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ABSTRACT
With the dramatic increase of multi-media data on the Internet,
cross-modal retrieval has become an important and valuable task in
searching systems. The key challenge of this task is how to build the
correlation between multi-modal data. Most existing approaches
only focus on dealing with paired data. They use pairwise rela-
tionship of multi-modal data for exploring the correlation between
them. However, in practice, unpaired data are more common on
the Internet but few methods pay attention to them. To utilize both
paired and unpaired data, we propose a one-stream framework
triplet fusion network hashing (TFNH), which mainly consists of
two parts. The first part is a triplet network which is used to handle
both kinds of data, with the help of zero padding operation. The
second part consists of two data classifiers, which are used to bridge
the gap between paired and unpaired data. In addition, we embed
manifold learning into the framework for preserving both inter and
intra modal similarity, exploring the relationship between unpaired
and paired data and bridging the gap between them in learning
process. Extensive experiments show that the proposed approach
outperforms several state-of-the-art methods on two datasets in
paired scenario. We further evaluate its ability of handling unpaired
scenario and robustness in regard to pairwise constraint. The re-
sults show that even we discard 50% data under the setting in [19],
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the performance of TFNH is still better than that of other unpaired
approaches and that only 70% pairwise relationships are preserved,
TFNH can still outperform almost all paired approaches.
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1 INTRODUCTION
As the explosion of multimedia data, more and more research inter-
est has been transferred from single-modal retrieval task [5, 8, 11,
15, 18, 23, 28, 35, 36] to multi-modal retrieval task [1–3, 13, 14, 24–
26, 30–34, 37–41]. Different from single-modal retrieval, cross-
modal retrieval allows users to search information of one modality
by using instances of another modality. For example, one can re-
trieve texts by using images. Because data of different modalities
usually have inconsistent representation, discovering the correla-
tion and bridging the gap across these modalities become the key
challenges. Recently, more and more studies concentrated on com-
mon subspace learning and tried to introduce hashing technique to
the learning process.
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(a) one-to-one paired data

(c) unpaired data of only one modality

(b) one-to-many unpaired data

text

The Battle of Aspern-Essling 
started at 2:30 p.m. on 21 May. 
The initial and poorly coordinated 
Austrian attacks against Aspern 
and the Gemeinde.

image？ ？

My favorite 
sport games. 
My favorite 
sport games. 

The Red-necked Grebe is a 
medium-large grebe, smaller than 
the Great Crested Grebe of 
Eurasia, and the Western and 
Clark's Grebes of North America.

The Red-necked Grebe is a 
medium-large grebe, smaller than 
the Great Crested Grebe of 
Eurasia, and the Western and 
Clark's Grebes of North America.

Figure 1: Three different kinds of multi-modal data.

In order to overcome these challenges, it is necessary to analyse
the properties of multi-modal data. From a huge amount of multi-
modal data, we noticed that more often than not the numbers of data
of different modalities vary considerably with the level of difficulty
to get them. As a result, there are several different relationships
between multi-modal data. In this paper, these data are roughly
categorized into three relationships (taking bimodal data images
and texts for example):

(1) one-to-one paired data (Figure 1(a)) In this case, there are
one image and its corresponding only text. The connection
between them is the most direct and the correlation between
them is the strongest as well. Thus, they are of the greatest
value to exploring the correlation between multi-modal data
and it is relatively easy to utilize them.

(2) one-to-many unpaired data (Figure 1(b)) In this case,
there are one text and its corresponding many images or
vice versa. The connection between them is relatively com-
plex and the correlation between them is ambiguous, because
it is hard to know whether the information provided by text
links to which one of these images or all of them. They usu-
ally can not be utilized directly and some pretreatments for
them are essential.

(3) unpaired data of only onemodality (Figure 1(c)) In this
case, there is only one image or text without corresponding
data of another modality. There is no obvious connection
between these data and they provide very little information
about the relationship between two modalities. Thus, it is
extremely hard to use them as a base for establishing the
correlation between multi-modal data.

It is easy to find that there are evident differences among these
three kinds of data, so filling the data gap between them is neces-
sary. Most existing hashing methods [2, 3, 14, 16, 25, 29, 33] focus
on dealing with the first kind of data. They utilize the pairwise
relationship of them for exploring the correlation across modalities.
Specifically, their aim is that the hash codes learned from each
image-text pair can be as similar as possible. The second kind of
data are also suitable for them after pretreatment. There are two
different pretreatments. One is simply discarding some features,
then we can make one-to-many relationship become one-to-one
relationship. Another is copying the only feature, then we can get
several one-to-one paired data. However, the third kind of data can
not be used in these methods and few approaches [19, 20, 22, 24]
focus on dealing with the third kind of data.

