
Dynamic Weighted Majority for Incremental Learning of Imbalanced Data
Streams with Concept Drift∗

Yang Lu1, Yiu-ming Cheung1,2, Yuan Yan Tang3
1Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China

2HKBU Institute of Research and Continuing Education, Shenzhen, China
3Department of Computer and Information Science, University of Macau, Macau SAR, China

{yanglu,ymc}@comp.hkbu.edu.hk, yytang@umac.mo

Abstract
Concept drifts occurring in data streams will jeop-
ardize the accuracy and stability of the online learn-
ing process. If the data stream is imbalanced, it
will be even more challenging to detect and cure the
concept drift. In the literature, these two problem-
s have been intensively addressed separately, but
have yet to be well studied when they occur togeth-
er. In this paper, we propose a chunk-based incre-
mental learning method called Dynamic Weighted
Majority for Imbalance Learning (DWMIL) to deal
with the data streams with concept drift and class
imbalance problem. DWMIL utilizes an ensemble
framework by dynamically weighting the base clas-
sifiers according to their performance on the cur-
rent data chunk. Compared with the existing meth-
ods, its merits are four-fold: (1) it can keep sta-
ble for non-drifted streams and quickly adapt to the
new concept; (2) it is totally incremental, i.e. no
previous data needs to be stored; (3) it keeps a lim-
ited number of classifiers to ensure high efficiency;
and (4) it is simple and needs only one thresholding
parameter. Experiments on both synthetic and real
data sets with concept drift show that DWMIL per-
forms better than the state-of-the-art competitors,
with less computational cost.

1 Introduction
In the online learning process, the underlying data distribu-
tion may change over time. This phenomenon is known as
concept drift or non-stationary environment [Ditzler et al.,
2015]. To deal with it, one must confront the problem of
stability-plasticity dilemma [Ditzler and Polikar, 2013]. That
is, an algorithm has to balance the learning focus between
the past information and the incoming distribution changes.
Based on Bayes’ theorem, the concept drift can occur in three

∗Yiu-ming Cheung is the corresponding author. This work was
supported by the National Natural Science Foundation of China with
the Grant Numbers: 61672444 and 61272366, by the SZSTI Grant:
JCYJ20160531194006833, and by the Faculty Research Grant of
Hong Kong Baptist University (HKBU) with the Project Codes:
FRG2/16-17/051 and FRG2/15-16/049.

of four components in the Bayes’ formula and the rest one can
be obtained by the other three [Ditzler et al., 2015]:
• Data distribution p(x): It is also called virtual drift. The

distribution of x changes without affecting the decision
hyperplane.

• Posterior probability p(y|x): It is also called real drift.
The decision hyperplane is shifted because the condi-
tional probability changes.

• Class prior p(y): It affects the imbalance ratio that the
position of the minority class and the majority class may
be switched.

These three types of drifts may occur separately or simulta-
neously at any time in the data stream. Let us take fault diag-
nosis as an example that the faulty samples are the minority
class [Wang et al., 2013b]. If the percentages of producing
different types of samples change, it corresponds to the drift
of p(x). If the standard to diagnose a fault is improved so
that more samples are identified as faults sometime, it corre-
sponds to the drift of p(y|x). Furthermore, if the cause of the
fault is not fixed, the number of the faulty samples will in-
crease and finally becomes the majority class, it corresponds
to the drift of p(y).
Classifying imbalanced data is another challenging prob-

lem [He and Garcia, 2009; Branco et al., 2016]. Direct-
ly applying standard learning algorithm tends to ignore the
minority class samples because of their subtle influence on
the accuracy of an algorithm. Evidently, the problem will
become more complicated if concept drift occurs together
with class imbalance. When the concept of the minority
class drifts, it is difficult to learn the new concept because
the minority class samples seldom appear in the data stream.
Thus far, only several methods have been proposed to tack-
le the problem of concept drift with class imbalance. In
the literature, adaptive methods [Gao et al., 2007; Wu et
al., 2014] and ensemble methods [Elwell and Polikar, 2011;
Krawczyk et al., 2017] are two major groups. The former up-
dates the classifier on the current chunk, while the latter build-
s a model for each chunk and combines them as an ensemble.
As for the issue of imbalance, adaptive methods collect the
minority class samples in the past chunks and integrate them
into the training samples in the current chunk for minority
class augmentation. However, it is not always effective be-
cause the concept of the minority class may vary over time if

