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Abstract
Data sets composed of a mixture of categorical and
numerical attributes (also called mixed data here-
inafter) are common in real-world cluster analy-
sis. However, insightful analysis of such data un-
der an unsupervised scenario using clustering is ex-
tremely challenging because the information pro-
vided by the two different types of attributes is
heterogeneous, being at different concept hierar-
chies. That is, the values of a categorical attribute
represent a set of different concepts (e.g., profes-
sor, lawyer, and doctor of the attribute “occupa-
tion”), while the values of a numerical attribute de-
scribe the tendencies toward two different concepts
(e.g., low and high of the attribute “income”). To
appropriately use such heterogeneous information
in clustering, this paper therefore proposes a nov-
el attribute representation learning method called
Het2Hom, which first converts the heterogeneous
attributes into a homogeneous form, and then learns
attribute representations and data partitions on such
a homogeneous basis. Het2Hom features low time
complexity and intuitive interpretability. Extensive
experiments show that Het2Hom outperforms the
state-of-the-art counterparts.

1 Introduction
Categorical values, which refer to the qualitative values with-
out explicit numerical meanings, are quite common in ma-
chine learning and data analysis tasks [Agresti, 2003]. Given
a data set, the attributes that describe the data samples using a
set of categorical values are called categorical attributes. It is
inevitable to process categorical-and-numerical attribute data
in cluster analysis, as clustering is one of the most commonly
used machine learning techniques for unsupervised data anal-
ysis. Unlike numerical attributes, categorical attribute values
are infeasible for arithmetic computation and do not have a
well-defined similarity space. It is therefore extremely chal-
lenging to appropriately use the information provided by cat-
egorical and numerical attributes in cluster analysis. To ad-
dress this issue, the existing efforts that have been paid can
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be roughly divided into two types: (i) represent categorical
attribute values into numerical values and treat the represent-
ed attributes as numerical ones for clustering, and (ii) direct-
ly define similarities for categorical attributes and then per-
form cluster analysis [Xu and Wunsch, 2005][Boriah et al.,
2008][dos Santos and Zárate, 2015].

For the representation-based methods, one-hot encoding
is the most common one, which encodes categorical val-
ues into boolean vectors. In recent years, more powerful
representation-based methods [Qian et al., 2015][Jian et al.,
2018b] have been proposed to encode categorical attributes
by extracting and embedding more valuable information in-
to the representations. Recently, a more advanced represen-
tation method [Zhu et al., 2022] further introduces multi-
ple kernel functions to learn the representations. Although
the above-mentioned recent progress has achieved consider-
able improvements in clustering performance, they are all de-
signed for pure categorical data only and have not considered
the common mixed data clustering problem.

For defining the similarities between categorical values, the
conventional Hamming distance simply assigns distances 0
and 1 to identical and different values. Some other measures
[Goodall, 1966][Lin, 1998][Cheung and Jia, 2013][Zhang et
al., 2020] define the similarities more finely based on the oc-
currence probabilities of possible values. To further consider
the interdependence of attributes, similarity measures [Ienco
et al., 2012][Jia et al., 2016][Jian et al., 2018a][Zhang and
Cheung, 2022] have been successively presented in the liter-
ature. The above-mentioned measures are usually combined
with k-prototype clustering algorithm [Huang, 1997][Kacem
et al., 2015], which is designed for mixed data clustering.
Most recently, a similarity learning method [Zhang and Che-
ung, 2021] has been proposed to make the similarities learn-
able in clustering.

Nevertheless, as far as we know, clustering performance
on mixed data is still far from satisfactory because none of the
existing methods can perform representation or similarity for-
mulation based on the establishment of a homogeneous con-
nection between the heterogeneous categorical and numerical
attributes. From the perspective of the concepts expressed by
the attributes, categorical attributes and numerical attributes
are in different concept hierarchies. For example, the values
of a numerical attribute describe the tendencies toward two
different concepts, e.g., {high, low} of attribute “income”,
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while each possible value of a categorical attribute stands for
a different concept, e.g., {professor, lawyer, doctor} of at-
tribute “occupation”, which can produce three pairs of differ-
ent concepts. Obviously, with the new insight that categorical
and numerical attributes are in different concept hierarchies,
existing methods still leave us a considerable space for infor-
mation mining.