To take advantage of all kinds of data, we propose a novel ap-
proach and fill the gap between them, Triplet Fusion Network
Hashing (TFNH), to deal with both the first and third kinds of data
simultaneously under the concept of adversarial learning. In this
paper, we simply regard the second kind of data as unpaired data of
only one modality and discard their one-to-many relationship. As
illustrated in Figure 2, there are two primary components, triplet
network, which consists of three networks that share the same
weights and data classifiers, which play an adversarial role, in our
framework. Triplet network is used to receive different kinds of data
and generate corresponding representations and hash codes. It aims
to confuse two data classifiers. Data classifiers try to distinguish
between paired and unpaired data. By playing this minimax game,
the learned representations of unpaired data can be as effective
as that of paired data. In addition, we use manifold learning for
strengthening the relationship between paired and unpaired data
and exploring the value of the latter. The main contributions of this
paper are

• We propose a triplet fusion network and introduce the zero
padding operation to handle both paired and unpaired data
simultaneously, which can easily tackle the dominant do-
main problem as well.
• Two data classifiers are designed to narrow the gap between
paired and unpaired data. By playing the minimax game, it
is ensured that learned representations of the latter are as
effective as that of the former.
• Extensive experiments are conducted to verity the ability
of our proposed approach about handling both paired and
unpaired scenario and its robustness in regard to pairwise
constraint.

The remainder of this paper is organized as follows. We overview
the related work on cross-modal retrieval methods in Section 2. Sec-
tion 3 elaborates our proposed method TFNH. Section 4 provides
extensive experimental validation on two datasets and proves the
robustness of method in regard to pairwise constraint. The conclu-
sions are made in Section 5.

2 RELATEDWORK
In this section, we provide pointers to some of the related work on
cross-modal retrieval methods that focus on paired and unpaired
data.

Approaches focusing on paired data can be roughly divided into
unsupervised [3, 4, 13, 27, 39, 40] and supervised ones [2, 12, 14, 16,
19, 25–27, 29, 30, 33, 39, 40]. Unsupervised methods rely only on
one-to-one relationship of data in learning process. KSH-CV [40]
adopts an Adaboost framework to learn kernel hash functions for
multi-modal data, preserving inter-view similarities simultaneously.
Latent semantic sparse hashing (LSSH) [39] first uses sparse coding
and matrix factorization for learning representation of multi-modal
data, and then projects them into a joint abstract space to generate
hash codes. Collective matrix factorization hashing (CMFH) [3]
uses collective matrix factorization to learn unified hash codes for
features of different views.

Supervised methods always perform better because of the us-
age of label information. Semantic correlation maximization (SCM)
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Figure 2: Framework of our proposed method.

[33] uses label information for preserving the maximal correla-
tion between modalities. Semantic-preserving hashing (SePH) [16]
first generates hash codes from the semantic affinity matrix by
minimizing KL divergence, and then learns two hash function via
kernel logistic regression. Supervised matrix factorization hashing
(SMFH) [25] extends CMFH and introduces manifold learning to
learn more effective hash codes, preserving both inter-modal and
intra-modal similarity. Deep cross-modal hashing (DCMH) [12]
attempts to combine deep learning with hashing technique and
proposes an end-to-end framework to learning features of raw data
and hash codes simultaneously. It outperforms several traditional
methods which use hand crafted features. Inspired by the idea of
GAN [6], adversarial cross-modal retrieval (ACMR) [26] uses a
modality classifier to narrow the gap between learned features of
different modalities, but it is not a hashing method. Self-supervised
adversarial hashing [14] further combines adversarial learning with
hash technique and proposes a self supervised learning framework,
where hash codes are derived from a lab-net with concurrent su-
pervision of training other two networks.

Only few approaches [19, 20, 22, 24] focus on unpaired data.
Inter-media hashing (IMH) [24] defines two selective matrices to
handle unpaired data and uses inter-view and intra-view consis-
tency to learn hash functions. However, its performance is not very
satisfying, this is probably because that label information is not
used in its framework and the learned hash functions are linear.
Mandal et al. [19] are the first people who divide the cross-modal
retrieval task into four categories: single label paired (SL-P), multi
label paired (ML-P), single label unpaired (SL-U) and multi label un-
paired (ML-U). They propose a generalized hashing scheme which

can seamlessly handle all these scenarios. The performance of this
method is much better than IMH, but the ability of handling un-
paired scenario was not fully presented in that paper because they
only abandon 10% data of one modality to form a new dataset,
which is not so different with the original one.

