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Abstract. This paper presents a high-capacity data hiding method for
3D polygonal meshes. By slightly modifying the distance from a vertex to
its traversed neighbors based on quantization, a watermark (i.e., a string
of binary numbers) can be embedded into a polygonal mesh during a
mesh traversal process. The impact of embedding can be tuned by ap-
propriately choosing the quantization step. The embedded data is robust
against those content-preserving manipulations, such as rotation, uni-
formly scaling and translation, as well as mantissa truncation of vertex
coordinate to a certain degree, but sensitive to malicious manipulations.
Therefore, it can be used for authentication and content annotation of
polygonal meshes. Compared with the previous work, the capacity of the
proposed method is relatively high, tending to 1 bit/vertex. Besides to
define the embedding primitive over a neighborhood so as to achieve re-
sistance to substitution attacks, the security is also improved by making
it hard to estimate the quantization step from the modified distances.
A secret key is used to order the process of mesh traversal so that it is
even harder to construct a counterfeit mesh with the same watermark.
The numerical results show the efficacy of the proposed method.

1 Introduction

With the development of digital modeling and visualization techniques for 3D
objects, 3D models have been widely created and used for geometry represen-
tation, such as the cultural heritage recording like Digital Michelangelo Project
[1], CAD models, and structural data of biological macromolecules [2]. As more
and more 3D models appear, polygonal meshes in particular, how to hide infor-
mation within them [3] has received much attention for a variety of purposes,
ranging from copyright enforcement (e.g. [9, 10]) to authentication (e.g. [4, 6]).
In this paper, we only discuss fragile watermarking of polygonal meshes, which
is contrast to robust watermarking for the fragility of the embedded watermark.
Compared with digital images, video and audio streams, there exists no grid for
meshes, i.e., each vertex in a mesh is connected with variable neighboring ver-
tices at different distances. This flexibility of mesh data makes it an attractive
cover object for data hiding.
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In the literature, quite a few watermarking methods (e.g.[4]-[18]) have been
proposed to embed data into meshes. Depending on the applications, the re-
quirements are different. For instance, one purpose of robust watermarking is
to protect the copyright of digital works so that the embedded watermark is
designed robust against outer processing while the original work can be used in
the retrieval process [10]. In contrast, in fragile watermarking for authentication
and integrity verification, the embedded data should be blindly retrieved and
sensitive to illegal modifications [4], and high information rate is preferred. Nev-
ertheless, there are some common requirements, such as security and fidelity. In
[19], T. Kalker defined the security of robust watermarking as the inability of
unauthorized users to remove, detect or change the watermark. A data hiding
scheme is considered secure if there is little information leakage from the pub-
lic domain. It should be assumed that the algorithms are publicly known and
the attacker has sufficient computational capability so that some valuable in-
formation may be leaked from the observation of watermarked objects. Fidelity
means that the embedded data is invisible (except the case that it is intentionally
visible), i.e., the embedding process should not introduce noticeable distortion
to the cover object. And it is often required that the introduced error can be
numerically analyzed and bounded.

Only a few fragile watermarking algorithms (e.g.[4]-[8]) have been proposed
for authentication of polygonal meshes. The first fragile watermarking of 3D
objects is addressed by Yeo and Yeung in [4] for authentication and integrity
protection by using a set of lookup tables (LUTs). If two values generated from
the positions of a vertex and its traversed neighboring vertices are identical to
each other, the vertex is considered as valid. Otherwise, its position will be per-
turbed until the two values match. Since the data embedded in [4] is sensitive to
Rotation, uniformly Scaling and T ranslation transformations (denoted as RST
hereinafter), its applications may be limited. By adapting the work in [4], Lin et
al. proposed a fragile watermarking method in [5] to detect malicious attacks.
They improve the mapping from vertex positions to location indices so that the
embedded watermark is resistant to incidental data processing, such as vertex
reordering, but RST transformations are still not allowed. Moreover, Benedens
and Busch proposed the algorithm called Vertex Flood Algorithm (VFA) in [6]
for mesh authentication. Basically, their algorithm modifies the vertices so that
their distances to the centroid of a designated triangle encode the watermark
bits. In this way, a certain amount of vertex coordinate truncation caused by
format conversions, as well as RST transformations, can be allowed. As for a tri-
angle mesh, the security of VFA relies on the selection of the start triangle since
the vertex position can be modified without changing the distance from it to the
centroid of the start triangle. Later, Cayre and Macq presented a steganographic
scheme [7] for triangle meshes by treating a triangle as a two-state geometrical
object. By choosing an appropriate Macro Embedding Procedure (MEP) or-
der, a watermark can be imperceptibly embedded with robustness against RST
transformations. The upper bound of capacity has been given in [7], but the
optimal mesh traversal to reach it has not been addressed yet. Alternatively, in