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2393

concept drift of p(y) occurs. By contrast, ensemble methods
usually apply imbalance oriented learner as the base classifier
in the ensemble. However, it is hard to weigh the base clas-
sifiers trained on different timestamps and maintain a limited
number of classifiers to prevent the number of base classifiers
infinitely increasing.
In this paper, we propose a new chunk-based incremental

learning method called Dynamic Weighted Majority for Im-
balance Learning (DWMIL) to deal with binary class imbal-
anced data streams with concept drift. It utilizes an ensem-
ble framework with dynamic base classifier weighting. The
classifier weights depend on the imbalance aware error of the
classifier tested on the current chunk. The classifier with s-
maller error will receive higher weight in the ensemble be-
cause it may be trained on the chunk with similar concept as
the current one. The classifier weights are naturally reduced
over time based on the accumulated testing error. The advan-
tages of DWMIL are four-fold:

• It can remain stable for stationary streams and quickly
adapt to the new concept for non-stationary environmen-
t.

• The method is totally incremental. No previous data
needs to be stored to help prediction. Therefore, the
method does not suffer from memory problems.

• The number of stored classifiers is much less than the
current timestamp. The dated classifiers will be discard-
ed so that the ensemble size will not expand infinitely.

• It is simple and efficient. Only one thresholding param-
eter is needed. The computational cost is very low com-
pared with the other methods.

The main contributions of this paper are summarized be-
low:

• We propose an effective and efficient online learning
method DWMIL for imbalanced data stream classifica-
tion with concept drift.

• Dynamic Weighted Majority (DWM) is extended to the
chunk-by-chunk version with more robust performance.

2 Related Work
For adaptive methods, Gao et al. [Gao et al., 2007] proposed
to accumulate the minority class samples in the current chunk
with all past chunks, while carrying on undersampling on the
majority class samples to balance the classes. A bagging like
ensemble framework is then used for classification. Howev-
er, it suffers from memory limitation to store the past data and
lacks of the ability to quickly adapt to the new concept. As an
improvement, SERA [Chen and He, 2009] and REA [Chen
and He, 2011] select only parts of the minority class samples
from the past chunks based on the similarity to the minority
class samples in the current chunk. Moreover, HUWRS.IP
[Hoens and Chawla, 2012] calculates the Hellinger distance
between the samples in the current and the past chunks to
detect the concept drift. The distance is used as the weight
of the base classifier built on different feature subspaces in
the ensemble. To handle the imbalance problem, HUWRS.IP

creates a Naı̈ve Bayes classifier on the current chunk to se-
lect the similar minority class samples from the past chunks.
DFGW-IS [Wu et al., 2014] further improves HUWRS.IP by
incorporating the importance sampling technique to collec-
t the positive class samples from the past chunks. In sum-
mary, these methods assume that the minority class does not
change, and they can therefore utilize the past information.
However, from the practical viewpoint, if p(y) changes over
time, the past minority class may not be the same as the cur-
rent minority class.
The ensemble methods usually adopt an incremental fash-

ion, i.e. the data in the past is not saved, because the infor-
mation of the past data is kept by the base classifiers in the
ensemble. Learn++.CDS and Learn++.NIE [Ditzler and Po-
likar, 2013] create one base classifier for each chunk and use
the ensemble to predict the incoming data. The base classi-
fiers are weighed by a time decay function and their perfor-
mance on the current chunk. ESOS-ELM [Mirza et al., 2015]
uses the ensemble of extreme learning machine, where the
weight matrices trained on each chunk are stored for ensem-
ble. When the concept drift is detected by a change detector,
the ensemble model will be reinitialized.
The methods mentioned above consider the concept drifts

provided that the imbalance ratio is fixed. On the other hand,
the effect of class prior drift for online learning from imbal-
anced data has been studied by some researchers. Wang et al.
studied the effect of imbalance ratio change and proposed to
adjust the training process by dynamic sampling rates [Wang
et al., 2015; 2016]. CBCE [Sun et al., 2016] focuses the class
evolution problem for multi-class classification. It uses one-
versus-rest strategy to create one classifier for each class, and
conducts undersampling for the majority class. [Wang et al.,
2013a] is the only work to study and analyze the case that
class prior drift happens together with the other kinds of con-
cept drift, where a drift detector is proposed with an imbal-
ance detector to deal with the joint concept drift.