In this paper, the problem is simplified, we only discuss paired
and unpaired scenarios, although our framework in fact have abili-
ties to cope with both single and multi label scenarios.

3 PROPOSED METHOD
Without losing generality, we focus on the discussion of bimodal
data, specifically images and texts, in this paper. It is easy to extend
our method to multi-modal data.

Assume that data of image modalityX = [XP ,XU ] consist of two
parts: images with corresponding texts and images without corre-
sponding texts. They are denoted as XP ∈ R

n×d1 and XU ∈ Rn1×d1

respectively, where n and n1 are the numbers of instances of these
two parts respectively and d1 is the dimension of image feature.
Similarly, data of text modality Y = [YP ,YU ] consist of two parts:
texts with corresponding images and texts without corresponding
images. They are denoted as YP ∈ Rn×d2 and YU ∈ Rn2×d2 re-
spectively, where n2 is the number of texts without corresponding
images and d2 is the dimension of text feature. Labels of data X
and Y are denoted as LX ∈ {0, 1}(n+n1 )×c and LY ∈ {0, 1}(n+n2 )×c

respectively, where c is the number of the category.
Our aim is to learn a common Hamming semantic subspace for

bimodal data. In this space, every image or text instance is repre-
sented as a binary vector b ∈ {0, 1}1×l , where l is the dimension of
the learned Hamming space.
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Figure 3: Differences between two-stream structure and one-
stream fusion network.

3.1 Fusion Network
Most existing methods (both deep learning based methods [14, 26,
30] and matrix factorization based methods [2, 3, 25]) employed
two-stream structure to explore the Hamming subspace. That is,
they use two separated networks (deep learning based methods) or
matrices (matrix factorization based methods) to learn projection
functions that map image and text features into Hamming space
respectively, usually under the supervision of label information.

However, there are are two problems in this structure. Taking
deep learning based methods for example, firstly, it highly relies on
pairwise constraint. That is, it deeply depends on the pairwise rela-
tionship of data to explore the correlation between two modalities.
This structure fails to build the semantic gap between modalities
if there is no one-to-one or one-to-many relationship. In addition,
label constraint imposed on the end of this structure is the only
tie between two separated networks, as shown in Figure 3(a). This
means that the correlation between modalities hardly explored by
these networks themselves, it depends more on pairwise and la-
bel constraints. Recently, inspired by the idea of GAN [6], some
methods [14, 26] introduce adversarial network to strengthen the
relationship between modalities, but these adversarial networks
are all imposed on the same position where label information is
imposed. Thus, the second problem still exists.

To tackle the second problem, we adopt a new one-stream struc-
ture in this paper. Firstly, we twist the two separate networks into a
four-layer fusion networkGxy (·;θxy ) (d1 +d2 → 1024→ 512→ l )
to handle image and text data simultaneously, where θxy denotes
the parameters of fusion network Gxy . As shown in Figure 3(b), in
our one-stream structure, we can explore the correlation between
modalities by both fusion network and other constraints, since the
fusion network becomes a new strong tie between two modalities.

As mentioned before, data consist of paired and unpaired ones.
For image-text pairXP andYP , we concatenate them to form longer
features Fxy ∈ Rn×(d1+d2 ) . As a result, they are represented as

F
(k )
xy = [X (k )

P ,Y
(k )
P ] , k = 1, 2, ...,n (1)

where F (k )xy , X (k )
P and Y (k )

P are the k-th instances of data Fxy , XP
andYP respectively. These new features are fed into fusion network
Gxy to get their corresponding representations and binary codes.

To tackle the first problem, we construct another two networks
Gox (·;θox ) andGoy (·;θoy ) that share the same structure withGxy
to handle unpaired image and text data separately, where θox and
θoy are the parameters of these two networks respectively. These
two networks are used for dealing with unpaired images and texts.
It is easy to find that because there is only one modality,XU andYU

can not be fed intoGox (·;θox ) andGoy (·;θoy ) directly. To meet the
need of input dimension, we introduce an operation zero padding.
The detail of this operation is given in the section 3.2.

