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Abstract—Decomposition-based evolutionary algorithms have
shown great potential in many-objective optimization. However,
the lack of theoretical studies on decomposition methods has hin-
dered their further development and application. In this paper,
we first theoretically prove that weight sum, Tchebycheff, and
penalty boundary intersection decomposition methods are essen-
tially interconnected. Inspired by this, we further show that
highly customized dominance relationship can be derived from
decomposition for any given decomposition vector. A new evolu-
tionary algorithm is then proposed by applying the customized
dominance relationship with adaptive strategy to each subpopula-
tion of multiobjective to multiobjective framework. Experiments
are conducted to compare the proposed algorithm with five state-
of-the-art decomposition-based evolutionary algorithms on a set
of well-known scaled many-objective test problems with 5 to 15
objectives. Simulation results have shown that the proposed algo-
rithm can make better use of the decomposition vectors to achieve
better performance. Further investigations on unscaled many-
objective test problems verify the robust and generality of the
proposed algorithm.

Index Terms—Dominance relationship, evolutionary algo-
rithm, many-objective, multiobjective to multiobjective (M2M)
decomposition.

I. INTRODUCTION

EVOLUTIONARY algorithms have achieved great
success in handling multiobjective optimization prob-

lems (MOPs) [1]–[3], but they encounter severe difficulties
when the optimization problems have more than three
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objectives, i.e., many-objective optimization problems
(MaOPs) [4]. Nowadays, the study of many-objective
optimization has become a really hot issue due to its wide
applications and great importance [5]. Recently, a lot of evo-
lutionary multiobjective optimization (EMO) algorithms have
been proposed for MaOPs [6], and roughly four categories
can be seen.

The first category is to modify the Pareto dominance rela-
tionship. Pareto dominance-based EMO algorithms [7]–[9]
use Pareto dominance and a diversity measure method as
the selection criteria. With the increasing of the number of
objectives, more and more solutions become incomparable.
Under this situation, Pareto dominance-based selection mainly
depends on the diversity measurement to differentiate solu-
tions, and thus population will loss selection pressure. To
keep selection pressure, great efforts have been made to mod-
ify the Pareto dominance [10]–[14]. The second category
is to reduce the search dimension by dimension reduction
methods. Many dimension reduction algorithms have already
been used to identify the redundant objectives in many-
objective optimization [15], [16]. The third category is to
use indicators, such as hypervolume indicator [17]–[20], R2
indicator [21], and Iε+ indicator [22]. Hypervolume is one
of the most popular indicators [17], [18], but its computa-
tional complexity increases exponentially with the number of
objectives. The recent studies are almost all about how to
fast calculate the hypervolume indicator [19], [20]. The fourth
category is decomposition-based EMO algorithms, where a
set of decomposition vectors is either used for objectives
aggregation [23], [24] or diversity and convergence enhance-
ment [26]–[31]. For example, multiobjective evolutionary
algorithm based on decomposition (MOEA/D) [24], [25],
decomposes an MaOP into a number of scalar optimization
subproblems by weight vectors. MOEA/D-multiobjective to
multiobjective (M2M) [26] is a new variant of MOEA/D for
population decomposition, and it can decompose an MaOP
into a number of many-objective optimization subproblems by
direction vectors. Deb and Jain [27] suggested the third gen-
eration nondominated sorting genetic algorithm (NSGA-III)
by using the reference points to enhance the convergence
and maintain the diversity. Reference points are also used
for decomposition in the following MOEA/DD [28] and
θ -DEA [29]. Cheng et al. [30] proposed the reference vector-
guided evolutionary algorithm (RVEA). Although descriptions
for those vectors used in different algorithms may vary, we
collectively call them decomposition vectors in this paper.
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Because no matter how those vectors are used, they are all
essentially based on the decomposition.

Decomposition-based EMO algorithms are very promis-
ing in many-objective optimization [31], [33], [34], and it is
mainly for two reasons. The first is that decomposition meth-
ods do not encounter the difficulty of solutions indiscriminate
in high-dimensional space, and the second is that its computa-
tional complexity is acceptable. The three basic decomposition
methods: 1) weight sum [35]; 2) Tchebycheff [35]; and
3) penalty boundary intersection (PBI) [36] have been widely
used in many-objective optimization. However, previous stud-
ies are mainly about the applications of the decomposition
methods, and the lack of theoretical study has hindered their
further development. Motivated by this, we first focus on the
theoretical study of the decomposition methods in this paper.
To be specific, we theoretically prove that the three decom-
position methods are essentially the same idea with different
pattern of manifestation. The theoretical study also indicates
that PBI decomposition is more generalized than the two
others. Based on this, we establish a new linkage between
decomposition and dominance by deriving a novel dominance
relationship called D-dominance from PBI decomposition. For
any given decomposition vector and parameter β ∈ (0, π/2],
we can define a D-dominance based on the PBI decompo-
sition. The evolutionary path of the defined D-dominance
is determined by the decomposition vector, but its usage is
totally different from that of traditional decomposition meth-
ods. In D-dominance, the decomposition vector is actually
a decomposition free vector, and this kind of freedom can
make each individual evolve centering itself instead of the
decomposition vector. The dominance area and dominated
area of D-dominance can be easily adjusted by the param-
eter β ∈ (0, π/2]. Thus, the proposed D-dominance inherits
the inner parallelism of dominance and the directionality of
decomposition.