3 Proposed Method
At timestamp t−1, DWMIL maintainsm classifiers in the set
H(t−1) = {H(t−1)

1 , ..., H
(t−1)
m } trained on the data chunks

from timestamp 1 to t−1. When DWMIL receives a new data
chunk D(t) at timestamp t, it learns a new classifierH on the
current data chunk and merges H with H(t−1) to form H(t).
The classifiers trained on each chunk are associated with the
vector of weights, denoted as w(t) = [w

(t)
1 , ..., w

(t)
m]T , which

measures the importance of the classifiers in the ensemble.
When the new classifier H is created, its initial weight is set
at 1 andm is increased by 1. In order to adapt to new concept
and make the previously learned classifiers less influential in
the ensemble, the weight w(t)

j for classifier H(t)
j is reduced

on each timestamp after it is created:

w
(t)
j = (1− ϵ

(t)
j)w

(t−1)
j ,

where j = 1, ...,m− 1 and ϵ(t)j is the testing error ofH(t)
j on

the current data chunk D(t). The error ϵ(t)j can be calculated
by any error function like F1 or G-mean. Thus, the weights
of the classifiers trained on the past chunks are reduced based

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2394

on the their performance on the current data chunk. Since this
weight reduction is accumulated over time, the weight w(t)

j is
actually equals to:

w
(t)
j =

t∏
τ=l+1

(1− ϵ
(τ)
j), (1)

where l is the timestamp whenH(t)
j is created. As 1− ϵ

(τ)
j ≤

1, the classifier weight is getting smaller over time accord-
ing to its error on each chunk after it is created. Then, the
classifiers with weight less than the threshold θ are removed
and the counter m is also reduced according to the number
of classifiers left. If a classifier is going to be removed, there
are two factors that make its weight lower than θ. One is that
the classifier is trained on a very early timestamp that makes
the production in Equation (1) small. The other is that the
concept changes in recent chunks and the testing error of the
classifier is large on those chunks. Thus, this kind of classi-
fier is less likely to provide positive effects to the prediction
on the current and following chunks. Finally, the model pre-
dicts the incoming data x in D(t+1) by the ensemble of H(t)

associated with w(t):

sign(
m∑
j=1

w
(t)
j H

(t)
j (x)).

The training process of the proposed method DWMIL is
shown in Algorithm 1. In DWMIL, we use UnderBagging as
the base learner to train imbalanced data as shown in Algo-
rithm 2. In each bagging iteration, we carry on undersampling
on the majority class to make the training data balanced.
The relations between DWMIL and the existing methods

are discussed as follows:
• Relation with Dynamic Weighted Majority (DWM)

[Kolter and Maloof, 2007]: Both DWMIL and DWM
keep a number of classifiers during learning the data
streams. Despite the use of the imbalance oriented clas-
sifier UnderBagging as the base classifier in DWMIL, D-
WMIL has some other improvements over DWM. DWM
processes the data one-by-one and updates the classifiers
on every p incoming samples. If the data stream is im-
balanced, the occurrence frequency of the minority class
sample will be very low. Thus, updating a long sequence
of majority class sample will be likely to make the mod-
el biased. By contrast, processing the imbalanced data
stream chunk-by-chunk as DWMIL does will be more
stable. DWM decides to create a new classifier accord-
ing to the prediction performance of a single sample. If
the data is imbalance, the probability that the sample be-
longs to the majority class is much higher than the mi-
nority class, and the probability to misclassify a majority
class sample is low. Thus, the chance to create new clas-
sifiers on imbalanced data stream is low. It turns out that
it may not efficiently adapt to the new concept. In com-
parison, DWMIL creates a new classifier for each chunk
to learn the new concept in time. Besides, in DWM, the
weights are reduced by a fixed parameter β and actually
reduced again after normalization. Instead, DWMIL re-
duces the weight based on the performance without any

Algorithm 1 Train DWMIL

Input: Data chunk at timestamp t: D(t) = {xi ∈ X , yi ∈
Y}, i = 1, ..., N , threshold for deleting base classifier-
s θ, base classifier set H(t−1) = {H(t−1)

1 , ..., H
(t−1)
m },

weight of base classifiers w(t−1), number of base classi-
fiersm, ensemble size T .