our previous work [8], a fragile watermark robust against RST transformations
is embedded into polygonal meshes by quantizing the distances from the surface
polygons to the mesh centroid. By choosing an appropriate quantization step, the
embedded watermark can be made imperceptible and sensitive to illegal modifi-
cations. Although high information rate is required in fragile watermarking, the
upper bound of capacity has not been reached in [8].

This paper presents a new data hiding method for polygonal meshes, in which
the embedded data is designed to be robust against those content-preserving
manipulations, such as RST manipulations and truncation of vertex coordinates
to a certain degree, but sensitive to malicious manipulations. A new quantization
method is employed to embed a watermark (i.e., a string of binary numbers) by
slightly modifying the distance from a vertex to the centroid of its traversed
neighbors. The impact of the embedding process, i.e., the difference between
the original and watermarked meshes, can be tuned by choosing an appropriate
quantization step. The capacity of the proposed method tends to 1 bit/vertex,
which is higher than the former methods, such as 0.877 bit/vertex in [7]. It can
be used for content annotation and authentication of polygonal meshes, or even
secret message communication.

The rest of this paper is organized as follows. In the following section, the
procedure of the data hiding method, including watermark embedding and re-
trieval, will be described in detail. The experimental results will be given and
discussed in Section 3 by implementing the proposed method to authentication
of polygonal meshes. Section 4 summarizes the paper and points out the future
works.

2 A New Method to Hide Data within Polygonal Meshes

Polygonal meshes are considered as the common representation of 3D shapes and
it’s easy to convert other types of 3D models into them. Despite the appearance
attributes associated with 3D models, such as color, transparency and texture,
there are two parts of information contained in the mesh data, i.e. the mesh
geometry and topology. The mesh geometry can be represented by the set of
vertex positions V = {v1, · · ·, vm}, which defines the shape of the mesh in R3

given m vertices in a mesh. The mesh topology, i.e., the connectivity between
vertices, specifies the n vertices {v1

k, · · ·, vn
k } in the k-th polygon, as described

by IndexedFaceSet in VRML [20] format. The proposed method is performed on
polygonal meshes, consisting of embedding and retrieval processes, detailed as
follows.

2.1 Data Embedding

Given a string of binary numbers W = (wi)N
i=1 with the length N , the task of

embedding is hide the value of each bit wi into the mesh geometry. Since we aim
to embed a watermark robust against RST transformations, the ratio between
the distances in the cover mesh serves as a good candidate. In our method, the



distance from a vertex to the centroid of its traversed neighbors is chosen as
the embedding primitive so that the upper bound of capacity can be reached.
If we choose the distance from a vertex to the centroid of all its neighbors as
the embedding primitive and modify the distance to embed a binary number by
adjusting its position, the positions of its neighboring vertices cannot be changed
any more to preserve the embedded value. As a result, the capacity will drop
since most of the vertex positions cannot be modified to embed binary numbers.
Therefore, only the traversed vertices of each vertex are chosen to generate the
embedding primitive so that high information rate is achieved.

The detailed process to embed a watermark W = (wi)N
i=1 is as follows: Ini-

tially, we use a secret key K as the seed of pseudo-random generator to permute
the face indices F and vertex indices I, respectively. The process of mesh traver-
sal is ordered by the permuted vertex indices I ′ and face indices F ′ as follows.
Among those vertices in the polygon lastly indexed by F ′, the one first indexed
by I ′ is traversed at first without adjusting its position since all of its neighboring
vertices have not been traversed. Among the neighbors of the traversed vertices,
the one first indexed by I ′ will always be subsequently traversed. Suppose there
is m vertices in a polygonal mesh, there are m−1 embedding primitives because
only the first traversed vertex has no traversed neighbor. For a newly traversed
vertex vi, Ni neighboring vertices have been traversed and denoted as (vj

i )
Ni
j=1.

