7659 0.7645 0.7437 0.7133 0.7510

FSePH 0.7416 0.7597 0.7717 0.6890 0.7038 0.7084 0.8668 0.8825 0.8968 0.8163 0.8292 0.8370

T→I

CMFH 0.5718 0.5562 0.5560 0.3418 0.3422 0.3421 0.6231 0.5891 0.5960 0.4101 0.4116 0.4107
IMH 0.5710 0.5685 0.5651 0.3705 0.3605 0.3530 0.6441 0.6422 0.6350 0.5224 0.5017 0.4698
SCM 0.6107 0.6129 0.5822 0.4516 0.4541 0.4543 0.6918 0.6994 0.6584 0.5689 0.5802 0.5857

SePH km 0.7102 0.7158 0.7206 0.6670 0.6738 0.6705 0.8122 0.8295 0.8392 0.7528 0.7685 0.7701
GSePH km 0.7004 0.7100 0.7166 0.6523 0.6700 0.6776 0.8210 0.8289 0.8405 0.7632 0.7623 0.7792

DCH 0.7760 0.7963 0.7923 0.7822 0.8018 0.8172 0.8779 0.8787 0.8914 0.8339 0.8185 0.8219
FSePH WR 0.7775 0.7828 0.7711 0.8052 0.8202 0.8173 0.8229 0.8437 0.8318 0.8842 0.9088 0.9034
FSePH NR 0.7887 0.8121 0.8204 0.8035 0.8088 0.8195 0.8634 0.8832 0.8777 0.8593 0.8342 0.8588

FSePH 0.8064 0.8296 0.8448 0.8091 0.8231 0.8269 0.9327 0.9435 0.9476 0.8960 0.8938 0.9084

(a) I→T@32 bits on MIRFlickr (b) T→I@32 bits on MIRFlickr (c) I→T@64 bits on MIRFlickr (d) T→I@64 bits on MIRFlickr

(e) I→T@32 bits on NUS-WIDE (f) T→I@32 bits on NUS-WIDE (g) I→T@64 bits on NUS-WIDE (h) T→I@64 bits on NUS-WIDE

Fig. 2: TopK-Precision curves tested on different datasets.

CMFH, IMH, SePH and GSePH, only sample a small training

subset from NUS-WIDE dataset, for reason that their overall

complexities are infeasible to train on a large-scale dataset.

The kernel time is the another part contributed to the training

time in SePH, GSePH and the proposed FSePH method. In

general, the computation time of kernel mapping is a constant.

TABLE II: Training time (in second) on subsets of NUS-WIDE.

Method 1K 5K 10K 50K 184K Kernel
time

CMFH 43.03 345.14 977.17 - - 0.00
IMH 0.59 21.33 140.26 - - 0.00
SCM 13.16 13.94 13.83 18.18 25.79 0.00

SePH km 2.27 64.32 250.36 - - 323.50
GSePH km 135.23 1343.94 4182.59 - - 352.82

DCH 1.08 2.15 4.45 40.21 242.84 0.00

FSePH 0.15 0.42 0.81 4.58 11.29 45.05

Although the training time obtained by SCM seems to

be faster than other methods on a large-scale training size,

yet its retrieval performance is not desirable, as shown in

Table I. By contrast, it can be found that the proposed FSePH

method not only significantly reduces the training time, but

also can achieve best retrieval performance. The main reason

contributed to such faster learning performance are two-fold:

1) The orthogonal constraint is embedded to learn the hash

codes, which can well reduce the quantization error and speed

up the learning process. 2) The relaxed label values can make

the optimization converge within limited iterations. 3) FSePH

has a close-form solution to hash code learning and only

requires a single step to update the whole hash codes, instead

of iteratively updating hash codes bit by bit (e.g., DCH).

Therefore, FSePH could significantly speed up the cross-modal

retrieval on large-scale database.

V. CONCLUSION

This paper has proposed a novel Fast Semantic Preserving

Hashing approach for large-scale cross-modal retrieval, which

can well preserve the semantic similarities from original data

to a shared Hamming space. The proposed FSePH introduces
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an orthonormal basis to regress the targeted hash codes of

training examples to their corresponding reasonably relaxed

class label values, which has the provable large margin prop-

erty to efficiently reduce the quantization error. Meanwhile,

an effective optimization algorithm is derived for orthonormal

basis, projection function and relaxed label value learning,

meanwhile an efficient closed-form solution is exploited for

hash code learning. Experiment results have shown its superior

performance. Our future work will consider more complex

multi-modal data, e.g., audio-visual data [29].
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