Decomposition-based EMO algorithms use decomposition
vectors to maintain the convergence and diversity, whereas
how to balance diversity and convergence is not an
easy task, especially in the high-dimensional space.
Studies [13], [27], [29] have shown that a solution found
by a decomposition method can actually be far away from
its corresponding decomposition vector due to the curse of
dimensionality. Recently, subregion strategy has been adopted
by many researchers [28]–[30] to remedy this issue. Those
methods are essentially based on PBI decomposition, and
thus a parameter needs to be set to balance convergence and
diversity. Nevertheless, whenever the parameter is set, there
will be at least two problems: 1) the improvement area for
each individual is fixed and confined by the subregion and
2) the evolutionary path of each individual is highly dependent
on the associated decomposition vector. Consequently, it is
highly possible that one decomposition vector needs to select
more than one solutions to fill the next generation population
slots in actual scenarios.

In this paper, we try to deal with the above two prob-
lems involved in traditional decomposition methods. We
propose an adaptive D-dominance relationship-based evolu-
tionary algorithm called DrEA by applying D-dominance
to the MOEA/D-M2M framework [26]. In DrEA, each

decomposition vector can define a specific D-dominance,
and those customized D-dominance relationships are then
employed to each subpopulation independently. For the first
problem, we propose an adaptive strategy to adjust the param-
eter β such that the improvement area of each individual
varies with the evolution. For the second problem, the inher-
ent parallelism of D-dominance makes the update process of
each individual centered by itself instead of the decomposition
vector. Besides, we also design a decomposition-based crowd-
ing measurement to further diversify each subpopulation. We
summarize the main contributions of this paper as follows.

1) The theoretical studies in this paper have established the
essential connection between weight sum, Tchebycheff,
and PBI decomposition methods. Those mathematical
proofs also show that PBI decomposition method is
much more general than the two others.

2) The proposed D-dominance has blurred the line between
dominance and decomposition. D-dominance combines
the merits of dominance and decomposition such
that better solutions discrimination and better balance
between exploration and exploitation can be achieved in
high-dimensional search space.

3) The proposed DrEA is an application of the
D-dominance for MaOPs. In DrEA, a new adaptive strat-
egy is utilized to automatically adjust the parameter for
each customized D-dominance. We also develop a new
decomposition-based method to evaluate the crowding
degree of each solution in each subpopulation of DrEA.

To investigate the effectiveness of DrEA, a set of 32
benchmark problems from WFG family with 5-, 8-, 10-, and
15-objective are tested, and the proposed algorithm has been
compared with five state-of-the-art decomposition-based EMO
algorithms: MOEA/D [24], MOEA/DD [28], NSGA-III [27],
θ -DEA [29], and RVEA [30]. The simulation results show
that the proposed EMO algorithm can achieve comparable
results. Further performance comparisons with NSGA-III on
the popular unscaled DTLZ series test problems with 5-, 8-,
10-, and 15-objective also verify the robust and generality of
the proposed DrEA.

This paper is organized as follows. Section II introduces
MOPs (MaOPs) and MOEA/D-M2M [26] population decom-
position. In Section III, we do theoretical study on the
three popular decomposition methods. Section VI shows how
we define the decomposition-based dominance and crowd-
ing measurement, and then presents the main framework of
proposed algorithm. The simulation experiments to investigate
the performance of DrEA are presented in Section V. Finally,
we conclude this paper in Section VI.

II. PRELIMINARIES

In this section, we first define the MOP, and then briefly
introduce MOEA/D-M2M framework [26].

A. Problem Definition

An MOP can be defined as

minimize F(x) = {f1(x), . . . , fm(x)}
subject to x ∈ D (1)
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where D is a feasible area of the decision (variable) space,
F : D → Rm consists of m objective functions f1, . . . , fm.
When m > 3, it is called an MaOP [4]. Let u = (u1, . . . , um)

and v = (v1, . . . , vm), u is said to dominate v if ui ≤ vi for all
i = 1, . . . , m, and u �= v. A point x∗ is called Pareto optimal
if there is no x ∈ D such that F(x) dominates F(x∗). The set
of all the Pareto optimal points is called the Pareto set (PS).
PF = {F(x) ∈ Rm|x ∈ PS} is called the Pareto front (PF) [35].
u∗ = (u∗1, . . . , u∗m) is called the ideal point if u∗i is the minimal
value of fi(x) over the decision space, and z∗ = (z∗1, . . . , z∗m)

is called the nadir point if z∗i is the maximal value of fi(x)

over the PS.

