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Abstract. Our recent paper (Huang et al. 2002) has presented a divide-
and-conquer based radial basis function network (DCRBF) that is a
hybrid system consisting of several sub-RBF networks, each of which
individually takes a sub-input space as its input. Since this system re-
duces the structural complexity of a RBF network by mapping a high-
dimensional modelling problem into several low-dimensional ones, the
net’s learning speed is considerably improved as a whole with the mod-
erately enhanced generalization capability. However, the performance of
DCRBF generally varies with the different input decompositions. More-
over, a DCRBF can be regarded as the decomposing implementation of a
conventional RBF. Under the circumstances, the total number of hidden
units is a constant. Hence, how to distribute the number of hidden units
in each sub-RBF network becomes an important issue in optimizing the
DCRBF performance. In this paper, we further explore the decomposi-
tion rules on both of inputs and the hidden-unit number. Consequently,
an optimal decomposition is presented in a sense of learning speed with
the experimental justifications.

1 Introduction

Due to simple architecture and learning, radial basis function (RBF) networks
have been intensively studied with a lot of applications, e.g., in data mining [5],
pattern recognition [7], and time series forecasting [2, 6]. In general, the struc-
tural complexity of a RBF network depends on the number of the hidden units
which is further related to the input dimension. Often, the unit number increases
along with the increase of the net’s input dimension. Hence, effective dimension
reduction of the net’s input space can considerably reduce the network struc-
tural complexity, whereby the network’s learning becomes faster with the com-
parable generalization capability. In the literature, either principal component
analysis (PCA) or independent component analysis (ICA) provides a way for
input dimension reduction. However, they also meet new difficulties. On the one



hand, the PCA technique uses second-order statistics information only, resulting
in the principal components de-correlated but not really independent. That is,
some useful information in the non-principal components may be discarded as
well during the dimension reduction process. Consequently, the performance of
the RBF network may become worse after PCA preprocess [3]. On the other
hand, ICA makes the extracted components as independent as possible, but it
generally does not assign a specific principle order to the components. To our
best knowledge, selecting first several principle independent components is still
an open problem.

Alternatively, our recent paper [4] presents a new divide-and-conquer based
radial basis function network (DCRBF) that is a hybrid system consisting of sev-
eral sub-RBF networks, each of which individually takes a sub-input space as its
input. The output of DCRBF is a linear combination of the sub-networks’ out-
puts with the linear coefficients learned together with each sub-network system
parameters. Since DCRBF reduces the structural complexity of a RBF network
by mapping a high-dimensional modelling problem into several low-dimensional
ones, the net’s learning speed has been considerably improved as a whole with
the moderately enhanced generalization capability as shown in [4]. Actually, the
DCRBF is a natural extension of our recently proposed dual structural RBF [1]
that models a recursive function by using two sub-RBF networks.

However, the DCRBF modelling may naturally arise three questions:

1. How many sub-spaces should the input space be decomposed into?
2. Suppose the input space is decomposed into q sub-spaces. There are still

q! decomposition combinations. Which one should be chosen?
3. A DCRBF can be regarded as the decomposing implementation of a con-

ventional RBF. Under the circumstances, the total number of hidden units
is a constant. Then, how to distribute the number of hidden units in each
sub-RBF network such that the DCRBF performance is optimized in a
certain sense?

In this paper, we will concentrate on investigating the latter two problems only.
Under a specific q sub-spaces, we have theoretically given out an optimal decom-
position in a sense of learning speed, and further justified it by the experimental
results.

2 Overview of DCRBF Network

As shown in Figure 1, the input separator of a DCRBF network decomposes
the input space V of a RBF network into the direct sum of q sub-input spaces,
written as Vr, r = 1, 2, . . . , q, respectively such that

V1 ⊕V2 ⊕ . . .⊕Vq = V (1)

where ⊕ means for any v ∈ V, there exists a unique vi ∈ Vi such that
v = [vT

1 ,vT
2 , . . . ,vT

q ]T . The DCRBF consists of q sub-RBF network, denoted



as RBFr, r = 1, 2, . . . , q, respectively. Each RBFr models the relationship be-
tween the current output and the input xt(r) ∈ Vr with

xt(r) = [x(i1)
t , x

(i2)
t , . . . , x

(idr )
t ] ∈ Vr (2)

where {i1, i2, . . . , idr
} ⊂ {1, 2, . . . , d}, dr and d are the dimensions of Vr and V

respectively with
∑q

r=1 dr = d. Further, ŷt is the actual output of the DCRBF
network with

ŷt =
q∑

r=1

crzt(r), (3)

where zt(r) is the RBFr’s output, and cr is a coefficient of linear combination.
At each time step t, given the desired output yt, we calculate the output residual

êt = yt − ŷt. (4)

Consequently, we can learn the combination coefficients crs in Eq.(3) as well as
the parameters of each RBFr’s by minimizing the cost function

J(Θ) =
1
N

N∑
t=1

(yt − ŷt)T (yt − ŷt) (5)

where N is the number of inputs, Θ = C
⋃

Θ1

⋃
Θ2

⋃
. . .