In this paper, we propose a novel method called Het2Hom
to learn the representations of categorical attributes for mixed
data clustering. Het2Hom first projects all the values of an
attribute into the spaces spanned by different concept pairs of
this attribute, to obtain an informative homogeneous repre-
sentation of categorical and numerical attributes. According-
ly, a learning mechanism is elaborately designed so that the
learning of attribute representations and data objects partition
can adapt to each other more appropriately. Extensive exper-
iments show the efficacy of the proposed Het2Hom, and its
main advantages are three-fold:
• Het2Hom represents categorical attributes into the form

of numerical attributes while preserving the original re-
lationship information of the possible values, thus pro-
viding an appropriate basis for mixed data learning.
• A learning mechanism has been designed to make the at-

tribute representation and data objects partition adapt to
each other during clustering, thereby somewhat avoiding
sub-optimal solutions in the optimization.
• Het2Hom achieves superior clustering performance on

both categorical data and mixed data. Furthermore, its
representation learning process is efficient and the re-
sults are highly interpretable.

2 Related Work
Representation-based clustering approaches have two com-
mon procedures: (1) represent the data set based on a certain
strategy, (2) perform clustering by treating the represented
categorical attributes as numerical ones. The simplest one-
hot encoding is the most commonly used one, which encodes
each possible value of an attribute into a vector by setting
the bit corresponding to the possible value to 1 and the oth-
er bits to 0. Since it assigns an identical distance to any pair
of unequal values, it is incapable to distinguish the differen-
t dissimilarity degrees. Space structure-based representation
[Qian et al., 2015] has been proposed providing a solution
for capturing the value and attribute couplings of categori-
cal data. It encodes a target data object by concatenating the
distances from it to all the objects. Later, coupling-based rep-
resentations [Jian et al., 2017][Jian et al., 2018b] have also
been proposed to encode the couplings of categorical data.
Such methods further perform k-means [Ball and Hall, 1967]
clustering and PCA to obtain a more concise representation of
the couplings. Recently, a more advanced method [Zhu et al.,
2022] adopting different kernel functions has been proposed
to more comprehensively represent the couplings. Most re-
cently, the deep learning-based method [Zhu et al., 2020] has
also been proposed focusing on the dynamic representation
of streaming data with concept-drifts. In summary, none of
the above-mentioned approaches can appropriately handle the
heterogeneity of mixed data.

For the approaches that directly define the similarities, the
widely used Hamming distance uniformly assigns distance
1 to any pair of unequal values and assigns distance 0 to i-
dentical values, which has the same drawback as the one-hot
encoding. Therefore, probability-based similarity measures
[Goodall, 1966][Lin, 1998][Cheung and Jia, 2013][Zhang
and Cheung, 2018][Zhang et al., 2020] have been proposed to
more finely define similarities based on the occurrence prob-
abilities of possible values. All the above-mentioned mea-
sures treat each attribute independently and ignore the valu-
able information provided by the inter-attribute dependence.
Therefore, the measures [Ahmad and Dey, 2007][Le and Ho,
2005][Ienco et al., 2012] have been proposed to define simi-
larities according to conditional probability distributions ob-
tained from different attributes as given target possible values.
Since these measures rely on the sole of interdependence of
attributes, they will still fail when all the attributes are in-
dependent of each other. To solve this problem, the measures
[Jia et al., 2016][Jian et al., 2018a][Zhang and Cheung, 2022]
that simultaneously consider the intra- and inter-attribute sta-
tistical information have been proposed. For all the above-
mentioned measures, k-prototypes algorithm [Huang, 1997]
are usually used to perform clustering. Nevertheless, since
similarity measurement and clustering are performed inde-
pendently, the measured similarities cannot adapt well to the
clustering task. Accordingly, more advanced methods [Zhang
and Cheung, 2020][Zhang and Cheung, 2021] have been pro-
posed to interactively learn the similarities and data partition-
s. Although they achieve superior clustering performance,
they are designed for categorical data only.

3 Proposed Method
In this section, we first formulate the problem. Then, we
present the Het2Hom with a learning algorithm. Table 1 sorts
out the frequently used symbols in this paper. Specific defini-
tions of the symbols will also be given where they first appear
in the following text.

