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Abstract—Robust tensor factorization is a fundamental problem inmachine learning and computer vision, which aims at decomposing

tensors into low-rank and sparse components. However, existingmethods either suffer from limitedmodeling power in preserving low-

rank structures, or have difficulties in determining the target tensor rank and the trade-off between the low-rank and sparse components.

To address these problems, we propose a fully Bayesian treatment of robust tensor factorization along with a generalized sparsity-

inducing prior. By adapting the recently proposed low-tubal-rankmodel in a generativemanner, our method is effective in preserving low-

rank structures. Moreover, benefiting from the proposed prior and the Bayesian framework, the proposedmethod can automatically

determine the tensor rankwhile inferring the trade-off between the low-rank and sparse components. Formodel estimation, we develop a

variational inference algorithm, and further improve its efficiency by reformulating the variational updates in the frequency domain.

Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the proposedmethod in multi-rank

determination as well as its superiority in image denoising and backgroundmodeling over state-of-the-art approaches.

Index Terms—Robust PCA, tensor factorization, tubal rank, multi-rank determination, Bayesian inference
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1 INTRODUCTION

REAL-WORLD data such as images, videos, and social net-
works are often high-dimensional, while considered to

be approximately low-rank or lie near a low-dimensional
manifold. Finding and exploiting low-rank structures from
high-dimensional data is a fundamental problem in many
machine learning and computer vision applications, e.g., col-
laborative filtering [1], face recognition [2], and data mining
[3]. Principal Component Analysis (PCA) [4] is a conventional
method to seek the best (in the least-squares sense) low-rank
representation of given data. It is effective in dealing with the
data that is mildly corrupted with small noise, and can be sta-
bly computed via singular value decomposition (SVD).

However, PCA is very sensitive to outliers, and fails
to perform well on data with gross corruptions. Unfortu-
nately, the presence of outliers is ubiquitous in real-
world applications such as data mining, image process-
ing, and video surveillance. For instance, moving objects
in a video taken by a stationary camera can be viewed
as sparse outliers in the static background. To overcome
the sensitivity of PCA to outliers, many robust variants
of PCA have been proposed [5], [6], [7], [8]. Among
them, Robust PCA (RPCA) [6] is arguably the most

popular method that enjoys both computational effi-
ciency and theoretical performance guarantees.

RPCA assumes that the observed matrix Y can be repre-
sented as Y ¼ X0 þ S0, where X0 is a low-rank matrix and S0

is a sparse matrix with only a small fraction of elements
being nonzero and arbitrary in magnitude. It has been
proved that, under some broad conditions, X0 and S0 can be
exactly recovered from Y by solving the following convex
problem:

min
X;S

kXk� þ �kSk1 s:t: Y ¼ Xþ S; (1)

where k � k� and k � k1 denote the nuclear norm and ‘1 norm,
respectively, and � > 0 is the hyper-parameter balancing
the low-rank and sparse terms. RPCA and its extensions
have many important applications, such as video denoising
[9], subspace clustering [10], and object detection [11], to
name a few.

One main limitation of RPCA is that it can only deal
with matrix data, while many real-world data are natu-
rally organized as tensors (multidimensional arrays) [12],
[13]. For example, a color image is a third-order tensor
of height � width� channel, and a gray-level video can
be represented as height� width� time. When applying
RPCA to tensorial data, one has to first reshape the input
tensor into a matrix, which often leads to loss of struc-
tural information and degraded performance. To address
this problem, tensor RPCA (TRPCA) and robust tensor
factorization (RTF) methods have been proposed, which
directly handle tensors for exploiting their multidimen-
sional structures.

Specifically, given a tensor Y 2 RI1�����IN , TRPCA and
RTF methods assume Y ¼ X 0 þ S0 and seek to recover X 0

from Y, where X 0 is a tensor with certain low-rank structure

� Y. Zhou is with the Department of Computer Science, Hong Kong Baptist
University, Kowloon Tong, Hong Kong, and also with the School of
Computer Science and Software Engineering, East ChinaNormalUniversity,
Shanghai 200062, P.R. China. E-mail: youngzhou12@gmail.com.

� Y.-M. Cheung is with the Department of Computer Science and Institute
of Research and Continuing Education, Hong Kong Baptist University,
Kowloon Tong, Hong Kong. E-mail: ymc@comp.hkbu.edu.hk.

Manuscript received 5 Oct. 2018; revised 6 June 2019; accepted 9 June 2019.
Date of publication 19 June 2019; date of current version 3 Dec. 2020.
(Corresponding author: Yiu-Ming Cheung.)
Recommended for acceptance by C. Zhang.
Digital Object Identifier no. 10.1109/TPAMI.2019.2923240

62 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 1, JANUARY 2021

0162-8828� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on December 06,2020 at 01:21:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0873-619X
https://orcid.org/0000-0002-0873-619X
https://orcid.org/0000-0002-0873-619X
https://orcid.org/0000-0002-0873-619X
https://orcid.org/0000-0002-0873-619X
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0001-7629-4648
mailto:
mailto:


and S0 is sparse. Based on different low-rank models and
the corresponding tensor rank definitions, there exist three
popular frameworks for solving the TRPCA and RTF prob-
lems. They are based on the Tucker [14], CANDECOMP/
PARAFAC (CP) [15], [16], and low-tubal-rank models [17],
[18], respectively.

The Tucker model assumes that the low-rank component
X 0 can be well approximated as

X tc ¼ Z �1 U
ð1Þ �2 U

ð2Þ �3 � � � �N UðNÞ; (2)

where �n denotes the mode-n tensor product, UðnÞ 2 RIn�Rn

(n ¼ 1; . . . ; N) is themode-n factormatrix,Z is the core tensor
capturing the correlations among fUðnÞgNn¼1. The Tucker
(multilinear) rank [12] of Y is defined as RanktcðYÞ �
ðR1; . . . ; RNÞwithRn ¼ RankðYðnÞÞ, where YðnÞ 2 R

In�
Q

m 6¼n
Im

is themode-n unfoldingmatrix ofY.
Most Tucker-based TRPCA methods [19], [20] are convex

methods. They seek a low-Tucker-rank component by mini-
mizing the Sum of Nuclear Norms (SNN) [21] of Y, which is
a convex surrogate of the Tucker rank. Some robust Tucker
factorizationmethods [22], [23], [24] have also been proposed
to perform TRPCA by explicitly fitting the Tucker model
with a predetermined Tucker rank. By alternately solving a
(nonconvex) least-squares problem, such RTF methods are
generally more efficient and empirically perform better than
convex TRPCA approaches, provided that the predeter-
mined Tucker rank matches the input tensor. However,
Tucker-based TRPCAs and RTFs require unfolding the input
tensor for parameter estimation, and thus fail to fully exploit
the correlations among different tensor dimension [19], [25].

The CP model decomposes X 0 into the sum of rank-one
tensors as follows:

X cp ¼
XR
r¼1

uð1Þ
r � uð2Þ

r � � � � � uðNÞ
r ; (3)

where � denotes the outer product, and uðnÞ
r 2 RIn (n ¼ 1;

. . . ; N ; r ¼ 1; . . . ; R) is the rth mode-n factor. The CP rank of
Y is given by RankcpðYÞ � R, defined as the smallest num-
ber of the rank-one tensor decomposition [12].

Since the CP rank is difficult to be determined (known as
an NP-hard problem) and its convex relaxation is intracta-
ble [26], [27], existing CP-based TRPCA and RTF methods
resort to the probabilistic framework to estimate the low-
rank component and the CP rank. For example, Bayesian
Robust Tensor Factorization (BRTF) [28] estimates the CP
model in a fully Bayesian manner to recover tensors with
both missing values and outliers. By introducing proper pri-
ors, it obtains robustness against overfitting and enables
automatic CP rank determination. To handle complex noise
and outliers, Generalized Weighted Low-Rank Tensor Fac-
torization (GWLRTF) [29] represents the sparse component
S as a mixture of Gaussian, and unifies the Tucker and CP
factorization in a joint framework. A key advantage of these
probabilistic RTF methods over their non-probabilistic
counterparts is that the trade-off between the low-rank and
sparse components can be naturally optimized without
manually tuning. Nevertheless, the CP model is usually
considered as a special case of the Tucker model [12], and

may not have enough flexibility in representing tensors
with complex low-rank structures.

Recently, Kilmer et al. [17] defined a multiplication opera-
tion between tensors, called tensor-tensor product (t-product),
and proposed tensor-SVD (t-SVD) associated with two new
tensor rank definitions, i.e., tubal rank andmulti-rank [18] (see
Section 2 for their formal definitions). The reduced version [30]
of t-SVD for the low-rank componentX0 is given by

X t�SVD ¼ U � D � Vy; (4)

where � denotes the t-product,U 2 RI1�R�I3 andV 2 RI2�R�I3

are orthogonal tensors, and D 2 RR�R�I3 is an f-diagonal ten-
sor whose frontal slices are all diagonal matrices. The tubal
rank ofX0 is then defined byRanktðX 0Þ � R.

