
876 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Fast and Accurate Hierarchical Clustering Based
on Growing Multilayer Topology Training

Yiu-ming Cheung , Fellow, IEEE, and Yiqun Zhang

Abstract— Hierarchical clustering has been extensively applied
for data analysis and knowledge discovery. However, the scala-
bility of hierarchical clustering methods is generally limited due
to their time complexity of O(n2), where n is the size of the
input data. To address this issue, we present a fast and accurate
hierarchical clustering algorithm based on topology training.
Specifically, a trained multilayer topological structure that fits
the spatial distribution of the data is utilized to accelerate the
similarity measurement, which dominates the computational cost
in hierarchical clustering. Moreover, the topological structure
also guides the merging steps in hierarchical clustering to
form a meaningful and accurate clustering result. In addition,
an incremental version of the proposed algorithm is further
designed so that the proposed approach is applicable to the
streaming data as well. Promising experimental results on various
data sets demonstrate the efficiency and effectiveness of the
proposed algorithms.

Index Terms— Data analysis, hierarchical clustering, incremen-
tal algorithm, time complexity, topology.

I. INTRODUCTION

CLUSTERING methods can be classified into two types:
partitional clustering [5]–[9], [26], [40] and hierarchical

clustering [10], [18], [19], [31]. Partitional clustering separates
a set of data points into a certain number of clusters to min-
imize the intracluster distance and maximize the intercluster
distance, while hierarchical clustering views each data point as
an individual cluster and builds a nested hierarchy by gradually
merging the current most similar pair of them. Compared
with partitional clustering, hierarchical clustering offers more
information regarding the distribution of the data set. Often,
the hierarchy is visualized using dendrograms, which can be
“cut” at any level to produce the desired number of clusters.
Due to the rich information it offers, hierarchical clustering has
been extensively applied to different fields, e.g., data analysis,
knowledge discovery, pattern recognition, image processing,
bioinformatics, and so on [4], [11], [21].

Manuscript received April 18, 2017; revised November 2, 2017 and
April 15, 2018; accepted June 27, 2018. Date of publication July 31, 2018;
date of current version February 19, 2019. This work was supported in part by
the National Natural Science Foundation of China under Grant 61672444 and
Grant 61272366, in part by the SZSTI under Grant JCYJ20160531194006833,
and in part by the Faculty Research Grant of Hong Kong Baptist University
under Project FRG2/16-17/051 and FRG2/17-18/082. (Corresponding author:
Yiu-ming Cheung.)

Y. Cheung is with the Department of Computer Science, Hong Kong
Baptist University (HKBU), Hong Kong, and also with the HKBU Institute
of Research and Continuing Education, Shenzhen 518057, China (e-mail:
ymc@comp.hkbu.edu.hk).

Y. Zhang is with the Department of Computer Science, Hong Kong Baptist
University, Hong Kong (e-mail: yqzhang@comp.hkbu.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2853407

In general, a traditional hierarchical clustering framework
can be summarized as follows.

Step 1: Each single data point is assigned to an individual
cluster.

Step 2: The most similar pair of clusters is found according
to a certain linkage strategy.

Step 3: The most similar pair of clusters is merged to form
a new cluster.

Step 4: Steps 2 and 3 are repeated until only one cluster
exists or a particular stop condition is satisfied.

In the above-mentioned steps, the commonly used linkage
strategies are single linkage (SL), average linkage (AL), and
complete linkage (CL), which compute the maximum, average,
and minimum similarity between the data points of two clus-
ters, respectively [27]. The traditional hierarchical clustering
frameworks with SL, AL, and CL linkages are abbreviated
as T-SL, T-AL, and T-CL hereinafter. Although these three
traditional approaches are parameterless and simple to use,
they have three major problems.

1) Their performance is sensitive to different data distrib-
ution types. T-SL “has a tendency to produce clusters
that are straggly or elongated” [17]; T-CL and T-AL
tend to produce compact and spherical-shaped clusters,
respectively.

2) All three only consider the local distance between the
pairs of data points during clustering. When overlapped
clusters exist, their performances will be influenced [37].