B. MOEA/D-M2M

In general, we can assume that all the objective functions
to be optimized are nonnegative, i.e., F(x) ≥ 0. MOEA/D-
M2M [26] population decomposition requires K unit direction
(decomposition) vectors v1, . . . , vK in Rm+. It divides Rm+
into K subregions �1, . . . ,�K , where �k (k = 1, . . . , K) is
defined as

�k =
{

u ∈ Rm+
∣∣∣〈u, vk〉 ≤ 〈u, vj〉for any j = 1, . . . , K

}
(2)

where 〈u, vj〉 is the acute angle between individual u and
decomposition vectorvj. That is to say, u belongs to �k if
and only if vk has the smallest angle to u among all the K
decomposition vectors. In this way, (1) can be transformed
into K constrained multiobjective optimization subproblems.
Subproblem k is

minimize F(x) = (f1(x), . . . , fm(x))

subject to F(x) ∈ �k. (3)

MOEA/D-M2M optimizes these K subproblems in a
collaborative way. During its evolutionary process, it will
maintain and evolve K subpopulations: P1, . . . , PK , where Pk

(k = 1, . . . , K) is to approximate the PF of subproblem k.

III. THEORETICAL STUDY ON DECOMPOSITION METHODS

In this section, we first introduce the three decomposition
methods, i.e., weighted sum [35], Tchebycheff [35], and
PBI [36], and then prove their essential connection in theory.

A. Decomposition Method

Suppose that v = (v1, . . . , vm) is a unit vector (if not, we can
replace it by v/||v||) in the first octant of the objective space,
i.e., vi ≥ 0 for all i = 1, . . . , m and

∑m
i v2

i = 1. To facilitate
the expression, all those decomposition methods are defined in
the normalized objective space, and the three decomposition
method can be expressed as follows.

1) Weighted Sum Method: Weighted sum method gives
a convex aggregation of different objectives. For a given
decomposition vector v = (v1, . . . , vm), MOP (1) can be
converted to

minimize gws(x|v) =
m∑

i=1

fi(x)vi

subject to x ∈ D (4)

where decomposition vector v works as the coefficient vector
in the formation of aggregation function, and x is the variables
to be optimized.

2) Tchebycheff Method: For a given decomposition vec-
tor v = (v1, . . . , vm), Tchebycheff decomposition method
converts MOP (1) to

minimize gte(x|v) = max
1≤i≤m

{fi(x)/vi}
subject to x ∈ D. (5)

Notice that if any of the vi = 0 (i = 1, . . . , m), we will
replace it with a number close to zero such as 10−6 in the prac-
tical applications. In our theoretical analysis, we just assume
that vi > 0 for all i = 1, . . . , m.

3) Penalty Boundary Intersection Method: For a given
decomposition vector v = (v1, . . . , vm), PBI method decom-
poses MOP (1) to

minimize gpbi(x|v) = d1(F(x))+ θd2(F(x))

subject to x ∈ D (6)

where θ ≥ 0 is a preset penalty parameter, d1(F(x)) =
F(x)Tv is the projection distance of F(x) to the decomposition
vector v, and d2(F(x)) = ||F(x) − d1(F(x))v|| is the perpen-
dicular distance of F(x) to decomposition vector v. d2(F(x))

has many good properties, and for any two given solutions x
and y, we have the following.

1) Non-Negativity: d2(F(x)) ≥ 0, d2(F(y)) ≥ 0.
2) Symmetry: d2(F(x)− F(y)) = d2(F(y)− F(x)).
3) Triangle Inequality: d2(F(x) + F(y)) ≤ d2(F(x)) +

d2(F(y)).
The three properties can be easily derived from its definition,
and we will use them in the following theoretical studies.

B. Theoretical Study

The three decomposition methods are actually relevant, and
we will reveal it by mathematical proof.

Theorem 1: For any given vector, its weight sum decom-
position and Tchebycheff decomposition can be explicitly
represented by the PBI decomposition with specific settings
of parameter θ .

Proof: The claim that weight sum decomposition can be
represented by PBI decomposition is obvious. Let θ = 0 for
PBI decomposition, we can have gpbi(x|v) = d1(F(x)) =∑m

i=1 fi(x)vi = gws(x|v), and that is exactly weight sum
decomposition. For clarity, we only use the function name
in our following theoretical analysis. We now prove that
Tchebycheff decomposition can also be represented by PBI
decomposition. For 2-D situation, we have d1 = v1f1+v2f2 and

d2 =
√

(f 2
1 + f 2

2 − d2
1) = |v2f1 − v1f2|. If v2f1 ≥ v1f2, we can

get gte = max{f1/v1, f2/v2} = f1/v1. By setting θ = v1/v2, we
can get gpbi = d1+v2/v1d2 = v1f1+v2

2/v1f1 = ((v2
1+v2

2)/v1)f1.
Since v2

1 + v2
2 = 1, it can be deduced that gte = f1/v1 = gpbi.

Similarly, if v2f1 < v1f2, gte = f2/v2 = gpbi can also be
deduced in this way.

For readability, the rest of the proof is presented in the
supplementary material.
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Fig. 1. Illustration of D-dominance in the 2-D objective space.