⋃
Θq with C =

{c1, c2, . . . , cq}, and Θr being the parameters of the RBFr. In implementation,
at each step time t, we adaptively tune Θ with a little small step along the
descent direction of minimizing (yt − ŷt)T (yt − ŷt). That is, we adjust Θ by

cnew
r = cold

r + ηêT
t zt(r), r = 1, 2, . . . , q (6)

Θnew
r = Θold

r − η
∂J(Θ)
∂Θr

|Θold
r

, (7)

where η is the learning rate.
The detailed steps of Eq. (7) depend on the explicit implementation of each

RBFr, r = 1, 2, . . . , q. In our recent paper [4], we have presented an algorithm by
using an Extended Normalized RBF (ENRBF) network to model each sub-RBF
network. Please refer to the paper [4] for more details.

3 The Decomposition Rule for DCRBF

From Section 2, it can be seen that the performance of DCRBF varies with
the different input decompositions. Supposing a DCRBF consists of q sub-RBF
networks, we can determine an appropriate decomposition by the two separate
steps as follows:

Step 1. Give an appropriate order of those d input variables in V;
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Fig. 1. The DCRBF network model.

Step 2. Separate these ordered d input variables into q groups, each of which
spans an sub-input space accordingly.

In Step 1, we use PCA ordering, i.e., the inputs x(1), x(2), . . . , x(d) in V is trans-
formed into x(i1), x(i2), . . . , x(id), where i1, i2, . . . , id is the PCA order. In Step
2, we uniformly decompose the ordered input variables into q groups. That is,
the dimension of each sub-input space should be as equal as possible. In the
following, we will present a theorem to show that such a uniform input separa-
tion leads to an optimal decomposition in a sense of training time cost under a
specific input order. Moreover, when the total number of hidden units is fixed,
the theorem tells us that the number of hidden units in each sub-RBF network
should be uniformly distributed as well. Before presenting the theorem, we first
give out some definitions:

Definition 1. Let di, i = 1, 2, . . . , q be positive integers. A q-tuple (d1, d2, . . . , dq)
is called qdecomposition of d if d1 + d2 + · · ·+ dq = d.

Definition 2. The total number k of hidden units in DCRBF is defined as the
module of DCRBF, written as ‖DCRBF‖ = k, where k is the sum of those
hidden radial function units in each sub-RBF network.

Definition 3. A product among the parameters and constants in the DCRBF
is called a basic computation term(BCT).



Definition 4. If a qdecomposition makes the training time cost of a DCRBF min-
imized, it is called time optimal decomposition(TOD).

The theorem is then given as follows:

Theorem 1.
1. Let the dimension of input space V of RBF be d and (d1, d2, . . . , dq) be

a qdecomposition of d. The RBF is therefore decomposed into the DCRBF
consisting of q sub-networks with input dimension d1, d2, . . . , dq respectively.

2. ‖DCRBF‖ = k. Let (k1, k2, . . . , kq) be a qdecomposition of k, where kr is the
number of hidden units in sub-network RBFr;

3. The time cost of each BCT in the DCRBF to be equal.
The qdecomposition of (d1, d2, . . . , dq) and (k1, k2, . . . , kq) is TOD if and only

if

d1 = d2 = · · · = dq =
d

q
(8)

k1 = k2 = · · · = kq =
k

q
. (9)

To prove Theorem 1, we first give out the lemma as follows:

Lemma 1. Given the object function

f(x1, x2, · · · , xn, y1, y2, · · · , yn) =
n∑

i=1

xiy
2
i (10)

with the constraints:
n∑

i=1

xi = Q,

n∑

i=1

yi = K, xi > 0, yi > 0, i = 1, 2, . . . , n, (11)

the necessary and sufficient condition for a minimum point of f(x1, x2, · · · , xn)
is

x1 = x2 = · · · = xn =
Q

n
, (12)

y1 = y2 = · · · = yn =
K

n
. (13)