3.1 Problem Formulation
Given a data set S = {x1, x2, ..., xn} with n data objects,
each object xi = [x1i , x

2
i , ..., x

d
i ]
> is a d-dimensional vec-

tor taking values from the d attributes A = {a1, a2, ..., ad},
where a categorical attribute ar has vr possible values
{or1, or2, ..., orvr}. For convenience but without loss of gener-
ality, we assume that the former dc attributes inA are categor-
ical and the latter du are numerical. Clustering refers to the
task that assigns the n data objects in S to k proper clusters
C = {c1, c2, ..., ck}, which can be formalized as minimizing

z(Q,M,W ) =
n∑
i=1

k∑
l=1

qil · Φ(xi,ml), (1)

where Q is an n× k matrix indicating the object-cluster affil-
iations, and the (i, l)th entry qil of Q is defined as

qil =

{
1 , if l = arg min

y
Φ(xi,my)

0 , otherwise.
(2)
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Symbol Explanation

xi ith data object
xri rth value of xi
ar rth attribute
orh hth possible value of ar
vr Number of possible values of ar
wr Weight indicating the importance of ar
dc Number of categorical attributes
du Number of numerical attributes
d Number of attributes, d = dc + du

cl lth cluster
qil A value indicating the affiliation between xi and cl
ml A vector describing data objects of cl
γr Number of endogenous spaces corresponding to ar
Rrb bth endogenous space corresponding to ar
Rr Endogenous space set,Rr = {Rr1,Rr2, ...,Rrγr}
wrb Weight indicating the importance ofRrb
ery(l) Total error contributed byRry on cluster cl
Φ(·, ·) Data object-level dissimilarity
φ(·, ·) Value-level distance
κ(·, ·) Base distance

Table 1: Explanation of symbols.

As we focus on the crisp clustering problem, qil satisfies∑k
l=1 qil = 1 and qil ∈ {0, 1}. Φ(xi,my) is the dissimilarity

between data object xi and cluster cl described by a vector
ml = [m1

l ,m
2
l , ...,m

d
l ]
> from M = {m1,m2, ...,mk}. The

value of ml can be computed following the way of the con-
ventional k-prototypes clustering algorithm. That is, for the
numerical case (i.e. r > dc), the value of mr

l is the mean of
the values from ar in cl, while for the categorical case (i.e.
r ≤ dc), the value of mr

l is equal to the most frequent possi-
ble value from ar in cl. The dissimilarity can be written in a
general form as

Φ(xi,ml) =
d∑
r=1

φ(xri ,m
r
l ) · wr, (3)

where φ(xri ,m
r
l ) is the distance between xi and ml in terms

of their values on attribute ar, and each weight wr fromW =
{w1, w2, ..., wd} indicates the importance of ar in clustering.

3.2 Projection-based Representation
Het2Hom is proposed to represent the heterogeneous at-
tributes into homogeneous forms, thus providing a homoge-
neous basis for defining Φ(xi,ml) and φ(xri ,m

r
l ). As dis-

cussed in Section I, our goal is to project the values of a cat-
egorical attribute into the concept spaces in the hierarchy of
numerical attributes. We thus project all the values of a cat-
egorical attribute ar into the one-dimensional space spanned
by a pair of possible values org and orh. Such a space is called
endogenous space because it is endogenously generated by
the intra-attribute possible values.

As shown in Figure 1, since all the attribute values are pro-
jected into an endogenous space, a structural representation
of the distance space is thus obtained. Our goal is to obtain as
many possible representations of categorical attributes as pos-
sible, and make them learnable with the clustering task, there-
by achieving more flexible representations. For a categorical

Categorical

A! ribute

Projection by

Het2Hom

Endogenous

Space

Possible Values                  Projection Point

Projection Point

Computation

Normal Line

Figure 1: Diagram for projecting attribute values of ar onto one of
the endogenous spaces (i.e. Rr

b) spanned by org and orh.

attribute with vr possible values, there are γr = vr(vr−1)/2
endogenous spaces in total. Since each numerical attribute
has only one endogenous space, i.e., its original space, we
have γr = 1 when r > dc. All the endogenous spaces corre-
sponding to ar is denoted asRr = {Rr1,Rr2, ...,Rrγr}.