Therefore, we have proved that PBI decomposition
can represent weight sum decomposition and Tchebycheff
decomposition.

IV. MAIN IDEA OF PROPOSED ALGORITHM

In this section, we first show how the decomposition-
based dominance relationship and crowding measurement are
defined, and then discuss their properties. At last, we present
the main framework of the proposed algorithm.

A. Decomposition-Based Dominance Relationship

As we have discussed, the three popular decomposi-
tion methods actually share some similarities in essential,
where PBI decomposition is most generalized among the
three decomposition methods. Inspired by this, we pro-
pose a decomposition-based dominance relationship, called
D-dominance according to the definition of projection distance
d1 and perpendicular distance d2 in PBI decomposition. For
MaOP or MOP to be minimized, the D-dominance is defined
as follows.

Definition 1 (D-Dominance): Given two solutions x and y,
a parameter β ∈ (0, π/2], and a unit decomposition vector v
in the objective space.

If d1(F(x)) + d2(F(x) − F(y)) cot(β) < d1(F(y)), F(x) is
said to D-dominate F(y), denoted by F(x) ≺D F(y).

Else if d1(F(y))+d2(F(y)−F(x)) cot(β) < d1(F(x)), F(x)

is said to be D-dominated by F(y), denoted by F(y) ≺D F(x).
Otherwise, F(x) and F(y) is called mutually non-D-

dominated.
Fig. 1 gives a visible illustration of how the proposed D-

dominance works in the 2-D objective space. To identify if x
is D-dominated by y, the decomposition vector V should be
moved to V′ as a free vector to intersect with x. Then, we get
y′, the β projection of y to the moved decomposition vector
V′, which is actually the PBI-β decomposition value of y with
regard to V′. Since the projection y′ is intuitively lower than
x along V′, we can conclude that x is D-dominated by y. In
Fig. 1, the projection of solution q to V′, denoted as q′ is
intuitively bigger than x, but we cannot say q is D-dominated
by x. In fact, we can only conclude that x is not dominated by
q. To check if q is D-dominated by x, we need to find the β

projection of x to a moved decomposition vector intersecting
with q, which happens to be V in this case. The β projection
of x to the decomposition vector V, i.e., x′′, is not better than

Fig. 2. Dominant and dominated areas of D-dominance in the 3-D objective
space.

q, and thus q is not D-dominated by x. That is to say, q and x
are non-D-dominated. In another case, we can identify x dom-
inates z. When we β project x to the moved decomposition
vector V′′, we can conclude z is D-dominated by x by com-
paring the β projection x′ with z. In short, whenever we want
to see if a given solution is D-dominated by a specific solu-
tion, we need to β project this specific solution to the moved
decomposition vector intersecting with the given solution, and
then compare the β projection of the specific solution to the
give solution.

Fig. 2 shows the dominance area (denoted as A), dominated
area (denoted as B) and non-D-dominated area (denoted as C)
of x in 3-D objective space. Similar to Pareto dominance, a
point x∗ is called D-optimal if there is no x ∈ � such that
F(x) D-dominates F(x∗). The set of all the D-optimal points
is called the D-optimal set (DS). The set of all the DS objective
vectors is called the D-optimal front. Since the proposed D-
dominance has adjustable dominant and dominated areas, its
DS can be a subset of PS, or includes PS.

B. Properties Analysis

In fact, the proposed D-dominance relationship is asym-
metric, transitive, and irreflexive, and the theoretical proofs
of the three properties can be found in the supplementary
material. The theoretical study has shown that the proposed
D-dominance is well defined, and we have the following
comments.

1) For any given decomposition vector and parameter
β ∈ (0, π/2], we can define a D-dominance relationship
and this relationship represents a strictly partial order.

2) The area dominated by a solution in the objective space
is an adjustable hypercone (cone in 3-D objective space
and triangle in 2-D objective space), and the cone angle
can be adjusted by the parameter β.

3) The dominated and the dominance area of a solution are
symmetric with respect to a hyperplane (plane in 2-D
objective space) through the solution and perpendicular
to the decomposition vector.

Fig. 3 shows how the dominated and dominance area
of solution x are adjusted by the parameter β in the 2-D
objective space. From this figure, we can see that when adjust-
ing β1 to β2, the dominated area and the dominance area
are both enlarged. The adjustment is only controlled by a
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Fig. 3. Adjustment of D-dominance in the 2-D objective space.

Fig. 4. Percentage of non-D-dominance solutions varies with the different
setting of β.

parameter, which makes the D-dominance easy to be adjusted
for many-objective optimization.