1: for i← 1 to N do
2: Predict xi by the ensemble classifier:

ȳi ← sign(
∑m

j=1 w
(t−1)
j H

(t−1)
j (xi));

3: end for
4: for j ← 1 tom do
5: Calculate the error ϵ(t)j for classifier H(t−1)

j on D(t);
6: Update weight of base classifiers:

w
(t)
j ← (1− ϵ

(t)
j)w

(t−1)
j ;

7: end for
8: Remove classifiers with weights less than θ:

H(t) ← H(t−1)\{H(t−1)
j |w(t)

j < θ};
m← |H(t)|;

9: Create new base classifier and initialize its weight:
m← m+ 1;
H ← UnderBagging(D(t), T);
H(t) ← H(t) ∪H;
w

(t)
m ← 1;

Output: Base classifier set H(t), weight of base classifiers
w(t), number of base classifiers m, prediction ȳ.

Algorithm 2 UnderBagging

Input: Data D = {xi ∈ X , yi ∈ Y}, i = 1, ..., N , the
number of positive samples Np, the number of negative
samples Nn, ensemble size T .

1: for t← 1 to T do
2: if Np < Nn then
3: Ns ← Np;
4: else
5: Ns ← Nn;
6: end if
7: Dp ← Bootstrap Ns positive samples;
8: Dn ← Bootstrap Ns negative samples;
9: ht ← BaseLearner({Dp,Dn});
10: end for
Output: Base classifier H(x) = sign(

∑T
t=1 ht(x));

normalization. Thus, a classifier can last longer to con-
tribute to the prediction if the current concept is similar
to the one when the classifier is created.

• Relation with Learn++ framework [Elwell and Polikar,
2011]: Both Learn++ and DWMIL create classifiers for
each chunk and use classification error to adjust the
weights. However, Learn++ uses a time decay function
σ to reduce the weights of the classifiers trained on the
past chunks. This σ depends on two free parameters: a
and b, where different values of them will produce di-
verse results. In DWMIL, the weight reduction only de-
pends on the performance of the classifiers without free

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2395

parameters. Furthermore, in Learn++, the weights de-
pend not only on the current chunk, but also the chunks
from the classifier that is created to the current chunk.
Under the circumstances, it may produce bias. Specifi-
cally, if one classifier performs very well on the chunk
where it is created, it will receive continuously higher
weights in the following several chunks. If the concept
changes, the high weight of the classifier trained on old
concept will hinder the prediction. In addition, Learn++
keeps all classifiers over time. The accumulated classi-
fiers will increase the computational burden if the data
stream is very long or even life long, because it needs
to evaluate the performance of all past classifiers on the
current chunk. By contrast, DWMIL discards the dated
or useless classifiers to increase the computational effi-
ciency.

4 Experimental Results
To evaluate the effectiveness and efficiency of DWMIL1, we
compare it with four other state-of-the-art methods, which are
designed for imbalanced data stream with concept drift, on
four synthetic data sets and two real data sets.