Then the centroid of the traversed neighbors can be calculated by

vic =
1
Ni

Ni∑

j=1

vj
i . (1)

The distance di from vic to vi is chosen as the embedding primitive

di =
√

(vicx − vix)2 + (vicy − viy)2 + (vicz − viz)2, (2)

where {vicx, vicy, vicz} and {vix, viy, viz} are the coordinates of vic and vi in R3,
respectively. To embed a binary number wi by slightly changing di with the
quantization step ∆, its corresponding integer quotient Qi and the remainder
Ri should be calculated by {

Qi = bdi/∆c
Ri = di%∆

, (3)

and di is modified by

d′i =





di if Qi%2 = wi

di + 2× (∆−Ri) if Qi%2 6= wi & Ri ≥ ∆
2

di − 2×Ri if Qi%2 6= wi & Ri < ∆
2

(4)

so that bd′i/∆c%2 = wi. The error introduce by Eq.(4), i.e., the difference be-
tween the modified distance d′j and di, will not exceed the quantization step ∆
so that the impact of embedding on the mesh content can be tuned with the
quantization step ∆. To allow slight change of d′j , such as mantissa truncation



due to the limited precision, a margin around the quantization grid is required.
So Eq.(4) is slightly deformed by adding a parameter ε ∈ (0, ∆

2 ) through

d′i =





(Qi + 1)×∆− ε if Qi%2 = wi & ∆− ε < Ri

di if Qi%2 = wi & ε ≤ Ri ≤ ∆− ε
Qi ×∆ + ε if Qi%2 = wi & Ri < ε
(Qi + 1)×∆ + ε if Qi%2 6= wi & ∆− ε < Ri

di + 2× (∆−Ri) if Qi%2 6= wi & ∆
2 ≤ Ri ≤ ∆− ε

di − 2×Ri if Qi%2 6= wi & ε ≤ Ri < ∆
2

Qi ×∆− ε if Qi%2 6= wi & Ri < ε

(5)

so that d′i%∆ ∈ (ε,∆ − ε). As a result, the change of d′i within (−ε, ε) can be
allowed without changing the embedded value wi. An appropriate value should
be assigned to ε without disclosing the quantization step ∆. If we choose the value
of ε in proportional to ∆, ∆

6 for instance, the allowed range can be adjusted by
appropriately choosing the quantization step ∆. Consequently, the resulting d′i
is used to adjust the position of vi by

v′i = vic + (vi − vic)× d′i
di

, (6)

where v′i is the adjusted vertex position. At each iteration, to embed one bit
value, the position of the newly traversed vertex is adjusted to modulate the
distance from it to the centroid of its traversed neighbors. So the number of the
embedded bits is equal to the number of the adjusted vertices. Given m vertices
in the cover mesh, there will be m− 1 bit values embedded after the position of
the last traversed vertex is adjusted so that the watermarked mesh is generated.
After that, the position of mesh centroid is calculated by

vc =
1
m

m∑

i=1

v′i, (7)

and the distance from the last traversed vertex vl to the mesh centroid is calcu-
lated by

D =
√

(vlx − vcx)2 + (vly − vcy)2 + (vlz − vcz)2. (8)

The ratio R between D and ∆ is obtained by

R = D/∆, (9)

which will be used in the retrieval process to calculate the quantization step ∆.

2.2 Message Retrieval

To retrieve the embedded data from the watermarked mesh, the quantization
step ∆ used in watermark embedding is required. To obtain ∆, the distance
D from the last traversed vertex to the mesh centroid is required, besides the



parameter R. Since the mesh traversal is ordered by the permuted vertex indices
I ′ and face indices F ′, the secret key K is required to generate them. Therefore,
the secret key K and the parameter R are used as the inputs of the retrieval
process, besides the watermarked mesh.