To perform the above-mentioned projection, locations of
all the attribute values in the original space should be known
in advance. The relative locations of attribute values are indi-
cated by their base distance

κ(org, o
r
h) =

dc∑
s=1

vs∑
u=1

|p(osu|org)− p(osu|orh)|, (4)

which is the total difference between Conditional Probability
Distributions (CPDs) obtained from ass as given org and orh.
Such a distance definition has been commonly adopted by
most metrics that consider the inter-dependence of attributes,
e.g., [Ienco et al., 2012] and [Jian et al., 2018a]. If the pro-
cessed data set contains both nominal and ordinal attributes,
the distance metric proposed in [Zhang and Cheung, 2021],
which is a generalized version of the distance in Eq. (4), can
be utilized instead. Based on κ(·, ·), relative location of the
projected value ort can be computed as

φ(ort , o
r
g;Rrb)=

|κ(ort , o
r
g)

2−κ(ort , o
r
h)2+κ(org, o

r
h)2|

2κ(org, o
r
h)

(5)

where φ(ort , o
r
g;Rrb) is the distance between org and the pro-

jection point of ort in the spaceRrb spanned by org and orh, and
such a formula in Eq. (5) is obtained by simply applying the
Pythagorean theorem as shown in the “Projection Point Com-
putation” part of Figure 1. After the projection, since all the
values are linearly arranged in Rrb , the distance between any
pair of possible values ort and orf is computed by

φ(ort , o
r
f ;Rrb) = |φ(ort , o

r
g;Rrb)− φ(orf , o

r
g;Rrb)| (6)

if the projection points of ort and orf are on the same side of
org inRrb . Otherwise, the distance is computed by

φ(ort , o
r
f ;Rrb) = φ(ort , o

r
g;Rrb) + φ(orf , o

r
g;Rrb). (7)

Such a projection-based attributes representation is com-
pared with the conventional methods in Figure 2. Our rep-
resentation provides a homogeneous basis for connecting nu-
merical and categorical attributes. After the representation,
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Figure 2: Comparison of the represented distance spaces.

φ(xri ,m
r
l ) ·wr in Eq. (3) can be replaced with the linear com-

bination of the distances between xri and mr
l represented by

different endogenous spaces derived from ar:

φ(xri ,m
r
l ) · wr =

γr∑
b=1

φ(xri ,m
r
l ;Rrb) · wrb (8)

where wrb is the importance of the endogenous spaceRrb .

3.3 Learning Algorithm
With Eq. (8), the objective function in Eq. (1) is rewritten as

z(Q,M,W) =
n∑
i=1

k∑
l=1

qil

d∑
r=1

γr∑
b=1

φ(xri ,m
r
l ;Rrb) · wrb (9)

where the original W is replaced by W =
{W 1,W 2, ...,W d}, and W r = {wr1, wr2, ..., wrγr} s-
tores the weights corresponding to the endogenous spaces in
Rr. Optimizing under such an objective function facilitates
the learning of both data object partition and space linear
combination (i.e. representation). We iteratively update the
partition Q, cluster descriptor M , and weightsW , which can
be summarized into three steps: (1) FixW and M , compute
Q; (2) FixW and Q, computeM ; (3) Repeat (1) and (2) until
convergence, fix Q and M , updateW . These three steps are
repeated until the value of z(Q,M,W) is minimized.

We follow the conventional ways for computing Q and M
as discussed in Section 3.1. The core difficulty is how to ap-
propriately updateW , because the updates of the weights in
W r are highly cross-coupled due to the common attribute
values shared by the spaces in Rr. More specifically, if
W is directly computed using Lagrangian multiplier method
or updated in a normal gradient-decent way in the above-
mentioned step (3), the update effect of different weights will
somehow offset each other in the next step (1), which can eas-
ily lead to a corrupt results, especially when the number of en-
dogenous spaces is large. Accordingly, a strategy is designed
to select one weight from each W r in step (3). Specifically,
wrb is selected out from W r by

b = arg min
y

∑k
l=1

∑γr

t=1 |εry(l)− εrt (l)|∑k
l=1 e

r
y(l)

(10)

where ery(l) is the total error contributed by endogenous space
Rry on cluster cl:

ery(l) =

n∑
i=1

qil · φ(xri ,m
r
l ;Rry). (11)

εry(l) and εrt (l) are computed through εry(l) =

ery(l)/
∑γr

j=1 e
r
j(l) and εrt (l) = ert (l)/

∑γr

j=1 e
r
j(l), re-

spectively, to ensure that the values of
∑γr

t=1 |εry(l) − εrt (l)|
on different clusters cl are comparable, because clusters may
have different numbers of data objects.
Remark 1. Given an attribute ar, the numerator of Eq. (10)
quantifies the overall difference between εry(l) yielded by Rry
and the rest εrt (l)s yielded by their corresponding Rrt s from
the perspective of error contribution to z(Q,M,W). There-
fore, a smaller numerator reflects that the space Rry is more
representative among all the γr endogenous spaces of ar, and
updating the corresponding weight wry is expected to yield a
more effective reduction on z(Q,M,W).
Remark 2. Given an attribute ar, the denominator of E-
q. (10) computes the total error contributed by Rry to
z(Q,M,W), which reflects the expected effectiveness of up-
dating wry in reducing z(Q,M,W). Therefore, wry corre-
sponding to a larger