Proof. We construct the Lagrange function as follows:

L(x1, x2, · · · , xn, y1, y2, · · · , yn, λ1, λ2) =
∑n

i=1 xiy
2
i + λ1(Q−∑n

i=1 xi)
+λ2(K −∑n

i=1 yi).
(14)

We let the partial derivatives of L with respect to xi, yi, λ1, λ2, i = 1, 2, . . . , n be
zero, i.e.,

∂L

∂xi
= y2

i − λ1 = 0, (15)



∂L

∂yi
= 2xiyi − λ2 = 0, (16)

∂L

∂λ1
= (Q−

n∑

i=1

xi) = 0, (17)

∂L

∂λ2
= (K −

n∑

i=1

yi) = 0. (18)

From Eq.(15) and Eq.(16),we have

x1 = x2 = · · · = xn, (19)

y1 = y2 = · · · = yn. (20)

Substitute Eq. (19)(20) into Eq. (17)(18), Lemma 1 is therefore proved.
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Now we present the proof of Theorem 1 as follows.

Proof. Let (d1, d2, . . . , dq) be a qdecomposition of d, T be the training time of
DCRBF and Tr, r = 1, 2, . . . , q be the training time of RBFr, r = 1, 2, . . . , q
respectively. We have

T =
q∑

r=1

Tr. (21)

Since Tr depends on the number of BCT only in the learning process, we therefore
just need to consider the BCT in the following terms:

[x(r)−mj(r)]T Σ−1
j [x(r)−mj(r)], (22)

where j = 1, 2, . . . , dr, r = 1, 2, . . . , q, and x(r) ∈ Vr is a vector. It can be seen
that the number of BCT in (22) is d2

r. Without loss of generality, we suppose
the computing time cost of each BCT is 1 time unit. Hence, Tr is a function of
dr and kr, which can be further expressed as

Tr(dr, kr) = krd
2
r. (23)

Putting Eq. (23) into Eq. (21), we then have

T (d1, d2, · · · , dq, k1, k2, · · · , kq) =
q∑

r=1

krd
2
r. (24)



That is, we try to optimize the following constraint problem:

minimize T (d1, d2, · · · , dq, k1, k2, · · · , kq) =
∑q

r=1 krd
2
r, (25)

subject to
∑q

r=1 dr = d,
∑q

r=1 kr = k, dr > 0, kr > 0. (26)

It can be seen that the solution of this problem is actually a special case of
Lemma 1 when xi and yi with i = 1, 2, . . . , n both take integer values. Hence,
Theorem 1 is held.
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4 Experimental Simulations

4.1 Experiment 1 and 2

To justify the above theorem, we showed two experiments to compare the train
time cost of DCRBF with the different decompositions. The experimental en-
vironment is given in Table 1. In Experiment 1, we used 8, 100 data points
generated from the nonlinear function:

yt = x
(1)
t cos(x(2)

t ) + x
(3)
t sin(x(4)

t )− 0.4(x(5)
t )2

+0.5xt(6)x(7)
t + 0.2(x(8)

t )2x(9)
t + εt

where xt = [x(1)
t , x

(2)
t , x

(3)
t , x

(4)
t , x

(5)
t , x

(6)
t , x

(7)
t , x

(8)
t , x

(9)
t ] is the input of RBF, yt

is the desired output of RBF and εt is zero-mean Gaussian white noise with the
variance being 0.001. We let ‖DCRBF‖ = 9 and decomposed the input space
of the RBF into the direct sum of three sub-input spaces. The decomposition of
input space and experimental results are shown in Table 2. It can be seen that
the learning speed of uniform decomposition is the fastest in all cases we have
tried so far.

Table 1. The experimental environment

CPU Pen.III 650MHZ
Memory 256M

Operating System Windows 2000
Running software Matlab 5.3

In Experiment 2, we performed an experiment on the benchmark data ac-
quired from the famous Rob Hyndman’s Time Series Data Library. We used the
FOREX daily foreign exchange rates of Australia to USA from December 31,
1979 to December 31, 1998 with the 4, 774 data points. In the experiment, we let



Table 2. The training time cost of DCRBF with the different input decompositions

3 decomposition of d 3 decomposition of k
Pq

r=1 krd
2
r mean training time

(3,3,3) (3,3,3) 81 11.1723
(3,3,3) (2,2,5) 81 11.2679
(2,2,5) (3,3,3) 99 11.6658
(2,3,4) (2,2,5) 106 11.7269
(2,2,5) (2,2,5) 141 12.0171

the input of RBF be xt = [xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8, xt−9]T ,
and yt = xt be the output. Similar to Experiment 1, we also let ‖DCRBF‖ = 9,
and decomposed the input space of RBF into three sub-input spaces. Table 3
shows the results under the different decompositions. Again, the DCRBF with
the uniform decomposition needs the least training time cost.