4.1 Experiment Settings
The compared methods and their settings are described as fol-
lows. Learn++.NIE (LPN) [Ditzler and Polikar, 2013] and
Recursive Ensemble Approach (REA) [Chen and He, 2009]
are selected as a representative of ensemble methods and
adaptive methods, respectively. Class-Based ensemble for
Class Evolution (CBCE) [Sun et al., 2016] with drift detector
DDM [Wang et al., 2013a] is selected as the representative
of active drift detection methods. We also compare the orig-
inal version of Dynamic Weighted Majority (DWM) [Kolter
and Maloof, 2007], which is not essentially designed for im-
balanced data stream. Accordingly, we adopt the Undersam-
pling Online Bagging (UOB) technique [Wang et al., 2015]
for DWM. The parameters of the compared methods are set
at the recommended values in the literature. For DWMIL,
LPN and DWM, the number of base classifiers in the ensem-
ble T is set at 11 to prevent draw result. For DWMIL, the
threshold to remove the dated classifier θ is set at 0.001. As
discussed in [Kolter and Maloof, 2007], the value of θ has
nearly no influence to the accuracy, and it only affects the
number of stored classifiers. Geometric mean (G-mean) error
ϵgm = 1 −

√
TPR · TNR is chosen as the error function

used in LPN and DWMIL, where TPR is the true positive
rate and TNR is the true negative rate. In fact, any other
error functions like F1 measure can also be used as the error
function. Here, we only adopt G-mean error as the error func-
tion due to space limitation. CART [Breiman et al., 1984] is
used as the learner of the base classifier for all methods. All
results are averaged by 10 runs of the experiments. We use
G-mean and Area Under Curve (AUC) as the evaluation met-
rics to compare all methods. The test-then-train strategy is
adopted to evaluate the performance of the methods on each
chunk.

1Source code and data sets used in the experiments can be ob-
tained from https://github.com/lylylytc/dwmil

data set #samples #features #chunks
Moving Gaussian 50,000 2 50
SEA 100,000 3 100
Hyper Plane 100,000 10 50
Checkerboard 60,000 2 200
Electricity 27,549 7 56
Weather 18,159 8 50

Table 1: Information of six streaming data sets.

4.2 Data Sets
In the experiments, we utilize four synthetic data sets and two
real data sets, whose information is summarized in Table 1.
The percentage of the minority class samples in each chunk
is fixed at 5% of the chunk size.
Moving Gaussian: This data stream consists of two Gaus-

sian distributed classes with identity covariance and 2 dimen-
sions. The initial coordinates of the mean of the two classes
are [5,0] and [7,0]. The two classes gradually move to [-5,0]
and [-3,0] from the first to the last chunk.
SEA [Street and Kim, 2001]: It contains three attributes

ranging from 0 to 10. Only the first two attributes are related
to the class that is determined by attr1 + attr2 ≤ α. The
third attribute is treated as noise. The control parameter α is
set at 15 for the first 1/3 and the last 1/3 chunks, and 5 for the
second 1/3 chunks.
Hyper Plane [Street and Kim, 2001]: The gradually

changed concepts are calculated by f(x) =
∑d−1

i=1 ai ·
xi+xi+1

xi
, where the dimension d = 10 and ai is used to con-

trol the decision hyperplane.
Checkerboard [Ditzler and Polikar, 2013]: It is a non-

linear XOR classification problem. The data stream is pro-
duced by selecting from a size-fixed window in the rotating
checkerboard.
Electricity [Kolter and Maloof, 2007]: This data set con-

tains the changes of electricity price according to the time and
demand in New South Wales, Australian. The class label is
determined by the change of price over the last 24 hours.
Weather [Ditzler and Polikar, 2013]: This data set con-

tains the weather information over 50 years in Bellevue and
Nebraska. The task is to predict whether a day is rainy or not.

4.3 Comparative Results
The G-mean and AUC performance on each chunk is shown
in Figure 1 and 2. The observation of the experiments on
each data set is discussed as follows. The results of data set
Moving Gaussian are shown in Figure 1(a) and 2(a). The per-
formance of DWMIL and DWM are comparable through all
chunks in terms of G-mean and both of them perform better
than LPN. CBCE predicts all samples as negative and there-
fore receives 0 in G-mean. A plausible reason is that the data
set of Moving Gaussian is continuously drifting. Thus, CBCE
resets its model on every several samples so that it poorly
learns the minority class samples. The performance of REA
gradually drops to 0 because the stored past minority class
samples are overlapped with the majority class samples in

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2396

5 10 15 20 25 30 35 40 45 50
0

0.5

1

LPN
CBCE
DWM
REA
DWMIL

(a)
10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

(b)

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

(c)
20 40 60 80 100 120 140 160 180 200

0

0.5

1

(d)

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

(e)
5 10 15 20 25 30 35 40 45 50

0

0.5

1

(f)
Figure 1: G-mean performance of each chunk on data set (a) Moving Gaussian, (b) SEA, (c) Hyper Plane, (d) Checkerboard, (e) Electricity
and (f) Weather.