The detailed process of watermark retrieval is as follows: At first, the vertex
indices I and face indices F in the watermarked mesh are permuted by using
K as the seed of pseudo-random generator to generate I ′ and F ′, respectively.
By performing the mesh traversal, the distance from a vertex to the centroid
of its traversed neighbors can be calculated by using Eq.(1) and Eq.(2). If the
watermarked mesh is intact, the obtained distances are those that have been
modified in the embedding process, i.e., {d′1, d′2, . . . , d′m−1}, given m vertices in
the watermarked mesh. With the distance D from the last traversed vertex vl

to the mesh centroid calculated by Eq.(7) and the provided parameter R, the
quantization step ∆ is obtained by

∆ = D/R. (10)

With the obtained ∆, the bit value w′i is extracted by

w′i = bd′i/∆c%2. (11)

The whole message string W ′ = (w′i)
m−1
i=1 will be retrieved after the last bit is

extracted from the last traversed vertex.

2.3 The Properties of The Embedded Data

Since the ratio between any two distances in a polygonal mesh is invariant to
RST transformations, while the quantization step used in the retrieval process is
proportional to the distance from the last traversed vertex to the mesh centroid,
the ratio between the distance from a vertex to the centroid of its traversed
neighbors and the quantization step remains the same after RST transforma-
tions, as well as the embedded watermark. After topological modifications that
change the neighboring information between vertices, the mesh traversal in the
retrieval process will be different from that in the embedding process so that the
embedded watermark cannot be correctly retrieved. Therefore, the embedded
data is sensitive to the modifications made to the connectivity between vertices.

As for the mantissa truncation of vertex coordinate, which is stored as
a single-precision floating-point number, if the truncation error is distributed
within (−T, T ), then the errors introduced to the coordinates of the mesh cen-
troid in Eq.(7) and the centroid of a vertex’s neighboring vertices in Eq.(1) are
also distributed within (−T, T ). The error introduced to d′i in Eq.(2) and D in
Eq.(8) will be both distributed within (−2

√
3T, 2

√
3T ). Based on Eq.(10), we

know the error introduced to ∆ is within (− 2
√

3T
R , 2

√
3T

R ) so that Eq.(11) can be
rewritten as

w′i = bd
′
i + δd

∆ + δ1
c%2, (12)



where δd and δ1 are the change of d′i and ∆ caused by the truncation, respectively.
It can be seen the integer quotient bd′i+δd

∆+δ1
c will be different from bd′i

∆ c if d′i%∆+
δd − bd′i/∆c × δ1 /∈ (0,∆). If Eq.(5) is used in the embedding process, d′i%∆
will be distributed within (ε,∆ − ε). As a result, the retrieved bit value w′i
in Eq.(12) will be identical to wi, i.e. bd′i/∆c%2, if |δd − bd′i/∆c × δ1| < ε.
Since δd ∈ (−2

√
3T, 2

√
3T ) and δ1 ∈ (− 2

√
3T

R , 2
√

3T
R ), the truncation of vertex

coordinates is allowed if

T <
ε

2
√

3(1 + bd′
M

/∆c
R )

, (13)

where d′M is the greatest one among all the modified distance {d′1, d′2, . . . , d′m−1}.
On the other side, truncation of vertex coordinates can be allowed by ap-
propriately choosing the quantization step ∆ if bd′M/∆c < ( ε

2
√

3T
− 1)R, or

∆ >
d′M

( ε

2
√

3T
−1)R since ε > 2

√
3T as indicated by Eq.(13). If the parameter ε

in Eq.(5) is assigned proportional to the quantization step ∆ (we take ∆
6 for

instance), the value of ∆ should be chosen so that ∆ >
d′M

( ∆

12
√

3T
−1)R

, i.e.,

∆ > 6
√

3T +

√
108T 2 +

12
√

3Td′M
R

, (14)

where the value of d′M and R are obtained from the watermarked mesh. Other-
wise, the embedded value will probably be altered.