3.2 Zero Padding
In the rest of this section, 0 denotes an all-zero vector or a matrix.
To meet the demand of input dimension, we concatenate data X
and Y with 0 to get longer representations Fox ∈ R (n+n1 )×(d1+d2 )

and Foy ∈ R
(n+n2 )×(d1+d2 ) . In this paper, both paired and unpaired

images or texts are regarded as unpaired data for increasing the
training samples sand eliminating the gap between them. As a
result, the new longer features are represented as

F
(i )
ox = [X (i ) , 01×d2 ] , i = 1, 2, ...,n + n1

F
(j )
oy = [01×d1 ,Y (j )] , j = 1, 2, ...,n + n2

(2)

where F (i )ox and X (i ) are the i-th instances of data Fox and X respec-
tively, and F

(j )
oy and Y (j ) are the j-th instances of data Foy and Y

respectively. Then, they will be fed intoGox (·;θox ) andGoy (·;θoy )
respectively.

Inspired by [9], we let these three networks share the same
parameters θд , that is, let θxy = θox = θoy = θд . Then, the triplet
network is denoted as G (·;θд ) briefly in the rest of this paper. The
features learned from triplet fusion network by feeding different
data are represented as

Hxy,ox,oy = G (Fxy,ox,oy ;θд ) (3)

And their corresponding hash codes can be derived from

Bxy,ox,oy = siдn(Hxy,ox,oy ) (4)

By introducing these two operations, we can surprisingly tackle
a thorny issue dominant domain. Dominant domain is a common
problem when fusing multi-modal data. That is, if data of one
modality are more discriminative than that of other modalities, the
weights assigned to the former would be greater than that assigned
to the latter. As a result, this modality become the dominant domain
and data of this modality play a more crucial role in classification
or retrieval task, while other data tend to become a kind of noise,
which makes less sense of results.

By adopting zero padding strategy and letting triplet network
share the same parameters, the dominant domain problem can be
easily solved. To be specific, in the training process, if weights
assigned to image modality are far greater than to text modality,
data Foy would make the networks dysfunctional, because when
Foy are fed into network, weights of image modality would multiply
zero vector and then make no contribution to the result. Similarly,
if the text modality become the dominant domain, data Fox would
make the networks dysfunctional as well. As a result, our triplet
fusion networks would adjust the weights assigned to different
modalities automatically and reach a balance finally.

3.3 Data Classifiers
Our aim is that the distribution of representations learned from
unpaired data and that from paired data are as same as possible. To
reach this goal, we defined two data classifiersD1 (·;θd1 ) (l → 64→
32 → 2) and D2 (·;θd2 ) (l → 64 → 32 → 2), which act as the role
of discriminator in GAN, where θd1 and θd2 denote the parameters
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of two classifiers respectively. The first discriminator D1 (·;θd1 ) is
used to discriminate between data from only image modality and
that from image-text pairs. We regard the former as fake samples
and the latter as real samples. Then, following the formulation in
[6], we can get the adversarial loss

L
(1)
adv =

∑
h1∈Ĥxy

∑
h2∈Ĥox

(loдD1 (h1;θd1 ) + loд(1−D1 (h2;θd1 ))) (5)

where Â denotes the set consisting of all vectors of matrix A. For
example, Ĥxy = {H

(i )
xy |i = 1, 2, ...,n}.

Similarly, the second discriminator D2 (·;θd2 ) is used to discrimi-
nate between data from only text modality and that from image-text
pairs. We regard the former as fake samples and the latter as real
samples and get the adversarial loss

L
(2)
adv =

∑
h1∈Ĥxy

∑
h2∈Ĥoy

(loдD2 (h1;θd2 ) + loд(1−D2 (h2;θd2 ))) (6)

We combine these two parts and define the overall adversarial
loss

Ladv = L
(1)
adv + L

(2)
adv (7)

In this minimax game, this term is used for narrowing the data gap
mentioned before.

3.4 Label Prediction
To make the learned feature more discriminative, we construct a
three-layer classification network C (·;θc ) (l → l/2→ c) to predict
the label of each instance, where θc denotes the parameters of this
network. We assume that all features exhibit the same distribution
under the supervision of data classifiers. Thus, Hxy , Hox and Hoy
are all fed into the same classifier C (·;θc ) to predict their labels.
Then, we can minimize the following objection

Lclass =
∑

h∈Ĥxy∪Ĥox∪Ĥoy

| |C (h;θc ) − lab | |22 (8)

where lab is the label of h.

3.5 Manifold Learning
We utilize paired data for preserving the inter-modal similarity
and unpaired data for preserving intra-modal similarity. Thus, we
construct two kinds of similarity matrix for them respectively.