5 10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

LPN
CBCE
DWM
REA
DWMIL

(a)
10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

(b)

5 10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

(c)
20 40 60 80 100 120 140 160 180 200

0.4

0.6

0.8

1

(d)

5 10 15 20 25 30 35 40 45 50 55
0.2

0.4

0.6

0.8

1

(e)
5 10 15 20 25 30 35 40 45 50

0.4

0.6

0.8

1

(f)
Figure 2: AUC performance of each chunk on data set (a) Moving Gaussian, (b) SEA, (c) Hyper Plane, (d) Checkerboard, (e) Electricity and
(f) Weather.

the current chunk due to the distribution moving. Incorpo-
rating them into the training set equals to adding noises to
the minority class. In terms of AUC, DWMIL shows better
performance than the others along all chunks. The results of
data set SEA are shown in Figure 1(b) and 2(b). The two
significant performance drops correspond to the drifts of the
decision hyperplane. In terms of G-mean, DWMIL recover-
s its performance quickly on the first drift compared with the
other methods, which shows the ability of DWMIL to adapt to
the new concept. DWM also responds quickly, but it spends
around 15 chunks to recover the performance. LPN stays at

the valley for around 7 chunks before starting to recover the
performance. In terms of AUC, DWMIL and LPN show com-
parable results and recovery speed. The AUC performance of
REA shows good ability to resist concept drift by the stored
samples. It is not influenced by the second drift. The results
of data set Hyper Plane are shown in Figure 1(c) and 2(c).
DWMIL shows slightly better performance than the DMW
in terms of G-mean. The AUC performance of DWMIL is
close to LPN and both of them are better than DWM, REA
and CBCE. The results of data set CheckerBoard are shown
in Figure 1(d) and 2(d). In terms of G-mean, DWMIL, REA

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2397

Data set LPN CBCE DWM REA DWMIL
Moving Gaussian 0.6419±0.0314 0.0000±0.0000 0.7783±0.0447• 0.2003±0.0358 0.7565±0.0205
SEA 0.8907±0.0095 0.6862±0.0141 0.9201±0.0211 0.9022±0.0156 0.9256±0.0080
Hyper Plane 0.4941±0.0455 0.1173±0.0496 0.5511±0.0223 0.3390±0.0555 0.5889±0.0342•
Checkerboard 0.7507±0.0152 0.1931±0.0124 0.5820±0.0477 0.7546±0.0203 0.8123±0.0138•
Electricity 0.6510±0.0438 0.0903±0.0153 0.5914±0.0436 0.6095±0.0546 0.7062±0.0409•
Weather 0.5174±0.0708 0.0041±0.0075 0.5672±0.0619 0.3820±0.1286 0.6641±0.0566•

Table 2: G-mean performance averaged on all chunks. The boldface indicates the best result and the symbol • indicates significant difference
with the second best result by Wilcoxon signed rank test with 95% confidence interval.

Data set LPN CBCE DWM REA DWMIL
Moving Gaussian 0.7970±0.0149 0.5000±0.0000 0.7982±0.0167 0.7697±0.0319 0.8517±0.0138•
SEA 0.9725±0.0021 0.7444±0.0087 0.9355±0.0167 0.9705±0.0043 0.9776±0.0027•
Hyper Plane 0.7053±0.0171 0.5048±0.0051 0.5635±0.0163 0.6396±0.0323 0.7007±0.0216
Checkerboard 0.8477±0.0091 0.5313±0.0027 0.6016±0.0319 0.8331±0.0170 0.8876±0.0109•
Electricity 0.8311±0.0180 0.5141±0.0036 0.6116±0.0397 0.7656±0.0428 0.8271±0.0273
Weather 0.7683±0.0248 0.5004±0.0011 0.5961±0.0432 0.6676±0.0573 0.7725±0.0309