∑k
l=1 e

r
y(l) is preferred for updating to

achieve a more effective reduction on z(Q,M,W).
All the selected weights are updated by a small step by:

w
r(new)
b = max(0, wrb − η ·

∂z(Q,M,W)

∂wrb
)

= max(0, wrb − η ·
k∑
l=1

erb(l)). (12)

where η is the learning rate.
Remark 3. To facilitate a stable learning process, the to-
tal weight is always fixed to 1 by

∑d
r=1

∑γr

b=1 w
r
b = 1. S-

ince numerical attributes are with well-defined distance s-
pace, the weight of each numerical attribute is fixed at 1/d.
Accordingly, the weights of the endogenous spaces derived
from the categorical attributes are uniformly initialized by
wrb = dc/(d

∑dc

r=1 γ
r), where

∑dc

r=1 γ
r is the total number

of the derived endogenous spaces of categorical attributes.
The whole Het2Hom learning algorithm is summarized in

Algorithm 1. The measure yielded by Het2Hom learning is
a metric, and the learning algorithm is computationally effi-
cient. The corresponding theoretical analysis has been pro-
vided in the Supplementary Material1.

4 Experiments
Experiments have been designed to evaluate the performance
of the proposed Het2Hom. Detailed experimental settings
and complementary experimental results are provided in the
Supplementary Material1.

4.1 Experimental Settings
Experimental settings are briefly introduced below.

4 + 2 Experiments have been conducted. The four core
experiments presented in this paper are (1) clustering perfor-
mance evaluation, (2) significance study, (3) ablation study,

1https://drive.google.com/file/d/
1SKNYxutdftgEfDK9CxzZLYkzYet4Jzf8/view?usp=sharing
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Algorithm 1 Het2Hom learning for mixed data clustering
Input: Dataset S, number of sought clusters k, learning rate
η, stop threshold β
Output: Partition Q, weightsW

1: Project all the values of categorical attributes according
to Eq. (4) and (5)

2: InitializeM by randomly selecting k objects from S, ini-
tialize Q by setting all its values to 0, initialize W ac-
cording to Remark 3, set θ → 0 and is conv = 0

3: while is conv = 0 do
4: FixW and M , compute Q(new)

5: if Q(new) 6= Q then
6: FixW and Q, compute M (new)

7: else
8: Fix Q and M , compute W(new) according to E-

q. (10)-(12)
9: if |z(Q,M,W)− θ|/θ < β then

10: Set is conv = 1
11: else
12: Set θ = z(Q,M,W)
13: end if
14: end if
15: end while

No. Data Set Abbrev. dc du n k∗

1 Soybean (Large) SB 35 0 266 15
2 Solar Flare SF 9 0 323 6
3 Zoo ZO 15 0 101 7
4 Congressional Voting VT 16 0 435 2
5 Tic-Tac-Toe TT 9 0 958 2
6 Mushroom MR 21 0 8124 2
7 Breast Cancer BC 5 4 286 2
8 Hayes-Roth HR 2 2 132 3
9 Lenses LS 2 2 24 3

10 Lymphography LG 15 3 148 4
11 Assistant Evaluation AE 2 2 72 3
12 Fruit Evaluation FT 2 3 100 5
13 Inflammations Diagnosis DS 5 1 120 2
14 Heart Failure HF 5 7 299 2
15 Autism-Adolescent AA 7 2 104 2
16 Amphibians AP 12 2 189 2
17 Mammographic MM 4 1 961 2

Table 2: Statistics of the 17 data sets. dc, du, and n are the numbers
of categorical attributes, numerical attributes, and objects, respec-
tively. k∗ is the true number of clusters and we set k = k∗ here.

and (4) visualization of cluster discrimination ability. The
two complementary experiments provided in the Supplemen-
tary Material1 are (i) evaluation of convergence and execution
time, and (ii) study of the parameter (i.e., η and β) effects.