3) Their time complexity is O(n2), which limits their appli-
cations, particularly for large-scale data and streaming
data.

To tackle the above-mentioned three problems, various types
of hierarchical clustering approaches have been proposed in
the literature. To solve the first two problems, potential-
based hierarchical clustering approaches based on potential
theory [33] have been proposed (see [22] and [23]) where the
potential field is utilized to measure the similarity between data
points. Because this type of approach merges the data points
by considering both the global distribution, i.e., potential fields
of data points and local relationship, i.e., the exact distance
between neighbors, they show robustness when processing
data sets with different data distribution types and overlapped
clusters. Nevertheless, their time complexity is still O(n2).
To cope with the third problem, locality-sensitive hashing-
based hierarchical clustering [20] has been proposed with a
time complexity of O(nm) to speed up the closest pair search
procedure of T-SL, where m is the bucket size. However,
the setting of parameters for this approach is nontrivial, and

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7629-4648

CHEUNG AND ZHANG: FAST AND ACCURATE HIERARCHICAL CLUSTERING BASED ON GMTT 877

its clustering accuracy is generally lower than that of T-SL.
Furthermore, hierarchical clustering based on random projec-
tion (RP) [30] with time complexity of O(n(log n)2) has also
been proposed. It accelerates T-SL and T-AL by iteratively
projecting data points into different lines for splitting. In this
manner, the data set is partitioned into small subsets, and
the similarity can be measured locally to reduce computa-
tion cost. However, RP-based approaches inherit the draw-
backs of T-SL and T-AL, i.e., they have a bias for certain
data distribution types, and they cannot distinguish over-
lapped clusters well, due to approximation. To simultaneously
tackle the three problems, summarization-based hierarchical
clustering frameworks have been proposed in the literature.
Specifically, data bubble-based hierarchical clustering and its
variants [2], [3], [25], [29], [41] have been proposed to summa-
rize the data points by randomly initializing a set of seed points
to incorporate nearby data points into groups (data bubbles).
Subsequently, the hierarchical clustering is performed on the
bubbles only to avoid the similarity measurement for a large
number of original data points. In general, the performance of
the data bubble and its variants is sensitive to the compression
rate and the initialization of seed points. Our preliminary
work in [39] has addressed the sensitivity problem by training
the seed points to better summarize the data points. Never-
theless, a common shortcoming of the summarization-based
approaches is that the hierarchical relationship between data
points is lost due to summarization. In addition, none of
the above-mentioned approaches are fundamentally designed
for streaming data. Specifically, the entire clustering process
should be executed to update the hierarchy structure for each
new input, which may sharply increase the computational cost.
To solve this problem, the incremental hierarchical clustering
(IHC) approach [34] has been proposed. It saves a large
amount of computational cost by dynamically and locally
restructuring the inhomogeneous regions of the present hierar-
chy structure. Therefore, this approach performs hierarchical
clustering with a time complexity as low as O(n log n) when
the hierarchy structure is completely balanced. However, the
balance of the constructed hierarchy is not guaranteed, which
makes its worst-case time complexity still O(n2). Further-
more, because IHC is an approximation of T-SL, it will also
have a bias for certain data distribution types.

In this paper, we concentrate on: 1) addressing with the
three above-mentioned problems of traditional hierarchical
clustering frameworks and linkage strategies, and 2) proposing
a new hierarchical clustering framework for streaming data.
We first propose a growing multilayer topology training
(GMTT) algorithm to dynamically learn the spatial distribution
of data and construct the corresponding topological structure.
In the literature, topology training has been widely utilized
for partitional clustering [1], [14], [15], [28], [32], [36], [38].
However, to the best of our knowledge, it has yet to be utilized
for hierarchical clustering. We make the topology grow by cre-
ating new layers with new seeds based on existing seeds if the
existing seeds cannot represent the data set well. The growth is
continued until each node can appropriately represent the local
data distribution. As a result, the GMTT algorithm assigns
more layers and seeds to finely describe the high-density