For the geometrical modifications that take place on part of the vertices, we
take for instance the case that one vertex is modified. The distance d′i from the
modified vertex to its traversed neighbors will be changed by the modification
as denoted by d′i + δdi with δdi as the change. Suppose the quantization step ∆

obtained from Eq.(10) is unchanged, the integer quotient bd′i+δdi

∆ c will be possi-
bly changed if |δdi| > ε given d′i%∆ ∈ (ε,∆− ε). For the untraversed neighbors
of the modified vertex, i.e., those vertices regarding the modified vertex as their
traversed neighbor, the distances from them to their traversed neighbors will also
be changed by the modification so that the chance to detect the modification is
increased. In summary, if one vertex is modified outside the allowed range, the
data embedded by adjusting the positions of itself and its untraversed neighbors
will probably be altered.

3 Experimental Results

We performed the proposed method on several mesh models as listed in Table 1,
where the capacity of each mesh model is also given. Suppose the precision inter-
val of vertex coordinates is (−T, T ), an appropriate quantization step ∆ should
be chosen as in Eq.(14) if ∆

6 has been assigned to the parameter ε in Eq.(5).
The runtime of the embedding and retrieval processes for the “teapot” model
were only 0.750 and 0.875 seconds in a 2.66G Pentium 4 PC with 512MB RAM,
while those for the “horse” model were 40.844 and 44.438 seconds, respectively.



Table 1. The mesh models used in the experiments

Model Meshes Vertices Polygons Capacity(bits)

fish 1 742 1408 741
teapot 5 1631 3080 1626
dog 48 7616 13176 7568
wolf 90 8176 13992 8086
horse 31 10316 18359 10285

3.1 Distortion of the Cover Mesh

In the experiments, the impact of the embedding process can be tuned by the
quantization step ∆ used. From Eq.(6), it can be seen that the adjustment of each
vertex position is within the sphere with its original position as the centroid while
∆ as the radius, since the change of the distance from a vertex to its traversed
neighbors is bounded by (−∆,∆). Upon the fact that the mesh topology has
not been changed, the distance from the adjusted vertex to its former position is
used to represent the distortion of the mesh content. In the experiments, if 0.01
was assigned to ∆, the greatest error (i.e., the greatest distance among all the
adjusted vertices) never exceeded 0.01, while the greatest error was below 0.001
if 0.001 had been assigned to ∆, as shown in Fig. 1. The pictures rendered from
the mesh models “teapot” and “horse” before and after the embedding process
are shown in Fig. 2.
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Fig. 1. The greatest error increases with the quantization step.

3.2 Capacity

The proposed method is applicable to 3D polygonal meshes with arbitrary con-
nectivity. Given m vertices in the cover mesh, the capacity of our method will
be m − 1 bits, tending to 1 bit/vertex when m is sufficiently large. If a mesh



(a) The original mesh model
“teapot”

(b) The “teapot” model with 1626
bits embedded

(c) The original mesh model
“horse”

(d) The “horse” model with
10285 bits embedded

Fig. 2. 1626 and 10285 bits in total are hidden within the mesh model “teapot” and
“horse”, respectively, by choosing 1/10, 000 of the greatest distance Dm from a vertex
to the mesh centroid as the quantization step ∆ and ∆

6
as the parameter ε.

model consists of l separate meshes as in Table 1, the capacity will be m− l bits
since the first indexed vertex within each mesh is traversed without adjusting
its position.

3.3 Security

The security of the proposed method relies on the secrecy of the key K, as
well as the parameter R, which is used to calculate the quantization step ∆ in
the retrieval process. Given there are m vertices and p polygons in a polygonal
mesh, the permutation of the vertex indices is m!. Without the secret key K, the
mesh traversal must be performed pm! times to guarantee the embedded data
can be correctly retrieved, given the accurate quantization step ∆. To make it
hard to estimate the quantization step ∆ from the set of modified distances, the
parameter ε used in Eq.(5) should be assigned with a relatively small value, ∆

6
for instance. Moreover, we define the embedding primitive over the neighborhood



Table 2. By assigning 1/100, 000 of the greatest distance from a vertex to the mesh
centroid to the quantization step ∆ and ∆

6
to the parameter ε, the NC values are

calculated from the extracted bit values and the original ones after the watermarked
mesh have been processed by the following manipulations, respectively.