The development of t-SVD motivates the low-tubal-rank
model for representing tensors of low tubal rank, which has
been successfully applied to the tensor completion problem
with the state-of-the-art performance achieved [31], [32], [33].
Compared with the conventional Tucker and CP models, the
low-tubal-rank model has more expressive modeling power,
especially for characterizing tensors that have a fixed orienta-
tion or certain “spatial-shifting” properties, such as color
images, videos, andmulti-channel audio sequences [17].

Based on the low-tubal-rank model, Lu et al. [34], [35]
proposed to use the tensor nuclear norm (TNN) [31] as a
convex relaxation of the tubal rank, and perform TRPCA by
solving a convex problem similar to RPCA (1). They further
analyzed the theoretical guarantee for the exact recovery.
Outlier-Robust Tensor PCA (OR-TRPCA) combines TNN
with the ‘2;1 norm to handle sample-specific corruptions,
which achieves promising results on outliers detection and
classification. However, similar to RPCA, these methods
also involve a hyper-parameter as in (1) for adjusting the
contributions of the low-rank and sparse components. For
good performance, this balancing parameter has to be care-
fully determined. If the low-rank component contributes
too much to the objective function, the outliers will not be
completely removed. On the other hand, if the sparse com-
ponent is dominant, the recovered tensor will lose many
details and cannot fully preserve the low-rank structures.
Since the trade-off between the low-rank and sparse compo-
nents should be adjusted according to both the input data
and tasks, finding an appropriate value for the balancing
parameter is generally difficult and time consuming in
practice.

Besides TNN, low-tubal-rank structures can also be intro-
duced by explicitly factorizing a given tensor as the t-product
of two smaller tensors [30], [33]. Such low-tubal-rank tensor
factorization methods are more efficient and expected to
obtain better recovery performance than TNN-based meth-
ods. However, in addition to the balancing parameter, they
also need to know the target tubal rank in advance. Both
over- and under-estimation of the tubal rank will lead to the
degradedperformance. Although a heuristic rank-decreasing
strategy has been proposed in [33], the study on how to dis-
cover the underlying tubal rank and multi-rank of a given
tensor is still very desirable.

Can we make use of the low-tubal-rank model for RTF without
suffering from the difficulties in determining the tubal rank and
the balancing parameter? In this paper, we solve this problem

ZHOU AND CHEUNG: BAYESIAN LOW-TUBAL-RANK ROBUST TENSOR FACTORIZATION WITH MULTI-RANK DETERMINATION 63

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on December 06,2020 at 01:21:23 UTC from IEEE Xplore.  Restrictions apply. 



by introducing low-tubal-rank structures into the Bayesian
framework, and propose a fully Bayesian treatment of RTF
for third-order tensors, named as Bayesian low-Tubal-rank
Robust Tensor Factorization (BTRTF). To the best of our
knowledge, this is the first probabilistic/Bayesian method
for low-tubal-rank tensor factorization.

BTRTF equips the low-tubal-rank model with automatic
rank determination, and enables implicit trade-off between
the low-rank and sparse components via maximizing the
(approximated) posterior probability. In addition, it is well
known that the Bayesian framework offers unique advan-
tages in capturing data uncertainty, reducing risk of over-
fitting, handling missing values, and introducing prior
knowledge. These benefits also motivate the development
of our BTRTF method. In summary, our contribution is
three-fold:

1) We propose a generative model for recovering low-
tubal-rank tensors from observations corrupted by
both sparse outliers of arbitrary magnitude and
dense noise of small magnitude, where the observed
tensor is factorized into the t-product of two smaller
factor tensors.

2) We consider automatic rank determination for not
only the tubal rank but also the multi-rank, which is a
more general and challenging problem. To this end,
we propose a generalization of the ARD prior [36]. By
incorporating this prior into the Bayesian framework,
unnecessary low-rank components can be adaptively
removed in the frequency domain, leading to auto-
matic multi-rank determination.

3) Since exact inference of the proposed generative
model is analytically intractable, we develop an effi-
cient model estimation scheme via variational approx-
imation. By updating the model parameters in the
frequency domain instead of the original one, the
computational cost of each iteration is greatly reduced
from OðR3I33 þRI1I2I

2
3Þ to OðR3I3 þRI1I2I3Þ, when

handling a I1 � I2 � I3 tensor with its tubal rank being
R.

2 PRELIMINARIES

This section introduces notations, definitions, and opera-
tions used in this paper.

2.1 Notations

We denote vectors, matrices, and tensors by bold lowercase,
bold uppercase, and calligraphic letters (x, X, and X ),
respectively. R and C denote the fields of real numbers and
complex numbers, respectively. h�i denotes the expectation
of a certain random variable, trð�Þ denotes the matrix trace,
and II denotes the I � I identity matrix. For a vector x,
diagðxÞ is the diagonal matrix formed by x. For a third-order
tensor X 2 RI1�I2�I3 , we use the matlab notations to denote
the ith horizontal, jth lateral, and kth frontal slices of X by

X!i� ¼ Xði; :; :Þ, X!�j ¼ Xð:; j; :Þ, and XðkÞ ¼ Xð:; :; kÞ, respec-
tively. xij ¼ Xði; j; :Þ denotes the ði; jÞth tube of X . The con-
jugate transpose and the Frobenius norm of X are denoted
as Xy and kXkF , respectively. cirðXÞ 2 RI1I3�I2I3 is the block
circulant matrix of X , unfoldðXÞ 2 RI1I3�I2 is the unfolded

matrix of X , x!i� 2 RI2I3 is the unfolded vector of X!y
i� with

x!i� ¼ unfoldðX!y
i�Þ, and x!�j 2 RI1I3 is the unfolded vector of

X!�j with x!�j ¼ unfoldðX!�jÞ. Table 1 summarizes the nota-
tions used in this paper.

2.2 Discrete Fourier Transformation

This subsection introduces Discrete Fourier Transformation
(DFT), which plays a key role in the t-product algebraic
framework and our BTRTF method. Let �x ¼ FIx be the DFT
of x 2 RI . FI 2 CI�I is the DFT matrix defined as

FI ¼
1 1 1 � � � 1
1 v v2 � � � vI�1

..

. ..
. ..

. . .
. ..

.

1 vI�1 v2ðI�1Þ � � � vðI�1ÞðI�1Þ

2
664

3
775; (5)

where v ¼ expð� 2pi
I Þ and i ¼ ffiffiffiffiffiffiffi�1

p
is the imaginary unit. Let

�X be the DFT of X 2 RI1�I2�I3 along the third dimension,

whose ði; jÞth tube is given by �xij ¼ �Xði; j; :Þ ¼ FI3Xði; j; :Þ.
Using the matlab commands, we have �X ¼ fftðX ; ½	; 3Þ and
X ¼ ifftð �X ; ½	; 3Þ by applying (inverse) Fast Fourier Trans-

form (FFT).
Let �X 2 CI1I3�I2I3 be the block diagonal matrix whose kth

diagonal block is given by the kth frontal slice �XðkÞ of �X ,
that is

�X ¼ bdiagð �XÞ ¼

�Xð1Þ
�Xð2Þ

. .
.

�XðI3Þ

2
6664

3
7775; (6)

where bdiagð�Þ is the operator that transforms �X to �X. We
then define circðXÞ 2 RI1I3�I2I3 as the block circulant matrix
of X as follows:

circðXÞ ¼
Xð1Þ XðI3Þ � � � Xð2Þ

Xð2Þ Xð1Þ � � � Xð3Þ

..

. ..
. . .

. ..
.

XðI3Þ XðI3�1Þ � � � Xð1Þ

2
6664

3
7775: (7)

TABLE 1
Convention of Notations

Notation Description

X 2 RI1�I2�I3 the I1 � I2 � I3 tensor
�X the DFT of X along the third-dimension

X!i� 2 R1�I2�I3 the ith horizontal slice of X
X!�j 2 RI1�1�I3 the jth lateral slice of X
XðkÞ 2 RI1�I2 the kth frontal slice of X
circðXÞ 2 RI1I3�I2I3 the block circulant matrix of X
unfoldðXÞ 2 RI1I3�I2 the unfolded matrix of X
Xy 2 RI2�I1�I3 the conjugate transpose of X
xij 2 RI3 the ði; jÞth tube of X
x!i� ¼ unfoldðX!y

i�Þ 2 RI2I3 the vector formed by unfolding X!y
i�

x!�j ¼ unfoldðX!�jÞ 2 RI1I3 the vector formed by unfolding X!�j
� the t-product

� the outer product


 the Kronecker product
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It is well known that block circulant matrices can be block
diagonalized by DFT, i.e.,

ðFI3 
 II1ÞcircðXÞðF�1
I3


 II2Þ ¼ �X; (8)

where 
 denotes the Kronecker product. The above opera-
tors and properties will be frequently used in this paper.