C. Adaptive Setting of Parameter β

In order to properly set this parameter, we propose an
adaptive strategy to automatically adjust the parameter as
follows:

β = π ∗
⎛
⎝1− 1

1+ exp
(
−3 ∗ currentgen

maxgen

)
⎞
⎠
/

1.5 (7)

where, currentgen is the current generation and maxgen rep-
resents the maximal generation for evaluation. β is maximal
in the beginning and it will monotonically decrease with cur-
rentgen. The basic idea of this setting is that more selection
pressure should be imposed on the population in the early stage
of evolution to quickly approach the PF, and then selection
pressure should be gradually decrease to make the population
have better expansion along the PF. To understand how this
adaptive strategy works for this purpose, we randomly gener-
ate 210, 156, 275, and 135 samples from the k-dimensional
hypercube [0, 1]k for k = 5, 8, 10, 15, and show the per-
centage of non-D-dominance solutions with different setting
of β in Fig. 4. In this figure, we can see that the per-
centage of non-D-dominance solutions is very small when
β is around π/2, which means we will have the maximal
selection pressure. The selection pressure of D-dominance
will gradually decrease with the decreasing of β value
for the percentage of non-D-dominance solutions increase
gradually.

D. Novelty of D-Dominance

1) Novelty Over Dominance and Decomposition: As
we have emphasized, D-dominance is derived from PBI
decomposition, and it inherits both the metrics of dom-
inance and decomposition. Comparing with Pareto domi-
nance, D-dominance has adjustable dominant and dominated
areas, which means D-dominance can be more flexible in
dealing with many-objective optimization. Comparing with
decomposition, each solution can evolve centered itself in
D-dominance-based selection instead of the decomposition
vector in decomposition-based selection. It can help diversify
the population and reduce the possibility that one decomposi-
tion vector has two more associated solutions.

2) Novelty Over α-Dominance: The α-domination [10]
was first proposed to cope with the so-called dominance
resistant problems by considering the weak tradeoff among
objectives. It was later found that as a relaxation of the
Pareto dominance, α-domination can also be used to deal
with MaOPs. The proposed D-dominance shares some sim-
ilarities with α-dominance, but D-dominance differentiate
itself form the previous α-dominance mainly for three
aspects.

1) Calculation: The decomposition-based D-dominance
aggregates objectives to differentiate solutions, while
α-domination relaxes objectives tradeoff to differentiate
solutions. Comparing with α-domination, the proposed
D-dominance is more flexible and easy to implement for
many-objective optimization.

2) Dominant and Dominated Areas: In 2-D space,
α-dominance is literally a specialized form of
D-dominance. However, when it comes to two and
more dimensional objective space, the situation is
totally different. For instance, α-dominance has a pyra-
midal dominant and dominated areas in 3-D objec-
tive space, which is different from the proposed
D-dominance.

3) Customization: D-dominance is defined by the decom-
position vector, and thus it can be highly customized
for any given decomposition vector. This unique charac-
teristic of D-dominance makes it possible to adaptively
use D-dominance for all the decomposition vectors
simultaneously in an evolutionary algorithm.

E. Decomposition-Based Crowding Measurement

In this section, we design a new crowding measurement by
utilizing sharing function, and the sharing function of solutions
x and y is

sh(x, y) =
{ 1

1+d2(F(x)−F(y))
if d2(F(x)− F(y)) < r

0 else
(8)

where parameter r defines the radius of a niche, and it is
actually set adaptively according to the distribution of a sub-
population. Suppose num solutions need to be selected from
a total n (num ≤ n) solutions in a subpopulation. We first cal-
culate the perpendicular distance d2 of the n solutions, find
the maximum and minimum d2 as max _d2 and min _d2, and
then r is set as r = [(max _d2−min _d2)/num]. The crowding
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Fig. 5. Illustration of the decomposition-based crowding measurement.

degree of individual p in a subpopulation P (denoted as DC)
can be measured as

DC(p) =
∑

q∈P,q �=p

sh(p, q)

d2(p)
. (9)

To emphasize the solution with the minimum d2, we reset
its DC value as −∞. An illustration of the measurement can
be found in Fig. 5, and it shows the niche of five solutions in
a subpopulation to the decomposition vector v. The DC value
of solution B is reset as −∞ for it has the minimum d2, and
that of the rest can be directly calculated by (9). They are then
sorted by the DC values, and the solutions with smaller DC
values are more likely to be selected.

F. Main Framework of Proposed Algorithm

This section shows how the proposed D-dominance
and decomposition-based crowding measurement work in
MOEA/D-M2M framework. DrEA is first initialized with
N randomly generated individuals, and then the population
is decomposed by the N predefined decomposition vectors.
Unlike the original MOEA/D-M2M, the population decompo-
sition of DrEA integrates a normalization procedure to deal
with scaled MaOPs. The objectives fi(x) (i = 1, 2, . . . , m)
of a solution x can be normalized by: f̃i(x) = ([fi(x) −
zideal

i ]/[znadir
i − zideal

i ]), where zideal
i is the minimum value of fi

found so far, and znadir
i is an approximation of the true nadir

point [27]. The main framework of DrEA is presented by
Algorithm 1.

Subpopulations P1, . . . , PK are initially set in line 1 and
reset in line 18 of Algorithm 1. To do it, we first determine
the number of solutions Sk to be selected in subregion �k(k =
1, . . . , K) as follows.