Table 3: AUC performance averaged on all chunks. The boldface indicates the best result and the symbol • indicates significant difference
with the second best result by Wilcoxon signed rank test with 95% confidence interval.

and LPN produce similar overall results. However, it can be
observed that DWMIL is more stable against concept drifts,
while the AUC performance of LPN and REA appear to have
small drops frequently. The results of data set Electricity and
Weather are shown in Figure 1(e-f) and 2(e-f), respectively.
DWMIL shows generally better performance than LPN and
REA in terms of G-mean, and comparable performance with
them in terms of AUC.
In order to compare the overall performance, the averaged

numerical results over all chunks are shown in Table 2 and 3.
The significance test is conducted between the best and the
second best result by Wilcoxon signed rank test with 95%
confidence interval. It can be observed that, for G-mean,
DWMIL achieves significantly better results than the other
methods on four data sets. For AUC, DWMIL significant-
ly outperforms the other methods on three data sets and has
comparable results with LPN without significant difference
on the other three data sets. The numerical results show that
DWMIL can generally produce better results than the other
methods on the data sets with the different kinds of concept
drifts.

4.4 Efficiency Analysis
The running time for the compared methods on six data set-
s is shown in Table 4. The computational cost of DWMIL is
the lowest compared with the other methods on four data sets.
REA has the lowest cost on data sets Electricity and Weather.
The reason is that DWMIL adopts bagging with T decision
trees as the base classifier on each chunk while REA adopts s-
ingle decision tree. Thus, REA is faster for the data sets with
a smaller number of samples and chunks. However, REA
keeps all the classifiers trained on each chunk and searches
kNN of all past minority class samples, thus it is slow when
the number of chunks is large. For example, on Checkerboard
which has 200 chunks, the cost of REA is around five times

Data set LPN CBCE DWM REA DWMIL
Moving Gaussian 18.6 32.2 194.6 11.7 10.9
SEA 49.0 133.6 207.1 44.6 34.5
Hyper Plane 22.1 114.4 324.2 14.5 11.8
Checkerboard 110.5 277.5 146.1 282.0 57.8
Electricity 20.2 37.5 84.5 5.4 12.1
Weather 17.4 39.3 76.7 4.4 15.2

Table 4: The running time (s) of compared methods on each data
set. The boldface indicates the best result.

as high as the cost of DWMIL. Besides, LPN is generally the
third fastest but spends almost double time than DWMIL. It
also keeps all the classifiers trained on each chunk and the
prediction cost will be increasingly higher over time. CBCE
and DWM are the slowest because they are one-by-one learn-
ing methods. DWM is even slower than CBCE because it
updates an ensemble of classifiers for each incoming sample,
while CBCE only updates two binary classifiers.

5 Conclusion
From the practical viewpoint, concept drift and class im-
balance are two inevitable problems of learning from data
streams. The composition of these two phenomenons will
make learning from data stream very challenging. In this
paper, we have proposed DWMIL to solve the problem of
learning from imbalanced data stream with concept drift. It
creates a base classifier for each chunk and weigh them by
their performance tested on the current chunk. Thus, a clas-
sifier trained recently or on the similar concept as the current
chunk will receive high weight in the ensemble to help pre-
diction. Experiments on concept drift data sets have shown
that DWMIL performs better and more efficiently compared
with its counterparts.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2398

References
[Branco et al., 2016] Paula Branco, Luı́s Torgo, and Rita P

Ribeiro. A survey of predictive modeling on imbalanced
domains. ACM Computing Surveys (CSUR), 49(2):31,
2016.

[Breiman et al., 1984] Leo Breiman, Jerome Friedman,
Charles J Stone, and Richard A Olshen. Classification and
regression trees. CRC press, 1984.

[Chen and He, 2009] Sheng Chen and Haibo He. Sera: se-
lectively recursive approach towards nonstationary imbal-
anced stream data mining. In Proceedings of the 2009 In-
ternational Joint Conference on Neural Networks, pages
522–529. IEEE, 2009.

[Chen and He, 2011] Sheng Chen and Haibo He. Toward-
s incremental learning of nonstationary imbalanced data
stream: a multiple selectively recursive approach. Evolv-
ing Systems, 2(1):35–50, 2011.