region of data sets. Accordingly, a hierarchical clustering
framework based on GMTT is formed. Differing from our
preliminary work in [39], this framework can dynamically
create and train seeds to form a multilayer topology. With the
topology, the merging steps of hierarchical clustering are per-
formed under its guidance. Moreover, the similarity between
data points is only measured within each seed’s corresponding
subset, which can significantly reduce the computational cost.
In general, most of the traditional linkage strategies, i.e., SL,
AL, and CL, can be applied to the GMTT-based framework.
To achieve better clustering performance, a new density-based
linkage strategy is also presented. Because it simultaneously
considers the global and local data distribution information,
its clustering performance is promising. In addition,
an incremental version of the GMTT framework, denoted
as the IGMTT framework, is also presented to cope with
streaming data. In the IGMTT framework, each new input
can easily find its nearest neighbor by searching the topology
from top to bottom. Then, both the existing topology and
hierarchy are locally updated to recover the influence caused
by the input. Both the GMTT and the IGMTT frameworks
have competent performance in terms of clustering quality
and time complexity, i.e., O(n1.5). Their effectiveness and
efficiency have been empirically investigated. The main
contributions of our work are summarized as follows.

1) The GMTT algorithm is proposed for seed point train-
ing. The topology of the seed points can appropriately
represent the structural data distribution. The training is
automatic without prior knowledge of the data set, e.g.,
number of clusters, proper number of seeds, and so on.

2) A fast hierarchical clustering framework has been pro-
posed based on GMTT. According to the topology
trained through GMTT, distance measurement is locally
performed to reduce computational cost. Merging is
also guided by the topology to make the constructed
hierarchy able to distinguish the borders of real clusters.

3) A new linkage strategy called density linkage (DL)
is presented, which simultaneously considers the local
and global data distribution information to make the
clustering results robust to different data distribution
types and overlapping phenomena.

4) An incremental version of the GMTT framework,
i.e., the IGTMM framework, is provided for streaming
data hierarchical clustering. Similar to the GMTT frame-
work, it is also fast and accurate.

The rest of this paper is organized as follows. Section II
gives an overview of the existing relevant hierarchical clus-
tering approaches. In Section III, the details of the pro-
posed GMTT framework, IGMTT framework, and DL linkage
are described. Then, Section IV presents the experimental
results for various benchmark and synthetic data sets. Finally,
we draw a conclusion in Section V.

II. OVERVIEW OF EXISTING RELEVANT HIERARCHICAL

CLUSTERING METHODS

A. Potential-Based Hierarchical Clustering

The approach proposed in [23] converts the distance
between data points into potential values to measure the

878 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Algorithm 1 Potential-Based Hierarchical Clustering
Input: Data set X
Output: Dendrogram D
1: for i = 1 to n do
2: compute the potential ϕxi by Eq.(2);
3: end for
4: for i = 1 to n do
5: find xi ’s parent x p;
6: link the pair as x p −→ xi to form a part of EW T ;
7: end for
8: for i = 1 to n − 1 do
9: find and merge the pair with the shortest edge in EW T ;

10: eliminate the edge between the merged pair;
11: end for

density levels of data points. Having the potential value of
each data point, an Edge Weighted Tree (EWT) is constructed,
and the hierarchy can easily be read off from it. Suppose
that we have a data set with n data points, denoted as X =
{x1, x2, . . . , xn}. The distance between two data points xa and
xb is denoted as dist(xa, xb). The potential value of point xa

received from point xb is calculated by

�xa,xb =

⎧
⎪⎨

⎪⎩

− 1

dist(xa, xb)
if dist(xa, xb) ≥ λ

− 1

λ
if dist(xa, xb) < λ

(1)

where the parameter λ is used to avoid the singularity problem
when dist(xa, xb) is too small. The total potential value of a
data point xa is defined as the sum of the potential values it
has received from all of the other data points

ϕxa =
n∑

i=1,i �=a

�xa,xi . (2)

According to the potential values and the distances between
data points, an EWT is constructed by linking data points to
its closest point with a higher potential value than it. The
hierarchy of the data set can be read off from the EWT by
sequentially merging the linked pair with the closest distance.
The algorithm of the potential-based approach is summarized
in Algorithm 1.