Table 3. The training time cost of DCRBF with different decompositions

3 decomposition of d 3 decomposition of k
Pq

r=1 krd
2
r mean training time

(3,3,3) (3,3,3) 81 15.4161
(3,3,3) (2,2,5) 81 15.4914
(2,2,5) (3,3,3) 99 15.7441
(2,3,4) (2,2,5) 106 15.9068
(2,2,5) (2,2,5) 141 16.2129

4.2 Experiment 3

In the above experiments, we have investigated the uniform decomposition on
the learning speed of DCRBF without considering the net’s generalization ca-
pability. In the following, we will further demonstrated the generalization ca-
pability of DCRBF when uniform decomposition and PCA input-variable or-
dering are used. We set xt = [x(1)

t , x
(2)
t , . . . , x

(11)
t ] to be the input of DCRBF,

where x
(2)
t , x

(4)
t , x

(6)
t , x

(7)
t , x

(8)
t , x

(9)
t were uniform, x

(1)
t , x

(3)
t , x

(11)
t were Gaussian

and x
(5)
t , x

(10)
t were two Gaussian mixture. The desired outputs of the network

were given by:

yt = x
(1)
t cosx

(2)
t + x

(3)
t sinx

(4)
t cosx

(10)
t − (x(5)

t )2 sin x
(12)
t + 0.5x

(6)
t x

(7)
t

+0.2(x(8)
t )2x(9)

t sin x
(11)
t + et

where et is white noise.
We generated 1, 100 data points. The first 1, 000 were the training data,

and the remaining 100 data were the testing data. In the experiment, the PCA



order of input is x(11), x(10), x(9), x(8), x(7), x(6), x(3), x(1), x(2), x(4), x(5). We de-
composed the inputs into two parts: x(1) = x(11), x(10), x(9), x(8), x(7), x(6) and
x(2) = x(3), x(1), x(2), x(4), x(5). Further, we fixed the learning rate be 0.001 and
measured the net’s performance under the criterion of mean-square error (MSE).
During the net’s learn process, the MSE curve on the testing set is shown in Fig-
ure 2. After scanning training set data 200 times, a snapshot of the MSE value
on the testing set is 0.32 as shown in the Trial 1 of Table 4. In contrast, we also
investigated another input uniform decomposition in Trial 2 without considering
PCA ordering. Table 4 shows that the performance of DCRBF deteriorates a
little bit in comparison with Trial 1. Further, in Trial 3 and Trial 4, we tested
two other different input decompositions without uniform decomposition and
PCA ordering. It can be seen that the performance of DCRBF has been fur-
ther moderately deteriorated, but they were better than the DCRBF without
input decomposition (i.e., a DCRBF has degenerated to a conventional RBF)
as shown in Trial 5 of Table 4. Actually, Figure 2 has shown that the DCRBF
involving uniform decomposition and PCA ordering learns much faster than the
conventional RBF with a moderately improved generalization capability.

Table 4. The MSE of DCRBF with different decompositions on testing set

Trials input space k MSE

1 (x3,x1,x2,x4,x5)
L

(x11,x10,x9,x8,x7,x6) (5,6) 0.3200
2 (x3, x4, x5, x10, x11)

L
(x1, x2, x6, x7, x8, x9) (5,6) 0.3235

3 (x1, x2, x11)
L

(x3, x4, x5, x6, x7, x8, x9, x10) (3,8) 0.3451
4 (x4, x5)

L
(x1, x2, x3, x6, x7, x8, x9, x10, x11) (2,9) 0.3534

5 (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) 11 0.4322

5 Conclusion

We have further studied the decompositions in the DCRBF network. Not only
is a PCA input-variable ordering suggested, but also a uniform decomposition
is presented on both of inputs and the hidden-unit number, which is optimal
in a sense of learning speed. The experiments have shown that the DCRBF
involving PCA ordering and uniform decomposition learns much faster than the
other decomposition as well as the conventional RBF one with the generalization
capability moderately improved.
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Fig. 2. The MSE curve of DCRBF and a conventional RBF on the testing set in
Experiment 3, where the solid line is from the DCRBF, and the dashed line is from
the conventional one.
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