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ABSTRACT
This paper presents a new semi-competitive learning
paradigm namedCompetitive and Cooperative Learning
(CCL), in which seed points not only compete each other
for updating to adapt to an input each time, but also dynam-
ically cooperate to achieve the learning task. This compet-
itive and cooperative mechanism can automatically merge
those extra seed points, meanwhile making the seed points
gradually converge to the corresponding cluster centers.
Consequently, CCL can perform a robust clustering analy-
sis without prior knowing the exact cluster number so long
as the number of seed points is not less than the true one.
The experiments have successfully shown its outstanding
performance on data clustering.
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1 Introduction

As an efficient tool of clustering analysis, competitive
learning has been applied to a wide variety of research
problems, such as data compression [1], signal processing
[2], neural networks [3, 4], and so forth. In the literature,
k-means [5] is a typical competitive-learning based clus-
tering algorithm, in whichk pre-assigned seed points (also
calledunits interchangeably) compete each other, and only
the winner is updated to adapt to an input each time. Apart
from a number of successful examples, some experiments
have also found that the k-means has two major drawbacks
as pointed out in [6]:

1. There is thedead-unitproblem. That is, if some units
are initialized far away from the input data set in com-
parison with the other units, they then immediately be-
come the dead unit without any winning chance in the
forthcoming competitive learning process;

2. It needs to pre-determine the cluster number. Whenk
equals to the true cluster numberk∗, the k-means algo-
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rithm can correctly find out the cluster centers. Other-
wise, some of seed points will not locate at the centers
of the corresponding clusters. Instead, they are either
at some boundary points among different clusters or
at points biased from some cluster centers. Conse-
quently, it will lead to an incorrect clustering result.

To circumvent the first problem, an extension of k-means
named Frequency Sensitive Competitive Learning (FSCL)
algorithm [7] was proposed, in which the winning chance
of a seed point is penalized along with the increase of past
winning frequency, and vice versa. Although FSCL can al-
most always successfully assign one or more seed points to
each cluster without dead-unit problem, it meets the same
second problem as the k-means.

In the past decade, some competitive learning algo-
rithms have been proposed to perform clustering without
knowing the exact cluster number. For example, one vari-
ant of k-means namedincremental clusteringis to grad-
ually increase the numberk of clusters under the control
of a threshold value, which is unfortunately hard to be de-
cided as well. Another example is Probabilistic Validation
(PV) approach [8] that performs clustering analysis by pro-
jecting the high-dimension inputs into one dimension via
maximizing the projection indices. It has been shown that
the PV can find out the correct number of clusters with a
high probability. However, this algorithm is essentially ap-
plicable to a small number of clusters only, and requests
the clusters to be well-separated with the overlaps ignor-
able. Otherwise, its two-level clustering validation proce-
dure will be quite tedious, and the probability of finding
the correct number of clusters decreases. In the literature,
another algorithm developed from FSCL is Rival Penalized
Competitive Learning (RPCL) [9] that for each input, not
only the winner of the seed points is updated to adapt to the
input, but also its rival is de-learned by a smaller constant
learning rate (also calledde-learning ratehereafter). Em-
pirical studies have shown that RPCL can indeed select the
correct cluster number automatically by driving extra seed
points far away from the input data set. However, some ex-
periments have also found that its performance is sensitive
to the selection of the de-learning rate. If the rate is selected
too small, there is no enough penalizing forces to drive ex-
tra seed points away from the input data set. Conversely, if
the rate is too large, the desired seed points will be forced



to drift far away from the input set as well as the extra
ones. To circumvent this difficulty, we have therefore pro-
posed Rival Penalization Controlled Competitive Learning
(RPCCL) algorithm [10] that dynamically adjusts the rival-
penalized strength based on the distance between the win-
ner and the rival relative to the current input. Compared to
the RPCL, this algorithm always fixes the de-learning rate
at the same value as the learning rate without requesting
further selection. However, as well as RPCL, RPCCL often
drives those extra seed points far away from the input data
set without convergence, although the desired seed points
will stably locate at the corresponding cluster centers.