B. RP-Based Hierarchical Clustering

RP-based hierarchical clustering approaches aim to partition
the entire data set into small enough subsets in which the
data points are very close to each other. In this manner,
the similarity can be measured within each subset to reduce
computational cost. In this approach, data points are randomly
projected onto different lines for splitting. After each projec-
tion, the original subset is split into two smaller subsets. After
a certain amount of splitting, each subset will contain a small
number of data points that are highly likely to be very close
to each other, and each pair of the closest data points will stay
in at least one of the subsets. The splitting is stopped when
the size of each subset is smaller than a parameter min Pts.
Finally, all the similarity values of each subset are ranked
together, and pairs of data points are merged according to

Algorithm 2 RP-Based Hierarchical Clustering
Input: Data set X
Output: Dendrogram D
1: perturb the data points;
2: while subsets with size larger than min Pts exist do
3: partition these subsets using random projection;
4: end while
5: compute distance between data points within each subset;
6: sort all the computed distances together;
7: for i = 1 to n − 1 do
8: merge the closest pair;
9: end for

the ranking. Because the procedures of the RP-based
framework with SL linkage and RP-based framework with
AL linkage are similar, both of them are summarized
in Algorithm 2.

In the algorithm, improper selection of the parame-
ter min Pts may lead to the failure of building a den-
drogram. Therefore, parameter-free versions of RP-based
approaches have also been proposed in [30], which solves
the parameter selection problem by repeatedly performing the
RP-based approaches with the different values of min Pts until
the dendrogram can be correctly constructed.

C. Incremental Hierarchical Clustering

The IHC approach was proposed for streaming data, and
it processes each input and maintains the hierarchy in three
steps: 1) search the existing data points to find the one with
the shortest distance to the new input; 2) detect the hierarchy
in a bottom-up manner and insert a new input under a proper
node; and 3) detect and restructure the hierarchy in a top-
down manner. In the IHC approach, we can judge if a node
is homogeneous or not according to its upper and lower
limitation. For a new data point xa , its nearest neighbor xb is
first located over the leaf nodes. Then, the upward detection is
performed to xb’s parent node v p . If the distance dist(xa, xb)
between xa and xb is smaller than the upper limitation and
larger than the lower limitation of v p , v p is judged to be
homogeneous after accepting xa as its child. In this case,
xa and xb are said to form a normal density region under v p ,
and xa is simply inserted into the hierarchy as v p’s children.
Similarly, if dist(xa, xb) is smaller than the lower limitation,
xa and xb will form a higher density region under v p .
Therefore, the hierarchy should be restructured by inserting
a new node with the child nodes xa and xb and parent
node v p to maintain the homogeneity of the hierarchy.
If xa and xb form a lower density region under v p , detection
should be performed upward to v p’s parent node, grandparent
node, and so on until xa is properly inserted into the hierarchy.
Due to the incorporation of xa , the homogeneity of the nodes
in layers lower than xa may also be influenced. Therefore,
a downward detection and recovery are also necessary to detect
and recover the inhomogeneous regions of the hierarchy until
no inhomogeneous region is detected. The IHC approach is
summarized in Algorithm 3.

CHEUNG AND ZHANG: FAST AND ACCURATE HIERARCHICAL CLUSTERING BASED ON GMTT 879

Algorithm 3 IHC
Input: streaming data set X
Output: Dendrogram D
1: initialize the hierarchy;
2: for each new input xa do
3: find xa’s parent v p;
4: if xa cause a higher-density region then
5: create new node as the parent node of xa and xb;
6: end if
7: if xa cause a normal-density region then
8: insert xa as v p’s child node;
9: end if

10: end for
11: detect and recover inhomogeneous regions;

III. THE PROPOSED FAST HIERARCHICAL

CLUSTERING APPROACH

This section will propose a topology training algorithm
that can gradually and automatically make a topology grow
to better represent the distribution of data. Subsequently,
a framework based on it is presented to achieve fast and
accurate hierarchical clustering. Furthermore, an incremental
version of the framework will also be presented for streaming
data hierarchical clustering.