1) Set P̃k = {x ∈ �k|x ∈ Q}, k = 1, . . . , K.
2) Set Sk = 0 and Rk = |̃Pk|.
3) Sort Rk(k = 1, . . . , K) such that Rk1 = Rk2 = · · · =

Rkt−1 = 0 < Rkt ≤ Rkt+1 · · · ≤ RkK . Do: i = t;

repeat
Ski = Ski + 1;
Rki = Rki − 1;
i = i+ 1.

until
∑K

k=1 Sk = |P|.
Stop and return Sk(k = 1, . . . , K).

Algorithm 1: DrEA
Input :
• N: the population size;
• K: the number of the subproblems;
• MaxGen: maximum number of generations.

Output: A set of solutions.
1 Initialization: Uniformly initialize K unit direction

vectors and population Q, and normalize the population
to set subpopulation Pk(k = 1, . . . , K);

2 while the stopping criterion is not met do
3 Generation of New Solutions:
4 Set R = ∅;
5 for k← 1 to K do
6 foreach x ∈ Pk do
7 Generate a random number rnd ;
8 if rnd < 0.7 then
9 Randomly choose y from Pk;

10 else
11 Randomly choose y from �/Pk;
12 end
13 Apply genetic operators on x and y to

generate a new solution z;
14 Compute F(z);
15 R := R ∪ {z};
16 end
17 Q := R ∪ (∪K

k=1Pk);
18 use Q to set P1, . . . , PK .
19 end
20 Output ∪K

k=1Pk.
21 end

Algorithm 2: Subpopulations Updating
Input : Q: a set of solutions and their F-values.
Output: P1, . . . , PK .

1 Non-dominated sort Q to get Q′;
2 Update ideal point and nadir point for normalization;
3 for k← 1 to K do
4 Initialize Pk as the solutions in Q′ whose F-values

are in �k;
5 Rank the solutions in Pk using the non-D-dominated

sorting and crowding sorting, and then remove from
Pk the Sk − |Pk| lowest ranked solutions.

6 end

Then, the proposed D-dominance and crowding measurement
are utilized to select the Sk solutions for subpopulation Pk,
(k = 1, 2, . . . , K). Algorithm 2 shows how we proceed it.

V. EXPERIMENTAL STUDY

In this section, we first briefly introduce the five representa-
tive decomposition-based EMO algorithms, and then compare
DrEA with them on a number of WFG [38] and DTLZ [39]
test problems. The reason why only decomposition-based algo-
rithms are compared is that their superiorities over other kinds
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of EMO algorithms for MaOPs have been confirmed by many
researches [31], [32].

A. EMO Algorithms in Comparison

The following five EMO algorithms are for comparison.
1) MOEA/D-SBX [24]: MOEA/D-SBX is an efficient

version of MOEA/D with SBX and polynomial
mutation [37]. A niching parameter T is used to define
the neighboring decomposition vectors, and nr defines
the maximal number of solutions replaced by each child
solution.

2) NSGA-III [27]: In NSGA-III, the nondominated sorting-
based selection is first executed, and the selected solu-
tions are then normalized. After normalization, the
decomposition-based niching selection works on the last
selected nondomination level to fill the slots of the next
generation population.

3) MOEA/DD [28]: MOEA/DD decomposes the objec-
tive space into several subregions, and each vector will
define a subproblem. A steady-state updating method is
proposed, and the solution with the worst scalarization
function value in the last nondomination level will be
eliminated.

4) θ -DEA [29]: In θ -DEA, a dominance relation called
θ -dominance is unutilized to rank solutions in each
subregion for environmental selection. θ -DEA can
also enhances the convergence ability by utilizing the
decomposition-based fitness evaluation scheme.

5) RVEA [30]: RVEA uses a set of reference vectors for
decomposition and representing the user preferences.
A new scalarization approach, called angle-penalized
distance, is proposed for selection. RVEA adaptively
adjusts the distribution of the reference vectors based
on the scales of the objective functions.

B. Test Problems

Two kinds of scalable MaOP test problems from the WFG
family [38] and DTLZ family [39] are used for experimental
studies. WFG problems are characterized by scaled objectives
and various complexities of PFs. In this paper, WFG2-WFG9
with the number of objectives m = 5, 8, 10, and 15 are tested
for performance investigation. The number of decision vari-
ables is set as n = m − 1 + l, where l = 20 is the distance
related variable [38]. The PFs of the unscaled DTLZ prob-
lems are featured with linearity, concave, and multimodality.
DTLZ1–DTLZ4 problems with the number of objectives m =
5, 8, 10, and 15 are tested. The number of variables are set
as n = m − 1 + l, where m is the number of objectives, and
l = 5 for DTLZ1, and l = 10 for DTLZ2–DTLZ4 [27].

C. Performance Metrics

HV-metric [40] and IGD-metric [41] are used to measure
the performance of those experimental algorithms.