For paired data, we hope that they should be as close as possible
after being projected into common semantic space if they share the
same label. Thus, we use the label information for constructing the
semantic affinity matrix Sxy . The item in i-th row and j-th column
of Sxy is defined as

S
(i j )
xy =




1 , i f X
(i )
P and Y

(j )
P have the same cateдory

0 , otherwise
(9)

where X (i )
P and Y (j )

P are the i-th instance of XP and j-th instance of
YP . Then, to preserve the inter-modal similarity, we can minimize
the following objection

Linter =

n∑
i=1

n∑
j=1

S
(i j )
xy | |H

(i )
xy − H

(j )
xy | |

2
2 (10)

where H (i )
xy is the i-th instance of Hxy .

For unpaired data of only one modality, we hope that they should
be still near after projecting into the common semantic space if
they are near in the original space. Thus, we use the distances of
them for defining the similarity matrix Sox of unpaired data X . The
item in i-th row and j-th column of Sox is defined as

S
(i j )
ox =

{
1 , i f dist (X (i ) ,X (j ) ) ≤ threshhold
0 , otherwise

(11)

where threshold = max (dist (X (i ) ,X (j ) ))/20 and X (i ) is the i-th
instance of X . In the same way, we can define the similarity matrix
Soy of unpaired data Y . The item in i-th row and j-th column of
Soy is defined as

S
(i j )
oy =

{
1 , i f dist (Y (i ) ,Y (j ) ) ≤ threshhold
0 , otherwise

(12)

where threshold = max (dist (Y (i ) ,Y (j ) ))/20 and SY (i ) is the i-th
instance of Y . Then, to preserve the intra-modal similarity, we can
minimize the following objection

Lintra =

n+n1∑
i=1

n+n1∑
j=1

S
(i j )
ox | |H

(i )
ox − H

(j )
ox | |

2
2

+

n+n2∑
i=1

n+n2∑
j=1

S
(i j )
oy | |H

(i )
oy − H

(j )
oy | |

2
2

(13)

We take advantage of the whole data X and Y instead of XU and
YU to construct Sox and Soy out of two considerations. Firstly, more
information is helpful to train networks. More importantly, doing
so is beneficial to bridge the data. To be specific, we can preserve
the similarity between XP and XU or YP and YU by Sox or Soy ,
thereby construct the relationship between XU and YU by XP , YP
and Soy .

3.6 Optimization
The overall loss function, consisting of the label prediction term
Lclass in Eq.(8), the pair relationship term Linter in Eq.(10), the
local structure term Lintra in Eq.(13) and the adversarial term
Ladv in Eq.(7), is given as follow

Lall = Lclass + βLinter + γLintra − µLadv (14)

where β , γ and µ are the hyper-parameters that balance four items.
In this paper, we set β = 0.1, γ = 0.3 and µ = 2.

(θд ,θc ) = arg min
θд,θc

Lall (15)

(θd1 ,θd2 ) = arg max
θd1,θd2

Lall = arg min
θd1,θd2

Ladv (16)

Based on Eq.(15) and Eq.(16) we can update the parameter as
follows:

θд ← θд − α
∂Lall
∂θд

, θc ← θc − α
∂Lclass
∂θc

θd1 ← θd1 − α
∂L

(1)
adv
∂θd1

, θd2 ← θd2 − α
∂L

(2)
adv
∂θd2

(17)

where α is learning rate. To solve this problem, we use stochastic
gradient descent (SGD) strategy and Adam optimizer and set α =
0.001 in all experiments.
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Table 1: Comparison of cross-modal retrieval performance
(MAP) of the proposed approachwith the state-of-the-art on
Wiki dataset for paired scenario with different hash code
lengths. Best results are marked in bold.

Method I→T T→I
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

IMH 0.1176 0.1167 0.1188 0.1096 0.1118 0.1139
CMFH 0.2172 0.2231 0.2316 0.4902 0.5077 0.5173
LSSH 0.1541 0.1546 0.1544 0.2641 0.2723 0.2795
SCM 0.2257 0.2459 0.2461 0.2341 0.2410 0.2445
SePH 0.2562 0.2654 0.2793 0.6276 0.6324 0.6513
SMFH 0.2507 0.2646 0.2715 0.4481 0.4827 0.4920
DCMH 0.2798 0.2809 0.2910 0.6292 0.6524 0.6674
GSePH 0.2778 0.2882 0.3044 0.6445 0.6639 0.6683
MCTD 0.2919 0.3048 0.3068 0.6482 0.6832 0.6898
TFNH 0.3158 0.3248 0.3368 0.6813 0.6908 0.7044

4 EXPERIMENT
In this section, extensive experiments are conducted to evaluate
the effectiveness of our method TFNH. Firstly, we compared the
proposed method with several state-of-art methods on two public
cross-modal datasets. Then, we conduct a series of experiments
to verify the robustness of our method of dealing with unpaired
data. Finally, we evaluate the contribution of each part of our object
function.