A. Growing Multilayer Topology Training

The GMTT algorithm is presented, which trains a set of
seed points to represent the data distribution. In the beginning,
only one seed point is initialized and trained to be the physical
center of the entire data set. Obviously, one seed point alone
cannot represent the spatial distribution of the entire data set
well, especially for complex real-world data sets. To better
represent the data distribution, a number of new seed points
are initialized and trained to be the child seed points of the
original one. The new seed points are the centers of their
corresponding subsets, which are produced by splitting the
entire data set according to them. All of the newly created
seed points are linked to their parent with edges, which
indicate their affiliation. Because the seed points and their
nested affiliation structure are very similar to the neuron nodes
and the topology of multilayer neural networks, respectively,
we utilize the words “nodes” and “topology” to indicate the
seed points and their affiliation structure hereinafter. For each
new node, growing training should be performed repeatedly
until all of the existing seed points represent their subsets
well. It is expected that more nodes should be assigned
to the regions that are hard to represent well in the data
set. There are many criteria for defining a region that is
hard to represent well, e.g., inhomogeneous data distribution,
high-density data distribution, border region of clusters, and
overlapped region of several clusters. From the perspective
of hierarchical clustering, the merging of data points happens
in high-density regions at the beginning and gradually moves
to low-density regions. Moreover, the merging of the high-
density region data points dominates the processing time.
Based on this scenario, we choose to better represent the

high-density region via the GMTT algorithm. Consequently,
the structure of the trained topology is similar to the desired
hierarchy and can offer guidance to accelerate the hierarchical
clustering procedures.

Specifically, given a data set X = {x1, x2, . . . , xn} with
n data points, the topology T is trained by randomly inputting
data points from X to adjust the nodes. Each node in T is
expressed in the form of vl,p,h , where l indicates the layer of
the node in T , p is the sequence number of its parent node,
and h is its own sequential number. For simplicity, vl,p,h can
be denoted as vh if the information of its layer and parent node
is not considered in some cases. The corresponding subset of a
node vl,p,h is expressed as Xh , which contains sh data points
belonging to X . During the training, we need to decide if
the topology should grow or not. In other words, we should
decide if a node vl,p,h can represent its corresponding
subset Xh well and when to make the topology grow by
creating B child nodes for vl,p,h in layer l + 1. Here, B is
a constant referred to as the branching factor, and it controls
the number of child nodes created for each node. The nodes
that cannot represent their subset well are defined as coarse
nodes. The definitions of a full coarse node and semicoarse
node are as follows.

Definition 1: Let vl,p,h be a leaf node with a sh -point
corresponding subset. Given the branching factor B and the
upper limitation UL , the node vl,p,h is a full coarse node if
and only if sh > UL · (B − 1).

Definition 2: Let vl,p,h be a leaf node with a sh -point
corresponding subset. Given the branching factor B and the
upper limitation UL , the node vl,p,h is a semicoarse node if
and only if UL < sh � UL · (B − 1).
In the above-mentioned two definitions, UL controls the upper
bound of the size sh of vl,p,h ’s subset. For a full coarse node,
B new child nodes should be trained by randomly selecting
data points from Xh . For a semicoarse node, Bs new child
nodes should be created and trained in the same manner, where
Bs is the branching factor of a semicoarse node. During the
training, the value of Bs will dynamically change according
to the size of the semicoarse node’s corresponding subset

Bs =
⌈

sh

UL

⌉

. (3)