9 Counterparts have been compared. One-Hot Encod-
ing (OHE) combined with k-means is chosen because it
is a common practical solution for mixed data clustering.
Six other counterparts proposed in recent years, including
Structure-Based Categorical data encoding (SBC) [Qian et
al., 2015], Jia’s Distance Metric (JDM) [Jia et al., 2016],
Coupled Metric Similarity (CMS) [Jian et al., 2018a], U-
nified Distance Metric (UDM) [Zhang and Cheung, 2022],

1 2 3 4 5 6 7 8

CD Interval (  = 0.05)

CD Interval (  = 0.1)
KMD/KPT
OHE
OCIL
SBC
JDM
CMS
UDM
HDM
Het2Hom

Figure 3: Results of the two-tailed BD tests w.r.t. the CA perfor-
mance of different clustering approaches shown in Table 3.

1 2 3 4 5 6 7 8

CD Interval (  = 0.05)

CD Interval (  = 0.1)
KMD/KPT
OHE
OCIL
SBC
JDM
CMS
UDM
HDM
Het2Hom

Figure 4: Results of the two-tailed BD tests w.r.t. the ARI perfor-
mance of different clustering approaches shown in Table 4.

and Homogeneous Distance Metric (HDM) [Zhang and Che-
ung, 2021] combined with k-modes (KMD) [Huang, 1998]
and k-prototypes (KPT) [Huang, 1997] according to the at-
tribute composition of data sets, and Object-Cluster Iterative
Learning (OCIL) [Cheung and Jia, 2013], have been selected,
where CMS, UDM and HDM are the state-of-the-arts. Two
conventional clustering algorithms, i.e., the original versions
of KMD and KPT, are also compared.

17 Real Data Sets have been utilized for the experiments,
and their statistics are shown in Table 2. All the data sets are
obtained from the UCI machine learning repository, except
FT from [Zhang and Cheung, 2022] and AE from [Zhang and
Cheung, 2021].

4 Validity Indices have been chosen, including Clustering
Accuracy (CA) [He et al., 2005], the more discriminative Ad-
justed Rand Index (ARI) [Gates and Ahn, 2017] (value range
[-1,1]), and the Normalized Mutual Information (NMI) [Es-
tévez et al., 2009]. For all these three indices, a larger val-
ue indicates better clustering performance. Bonferroni-Dunn
(BD) test with computed Critical Difference (CD) interval
[Demšar, 2006] is utilized for significance test. NMI results
are provided in the Supplementary Material1.

4.2 Clustering Performance Evaluation
Clustering performance evaluated by CA and ARI has been
reported in Table 3 and 4, respectively. Results of KMD for
categorical data and KPT for mixed data are combined into
the same column for compactness. The observations are: (1)
Het2Hom performs the best on almost all the data sets, which
indicates its superiority in clustering. (2) Although Het2Hom
does not significantly outperform the second-best approaches
on TT, AE, and AP data sets, the second-best one differs on
these data sets while Het2Hom always performs the best on
them. (3) On some data sets, e.g., VT and AA, Het2Hom
does not perform the best, but the gaps between Het2Hom and
the best-performing counterparts are always tiny (less than
0.01 for both CA and ARI) on these data sets, which still
demonstrates the competitiveness of Het2Hom.
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Data KMD/KPT OHE OCIL SBC JDM CMS UDM HDM Het2Hom