4.1 Datasets and Protocol
Here we briefly introduce the two datasets mentioned before.

Wiki [21] consists of 2,866 image-text pairs, which are catego-
rized into 10 classes (single label). Each image is represented by
128-d SIFT descriptor and each text is represent by 10-d LDA fea-
ture. It was split into a training set of 2,173 instances and a test set
of 693 instances.

MIRFlickr [10] consists of 25,000 image-text pairs, each of
which is annotated with at least one of 24 labels (multi label). For
each instance, its image and text are represented by 150-d edge
histogram and 500-d PCA feature respectively. Follow the pretreat-
ment in [16], we firstly removed the instances without labels or
textual tags appearing less than 20 times. Then, we took 95% of the
remainder as training set and 5% as test set.

For fair comparison, the widely used mean average precision
(mAP) score is employed as evaluation metric to measure the per-
formance of both TFNH and compared methods. We perform two
cross-modal retrieval tasks: searching relevant text by given image
query(I→T) and vice versa (T→I). In our experiments, we repeat
three times for every different settings and report the mean mAP
score.

4.2 Evaluation of Paired Scenario
In this scenario, we set n1 = n2 = 0, that is, there are only paired
data and no unpaired data. We first evaluate TFNH with different
length of hash codes (16 bits, 32 bits and 64 bits) on Wiki datase,
a single label dataset that has been widely used as a benchmark
dataset and compare it with both unsupervised methods IMH [24],

Table 2: Comparison of cross-modal retrieval performance
(MAP) of the proposed approachwith the state-of-the-art on
MIRFlickr dataset for paired scenario with different hash
code lengths. Best results are marked in bold.

Method I→T T→I
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

CCA 0.5819 0.5756 0.5710 0.5803 0.5750 0.5708
CMFH 0.5683 0.5684 0.5687 0.5646 0.5652 0.5649
SMFH 0.5913 0.5997 0.5956 0.5890 0.5652 0.5649
FSH 0.5893 0.6027 0.6006 0.5865 0.5970 0.5965
SCM 0.6280 0.6345 0.6385 0.6176 0.6234 0.6285
GSePH 0.6460 0.6649 0.6725 0.6663 0.7113 0.7269
SePH 0.6736 0.6789 0.6822 0.7313 0.7320 0.7381
TFNH 0.6962 0.7066 0.6881 0.7378 0.7572 0.7613

CMFH [3], LSSH [39] and state-of-the-art supervised methods SCM
[33], SePH [16], SMFH [25], DCMH [12], GSePH [19], MCTD [2].
The performance (mAP scores) of them are reported in Table 1 and
the best results are marked in bold.

We have three observations from Table 1. Firstly, our TFNH
achieves much better performance than all compared methods in
the overall experiments, which demonstrates its superiority. To be
specific, for I→T task, TFNH outperforms MCTD by 2.29%, 2% and
3% in cases that hash code length is 16 , 32, 64 bits. Whereas for
T→I task, TFNH outperforms MCTD by 3.31%, 0.76% and 1.06%.
It is worth noting that MCTD uses the combination of two kinds
of features (128-d SIFT histogram and 128-d CNN feature) in its
learning process, while our approach only uses 128-SIFT feature as
input. In other words, TFNH uses less information but yields better
results, which further verifies its advantage.

Secondly, the mAP score of TFNH in the case that hash code
length is 16 bits is higher than that of all compared methods except
MTCD in the case that hash code length is 64 bits. It not only is
another evidence to prove the superiority of our approach but also
brings another storage benefit. That is, TFNH can use less space
for storing hash codes but reach comparable results. For example,
the mAP score of TFNH is 0.3158 in 16 bits, which is higher than
0.3068 of MCTD in 64 bits. This means (64 − 16) × n bits space can
be saved, where n is the size of datasets.

In addition, with the increase in the hash code length, the per-
formance of TFNH monotonically increases, which indicates that
the longer hash code length is, the more information hash codes
preserve.

To further verify the ability of TFNH about handling multi label
scenario, we conduct the same experiments on another multi label
dataset MIRFlickr and compare it with both unsupervised methods
CCA [7], CMFH [3] and state-of-the-art supervised methods SCM
[33], FSH [17], SePH [16], SMFH [25], GSePH [19]. Since there are
no available multi-view data of each modality, which are needed
in MCTD, we do not report the result of this approach. The perfor-
mance (mAP scores) of them are reported in Table 2 and the best
results are marked in bold.