2.3 T-Product and T-SVD

This subsection introduces the t-product and its associated
algebraic framework [18], which lay the foundation of our
BTRTF. Let unfoldð�Þ and foldð�Þ be the unfold operator and
its inverse operator, respectively. For a third-order tensor
X 2 RI1�I2�I3 , unfoldðXÞ is the I1I3 � I2 matrix formed by
the frontal slices of X , leading to

unfoldðXÞ ¼ ½Xð1Þ; . . . ;XðI3Þ	; foldðunfoldðXÞÞ ¼ X :

Definition 2.1 (T-product [18]). Given X 2 RI1�R�I3 and
Y 2 RR�I2�I3 , the t-product X � Y is the I1 � I2 � I3 tensor

Z ¼ X � Y ¼ foldðcircðXÞfoldðYÞÞ: (9)

The computation of t-product can also be viewed in a
tube-wise way

zij ¼ Zði; j; :Þ ¼
XR
r¼1

xir � yrj; (10)

where xir is the ði; rÞth tube of X , yrj is the ðr; jÞth tube of
Y, and � reduces to the circular convolution between two
tubes of the same size. If we consider the tube zij 2 RI3

as an “elementary” component, the third-order tensor Z 2
RI1�I2�I3 is just a I1 � I2 matrix of length-I3 tubal scalars.
From this perspective, the t-product is analogous to the stan-
dardmatrixmultiplication in the sense that the circular convo-
lution of tubes replaces the product of elements.

Remarks. It is also worth noting that when I3 ¼ 1 the t-
product reduces to the matrix multiplication. Moreover, the
t-product can be viewed as the matrix multiplication in the
Fourier domain, since Z ¼ X � Y is equivalent to �Z ¼ �X�Y
because of (8). This is a key property which provides an effi-
cient way of computing the t-product and greatly facilitates
the model estimation of our BTRTF method shown later. In
what follows, we further review some definitions related to
the t-product.

Definition 2.2 (Identity tensor [17]). The identity tensor
I 2 RI�I�I3 is defined as the tensor whose first frontal slice is
the I � I identity matrix, and other slices are all zeros.

The identity tensor with appropriate sizes satisfies X � I
and I � X . The DFT of I , �I ¼ fftðI ; ½	; 3Þ, is the tensor with
each frontal slice being the identity matrix.

Definition 2.3 (F-diagonal tensor [17]). A tensor is called
f-diagonal if its frontal slices are all diagonal matrices.

Definition 2.4 (Conjugate transpose [17]). The conjugate

transpose of a tensor is defined as the tensor Xy 2 RI2�I1�I3

constructed by conjugate transposing each frontal slice of

X 2 RI1�I2�I3 and then reversing the order of the transposed
frontal slices 2 through I3.

Definition 2.5 (Orthogonal tensor [17]). A tensor
Q 2 QI�I�I3 is called orthogonal, provided that Qy � Q ¼ Q�
Qy ¼ I with I being an I � I � I3 identity tensor.

Definition 2.6 (T-SVD [17]). Let X be an I1 � I2 � I3 real-
valued tensor. Then X can be factored as

X ¼ U � D � Vy; (11)

where U 2 RI1�I1�I3 , V 2 RI2�I2�I3 are orthogonal tensors,
and D 2 RI1�I2�I3 is an f-diagonal tensor. The factorization
(11) is called the t-SVD (i.e., tensor SVD).

The t-SVD provides a way to factorizing any third-order
tensor into two orthogonal tensors and a f-diagonal tensor.
When the third dimension I3 ¼ 1, it reduces to the classical
matrix SVD.

Definition 2.7 (Tensor tubal rank and multi-rank [18]).
The multi-rank of a third-order tensor X 2 RI1�I2�I3 is a
length-I3 vector defined as

RankmðXÞ ¼ ðRankð�Xð1ÞÞ; . . . ; Rankð�XðI3ÞÞÞ;

where �XðkÞ is the kth frontal slice of �X ¼ fftðX ; ½	; 3Þ and
Rankð�XðkÞÞ is the rank of �XðkÞ. The tubal rank of X is the num-
ber of nonzero tubes of D from the t-SVD of X ¼ U � D � Vy,
i.e.,

RanktðXÞ ¼ #fi;Dði; i; :Þ 6¼ 0g ¼ maxkRankð�XðkÞÞ:

Lemma 1 (Best rank-R approximation [17], [18]). Let
X ¼ U � D � Vy be the t-SVD of X 2 RI1�I2�I3 . Then given
tubal rank R < minðI1; I2Þ

XR ¼ arg
X̂2M

minkX � X̂kF

¼
XR
r¼1

Uð:; r; :Þ � Dðr; r; :Þ � Vð:; r; :Þy;

is the best approximation of X with the tubal rank at most R,
whereM ¼ fC ¼ A � ByjA 2 RI1�R�I3 ;B 2 RI2�R�I3g.

3 BAYESIAN LOW-TUBAL-RANK ROBUST TENSOR

FACTORIZATION

This section presents our BTRTF method in three steps. We
first provide the detailed Bayesian model specification for
BTRTF, and employ the Automatic Relevance Determina-
tion (ARD) prior [36] for tubal rank determination. Then we
develop a variational inference method for model estima-
tion, and further improve its efficiency by using the proper-
ties of the t-product and reformulating the variational
updates in the frequency domain. Finally, a generalization
of the ARD prior is proposed and incorporated into the
BTRTF model to automatically determine both the tubal
rank and multi-rank.

3.1 Model Specification

We assume that the observed tensor Y 2 RI1�I2�I3 can be
decomposed into three parts: the low-rank component X ,
the sparse component S, and the noise term E, i.e.,
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Y ¼ X þ S þ E; (12)

where each element of E is assumed to be i.i.d Gaussian,
leading to E �Qijk NðEijkj0; t�1Þ with the noise precision t.
Given Y, our goal is to recover X and S. Different from
most existing works pursuit X of low Tucker or CP rank,
we preserve the low-tubal-rank structure of X by factorizing
it as a t-product of two smaller factor tensors

X ¼ U � Vy; (13)

where U 2 RI1�R�I3 , V 2 RI1�R�I3 , and R � minðI1; I2Þ con-
trols the tubal-rank. According to Lemma 1, any tensor with
a tubal rank up to R can be factorized as (13) for some U and
V satisfyingRanktðUÞ ¼ RanktðVÞ ¼ R [30], [33]. This means
that the low-tubal-rank model (13) is flexible enough to pro-
vide good approximation for tensors of low tubal rank.

Conditional Distribution. Based on the above low-tubal-rank
factorization, we can obtain the conditional distribution of the
observed tensor Y given the model parameters, which is fac-
torized over each tube ofY as follows:

pðYjU;V;S; tÞ ¼
Y
ij

NðyijjU
!

i� � V!y
j� þ sij; t

�1II3Þ: (14)

Sparse Component. We model the sparse component S by
placing independent Gaussian priors over each element of
S, that is

pðSjbbÞ ¼
Y
ijk

NðSijkj0;b�1
ijkÞ; (15)

where bb ¼ fbijkg and bijk is the precision of the Gaussian
distribution for the ði; j; kÞth element Sijk. We further place
independent Gamma priors for each bijk and obtain

pðbbÞ ¼
Y
ijk

Gaðbijkjab0 ; bb0Þ; (16)

where ab0 and bb0 are the hyper-parameters, and Gaðxja; bÞ ¼
baxa�1e�bx

GðaÞ with GðaÞ being the Gamma function. Note that as

bijk becomes large, the corresponding Sijk tends to be zero.