SB 0.486±0.03 0.529±0.02 0.538±0.04 0.535±0.03 0.529±0.04 0.513±0.03 0.528±0.03 0.531±0.04 0.546±0.03
SF 0.502±0.04 0.466±0.04 0.477±0.05 0.431±0.02 0.418±0.02 0.530±0.04 0.526±0.05 0.533±0.05 0.591±0.03
ZO 0.679±0.05 0.660±0.05 0.687±0.06 0.656±0.05 0.679±0.05 0.685±0.04 0.674±0.04 0.674±0.05 0.884±0.03
VT 0.862±0.01 0.792±0.05 0.876±0.00 0.788±0.02 0.869±0.00 0.867±0.00 0.869±0.00 0.869±0.00 0.874±0.00
TT 0.561±0.05 0.552±0.04 0.503±0.17 0.328±0.04 0.562±0.04 0.551±0.04 0.548±0.04 0.548±0.04 0.569±0.04
MR 0.811±0.09 0.706±0.14 0.844±0.18 0.511±0.12 0.724±0.22 0.736±0.11 0.731±0.12 0.695±0.12 0.872±0.09
BC 0.535±0.01 0.194±0.27 0.511±0.00 0.348±0.34 0.510±0.07 0.502±0.11 0.568±0.19 0.580±0.12 0.634±0.09
HR 0.370±0.02 0.424±0.14 0.358±0.03 0.346±0.01 0.383±0.03 0.382±0.02 0.404±0.03 0.405±0.03 0.466±0.03
LS 0.524±0.06 0.480±0.10 0.555±0.07 0.547±0.15 0.547±0.07 0.502±0.07 0.575±0.09 0.575±0.09 0.602±0.12
LG 0.592±0.14 0.299±0.37 0.582±0.13 0.315±0.28 0.638±0.03 0.619±0.08 0.600±0.10 0.587±0.14 0.696±0.01
AE 0.535±0.06 0.507±0.19 0.534±0.08 0.501±0.13 0.524±0.07 0.556±0.07 0.618±0.09 0.618±0.08 0.620±0.05
FT 0.468±0.04 0.550±0.04 0.504±0.04 0.536±0.03 0.461±0.05 0.528±0.05 0.550±0.04 0.556±0.04 0.597±0.05
DS 0.725±0.12 0.708±0.13 0.579±0.22 0.668±0.11 0.691±0.10 0.772±0.14 0.743±0.11 0.743±0.11 0.799±0.12
HF 0.614±0.06 0.543±0.03 0.409±0.23 0.524±0.02 0.548±0.03 0.628±0.06 0.600±0.06 0.600±0.06 0.644±0.00
AA 0.535±0.03 0.526±0.02 0.490±0.10 0.517±0.01 0.541±0.04 0.552±0.03 0.567±0.03 0.553±0.03 0.560±0.00
AP 0.533±0.02 0.542±0.01 0.531±0.14 0.546±0.00 0.549±0.02 0.533±0.03 0.555±0.01 0.553±0.01 0.565±0.01
MM 0.808±0.06 0.759±0.13 0.759±0.23 0.824±0.00 0.787±0.11 0.810±0.06 0.808±0.04 0.817±0.00 0.831±0.00

AR 5.53 6.76 6.00 7.24 5.53 4.82 4.03 3.97 1.12

Table 3: Clustering performance evaluated by CA. “AR” row reports the average performance ranks.

Data KMD/KPT OHE OCIL SBC JDM CMS UDM HDM Het2Hom

SB 0.315±0.03 0.407±0.03 0.403±0.04 0.388±0.02 0.393±0.03 0.345±0.03 0.379±0.03 0.381±0.03 0.416±0.03
SF 0.260±0.05 0.225±0.05 0.234±0.06 0.167±0.03 0.144±0.02 0.331±0.06 0.333±0.07 0.335±0.06 0.433±0.04
ZO 0.619±0.05 0.594±0.05 0.644±0.05 0.586±0.05 0.639±0.04 0.637±0.04 0.622±0.04 0.622±0.04 0.935±0.03
VT 0.523±0.02 0.520±0.11 0.565±0.01 0.508±0.06 0.545±0.00 0.539±0.01 0.545±0.01 0.543±0.01 0.557±0.00
TT 0.023±0.04 0.011±0.02 0.015±0.02 0.018±0.02 0.022±0.03 0.015±0.02 0.015±0.02 0.015±0.03 0.023±0.02
MR 0.421±0.19 0.242±0.23 0.564±0.16 0.345±0.24 0.307±0.10 0.491±0.21 0.508±0.22 0.480±0.23 0.585±0.15
BC -0.002±0.00 0.006±0.02 -0.003±0.00 0.060±0.07 -0.001±0.00 0.001±0.01 0.062±0.06 0.047±0.06 0.085±0.09
HR -0.010±0.00 0.062±0.03 -0.011±0.01 -0.014±0.00 -0.005±0.01 -0.005±0.01 0.007±0.02 0.008±0.02 0.059±0.02
LS 0.069±0.08 0.053±0.12 0.119±0.11 0.143±0.15 0.117±0.10 0.054±0.09 0.239±0.13 0.239±0.13 0.277±0.19
LG 0.070±0.08 0.094±0.12 0.051±0.06 0.005±0.00 0.074±0.03 0.073±0.07 0.051±0.05 0.057±0.07 0.149±0.01
AE 0.125±0.06 0.140±0.06 0.123±0.09 0.115±0.12 0.104±0.06 0.173±0.07 0.268±0.10 0.270±0.09 0.281±0.04
FT 0.202±0.05 0.334±0.03 0.255±0.05 0.282±0.02 0.188±0.05 0.259±0.04 0.296±0.04 0.297±0.03 0.366±0.05
DS 0.255±0.24 0.230±0.28 0.105±0.14 0.153±0.17 0.178±0.17 0.365±0.30 0.277±0.22 0.277±0.22 0.405±0.25
HF 0.060±0.06 0.001±0.01 0.001±0.01 -0.003±0.00 0.002±0.01 0.072±0.06 0.044±0.05 0.044±0.05 0.078±0.00
AA -0.003±0.01 -0.006±0.01 -0.009±0.00 -0.011±0.00 -0.003±0.01 0.003±0.01 0.009±0.02 0.001±0.01 0.000±0.01
AP -0.001±0.01 -0.005±0.00 0.002±0.00 -0.002±0.00 -0.001±0.01 -0.002±0.01 -0.002±0.01 -0.001±0.01 0.000±0.01
MM 0.394±0.08 0.335±0.18 0.389±0.12 0.419±0.00 0.380±0.15 0.397±0.08 0.387±0.06 0.401±0.00 0.438±0.00