We have three observations from Table 2 as well. Firstly, as on
Wiki dataset, TFNH yields higher mAP scores than all compared
methods in the overall experiments. To be specific, for I→T task,
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Table 3: Evaluation of the proposed algorithm in the un-
paired scenario for theWiki dataset. Best results aremarked
in bold.

Method case1 case2
I→T T→I avg I→T T→I avg

IMH 0.112 0.114 0.113 0.122 0.109 0.116

GSePH
16 0.257 0.453 0.355 0.268 0.422 0.345
32 0.273 0.477 0.375 0.279 0.438 0.358
64 0.283 0.484 0.383 0.298 0.456 0.377

TFNH
16 0.304 0.677 0.490 0.308 0.671 0.489
32 0.308 0.682 0.495 0.319 0.676 0.497
64 0.325 0.695 0.510 0.340 0.698 0.519

TFNH outperforms SePH by 2.26%, 2.77% and 0.59% in cases that
hash code length is 16 , 32, 64 bits. Whereas for T→I task, TFNH
outperforms SePH by 0.65%, 2.52% and 2.32%. Secondly, TFNH
remains the second storage advantage mentioned before. The mAP
score of TFNH in the case that hash code length is 16 bits is higher
than that of all compared methods except SePH in the case that
hash code length is 64 bits.

The last interesting finding is that when hash code length in-
creases from 32 bits to 64 bits, for I→T task, the corresponding
mAP score of TFNH drops by 1.85% (from 0.7066 to 0.6881). This
phenomenon violates the third observation we find in Table 1. It is
not peculiar to TFNH, the same changes are found in CCA, SMFH
and FSH. However, the performance of these three approaches con-
tinuously increases with the hash code length increases in Table
1. Thus, we think this strange phenomenon is possibly due to the
differences between these two datasets, such as the dimension of
image and text features and the number of categories. We do not
further investigate it because it is not the focus of this paper.

4.3 Evaluation of Unpaired Scenario
To evaluate the ability of TFNH about handling unpaired scenario,
we compare it with two approaches IMH [24] and GSePH [19],
following the same setting in [19]. In case 1, the data of text modality
keep the same while only 90% data of image modality are retained
and vice versa in case 2. In [19], mAP@all was used as metric in
paired scenario while mAP@50 was used in unpaired scenario,
which we think is not so reasonable. Thus, we adopt the the same
metric mAP@all to evaluate the performance in both scenarios for
fair comparison. The performance of them are reported in Table 3
and the best results are marked in bold.

We observe that almost all performance reported in Table 3 is
worst than that in paired scenario. The performance of IMH remains
the same in unpaired scenario but it is far from acceptable. The per-
formance of GSePH is much better than IMH but there still is a huge
gap between the performance in paired and unpaired scenarios,
especially for T→I task. Specifically, in case 1, for both tasks, the
mAP scores of 64 bits drop by 2.13% and 18.48% respectively; in case
2, those drop by 0.61% and 21.25%. TFNH considerably outperforms
both IMH and GSepH and the difference between the performance
in paired and unpaired scenarios is slight. Specifically, in case 1,
for both tasks, the mAP score of 64 bits drop by 1.21% and 0.97%
respectively; in case 2, for T→I task, the mAP score of 64 bits drops

by 0.67%, whereas for I→T task, that increases by 0.29% beyond
expectation.

In the above experiments, 90% data of one modality are retained.
This change is slight, which we think can not fully verify the ability
of handling unpaired scenario. Thus, we decrease this percentage
to further evaluate this ability of TFNH. The results are presented
in Figure 4.

From Figure 4 (a) and (b), we can observe that in case 1, as
image data decrease, the mAP scores of I→T task decline gradually
while that of T→I task almost remain the same. This is reasonable
because the decrease of the number of image training data make
the network disable to deal with image data as masterly as text
data. The opposite happens in case 2. As shown in Figure 4 (c) and
(d), with the decrease of text data, the mAP scores of I→T task
almost remain the same while that of T→I task decline gradually.
This phenomenon provides a support for our claim. In addition,
even thought we discard 50% data, the performance of TFNH is
still better than that of GSePH in Table 3 where only 10% data are
discarded.