Supposing that vl,p,h is a full coarse node, B child nodes
{vl+1,h,t+1, vl+1,h,t+2, . . . , vl+1,h,t+B} should be initialized
from vl,p,h ’s subset Xh = {xh,1, xh,2, . . . , xh,sh }, where t is
the total number of nodes before the initialization of B new
child nodes. After the initialization, the value of t is updated
by t(new) = t(old)+ B . For an input xh,i , the winner child node
vl+1,h,w is determined among B child nodes by

w = argmin
t−B+1� j�t

γ j‖xh,i − vl+1,h, j ‖2 (4)

where γ j is the winning frequency of node vl+1,h, j among
B new child nodes. After the winner child node vl+1,h,w is
selected out, it is adjusted with a small step toward xh,i by

v
(new)
l+1,h,w = v

(old)
l+1,h,w + η · (xh,i − v

(old)
l+1,h,w

)
(5)

where η is the learning rate. The child nodes are iteratively
trained through (4) and (5) until convergence. The training

880 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Algorithm 4 Nodes Training
Input: Data set Xh , learning rate η, upper limitation UL and

branching factor B (Bs)
Output: B (Bs) new child nodes
1: initialize B (Bs) new nodes from subset Xh ;
2: while Convergence = f alse do
3: randomly select a data point xh,i from Xh ;
4: find the winner node according to Eq.(4);
5: adjust the winner node according to Eq.(5);
6: end while

Algorithm 5 GMTT Algorithm
Input: Data set X , learning rate η, upper limitation UL and

branching factor B
Output: Topology T
1: initialize a node v1,0,1 from X to be the top node of T ;
2: while existing full-coarse or semi-coarse node do
3: find a coarse node vl,p,h in T ;
4: generate B (Bs) new nodes through Algorithm 4;
5: end while

procedure of child nodes can be summarized in Algorithm 4.
After B new child nodes are created and trained for vl,p,h ,
Xh is split into B subsets. As each new child node only
represents a part of Xh , the current representation becomes
more precise. Here, we also define the concept of a fine node
to judge when to stop the growth of the topology.

Definition 3: Let vl,p,h be a child node with a sh -point
corresponding subset. Given the upper limitation UL , the
node vl,p,h is a fine node if and only if sh � UL .
When all the leaf nodes in the topology are judged as
fine nodes, the growth is stopped. The entire GMTT algo-
rithm is summarized in Algorithm 5. An example of the
GMTT algorithm is illustrated in Fig. 1, where a three-layer
topology is trained for a 20-point data set with B = 3 and
UL = 4. In the topology shown in Fig. 1, layer 1 contains
only one top node v1,0,1 with the corresponding subset X1,
which is also the entire data set X . Because s1 > UL ,
B child nodes are initialized and trained in the next layer
using data points from X1. A branch stops its growth with fine
node v2,1,3 in layer 2 because s3 � UL . Finally, the topology
stops its growth in layer 3 because all of the leaf nodes are fine
nodes, which means that the entire data set can be represented
well. It can be seen from the figure that the union of all the
leaf nodes’ subsets X3, X5, X6, X7, X8, and X9 is the entire
data set X .

Here, we also discuss why we design the GMTT algorithm
but do not directly train sufficient seed points in one layer.

1) In GMTT, the number of corresponding data points of
each leaf node will be smaller than UL due to the
GMTT. This guarantees that high-density regions have
more nodes, and low-density regions have less. However,
if we initialize a sufficiently large number of nodes once,
some nodes will be trapped locally and will not represent
the density distribution of the data well. Therefore,
GMTT is more proper for hierarchical clustering.

Fig. 1. Topology trained for a 20-points data set.

Fig. 2. Results of (a) GMTT and (b) its one-layer version.

The results of GMTT and its one-layer version are
compared in Fig. 2. It can be observed that the nodes
trained through GMTT fit the density distribution better.

2) The structure of the topology trained through GMTT is
consistent with the expected hierarchy whose nodes in
deeper layers indicate a high-density distribution of data
and vice versa. Moreover, links in the topology indicate
the affiliation between subsets of nodes, which are
similar to the links in the dendrogram. These properties
make the topology suitable for hierarchical clustering.
However, if all the seed points are trained in one layer,
they cannot offer the desired information for hierarchical
clustering.