[Ditzler and Polikar, 2013] Gregory Ditzler and Robi Po-
likar. Incremental learning of concept drift from streaming
imbalanced data. IEEE Transactions on Knowledge and
Data Engineering, 25(10):2283–2301, 2013.

[Ditzler et al., 2015] Gregory Ditzler, Manuel Roveri, Ce-
sare Alippi, and Robi Polikar. Learning in nonstationary
environments: A survey. IEEE Computational Intelligence
Magazine, 10(4):12–25, 2015.

[Elwell and Polikar, 2011] Ryan Elwell and Robi Polikar.
Incremental learning of concept drift in nonstationary en-
vironments. IEEE Transactions on Neural Networks,
22(10):1517–1531, 2011.

[Gao et al., 2007] Jing Gao, Wei Fan, Jiawei Han, and
Philip S. Yu. A general framework for mining concept-
drifting data streams with skewed distributions. In Pro-
ceedings of the 2007 SIAM International Conference on
Data Mining, pages 3–14. SIAM, 2007.

[He and Garcia, 2009] Haibo He and Edwardo A Garci-
a. Learning from imbalanced data. IEEE Transactions
on Knowledge and Data Engineering, 21(9):1263–1284,
2009.

[Hoens and Chawla, 2012] Thomas Ryan Hoens and
Nitesh V Chawla. Learning in non-stationary environ-
ments with class imbalance. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 168–176. ACM, 2012.

[Kolter and Maloof, 2007] J. Zico Kolter and Marcus A.
Maloof. Dynamic weighted majority: An ensemble
method for drifting concepts. Journal of Machine Learn-
ing Research, 8:2755–2790, 2007.

[Krawczyk et al., 2017] Bartosz Krawczyk, Leandro L
Minku, João Gama, Jerzy Stefanowski, and Michał
Woźniak. Ensemble learning for data stream analysis: A
survey. Information Fusion, 37:132–156, 2017.

[Mirza et al., 2015] Bilal Mirza, Zhiping Lin, and Nan Li-
u. Ensemble of subset online sequential extreme learning
machine for class imbalance and concept drift. Neurocom-
puting, 149:316–329, 2015.

[Street and Kim, 2001] W Nick Street and YongSeog Kim.
A streaming ensemble algorithm (sea) for large-scale clas-
sification. In Proceedings of the 7th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 377–382. ACM, 2001.

[Sun et al., 2016] Yu Sun, Ke Tang, Leandro L Minku, Shuo
Wang, and Xin Yao. Online ensemble learning of data
streams with gradually evolved classes. IEEE Transaction-
s on Knowledge and Data Engineering, 28(6):1532–1545,
2016.

[Wang et al., 2013a] Shuo Wang, Leandro L Minku, Davide
Ghezzi, Daniele Caltabiano, Peter Tino, and Xin Yao.
Concept drift detection for online class imbalance learn-
ing. In Proceedings of the 2013 International Joint Con-
ference on Neural Networks, pages 1–10. IEEE, 2013.

[Wang et al., 2013b] ShuoWang, Leandro LMinku, and Xin
Yao. Online class imbalance learning and its applications
in fault detection. International Journal of Computation-
al Intelligence and Applications, 12(04):1 340 001(1–19),
2013.

[Wang et al., 2015] Shuo Wang, Leandro L Minku, and Xin
Yao. Resampling-based ensemble methods for online class
imbalance learning. IEEE Transactions on Knowledge and
Data Engineering, 27(5):1356–1368, 2015.

[Wang et al., 2016] Shuo Wang, Leandro L Minku, and Xin
Yao. Dealing with multiple classes in online class imbal-
ance learning. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence, pages 2118–
2124. IJCAI/AAAI, 2016.

[Wu et al., 2014] Ke Wu, Andrea Edwards, Wei Fan, Jing
Gao, and Kun Zhang. Classifying imbalanced data stream-
s via dynamic feature group weighting with importance
sampling. In Proceedings of the 2014 SIAM International
Conference on Data Mining, pages 722–730. SIAM, 2014.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2399