4.4 Robustness of TFNH
To verify the robustness of our method in regard to pairwise con-
straint, we relax the pairwise constraint to different extend and
construct a series of experiment. Keep the number of training data
unchanged, we gradually reduce the percentage of pairwise rela-
tionship ( n

n+n1
and n

n+n2
). Taking Wiki dataset for example, there

are 2,173 image-text pairs. We select all of them as training set, but
randomly remove some (for example 10%) pairwise relationship of
these data and regarded them as unpaired data.

The results are reported in Figure 5. We can observe that as the
number of pairwise relationship decreases, the performance of both
I→T and T→I tasks declines gradually. This decline is accountable
because pairwise constraint is propitious to explore the correlation
of modalities. There are two obvious drop intervals 100%-90% and
70%-60%. In interval 100%-90%, for both tasks, performance of all
bits decrease by about 2%. Similarly, in interval 70%-60%, for I→T
task, performance of all bits decrease by about 2%, while for T→I
task, they slump by atmost 4%. Follow these two drops, performance
almost remain the same within the intervals 70%-90% and 40%-60%.

It is worth noting that even if there are only 70% pairwise rela-
tionships, for I→T task, the performance of our approach (0.2999
of 16 bits, 0.3146 of 32 bits and 0.3222 of 64 bits) still outperforms
all compared methods, whereas for T→I task, the performance of
our method (0.6388 of 16 bits, 0.6743 of 32 bits and 0.6863 of 64
bits) is only second to MCTD, while still being better than the other
techniques. This means that TFNH can use less information but
achieve better performance. This is also a strong evidence to prove
the robustness of our method in regard to pairwise constraint.

4.5 Evaluation of Each Term
To evaluate the contribution of the pair relationship term Linter ,
the local structure term Lintra and the adversarial term Ladv , we
set part of hyper-parameters to 0 and conduct a series of experi-
ments. Table 4 reports the mAP scores of various combinations of
them (l = 64).
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Figure 4: Performance of TFNH on Wiki dataset with different percentage of paired data.
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Figure 5: Performance of TFNH onWiki dataset with differ-
ent percentage of pairwise constraint.

Table 4: Performance of TFNH under different settings in
case that hash code length is 64.

No. hyper-parameters I→T T→I avg
1 β = 0 0.3225 0.6965 0.5096
2 γ = 0 0.3088 0.6924 0.5006
3 µ = 0 0.3133 0.6948 0.5041
4 β = γ = 0 0.2921 0.6971 0.4946
5 β = µ = 0 0.3094 0.6926 0.5010
6 γ = µ = 0 0.2899 0.6891 0.4895
7 β = γ = µ = 0 0.2718 0.6877 0.4798
8 overall 0.3368 0.7044 0.5206

Comparing experiments No. 1-7 with No. 8, we find that the
performance of all kinds of combination are inferior to that of
overall loss defined in Eq.(14). When discarding only one term
(β = 0 or γ = 0 or µ = 0), the decline in mAP score is not so obvious.

For example, setting β = 0, the scores of I→T and T→I tasks drop
slightly by 1.43% and 0.79% respectively. When discarding two of
them (β = γ = 0 or β = µ = 0 or γ = µ = 0), the mAP scores of
I→T decline more evidently, all dropping at least by 3%. Without
all these three terms (β = γ = µ = 0), the performance of both task
slump dramatically, especially of I→T task, dropping from 0.3368
to 0.2718. From the comparison between experiments No. 1-3, we
find that the local structure term Lintra plays the most essential
role among the three terms. Specifically, when Linter is discarded
(β = 0), the performance of both tasks drops by 1.43% and 0.79%
respectively; when Lintra is discarded (γ = 0), that drops by 2.80%
and 1.20% respectively; when Ladv is discarded (µ = 0), that drops
by 2.35% and 0.96% respectively. The decline in the second case is
the most obvious, so we claim the importance of the local structure
term. From the comparisons between experiments No.1,4,5 and
No.3,5,6, the same conclusion can be made.

5 CONCLUSIONS
In this paper, we propose a one-stream framework, triplet fusion
network hashing (TFNH), to handle both paired and unpaired data
simultaneously. By introducing zero padding operation, both kinds
of data can be fed into the triplet fusion network and the dominant
domain problem can be tackled. Under the supervision of data clas-
sifiers, learned representations of unpaired data can be as effective
as that of paired data. In paired scenario, TFNH outperforms all
compared approached on two widely used datasets. In unpaired
scenario, extensive experiments verify that our proposed TFNH has
strong abilities of dealing with unpaired data and does not depend
on pairwise constraint as seriously as other methods.
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