AR 5.88 6.18 5.71 6.82 5.76 4.76 4.35 4.18 1.35

Table 4: Clustering performance evaluated by ARI (with range [-1,1]). “AR” row reports the average performance ranks.

4.3 Significance Study
Results of the two-tailed BD test [Demšar, 2006] at confi-
dence intervals 0.95 (α = 0.05) and 0.9 (α = 0.1) are shown
in Figure 3 and 4. According to [Demšar, 2006], performance
of Het2Hom is considered to be significantly better than that
of all the counterparts outside the right bound of CD inter-
vals. It can be observed from Figure 3 and 4 that Het2Hom
performs significantly better than all nine counterparts.

4.4 Ablation Study
To explicitly illustrate the effectiveness of the core compo-
nents of Het2Hom, several variants of Het2Hom are formed
for comparison. The version of Het2Hom that only conduct-
s the Projection-Based Representation (PBR) without repre-
sentation learning is formed. The version further removes
the PBR module and only adopts the Difference of CPDs (D-
CPDs) defined by Eq. (4) for clustering is also compared.

Performance of the original KMD/KPT is also reported for
completeness. It can be observed from the last sub-figure in
Figure 5 that the average performance ranks of KMD/KPT,
DCPDs, PBR, and Het2Hom are around 4, 3, 2, and 1, re-
spectively, which intuitively verifies the effectiveness of the
core components of Het2Hom. More specifically, the superi-
ority of Het2Hom over PBR indicates the correctness of the
learning strategy proposed in Section 3.3. PBR outperform-
s DCPDs, which proves the effectiveness of the projection
mechanism presented in Section 3.2. DCPDs performs better
than KMD/KPT, which indicates the reasonableness of adopt-
ing the distance defined by Eq. (4) as the base distance for
conducting the PBR.

4.5 Visualization
In Figure. 6, t-SNE [Maaten and Hinton, 2008] is utilized to
demonstrate the cluster discrimination ability of Het2Hom.
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Figure 5: Clustering performance of KMD/KPT, DCPDs, PBR, and
Het2Hom (denoted by A, B, C, and D, respectively) on all the 17
data sets. The last sub-figure summarizes the performance ranking
of the compared approaches.

We first encode the attributes of the MR data set using OHE,
PBR, and Het2Hom. Then the encoded data set is processed
by t-SNE into two-dimensional, and visualized by marking
the true labels of objects in different colors. It can be ob-
served that the cluster discrimination ability of Het2Hom is
obviously stronger than that of PBR and OHE.

5 Conclusion
In this paper, we have proposed Het2Hom, which is com-
posed of a projection-based representation mechanism and a
representation learning module, for mixed data clustering. It
projects values of categorical attributes onto all the possible
endogenous spaces to produce informative representations.
Since these elaborately obtained representations are homo-
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Figure 6: t-SNE visualization of the MR data sets represented by
OHE, PBR, and Het2Hom.

geneous with the numerical attributes, attribute representa-
tions and the partition of data objects can thus be learned
to more appropriately adapt to each other. It turns out that
Het2Hom exploits the information more sufficiently based on
the established connection between categorical and numeri-
cal attributes, and thus achieves a more accurate clustering.
Moreover, the intuitive but novel geometry-based projection
makes the represented data highly interpretable. Extensive
experiments have shown the efficacy of Het2Hom.
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Luis E Zárate. Categorical data clustering: What similarity
measure to recommend? Expert Systems with Application-
s, 42(3):1247–1260, 2015.
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