Moving two Modifying Reducing Truncating TruncatingRSTMeshes vertices one vertex one five sixtransformations oppositely position face LSBs LSBs

fish 1.0000 0.9932 0.9959 0.9757 1.0000 0.9838

teapot 1.0000 0.9963 0.9987 0.7915 1.0000 0.9907

dog 1.0000 0.9980 0.9984 0.5776 0.9988 0.9912

wolf 1.0000 0.9993 0.9997 0.6070 0.9991 0.9881

horse 1.0000 0.9997 0.9999 0.5402 0.9994 0.9860

of a vertex so that resistance to substitution attacks is achieved, which makes it
even harder to construct a counterfeit mesh with the same watermark.

3.4 Authentication of Polygonal Meshes

We try to apply the proposed method to authentication of polygonal meshes. To
detect the illegal modifications made to the watermarked mesh and estimate its
strength, the retrieved watermark W ′ = (w′i)

N
i=1 is compared with the original

one W = (wi)N
i=1 by defining a numerical value NC over them

NC =
1
N

N∑

i=1

I(w′i, wi), (15)

with

I(w′i, wi) =
{

1 if w′i = wi

0 otherwise . (16)

The value of NC is expected to be less than 1 if the mesh content has been
illegally modified.

The watermarked mesh model went through RST transformations, chang-
ing the positions of two vertices oppositely (respectively by adding the vectors
{2∆, 2∆, 2∆} and {−2∆,−2∆,−2∆}), modifying one vertex position by adding
the vector {3∆, 3∆, 3∆}, reducing one face from the mesh, and truncating the
least significant bits (LSB) of each vertex coordinate, respectively. By retrieving
the embedded bit values from the processed mesh models and comparing them
with the original ones by using Eq.(15), the resulting values of NC listed in
Table 2 indicated that the embedded data was robust against RST transforma-
tions and truncation of vertex coordinates to a certain degree, but sensitive to
other modifications. It should be noted the allowed range of coordinate trunca-
tion could also be adjusted with the quantization step ∆. If 1/10, 000 of Dm,
which is defined as the greatest distance from a vertex to the mesh centroid,
was assigned to ∆, truncating of 8 least significant bits (LSB) of vertex coordi-
nate was allowed for the “teapot” model. While 1/100, 000 of Dm was assigned



instead, only 5 LSBs of vertex coordinate could be truncated without changing
the embedded data.

From the obtained NC values, it can be seen the illegal modifications made
to the watermarked mesh can be classified into severe and slight ones. Topolog-
ical and severe geometrical modifications may lead the retrieved watermark to
be dramatically different from the original one, while those geometrical mod-
ifications that have little impact on the quantization step ∆ are possible to
be localized by comparing the extracted values with the original ones. For a
vertex where the two values do not match, its position or those of its previ-
ously traversed neighbors might have been changed. Normally, the number of
the previously traversed neighbors of a vertex is very limited so that this type of
modification can be localized. In our experiments, the watermarked mesh model
“teapot” in Fig. 2(b) was tampered by modifying one vertex on its handle and
the tampered mesh model is shown in Fig. 3(a). The illegal modification is de-
tected by comparing the extracted watermark with the original one so as to find
the region where the two values do not match, as shown in Fig. 3(b).

(a) The tampered mesh model “teapot”

(b) The mesh model with the tampered re-
gion detected

Fig. 3. The mesh model in Fig. 2(b) is tampered by modifying one vertex and the
tampered region has been localized.



4 Concluding Remarks and Future Works

A high-capacity data hiding method has been proposed for polygonal meshes by
choosing the distance from a vertex to the centroid of its traversed neighbors
as the embedding primitive. A new quantization method has been employed to
embed a watermark by slightly modifying the embedding primitives. It is hard to
estimate the quantization step from the modified primitives, while slight change
of them can be allowed to a certain degree by reserving a margin around the
quantization grid. The embedded data is robust against those content-preserving
manipulations, such as RST transformations and truncation of vertex coordi-
nates to a certain degree, but sensitive to malicious manipulations. The impact
of embedding on the mesh content can be tuned by choosing an appropriate
quantization step. In the future, we will further investigate on: (1) the infor-
mation of the embedded data leaked from the watermarked mesh, if any; and
(2) the attacks to the proposed method for authentication and secret message
communication.
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