In this paper, we will present a new semi-competitive
learning paradigm namedCompetitive and Cooperative
Learning (CCL), in which seed points not only compete
each other for updating to adapt to an input each time,
but also the winner will dynamically select several near-
est competitors to form a cooperative team to adapt to the
input together. As a whole, the seed points locating in the
same cluster will have more opportunity to cooperate each
other than competition to achieve the learning task, and
vice versa. Subsequently, it can lead to those seed points
automatically merge and gradually converge to the corre-
sponding cluster centers with uniformly sharing the same
winning probability. That is, CCL can perform a robust
clustering analysis without prior knowing the exact cluster
number so long as the number of seed points is not less than
the true one. The simulation results have demonstrated the
outstanding performance of CCL on data clustering.

2 Overview of k-means and FSCL Algo-
rithms

2.1 k-means Algorithm

Suppose there arek seed points in the input space, denoted
asw1, w2, . . ., wk, respectively. Thek-means [5] aims to
partition N inputs: x1, x2, . . ., xN , into k∗ true clusters
by repeatedly adjusting thosewjs such that the following
distortion error:

E(X,W) =
1
N

N∑

i=1

k∑

j=1

‖xi −wj‖2 (1)

is minimized, whereX = {xi}N
i=1, and W =

{w1,w2, . . . ,wk}. An adaptive version of k-means learns
k seed points by the following steps:

Step 1. Pre-specify the numberk of clusters, and ini-
tialize the seed points{wj}k

j=1.

Step 2. Given an inputxi, calculate the indicator func-
tion I(j|xi) by

I(j|xt) =
{

1, if j = arg min1≤r≤k ‖xi −wr‖2
0, otherwise.

(2)

Step 3. Update the winning seed pointwc, i.e.,
I(c|xi) = 1, by

wnew
c = wold

c + η(xi −wold
c ), (3)

meanwhile other seed points are unchanged,
whereη is a small positive learning rate.

The aboveStep 2andStep 3are iterated for each input un-
til all seed points converge. As shown in Eq.(2), k-means
determines the winner amongk seed points exclusively
based on the Euclidean distance between the current input
and each seed point. Under the circumstances, if a seed
point is initialized far away a little from the input date set
compared to the other seed points, this point will then be
isolated, and become a so-calleddeadunit because it has
no winning chance in the forthcoming competitive learning
process.

2.2 Frequency Sensitive Competitive Learn-
ing (FSCL)

To deal with thedead unitproblem in the k-means, Ahalt
et al. [7] proposed a frequency sensitive competitive learn-
ing approach, in which, apart from considering the distance
of wis to the input, an implicit penalty is also given to
those seed points that have high relative winning frequency
in the past competitions. Subsequently, given an inputxi

each time, instead of Eq.(2), FSCL determines the winner
amongk seed points by

I(j|xt) =
{

1, if j = arg min1≤r≤k γr‖xi −wr‖2
0, otherwise

(4)
with the relative winning frequencyγr of wr defined as

γr =
nr∑k

j=1 nj

, (5)

wherenr is the winning times ofwr in the past. After se-
lecting out the winner, FSCL then updates the winner only
by Eq.(3) in the same way as k-means, and meanwhile ad-
justing the correspondingnc with

nnew
c = nold

c + 1. (6)

The FSCL algorithm can be summarized as follows:

Step 1. Pre-specify the numberk of clusters, initialize
the seed points{wj}k

j=1, and setnj = 1 with
j = 1, 2, . . . , k.

Step 2. Given an inputxi, calculateI(j|xi) by Eq.(4);

Step 3. Update the winning seed pointwc and itsnc

only by Eq.(3) and Eq.(6), respectively.

FSCL can almost always successfully distributek seed
points into the input data set without dead-unit problem.
However, it needs to pre-assign the numberk of clusters. If
k is not equal to the truek∗, FSCL will lead to an incorrect
clustering result similar to the k-means.



3 Competitive and Cooperative Learning
(CCL) Approach

To circumvent the difficulty of deciding the cluster number
in advance, we propose the CCL approach, which need not
decide the exact cluster numberk∗ before clustering. In-
stead, as long as the assigned numberk of seed points is
not less thank∗, CCL enables all seed points to gradually
converge into the corresponding cluster centers with some
seed points staying at the same cluster centers without re-
pelling each other.