By encouraging most precision variables to take large val-

ues, we can obtain a sparse S for characterizing outliers.
ARD Prior. For now, we only consider tubal rank deter-

mination, while the results below will be generalized for
multi-rank determination in Section 3.4. Since the tubal
rank of X is bounded by R, our aim is to introduce lateral-
slice sparsity into U and V, so that the minimum R can be

found by removing unnecessary lateral slices from U and V.
To this end, we place the ARD prior [36] over the factor ten-
sors as follows:

pðUj��Þ ¼
YI1
i¼1

YR
r¼1

Nðuirj0; ��1
r II3Þ

¼
YI1
i¼1

Nðu!i�j0; circðLÞ�1Þ;
(17)

pðVj��Þ ¼
YI2
j¼1

YR
r¼1

Nðvjrj0; ��1
r II3Þ

¼
YI2
j¼1

Nð v!j�j0; circðLÞ�1Þ;
(18)

pð��Þ ¼
YR
r¼1

Gað�rja�0 ; b�0Þ; (19)

where uir 2 RI3 is the ði; rÞth tube of U, vjr 2 RI3 is the

ðj; rÞth tube of V, u!i� 2 RI1I3 ¼ unfoldðU!y
i�Þ, v!j� 2 RI2I3 ¼

unfoldðV!y
j�Þ, �� ¼ ½�1; . . . ; �R	, and �r is the hyper-parameter

that controls the rth lateral slices of U and V. L is the

R�R� I3 tensor whose first frontal slice is the diagonal

matrix LLð1Þ ¼ diagð��Þ and other slices are all zeros. circðLÞ
is just a diagonal matrix formed by the repeated block LLð1Þ.
a�0 and b�0 are the hyper-parameters of ��. With the above pri-

ors, some elements of �� tend to have large values, which in

turn pushes the corresponding lateral slices (U!�r and V!�r)
towards zero. This yields the minimum number of lateral
slices required for the low-tubal-rank factorization of Y, and
thus determines the tubal rank.

Noise Precision. To complete our fully Bayesian treatment,
a conjugate Gamma prior is placed over the noise precision
t, leading to

pðtÞ ¼ Gaðtjat0; bt0Þ; (20)

where at0 and bt0 are commonly set to small values for intro-
ducing broad and noninformative priors.

Joint Distribution. Based on the above model specification,
we can obtain the joint distribution via pðY;QÞ ¼ pðYjU;
V;S; tÞpðUj��ÞpðVj��ÞpðSjbbÞpð��ÞpðbbÞpðtÞ, where Q ¼ fU;V; ��;
S;bb; tg is the collection of all the latent variables in the
BRTRF model. Fig. 1 shows the graphical model for BTRTF,
and the logarithm of pðD;QÞ is given by

ln pðY;QÞ ¼ � 1

2

X
ij

tjjyij � U!i� � V!y
j� � sijjj2 � I3 ln t

� �

� 1

2

XI1
i¼1

trðu!>
i� circðLÞu!i�Þ � ln jcircðLÞj

" #

� 1

2

XI2
j¼1

trð v!>
j�circðLÞ v!j�Þ � ln jcircðLÞj

" #

þ
X
r;k

ða�0 � 1Þ ln�ðkÞ
r � b�0�

ðkÞ
r

h i

� 1

2

X
ijk

ðbijkS
2
ijk � ln bijkÞ

þ ðat0 � 1Þ ln t � bt0t þ const:

(21)

Fig. 1. Graphical illustration of the BTRTF model.
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3.2 Variational Inference

Armed with the above results, the BTRTF model can be
learned by estimating the posterior distribution pðQjYÞ ¼

pðY;QÞR
pðY;QÞdQ . Since pðQjYÞ is generally intractable, we apply

variational inference methods [37], [38] for the model esti-
mation. Specifically, we seek a variational distribution qðQÞ
to approximate the true posterior by minimizing the KL
divergence KLðqðQÞjjpðQjYÞÞ ¼ ln pðYÞ � LðqÞ, or equiva-
lently maximizing the variational lower bound LðqÞ ¼ R qðQÞ
lnfpðY;QÞ

qðQÞ gdQ.

For tractable inference, we use the mean field approxima-
tion, and assume that qðQÞ can be factorized as

qðQÞ ¼ qðUÞqðVÞqðSÞqð��ÞqðbbÞqðtÞ: (22)

Then, the optimal distribution of the jth variable set in
terms ofmaxqjðQjÞ LðqÞ takes the following form:

ln qjðQjÞ / hln pðY;QÞiQnQj
; (23)

where h�iQnQj
denotes the expectation w.r.t. the variational

distributions of all the latent variables in Q except Qj. By
applying the explicit form (23) to the joint distribution (21),
we can obtain closed-form solutions for the variational pos-
terior of each variable setQj.

Inference for U and V. With QQj ¼ U , the posterior qðUÞ can
be obtained as

qðUÞ ¼
YI1
i¼1

Nðu!i�Þjhu!i�i;SSuÞ; (24)

whose parameters are given by

hu!i�i ¼ htiSSucircðhViÞ>ð y!i� � h s!i�iÞ; (25)

SSu ¼ htihcircðVÞ>circðVÞi þ circðhLiÞ
� ��1

: (26)

Similarly, the posterior distribution of V is given by

qðVÞ ¼
YI2
j¼1

Nð v!j�Þjh v!j�i;SSvÞ; (27)

with the mean and covariance

h v!j�i ¼ htiSSvcircðhUiÞ>ð y!�j � h s!�jiÞ; (28)

SS
v ¼ htihcircðUÞ>circðUÞi þ circðhLiÞ

� ��1
: (29)

The expectations hcircðUÞ>circðUÞi and hcircðVÞ>circðVÞi can
be computed as follows:

hcircðUÞ>circðUÞi ¼ I3SS
u þ circðhUiÞ>circðhUiÞ; (30)

hcircðVÞ>circðVÞi ¼ I3SS
v þ circðhViÞ>circðhViÞ: (31)

Inference for ��. Similar to the above derivations, the varia-
tional posterior of �� is given by

qð��Þ ¼
YR
r¼1

Gað�rja�r ; b�r Þ; (32)

where the posterior parameters are

a�r ¼ a�0 þ
ðI1 þ I2ÞI3

2
; b�r ¼ b�0 þ

1

2
hku!�rk2 þ k v!�rk2i:

(33)

The involved expectation can be computed as follows:

hku!�rk2i ¼
X
ik

ðSSu þ hu!i�ihu!i�i>Þðk�1ÞRþr; (34)

hk v!�rk2i ¼
X
jk

ðSSv þ h v!j�ih v!j�i>Þðk�1ÞRþr; (35)

where ð�Þðk�1ÞRþr denotes the ððk� 1ÞRþ rÞth diagonal ele-

ment of an RI3 �RI3 matrix.
From (32) and (33), the expectation of �r is given by

h�ri ¼ a�r =b
�
r , which is controlled by the squared ‘2 norms of

u!�r and v!�r. Smaller hku!�rk2i and hk v!�rk2i will lead to a
larger h�ri, which in turn constrains more strongly the cor-
responding lateral slices towards zero due to (34) and (35).

Inference for S. By applying (23) with QQj ¼ S, the poste-
rior distribution of S can be obtained as follows:

qðSÞ ¼
Y
ijk

NðSijkjhSijki; s2
ijkÞ; (36)

with the parameters

hSijki ¼ htiðhbijki þ htiÞzijk; (37)

s2
ijk ¼ ðhbijki þ htiÞ�1; (38)

where zijk denotes the kth element of yij � hU!i�i � hV!
y
j�i.

From (37) and (38), hSijki captures the model residuals
from zijk, and its magnitude is determined by the hyper-
parameter hbijki and the noise precision hti. The conceptual
meaning of qðUÞ, qðVÞ, and qðSÞ is that U � Vy explains global
information of the observed tensor Y with the minimum
tubal rank, while S explains local information (non-Gaussian
outliers) that cannot be well represented by the low-
tubal-rankmodel.

Inference for bb. The posterior distribution of bb is given by

qðbijkÞ ¼ Gaðbijkjabijk; bbijkÞ; (39)

whose parameters can be updated as follows:

abijk ¼ ab0 þ
1

2
; bbijk ¼ bb0 þ

1

2
hb2

ijki: (40)

Inference for t. Finally, the noise precision has the follow-
ing posterior distribution:

qðtÞ ¼ Gaðtjat; btÞ; (41)

whose parameters can be updated as follows:

at ¼ a0t þ
I

2
; bt ¼ bt0 þ

1

2

X
ij

hjjyij � U!i� � V!y
j� � sijjj2i:

(42)
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The expectation of the model error is given by

hjjyij � U!i� � V!y
j� � sijjj2i ¼ I1I2I3trðSSu

SS
vÞ

þ I1I3h v!j�i>SSuh v!j�i þ I2I3hu!i�i>SSvhu!i�i
þ jjyij � hU!i�i � hV!j�iy � hsijijj2 þ

X
ijk

s2
ijk:

(43)

3.3 Efficient Updates in Frequency Domain

Although the above variational inference involves only
closed-form updates, it is still relatively time consuming.
Specifically, the updates for qðUÞ and qðVÞ dominate the
whole variational inference. They require inversing and
multiplying the RI3 �RI3 covariance matrices SS

u and SS
v,

leading to OðR3I33 þRI1I2I
2
3Þ time complexity. This is

impractical when dealing with real-world data with large I3.
Fortunately, such time complexity can be greatly reduced by
using DFT and reformulating the variational updates in the
frequency domain. In what follows, we provide efficient varia-
tional updates for BTRTF, which not only reduce the time
complexity to OðR3I3 þRI1I2I3Þ, but also lay the foundation
for automaticmulti-rank determination.