1) HV-Metric: The HV value of an obtained set P with the
reference point r∗ = (r∗1, . . . , r∗m) is the volume of the region
which is dominated by P and dominates r∗ in the objective

TABLE I
SETTING OF POPULATION SIZE, DIVISIONS, AND NUMBER OF

GENERATIONS FOR TEST PROBLEMS WITH DIFFERENT

NUMBER OF OBJECTIVES

space, and it can be calculated by

HV
(
P, r∗

) = L

(⋃
x∈P

[
f1(x), r1

]×, . . . ,×[fm(x), rm
])

(10)

where L(·) denotes Lebesgue measure. Larger HV-metric value
means better approximation to the true PF. The reference point
is set as r∗ = nadir point + 0.1 in this paper. It is worth noting
Monte Carlo sampling [17] is applied when calculating the HV
values of 15-objective problems, and the HV values presented
in this paper are all normalized to [0, 1] by dividing

∏m
i=1 ri.

2) IGD-Metric: The IGD-metric between the set of refer-
ence points P∗ and the obtained P can be defined as

IGD
(
P∗, P

) =
∑

v∈P∗ d(v, P)

|P∗| (11)

where d(v, P) is the minimum Euclidean distance from the
point v to P. Intuitively, the smaller the value of IGD-metric
is, the better the algorithm is.

D. General Parameter Settings

The general settings of DrEA, MOEA/D-SBX, MOEA/DD,
NSGA-III, θ -DEA, and RVEA are as follows.

1) Population size N and divisions H for generating ini-
tial decomposition vectors (weight vectors in MOEA/D,
reference points in MOEA/DD, NSGA-III, θ -DEA, and
reference vector in RVEA) are shown in Table I.

2) Parameter θ is set as 5 in all PBI decomposition.
3) SBX crossover with pc = 1 and ηc = 30, and polyno-

mial mutation with pm = 1/n and ηm = 20 are used in
all the experimental algorithms.

4) In MOEA/D-SBX: T = 20, δ = 0.9, and nr = 2, which
is kept the same as in [24].

5) A set of 10 000 points is used in Monte Carlo sampling
for HV-metric approximation in 15-D space follow-
ing [17].

E. Experimental Studies on WFG Test Problems

In this section, we study the performance of the proposed
DrEA on WFG test problems by comparing it with the five
comparison algorithms described above.

1) Experimental Results: Table II shows the best (i.e.,
biggest), mean, and worst (i.e., smallest) of HV values of
DrEA, MOEA/D, MOEA/DD, θ -DEA, NSGA-III, and RVEA
for each WFG test instance with 5-, 8-, 10-, and 15-objective
in 15 independent runs. The best HV values among the six
comparison algorithms for each test instance are highlighted
in bold face with gray background. By comparing the results,
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TABLE II
BEST, MEAN, AND WORSE OF HV VALUES OF DREA, MOEA/D, MOEA/DD, θ -DEA, NSGA-III, AND RVEA IN 15 INDEPENDENT RUNS FOR EACH

TEST INSTANCE WITH 5-, 8-, 10-, AND 15-OBJECTIVE. BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

we can observe that the performance of the proposed DrEA
is very competitive among those experimental algorithms. To
be specific, DrEA has the best overall performance on most
of these test instances. Some exceptions can be found that the
performance of DrEA is not the best, but it is still very com-
petitive. The better performance of DrEA in terms of the mean
HV-metric value also indicates its robust which is very cru-
cial in practical use. To intuitively observe the performance
of those algorithms, we plot the parallel coordinates of the
obtained solutions with median HV values found by the six
experimental algorithms on WFG9 test problems in the sup-
plementary material. Those figures clearly show that DrEA has
a good ability to find well distributed representative solutions
among PFs.

2) Results Analysis: MOEA/D-SBX without normaliza-
tion procedure does not perform very well on those WFG
benchmark problems [28], [29]. To be fair, the normalization
procedure used by DrEA is similarly applied to MOEA/D con-
sidering that WFG series test instances have scaled objectives.
Despite all this, we still observe that MOEA/D-SBX does not
perform very well in contrast to other experimental algorithms.

The main reason is that the decomposition-based selection in
MOEA/D may select solutions with good decomposition func-
tion values but poor convergence to the decomposition vector
in high-dimensional objective space. In that case, some of
those decomposition vectors may not have optimal solution
to associate with, which may lead to the loss of population
diversity. This phenomenon can be clearly observed in the
plot of the solutions obtained by MOEA/D-SBX shown in
the supplementary material, and it also shows that MOEA/D’s
performance in population diversity drastically decreases with
the increase of the number of objectives. MOEA/DD empha-
sizes the balance between the population convergence and
diversity, and therefore can, to some extent, avoid the short-
coming of decomposition-based selection in MOEA/D. The
simulation results show that performance of MOEA/DD is
much better than MOEA/D-SBX. However, the fixed param-
eter θ = 5 may have some bad effect on the balance between
convergence and diversity. It happens that some decompo-
sition vectors may have trouble to find associated solutions
during the evolutionary process, and thus better performance
can not be achieved. In θ -DEA, θ -dominance is utilized to
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avoid the possible loss of population diversity by strength-
ening d2. Therefore, parameter θ plays an important role in
balancing the convergence and diversity. As shown in Table II,
the performance of θ -DEA is very promising to those WFG
problems. The simulation results manifest that θ -DEA can
effectively maintain the population diversity comparing with
MOEA/D-SBX. However, θ -dominance is essentially the PBI
decomposition, and thus it also has the similar shortcom-
ings to MOEA/D-SBX and MOEA/DD. NSGA-III actually
uses PBI decomposition with θ = 0 to enhance the popula-
tion diversity. The embedded decomposition makes NSGA-III
very competitive among those experimental EMO algorithms,
and the performance of NSGA-III is significantly better than
MOEA/D-SBX. It can even be seen that NSGA-III is slightly
better than DrEA for certain WFG test problems. Similarly,
we can also observe reference vector-based RVEA has also
achieved much better results than MOEA/D-SBX. In fact, the
performance of MOEA/DD, θ -DEA, NSGA-III, and RVEA is
very close to each other on those WFG test problems.