The basic idea of the CCL is that thek seed points
not only compete each other for updating to adapt to an in-
put each time, but also the winner will dynamically select
several nearest competitors to form a cooperative team to
adapt to the input together. That is, the seed points locating
in the same cluster will have more opportunity to cooperate
each other than competition to achieve the learning task,
and vice versa. Subsequently, on an average the learning
of these seed points areindependentlyconducted towards
the corresponding cluster center with uniformly sharing the
data points in the cluster, i.e., a seed point regards its near-
est competitors as the transparent ones without any com-
petition. As a result, CCL enables to perform clustering
successfully ask ≥ k∗.

Actually, such a competitive and cooperative learn-
ing mechanism is also more consistent with the real social
scenario, in which it is generally believed that a compet-
itive scheme with some cooperations in a team group can
not only motivate the aggressiveness of each member, but
also lead to a more harmonic working environment in the
group. Consequently, it is easier to achieve the designated
goal in comparison with the pure competitive or penalized
competitive learning schemes.

Given an inputxi, the CCL procedure consists of
three separate steps. Firstly, it determines a leader which
is definitely a winner amongk seed points. Secondly, this
leader will form a cooperating team, in which all seed
points are the winners. In this paper, such a cooperating
team is determined on the basis of the distance between
the winner leader and the other seed points relative to the
distance between the leader and the current input. That
is, as shown in Figure 1, the leaderwc regards those seed
points fallen into the circle centered atwc with the radius
‖wc−x‖ as the cooperating members, likewc1 andwc2 in
Figure 1. Thirdly, all the winners in the team are updated
to adapt to the input. In the CCL, the extra award for the
winner leader is that CCL updates the winning timesnc of
the leader only. Subsequently, the CCL algorithm can be
given as follows:

Step 1. Pre-specify the numberk of clusters withk ≥
k∗, initialize the seed points{wj}k

j=1, and set
nj = 1 with j = 1, 2, . . . , k.

Step 2. Given an inputxi, calculateI(j|xi) by Eq.(4).

Step 3. Let the cooperating setC = {wc}. We then

spanC by

C = C∪{wj | ‖wc−wj‖ ≤ ‖wc−xi‖}. (7)

That is, all of those seed points fallen into the
circle centered atwc with the radius‖wc−xi‖
are the winners as well aswc, but the others
outside the circle are not.

Step 4. Update all members inC by

wnew
u = wold

u + η(xi −wold
u ), (8)

wherewu ∈ C. Furthermore, we here only up-
datenc by Eq.(6) without uniformly distribut-
ing the contribution of this winning to all other
njs. The benefit is that we can finally useγjs to
estimate the proportion that the data from each
cluster.

The aboveStep 2 and Step 4 are repeatedly iterated for
each input until all seed points converge.

Before closing this section, please note that CCL en-
ables each extra seed point to finally locate at one of cluster
centers. Hence, we can determine the exact cluster number
by counting the number of those seed points stayed at dif-
ferent positions.

wc

xio

wc1*
wc2

*
wr
**

Figure 1. The positions of four seed points marked by ‘*’ in
a cluster, in whichwc is the winner leader, which chooses
wc1 andwc2 fallen into the circle centered atwc with the
radius‖wc−xi‖ as the cooperating members, and together
to adapt to the inputxi marked by ‘o’. In contrast,wr is
outside the circle. Hence,wr is a loser in the competition.

4 Experimental Simulations

4.1 Experiment 1

To demonstrate the performance of CCL, we randomly
generated2, 000 data points from a mixture of three2-
dimension Gaussians:

p(x;Θ) = 0.3G(x|µ1, 0.1I) + 0.4G(x|µ2, 0.1I)
+0.3G(x|µ3, 0.1I), (9)



with

µ1 = [1, 1]T , µ2 = [1, 5]T , and µ3 = [5, 5]T ,
(10)

whereI is a2×2 identity matrix,T is a transpose operation
of a matrix, andG(x|µ,Σ) denotes the Gaussian probabil-
ity density function ofx with the meanµ and co-variance
Σ. Furthermore, we set the learning rateη = 0.001, and
randomly initialized the positions of five seed points in the
input space, as shown in Figure 2(a). Figure 2(b) shows
their learning curve. It can be seen that all seed points have
been converged after15 learning epochs. A snapshot value
of convergent seed points are:

w1 = [1.0191, 0.9907]T , w2 = [0.9808, 4.9944]T

w3 = [0.9808, 4.9944]T , w4 = [5.0310, 4.9913]T

w5 = [0.9808, 4.9944]T , (11)

with their relative winning frequencyγjs being:

γ1 = 0.3090, γ2 = 0.1282, γ3 = 0.1282
γ4 = 0.3064, γ5 = 0.1282, (12)

in which we found thatw2, w3 andw5 converged to the
same cluster center with uniformly sharing the same win-
ning chance, meanwhilew1 andw4 converged to the other
two cluster centers, respectively. That is, the exact three
data clusters have been automatically detected. Further-
more, the summation ofγ2, γ3 andγ5 is 0.3846, which ac-
tually is an estimate of the prior probability that data from
G(x|µ2, 0.1I), whereasγ1 andγ4 are the estimate of the
prior probabilities ofG(x|µ1, 0.1I) andG(x|µ3, 0.1I), re-
spectively. Figure 3(a) shows the trajectory of these seed
points’ learning, and Figure 3(b) shows their final posi-
tions. It can be seen that CCL has successfully performed
clustering under the environment that there are two extra
seed points. Furthermore, we also investigated the CCL
performance with six and seven seed points, respectively.
As shown in Figure 4, the experimental result is the same
as the previous case.

4.2 Experiment 2

In this experiment, we further investigated the CCL perfor-
mance on those data with the moderate overlap, as shown
in Figure 5(a). Under the same experimental environment
as Experiment 1, we performed the CCL with the five, six,
and seven seed points, respectively. Figure 5(b) shows the
final distribution of five seed points in the input data set.
Once again, it can be seen that all seed points have been
converged to the corresponding cluster centers with some
locating at the same position. The results from the other
two cases are also the same. That is, CCL has performed
a correct clustering with automatically detecting the exact
cluster numberk∗ = 3.
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Figure 2. (a) The initial positions of five seed points marked
by ‘*’ in the input space, and (b) the learning curve of five
seed points.

4.3 Experiment 3

The CCL performs clustering without considering the co-
variance information of each cluster. In this experiment,
we further investigated the robustness of its performance
on elliptical data clusters, rather than the ball-shape ones
in Experiment 1 and 2. Again, we investigated the three
cases:k = 5, 6, and7, respectively, whose results were
all the same. Figure 6 shows the results of the five seed
points. It can be seen that CCL has successfully performed
the clustering in the same way as the previous experiments.

5 Conclusion

This paper has presented aCompetitive and Cooperative
Learning(CCL) algorithm, which provides a new way for
data clustering without prior knowing exact cluster number.
CCL is a semi-competitive learning, in which seed points



not only compete each other for updating to adapt to an in-
put each time, but also some neighbor seed points dynami-
cally cooperate to adapt to the input together. This cooper-
ative and competitive scheme can lead to those seed points
gradually merging and converging into the cluster center
with sharing the same winning probability. Consequently,
the CCL can perform a robust clustering analysis with au-
tomatically determining the correct cluster number as long
ask ≥ k∗. The experiments have successfully shown its
outstanding performance on data clustering.
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Figure 3. (a) The learning trajectory of five seed points, in
which and hereafter figures ‘+’ marks the initial positions
of seed points, and ‘*’ marks the final positions; (b) The
final distribution of five seed points.
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Figure 4. Sub-figure (a)(c)(e) show the initial position,
learning trajectory, and final positions of six seed points re-
spectively, whereas Sub-figure (b)(d)(f) show the situation
of seven seed points.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b)

Figure 5. (a) The initial positions of five seed points marked
by ‘*’ in the input space, and (b) the final positions of five
seed points.
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Figure 6. (a) The initial positions of five seed points marked
by ‘*’ in the input space, and (b) the final positions of five
seed points.