From (25), we can group all the horizontal slices of U
together and obtain

unfoldðhUiyÞ ¼ hðu!1�; . . . ; u!I1�Þi
¼ htiSSucircðhViÞ>unfoldðYy � hSiyÞ:

It is worth noting that although SS
u and circðhViÞ have a large

size of RI3 �RI3, both of them are block circulant matrices
and can be block diagonalized by DFT. As a result, their
multiplication and inverse can be efficiently computed in
the frequency domain.

Let F̂ ¼ FI3 
 II1 and h�Uyi ¼ fftðhUyi; ½	; 3Þ be the block-
wise DFT matrix and the DFT of hUyi, respectively. Then, it
is easy to verify that

unfoldðh�UiyÞ ¼ F̂ � unfoldðhUiyÞ
¼ htiF̂SSuF̂�1F̂ � circðhViÞ>F̂�1F̂ � unfoldðYy � hSiyÞ:

This indicates that h�Ui can be computed in a block-wise man-
ner by using (7), and similar results hold for h�Vi as well.
Therefore, we can infer qðUÞ and qðVÞ by equivalently
updating the DFTs of their parameters instead of the origi-
nal ones. Specifically, the kth frontal slice of h�Ui and h�Vi can
be updated as follows:

h�UðkÞi ¼ htið�YðkÞ � h�SðkÞiÞh�VðkÞi�SSuðkÞ; (44)

�SSuðkÞ ¼ ðhtih�VðkÞy �VðkÞi þ diagðh��iÞÞ�1; (45)

h�VðkÞi ¼ htið�YðkÞ � h�SðkÞiÞyh�UðkÞi�SSvðkÞ; (46)

�SSvðkÞ ¼ ðhtih�UðkÞy �UðkÞi þ diagðh��iÞÞ�1; (47)

where h�UðkÞi 2 CI1�R, h�VðkÞi 2 CI2�R, and h�SðkÞi 2 CI1�I2

denote the kth frontal slice of h�Ui, h�Vi, and h�Si, respectively.
The expectations in �SSuðkÞ and �SSvðkÞ can be computed by

h�UðkÞy �UðkÞi ¼ I1I3 �SS
vðkÞ þ h�UðkÞiyh�UðkÞi; (48)

h�VðkÞy �VðkÞi ¼ I2I3 �SS
uðkÞ þ h�VðkÞiyh�VðkÞi: (49)

With the above results, we avoid directly manipulating
the RI3 �RI3 covariance matrices in (25) and (28), and turn
to updating I3 much smaller frontal slices in the frequency
domain via (44) and (46). Consequently, the computational
cost for estimating qðUÞ and qðVÞ is reduced from OðR3I33þ
RI1I2I

2
3Þ toOðR3I3 þRI1I2I3Þ. The estimation for �� and t can

also be accelerated by computing the expectations (34), (35),
and (43) in the frequency domain, leading to

hku!�rk2i ¼
XI3
k¼1

I1 �SS
uðkÞ þ 1

I3
h�UðkÞiyh�UðkÞi

� �
rr

; (50)

hk v!�rk2i ¼
XI3
k¼1

I2 �SS
vðkÞ þ 1

I3
h�VðkÞiyh�VðkÞi

� �
rr

; (51)

X
ij

hjjyij � U!i� � V!y
j� � sijjj2i

¼ jjY � hUi � hViy � hSijj2F þ I1I2I3
XI3
k¼1

trð�SSuðkÞ�SSvðkÞÞ

þ I1
XI3
k¼1

trð�SSuðkÞh�VðkÞiyh�VðkÞiÞ

þ I2
XI3
k¼1

trð�SSvðkÞh�UðkÞiyh�UðkÞiÞ þ
X
ijk

s2
ijk;

(52)

where ð�Þrr denotes the rth diagonal element of a R�R
matrix. As S and bb are factorized over elements, their updates
cannot be further accelerated in the frequency domain, and
stay the same.

3.4 Multi-Rank Prior

While the ARD prior achieves automatic tubal rank determi-
nation by introducing slice-wise sparsity in U and V, it is still
too restrictive to determine the multi-rank. Recall that the
low-tubal-rank model X ¼ U � Vy is equivalent to �X ¼ �U�Vy

because of (7), and the kth diagonal block of �X is given by
�XðkÞ ¼ �UðkÞ �VðkÞy [35]. From Definition 2.7, the multi-rank of X
is the vector RankmðXÞ ¼ ðRankð�Xð1ÞÞ; . . . ; Rankð�XðI3ÞÞÞ, and
its kth element Rankð�XðkÞÞ is controlled by the number of col-

umns in �UðkÞ and �VðkÞ. Notice that the tubal rank RanktðXÞ ¼
maxkRankð�XðkÞÞ is just the largest element ofRankmðXÞ. This
indicates that determining multi-rank is a more general and

challenging problem.
For automatic multi-rank determination, we need to fit

the observed tensor while reducing the effective multi-rank.
To this end, we propose a generalized ARD prior, named as
multi-rank prior, by imposing sparse constraints on the col-

umns of �UðkÞ and �VðkÞ. Similar to (17) and (18), we still place
a Gaussian prior over the latent factors U and V as follows:

pðUj��mÞ ¼
YI1
i¼1

YR
r¼1

Nðuirj0; circð��rÞ�1Þ

¼
YI1
i¼1

Nðu!i�j0; circðLmÞ�1Þ;
(53)
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pðVj��mÞ ¼
YI2
j¼1

YR
r¼1

Nðvjrj0; circð��rÞ�1Þ

¼
YI2
j¼1

Nð v!j�j0; circðLmÞ�1Þ;
(54)

where ��m ¼ f�ðkÞ
r g, ��r ¼ ½�ð1Þ

r ; . . . ; �ðI3Þ
r 	>, circð��rÞ 2 RI3�I3 is

the circulant matrix constructed by ��r, and Lm is the
R�R� I3 f-diagonal tensor whose kth frontal slice is given

by LLðkÞ
m ¼ diagð½�ðkÞ

1 ; . . . ; �
ðkÞ
R 	Þ. To make sure circð��rÞ is sym-

metric as a valid covariance matrix, we define �ðkÞ
r ¼

�ðI3�k�2Þ
r for k ¼ 2; . . . ; I3.
Compared with (17) and (18), our multi-rank prior has a

similar form with the ARD prior, while the precision matrix
for each tube is changed from ��1

r II3 to circð��rÞ. Essentially,
the ARD prior assumes that all the elements in U and V are
independent, and makes each pair of lateral slices (U!�r and
V!�r) governed by the same hyper-parameter �r. On the
other hand, the proposed multi-rank prior takes a more gen-

eral covariance matrix circð��rÞ for the tubes of U!�r and V!�r,
and thus generalizes the ARD prior by characterizing the
correlations within each tube of U and V.

By incorporating (53) and (54) into the BTRTF model, the
posterior distributions of U and V still follow (24) and (27),
respectively, expect that the term circðhLiÞ is replaced by
circðhLmiÞ in the covariance matrices (26) and (29). In the
frequency domain, the updates for hu!i�i and h v!j�i are still
the same via (44) and (46), repressively, while the updates
for SSv and SSu become

�SSuðkÞ ¼ ðhtih�VðkÞy �VðkÞi þ h�LLðkÞ
m iÞ�1; (55)

�SSvðkÞ ¼ ðhtih�UðkÞy �UðkÞi þ h�LLðkÞ
m iÞ�1; (56)

where h�LLðkÞ
m i ¼ diagð½h��ðkÞ

1 i; . . . ; h��ðkÞ
R i	Þ is the kth frontal slice

of h�Lmi ¼ fftðhLmi; ½	; 3Þ.
Due to the more general precision matrix circðLmÞ, incor-

porating the multi-rank prior leads to the determinant term
ln jcircðLmÞj. Unlike the ARD case with ln jcircðLÞj ¼ I3

PR
r¼1

ln�r, it cannot be decomposed into the sum of ln�ðkÞ
r . Conse-

quently, placing a Gamma distribution over �ðkÞ
r will no lon-

ger lead to a tractable variational posterior qð�ðkÞ
r Þ. To address

this problem, we treat ��ðkÞ
r rather than �ðkÞ

r as a latent variable
and place a Gammadistribution over it, leading to

pð���mÞ ¼
YR
r¼1

YI3
k¼1

Gað��ðkÞ
r ja�0 ; b�0Þ; (57)

where we have defined ���m ¼ f ��ðkÞ
r g.