Benefiting from the newly developed D-dominance, DrEA
can make better use of the decomposition vectors for sub-
population search. In MOEA/D-SBX, MOEA/DD, θ -DEA,
NSGA-III, and RVEA, the evolutionary path in each subregion
is explicitly defined by the decomposition vector. This kind of
explicitness is beneficial for population exploitation in some
way, but it also can inevitably damage the population’s abil-
ity to explore more areas for it always limits the population’s
search in a certain direction. In DrEA, the decomposition vec-
tors are free vectors, and thus subpopulations can make fully
use those decomposition vectors to guide their search. The
inherent parallelism of D-dominance-based selection strategy
makes each individual search by centering itself instead of the
decomposition vector, which means more explorations to be
conducted. In this way, each individual in a subpopulation can
get guidance from the decomposition vector, but the subpopu-
lation search is not restricted by this decomposition vector.
More importantly, the exploration and exploitation of each
subpopulation will vary with the evolutionary process because
of the adaptive strategy. There will be more explorations at
the beginning of evolution, and gradually more exploitations
will be involved in each subpopulation search. The proposed
decomposition-based crowding measurement can help further
diversify the subpopulations. This is where the advantages
of DrEA lies comparing with the other five representative
decomposition-based algorithms.

F. Experimental Studies on DTLZ Test Problems

In this section, we do further testing on the unscaled
DTLZ1–DTLZ4 with 5-, 8-, 10-, and 15-objective, and com-
pare DrEA with the most commonly used comparison algo-
rithm for DTLZ test Problems: NSGA-III. The performance
comparisons of the two algorithms are based on IGD-metric.
Since all the PFs of those DTLZ test problems are known
a priori, we can easily generate the reference points on PF
for IGD-metric calculation following the method in [28]. The
maximal number of generations for each test problem is kept

TABLE III
NUMBER OF GENERATIONS FOR DTLZ TEST PROBLEMS

TABLE IV
BEST, MEAN, AND WORSE OF IGD-METRIC VALUES OF DREA AND

NSGA-III IN 15 INDEPENDENT RUNS FOR DTLZ1 WITH 5-, 8-, 10-, AND

15-OBJECTIVE. BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

the same for the two comparison algorithms, which is shown
in Table III.

The simulation results of DTLZ1 test problems are shown
in Table IV, and that of the rests are shown in the supplemen-
tary material. By comparing, we can see that both DrEA and
NSGA-III have achieved very promising results, but overall
DrEA is the better one. For DTLZ1 test problem with 5-, 8-,
10-, and 15-objective, the superiority of DrEA over NSGA-III
is not very significant. DTLZ1 test problem is relatively simple
among those DTLZ series test problems and its PF is rela-
tively easy to be approximated. For DTLZ2 test problem with
5-, 8-, 10-, and 15-objective, DrEA has achieved much better
results than NSGA-III. Similar observations can also be made
for the DTLZ3 and DTLZ4 test problems with 5-, 8-, 10-, and
15-objective. The simulation results verify the effectiveness of
the proposed DrEA on MaOPs with same objective magnitude
over the PF. The reason behind this experimental results is the
stability of the normalization procedure and the effectiveness
of the D-dominance-based selection conducted in DrEA.

VI. CONCLUSION

This paper theoretically shows that the three representative
decomposition methods are actually based on the same princi-
ple. A new dominance relationship with adjustable dominant
and dominated areas is derived from the PBI decomposition,
and furthermore an adaptive D-dominance-based evolutionary
algorithm called DrEA is then presented for many-objective
optimization. DrEA decomposes an MaOP into a number of
relatively simple subproblems, and each subproblem is inde-
pendently evolved by its own customized D-dominance. A
decomposition-based crowding measurement is employed in
DrEA to further diversify those subpopulations. In such a way,
better balance between population convergence and diversity
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can be achieved. The performance of the suggested method is
validated through a series comparative experiments.

Our future work will focus on the practical applications
of the proposed D-dominance and the decomposition-based
crowding measurement method.
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