It is worth noting that although the hyper-parameters ��m

are coupled, their DFTs ���m are decomposable in ln jcirc
ðLmÞj ¼

P
rk ln

��ðkÞ
r by applying (7). Due to this fact, we can

substitute the prior distributions (53), (54), and (57) into the
explicit form (23), and obtain the variational posterior for
���m as follows:

qð���mÞ ¼
YR
r¼1

YI3
k¼1

Gað��ðkÞ
r ja�rk; b�rkÞ; (58)

where the posterior parameters can be updated by

a�rk ¼ a�0 þ
I1 þ I2

2
; (59)

b�rk ¼ b�0 þ
1

2I3
ðh�UðkÞy �UðkÞi þ h�VðkÞy �VðkÞiÞrr: (60)

The involved expectations h�UðkÞy �UðkÞi and h�VðkÞy �VðkÞi have
been given by (48) and (49), respectively, and the posterior
mean is given by h ��ðkÞ

r i ¼ a�rk=b
�
rk.

Sparsity in the Frequency Domain. Let �uðkÞ
r and �vðkÞr be the rth

component (column) of �UðkÞ and �VðkÞ. An intuitive interpreta-
tion of qð���mÞ (58) is that a�rk is related to the number of ele-
ments in �uðkÞ

r and �vðkÞr , and b�rk is related to the squared ‘2
norms hk�uðkÞ

r k2i ¼ ðh�UðkÞy �UðkÞiÞrr and hk�vðkÞr k2i ¼ ðh�VðkÞy �VðkÞiÞrr.
Smaller hk�uðkÞ

r k2i and hk�vðkÞr k2iwill lead to a larger ��ðkÞ
r , which

in turn pushes the corresponding �uðkÞ
r and �vðkÞr towards

zero. In this way, the multi-rank prior effectively makes
unnecessary components �uðkÞ

r and �vðkÞr inactive by con-
straining them to zero, and thus results in automatic
multi-rank determination.

Refinement with Relaxed Regularization. In our experiments,
we find the multi-rank prior may lead to premature model
and prune most factors before fitting the input data. To
address this problem, we propose a refinement trick to relax
the regularization effect of the multi-rank prior especially at
early iterations. Specifically, we gradually strengthen the
regularization effect by making the following modifications

in updating �SSuðkÞ and �SSvðkÞ

�SSuðkÞ ¼ ðhtih�VðkÞy �VðkÞi þ Fit

g
h�LLðkÞ

m iÞ�1; (61)

�SSvðkÞ ¼ ðhtih�UðkÞy �UðkÞi þ Fit

g
h�LLðkÞ

m iÞ�1; (62)

where g > 0 is the relaxation parameter that adjusts the over-
all regularization strength of h�LLðkÞ

m i. Fit ¼ 1� hjjY� U � Vy �
SjjF i=jjYjjF indicates the goodness of fit for the BTRTFmodel
(12), where hjjY � U � Vy � SjjF i is the square root of (52).

At the first few iterations, the low-tubal-rank model will
not fit the observed tensorYwell, leading to a relatively large
model error and small Fit. In this case, the regularization
term h�LLðkÞ

m i does not have much effect on the parameter esti-
mation, and thus no factor will be pruned at early iterations.
As the BTRTF model fits Y better and better, Fit tends to
converge to 1 and gradually strengthens the regularization
effect. Eventually, the refined updates (61) and (62) return to
the original ones (55) and (56) given g ¼ 1. In general, the
parameter g could be tuned for different applications, while
we find that simply fixing g ¼ I3 is enough to achieve good
performance in most cases. Therefore, we set g ¼ I3 in all the
experiments unless otherwise specified. Algorithm 1 sum-
maries the variational inference method for BTRTF with
multi-rank determination.

3.5 Initialization

Since the variational inference method converges only to a
local optimum, it is necessary to select a reasonable initiali-
zation to avoid poor local solutions. For BTRTF, we set the
top level hyper-parameters a�0 , b

�
0 , a

b
0 , b

b
0 , a

t
0, and bt0 to 10�6
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for introducing noninformative priors. We then set the
model precision hti ¼ at0=b

t
0 ¼ 1. The factor tensors hUi and

hVi can be initialized randomly by drawing each element

from Nð0; 1Þ. Another choice is to set hUi ¼ U0 � D
1
2
0 and

hVi ¼ V0 � D
1
2
0, where U0, V0, and D0 are obtained from the t-

SVD of Y ¼ U0 � D0 � Vy
0. The covariance matrices SSu and SS

v

are set to the identity matrix, and the hyper-parameter h��ðkÞ
r i

for �uðkÞ
r and �vðkÞr is set to a�0=b

�
0 ¼ 1. The hyper-parameter

hbijki is set to 1=s2
0, and the sparse component hSijki is

drawn from the uniform distribution Uð0; s0Þ, where s2
0 is a

task-specific constant and serves as the initialized variance
of Sijk (see Sections 4.2 and 4.3 for more details).

Algorithm 1. BTRTF with Multi-Rank Determination

1: Input: The observed tensor Y 2 RI1�I2�I3 and the initialized
multi-rank RankmðX̂0Þ 2 RI3 .

2: Initialize U, SSu, V, SSv, ���m, S, bb, and t.
3: repeat
4: Update the posterior qðUÞ via (44) and (61);
5: Update the posterior qðVÞ via (46) and (62);
6: Update the posterior qð���mÞ via (58);
7: Update the posterior qðSÞ via (36);
8: Update the posterior qðbbÞ via (39);
9: Update the posterior qðtÞ via (41);
10: Reduce the effective multi-rank by removing

zero-components of �UðkÞ and �VðkÞ;
11: until convergence.

3.6 Connections with Existing Work

In this work, we mainly focus on the TRPCA problem, i.e.,
recovering tensors corrupted with outliers. One representa-
tive TRPCA method is SNN [21], which finds the uncor-
rupted tensor by minimizing the Tucker rank. KDRSDL [22]
also seeks recovering a low-Tucker-rank tensor, while this is
achieved by fitting the Tucker model with a predetermined
Tucker rank. BRTF [28] formulates CP factorization under
the Bayesian framework to obtain probabilistic outputs and
automatic CP rank determination. The proposed BTRTF
method also takes advantage of the Bayesian framework.
Different from BRTF, it represents the uncorrupted tensor
with the low-tubal-rankmodel instead of the CP one, leading
tomore expressivemodeling power andmore efficient varia-
tional updates.

Except the TRPCA problem, there have beenmany proba-
bilistic tensor factorization methods for other applications
such as tensor completion [33], [39], [40], [41], network analy-
sis [42], [43], feature selection [44], multi-view learning [45],
etc. For example, Bayesian Probabilistic Tensor Factorization
[40] uses the CP model with the smooth constraints on the
time dimension to address the temporal collaborative filter-
ing problem. Infinite Tucker Decomposition [42], [43] intro-
duces tensor-variate Gaussian and t processes into the
Tucker model to discover nonlinear interactions among ten-
sor elements. Bayesian multi-tensor factorization [45] pro-
poses a relaxed model to jointly factorize multiple matrices
and tensors, which can be viewed as a trade-off between the
matrix (Tucker-1) and CP factorization.

Most existing probabilistic tensor factorization methods
are based on the Tucker or CP model. In contrast, BTRTF is

based on the low-tubal-rank model with very distinct
Bayesian formulations. Although BTRTF is developed for
the TRPCA problem, its low-tubal-rank model specification
and variational inference scheme are general enough and
could be extended for other applications such as tensor
completion and feature extraction.

4 EXPERIMENTS

This section evaluates our BTRTF on both synthetic and
real-world datasets. We apply BTRTF to image denoising
and background modeling, and compare it against several
state-of-the-art RPCA methods, including RPCA baselines:
RPCA [6], VBRPCA [46]; CP based RTF: BRTF [28]; Tucker
based TRPCAs: SNN [47], KDRSDL [22]; and Low-tubal-rank
TRPCAs: TNN [35], OR-TPCA [48].1

4.1 Validation on Synthetic Data

Wefirst validate the effectiveness of BTRTF in tensor recovery
and multi-rank determination on synthetic datasets. The syn-
thetic data are generated as follows: Two factor tensors
U 2 RI�R�I and V 2 RI�R�I are randomly generated with
their elements independently drawn from the standard
Gaussian distributionNð0; 1Þ. Then, the low-rank component
is constructed by X gt 2 RI�I�I ¼ U � Vy, and is further trun-
cated by t-SVD to have RankmðX gtÞ ¼ ðRð1Þ

gt ; . . . ; R
ðIÞ
gt Þ. We

generate the sparse component Sgt 2 RI�I�I by randomly
selecting r% of the I3 elements to be nonzero, whose
values are uniformly drawn from ½�10; 10	. The noise term
E 2 RI�I�I is generated by independently sampling its ele-
ments from Nð0; s2Þ with the noise variance s2 ¼ 0 or
s2 ¼ 10�3, where s2 ¼ 0 indicates the noise-free case. Finally,
the observed tensor is constructed by Y ¼ X gt þ Sgt þ E. In
this experiment, we initialize the sparse component with
s2
0 ¼ 1 and set the relaxation parameter g ¼ 1, so that their

valueswill have no effect onmodel estimation. The initialized
rank of BTRTF is set to RankmðX̂ 0Þ ¼ ð0:5I; . . . ; 0:5IÞ 2 RI .

The convergence criterion is tol ¼ jjX̂ t�X̂ t�1jjF
jjX̂ t�1jjF

< 10�6, where

X̂ t is the estimated low-rank component at the tth iteration.

Table 2 shows the recovery results of BTRTF on the
synthetic data, where the rank error is defined as Rerr ¼PI

k¼1

jR̂ðkÞ�R
ðkÞ
gt j

I3
and R̂ðkÞ is the estimated rank of the kth fron-

tal slice. As can be seen, BTRTF provides the correct multi-
rank in all the cases. It also obtains accurate reconstructions
for the low-rank and sparse components on the both noise-
free and noisy data. These demonstrate that BTRTF is capa-
ble of accurately recovering corrupted tensors and deter-
mining the correct multi-rank.

To further test BTRTF in multi-rank determination, we
compare BTRTF with Tensor Completion by Tensor Factori-
zation (TCTF) [33], which is a low-tubal-rank tensor com-
pletion method equipped with a heuristic multi-rank
determination strategy. Since TCTF cannot handle outliers,
BTRTF and TCTF are performed on synthetic tensors with-
out outliers (r ¼ 0%) for fair comparison. Table 3 shows the

1. Since OR-TPCA is designed mainly for classification and per-
forms worse than TNN in our experiments, its results are not reported
for simplicity.
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rank determination results of TCTF and BTRTF on the syn-
thetic datasets with r ¼ 0%. BTRTF correctly determines the
multi-rank and accurately reconstructs the low-rank com-
ponent. In contrast, TCTF fails to determine the correct
multi-rank and leads to large reconstruction error. This
demonstrates the superiority of BTRTF in multi-rank
determination.

For comprehensiveness, BTRTF is also tested on the syn-
thetic tensor Y 2 RI1�I2�I3 with I1 6¼ I2 6¼ I3, and still obtains
good results. Please refer to the supplementary materials for
more details, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2019.2923240.

4.2 Image Denoising

This section considers image denoising for removing ran-
dom noise from corrupted color images. In this task, clean
images are approximated by the low-rank component,
while random corruptions are regarded as sparse outliers.

Experimental Setup. We evaluate BTRTF and the com-
peting methods on the Berkeley segmentation datasets
(BSD500) [49], which consists of 500 color images repre-
sented by 321� 481� 3 or 481� 321� 3 tensors. We cor-
rupt each color image by setting 10 percent of its elements
to random values in [0, 255], so that up to 30 percent pixels
are corrupted. Following the common settings, the pixel val-
ues of each image are further normalized to [0, 1], and we
use peak signal-to-noise ratio (PSNR) to measure the recov-
ery performance. Given the recovered tensor X̂ 2 RI1�I2�I3

and the ground truth X gt 2 RI1�I2�I3 , PSNR can be com-
puted as follows:

PSNR ¼ 10 log10
kX gtk21

1
I1I2I3

kX̂ � X gtk2F

 !
;

where k � k1 is the infinity norm.
Parameter Settings. For RPCAandVBRPCA,we reshape the

input tensors into 321� 1443 or 481� 963 matrices, because
they cannot directly deal with tensorial data. For RPCA,
VBRPCA, BRTF and KDRSDL, we employ their default
parameter settings, which lead to good performance in most
cases. For SNN and TNN, we follow the parameter settings
suggested in [34], [35]. For BTRTF, we set the initialized multi
rank toRankmðX̂0Þ ¼ ð150; 150; 150Þ, and the convergence cri-
terion to tol < 10�4. The sparse component is initialized with
s2
0 ¼ 10�7, so that Ŝ0 is very close to a zero tensor. This makes

BTRTF prefer fitting the input image via the low-rank compo-
nent rather than the sparse one. Such settings are suitable for
image denoising, where only the low-rank component (recov-
ered image) is of interest.

Results and Analysis. Fig. 2 shows the recovered images
and PSNR values on 8 sample images of the BSD500 dataset.2

It can be seen that BTRTF obtains the highest average PSNR
value and achieves the best performance on 402 out of the
total 500 images from the BSD500 dataset. Specifically, it out-
perform the second best, TNN, by 1.90 on average. This can
be attributed to the BTRTF model in capturing low-tubal-
rank structures and the Bayesian framework in estimating
sparse outliers. In addition, tensor-based methods such as
KDRSDL, TNN and BTRTF often obtain much better results
than the matrix-based ones. This is probably because RPCA
and VBRPCA are performed on the reshaped images, and
fail to capture the correlations across RGB channels. Among
tensor-based methods, TNN and BTRTF achieve the top two
performance in most cases. This demonstrates that t-SVD
based models have an edge over the classical CP and Tucker
models in representing color images.

We also compare the average running time of each RPCA
method on all 500 images from the BSD500 dataset. From

TABLE 2
Recovery Results of BTRTF on the Synthetic Datasets

TABLE 3
Rank Determination Results on the Synthetic Datasets with

r ¼ 0%

2. We also provide the normalized mean square error (NMSE)
results in the supplementary materials, available online.
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Fig. 2j, RPCA and VBRPCA are the fastest methods, but they
fail to perform well as they cannot fully utilize the tensor
structures and tend to obtain an inaccurate low-rank com-
ponent with the underestimated rank. BTRTF is faster than
the non-convex TRPCAs, BRTF and KDRSDL, while slower
than the convex methods such as SNN and TNN.

In summary, BTRTF obtains the best recovery results, pro-
vides probabilistic outputs, and achieves automatic rank
determination, although it takes some computational cost for
these benefits. It is worth noting that BTRTF is much faster
than BRTFwith better performance, despite the fact that both
of them are based on variational inference for Bayesianmodel
estimation. This can be attributed to the low-tubal-rank
model of BTRTF in better representing color images and
enabling themore efficient variational updates via estimating
themodel parameters in the frequency domain.

4.3 Background Modeling

This section evaluates BTRTF on the background modeling
problem, which aims at separating foreground objects and
background from a given video sequence. We consider vid-
eos recorded by stationary cameras, which are common in

video surveillance. In this case, background components of
different frames are highly correlated, and thus can be well
characterized by low-rank models. On the other hand, fore-
ground objects generally change a lot and can be considered
as sparse outliers.

Experimental Setup. We conduct experiments on 15 videos
from the I2R [50] and CDnet [51] datasets. The I2R dataset
consists of 9 real-world videos (Bootstrap, Campus, Curtain,
Escalator, Fountain, Hall, Lobby, ShoppingMall, WaterSur-
face) in different scenarios including static background,
dynamic background, and slow object movement. For each
video, 20 frames are labeledwith the ground truth. TheCDnet
dataset consists of 31 videos grouped as 6 categories repre-
senting a variety of motion and change detection challenges,
where the foreground objects are well annotated for each
frame. We test all 6 videos (Boats, Canoe, Fall, Fountain01,
Fountain02, Overpass) in the dynamic background category,
which is one of themost difficult categories for mounted cam-
era object detection. Since most videos in the I2R and CDnet
datasets have different sizes and frame numbers, we extract
300 frames and downsample them to around 160� 180, so
that the input tensors have similar sizes (160� 180� 300).

Fig. 2. Recovery results on the BSD500 dataset. (a) Original image; (b) Corrupted image; (c)-(i) Recovered images by different robust PCA methods;
(j) Comparison of PSNR values on the above 8 images. Best viewed in �4 sized color pdf file.
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For quantitative evaluation, we compare the estimated
sparse component (foreground) Ŝ with the ground truth
Sgt, and regard this as a classification problem. Following
the standard settings [11], [52], we evaluate the background
subtraction results by precision, recall, and F-measure,
which are defined as

Precision ¼ TP

TPþ FP
;Recall ¼ TP

TPþ FN
;

F-measure ¼ 2
Precision � Recall
PrecisionþRecall

;

where TP, FP, and FN represent the number of true posi-
tives, false positives, and false negatives, respectively. The
higher these three measurements, the better the perfor-
mance is.

Parameter Settings. For RPCA and VBRPCA, each video is
first unfolded along the time dimension into the matrix of
size around 28800� 300, and then fed into the correspond-
ing RPCA methods. Since there is no training/test partition

for the backgroundmodeling problem,we empirically select,
if necessary, the tuning parameters for the competing meth-
ods, so that they can perform well on most video sequences.
For BTRTF, we initialize s2

0 to a large value 107. This allows
BTRTF to capture outliers of large magnitude (foreground
objects), and often leads to better foreground/background
separation. The initialized multi-rank for BTRTF is set to
RankmðX̂0Þ ¼ ðminðI1; I2Þ � 1 . . . ;minðI1; I2Þ � 1Þ 2 R300 for
the I1 � I2 � 300 video sequence.

4.3.1 Quantitative Evaluation

Table 4 shows the foreground detection results on the I2R and
CDnet datasets. It can be seen that BTRTF achieves the top two
performance in most cases, and obtains the best average
results in precision, recall, and F-measure. TNN is the second
best method, while it is still significantly worse than BTRTF by
0.17 in F-measure on average. These demonstrate: 1) t-SVD
based methods such as BTRTF and TNN are effective in back-
ground reconstruction by exploiting the correlations along the

TABLE 4
Summary of Precision, Recall, and F-Measure on the I2R and CDnet Datasets (Best; Second Best)

Videos

RPCA VBRPCA BRTF SNN KDRSDL TNN BTRTF

P
F

P
F

P
F

P
F

P
F

P
F

P
F

R R R R R R R

Bootstrap 0.51 0.34 0.34 0.32 0.73 0.53 0.61 0.43 0.79 0.57 0.79 0.55 0.55 0.55
0.26 0.30 0.42 0.33 0.45 0.42 0.54

Campus 0.09 0.13 0.11 0.16 0.51 0.55 0.14 0.22 0.16 0.20 0.52 0.64 0.87 0.61
0.29 0.28 0.61 0.67 0.27 0.83 0.47

Curtain 0.52 0.59 0.40 0.42 0.72 0.58 0.64 0.55 0.71 0.69 0.88 0.70 0.94 0.91
0.46 0.44 0.49 0.49 0.67 0.59 0.88

Escalator 0.38 0.40 0.35 0.38 0.77 0.69 0.47 0.50 0.58 0.39 0.73 0.73 0.85 0.73
0.43 0.42 0.62 0.51 0.30 0.73 0.64

Fountain 0.16 0.22 0.16 0.22 0.58 0.66 0.25 0.34 0.26 0.40 0.32 0.47 0.86 0.82
0.33 0.34 0.75 0.53 0.93 0.85 0.79

Hall 0.25 0.33 0.26 0.35 0.60 0.58 0.34 0.43 0.48 0.58 0.65 0.64 0.71 0.63
0.49 0.55 0.56 0.59 0.73 0.63 0.56

Lobby 0.11 0.15 0.06 0.09 0.55 0.52 0.17 0.23 0.75 0.82 0.83 0.71 0.82 0.82
0.24 0.18 0.50 0.35 0.89 0.62 0.83

ShoppingMall 0.45 0.44 0.30 0.34 0.74 0.73 0.57 0.58 0.73 0.77 0.80 0.79 0.70 0.73
0.44 0.40 0.73 0.58 0.82 0.78 0.76

WaterSurface 0.24 0.22 0.27 0.26 0.56 0.36 0.29 0.28 0.30 0.30 0.46 0.36 0.98 0.89
0.20 0.25 0.27 0.26 0.31 0.29 0.81

Boats 0.71 0.49 0.95 0.68 0.79 0.42 0.45 0.45 0.63 0.30 0.55 0.19 0.99 0.70
0.37 0.53 0.29 0.44 0.19 0.12 0.54

Canoe 0.33 0.38 0.47 0.54 0.55 0.44 0.31 0.38 0.12 0.20 0.29 0.28 0.99 0.75
0.44 0.64 0.37 0.52 0.46 0.27 0.61

Fall 0.25 0.23 0.20 0.22 0.69 0.40 0.52 0.42 0.49 0.52 0.75 0.52 0.89 0.88
0.21 0.25 0.28 0.35 0.55 0.40 0.86

Fountain01 0.02 0.04 0.02 0.03 0.03 0.06 0.02 0.03 0.02 0.03 0.03 0.05 0.02 0.04
0.23 0.31 0.33 0.27 0.50 0.39 0.37

Fountain02 0.10 0.17 0.05 0.10 0.41 0.51 0.26 0.35 0.07 0.13 0.19 0.31 0.19 0.30
0.48 0.54 0.66 0.56 0.88 0.72 0.74

Overpass 0.38 0.32 0.40 0.38 0.77 0.52 0.39 0.42 0.63 0.64 0.87 0.57 0.93 0.74
0.27 0.37 0.40 0.46 0.65 0.42 0.61

Average 0.30 0.30 0.29 0.30 0.60 0.47 0.36 0.37 0.45 0.44 0.58 0.50 0.75 0.67
0.34 0.39 0.49 0.46 0.57 0.54 0.67
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time dimension. 2) Armed with the Bayesian framework,
BTRTF ismore advantageous in separating foreground objects
especially for those with slow movement. It is worth noting
that Fountain01 consists of significant dynamic background
elements such as intense water flow, while the foreground
objects are relatively small. This makes foreground/back-
ground separation much more challenging. As a result, all the
methods fail to performwell on this video.

4.3.2 Visual Quality

To visualize the background modeling results, we select five
videos from the I2R (Curtain, ShoppingMall, WaterSurface)
and CDnet (Boats, Fall) datasets, and show the background

and foreground masks learned by different RPCA methods
in Fig. 3. It can be seen that only BTRTF obtains coherent
foreground masks while constructing clean background in
all the cases. Matrix-based methods (RPCA and VBRPCA)
can only obtain blurry background with severe ghosting
effects. This is because they have to first reshape the input
tensors into matrices and thus loss some structural informa-
tion. On the other hand, tensor-based methods, especially
TNN and BTRTF, obtain cleaner background with much
more details, showing the capability of t-SVD based models
in characterizing low-rank data information.

From (a) Curtain and (c) WaterSurface, all the methods
except BTRTF fail to separate the person, who walks through

Fig. 3. Detected background and foreground masks on five videos from the I2R and CDnet datasets. (a) Curtain, (b) ShoppingMall, (c) WaterSurface,
(d) Boats, (e) Fall. For each video, there are two rows corresponding to background and foreground masks. Blue and red regions in the learned
masks indicate false positives and false negatives, respectively.
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the camera and stands for a while, from the background. This
is also the case for (d) Boats and (e) Fall, where the boat moves
slowly and the truck is too long to quickly pass through the
camera. Because of the slow motion of these foreground
objects, the competing methods tend to overfit the low-rank
component (background), and thus lead to more false nega-
tives (the red regions) in the foreground masks. In contrast,
BTRTF not only completely separates the foreground objects
in all the cases, but also has less false positives (the blue
regions) by filtering out many dynamic textures, e.g., fluctua-
tions ofwaves and swaying of leaves. From (b) ShoppingMall,
we observe ghosting effects in the background learned by
KDRSDL and TNN, although they obtains higher F-measure
than BTRTF. BRTF removes not only all the person but also
many details such as patterns on the floor from the back-
ground. Only our BTRTF achieves good performance on both
foreground detection and background construction.

Based on the visual and quantitative results, we summa-
rize that 1) the performance of matrix-based methods is not
good enough in backgroundmodeling, since they cannot uti-
lize the informative tensor structures. 2) By exploiting the
correlations along the time dimension, the low-tubal-rank
model can construct the backgroundwith higher quality and
more details than the classical CP and Tucker models. 3)
BTRTF is superior to the competing methods in dealing with
dynamic background elements and slow objective move-
ment. This can be attributed to both the more expressive
modeling power of the low-tubal-rankmodel in representing
the background and the Bayesian framework in implicitly
balancing the low-rank and sparse components.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed BTRTF, a fully Bayesian
method for robust tensor factorization. By incorporating low-
tubal-rank structures and a generalized ARD prior into the
Bayesian framework, BTRTF featuresmore expressivemodel-
ing power than classical Tucker and CP based approaches,
automatic multi-rank determination, and implicit trade-off
between the low-rank and sparse components. Formodel esti-
mation, we have developed an efficient variational inference
algorithmby updating themodel parameters in the frequency
domain. Experiments on both synthetic and real-world data-
sets demonstrated that BTRTF is effective in determining the
multi-rank, and outperforms state-of-the-art RPCA methods
in image denoising and backgroundmodeling.

Since the t-product, tubal rank, and multi-rank are origi-
nally defined on third-order tensors [18], we consider deal-
ing with 3D data only in this work. Recently, there have been
some attempts to generalize the t-product and t-SVD for
higher-order tensors [25]. Along this line, wemay also define
higher-order extensions of the tubal rank and multi-rank.
With these definitions, the BTRTFmodel alongwith the vari-
ational inference scheme can be naturally generalized for
higher-order tensors, which could be the futurework.
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