Although the trained topology is similar to the desired den-
drogram, they still have significant differences. First, each leaf
node in the topology is the physical center of its subset but not
an exact data point. Second, a link in the topology connecting
two nodes only indicates their affiliation during the growth
of the topology but not their detailed hierarchy relationship.
Therefore, how to efficiently and effectively obtain the desired
dendrogram through further processing of the topology will be
discussed in Section III-B.

B. Fast Hierarchical Clustering Based on GMTT

From the perspective of hierarchical clustering, the con-
structed hierarchy should satisfy two properties: homogeneity
and monotonicity [24]. Suppose we cut a dendrogram hori-
zontally to produce a certain number of clusters; homogeneity
is the property that the similarity between intracluster points is
higher than that of the intercluster points. Monotonicity is the
property that the clusters produced by cutting the dendrogram
in a layer close to the bottom are more homogeneous than
the clusters produced by cutting the dendrogram in a layer
close to the top. In the topology obtained through GMTT,
because the subset of each node is a local part of their parent
node’s subset, it roughly satisfies the property of homogeneity.

CHEUNG AND ZHANG: FAST AND ACCURATE HIERARCHICAL CLUSTERING BASED ON GMTT 881

The monotonicity is also satisfied among the nodes that are
lineal consanguinity of each other, where the concept of lineal
consanguinity is defined in the following definition.

Definition 4: Let vh be a node in T . If another node vm

in T can be found by searching T in a constant direction
(bottom-up or top-down) from vh , then vh and vm are said to
be lineal consanguinity of each other.
For instance, v3,2,5 and v1,0,1 shown in Fig. 1 are lineal
consanguinity of each other, but v3,2,5 and v2,1,3 are not. Even
node v2,1,3 is in layer 2, its homogeneity is not guaranteed to
be lower than that of node v3,2,5 in layer 3 because the subset
of v3,2,5 is not a local part of v2,1,3.

To merge all of the data points according to the topol-
ogy, data points inside leaf nodes’ subsets and the subsets
themselves should be merged according to a certain linkage
strategy. The merging procedures should also comply with
the lineal consanguinity relationship between topology nodes
to exploit the homogeneity and monotonicity of the topol-
ogy. As discussed in Section I, potential-based methods have
competitive performance because they consider both the local
and global data distributions. The potential value can also
be understood as an index indicating the density level of
a data point. In other words, a very small potential value
indicates that the data point is located in a very high-density
region. Because we focus on the density distribution of data
points in this paper, we define density as the negative of
potential as defined in (1) and (2). However, computing the
density value for each data point by considering all of the
other data points is very time-consuming, especially for large-
scale data sets. To accelerate the computation, we present our
density measurement to compute the density value of data
points and nodes. The density θh,i of a point xh,i inside a
leaf node vh’s subset Xh is estimated according to both its
neighbors inside Xh and the other leaf nodes of the topology,
which can be written as

θh,i = 1

n − 1

⎛

⎝
sh∑

j=1, j �=i

ωh,i, j +
u∑

m=1,m �=h

	h,i,m

⎞

⎠ (6)

where n is the size of X and u is the total number of leaf nodes
inside the topology. ωh,i, j is the density value of xh, j received
from another data point xh, j in Xh . 	h,i,m is the density value
of xh, j received from another leaf node vm . Here, ωh,i, j and
	h,i,m are defined as

ωh,i, j = 1

||xh,i − xh, j ||2 (7)

and

	h,i,m = sm · 1

||xh,i − vm ||2 (8)

respectively.
The density
h of a leaf node vh can be written as

h = 1

n − sh

u∑

m=1,m �=h

sm · 1

||vh − vm ||2 . (9)

Accordingly, the density of a nonleaf node can be estimated
in the same manner according to all of the other leaf nodes
that are not lineal consanguinity of itself.

Fig. 3. Data points in the subsets are linked to form sub-MSTs.

Algorithm 6 GMTT Hierarchical Clustering Framework
Input: Data set X , learning rate η, upper limitation UL and

branching factor B
Output: MST M
1: train a topology T through Algorithm 5;
2: measure the density for the new child nodes according to

Eq.(9) and their corresponding data points according to
Eq.(6)-(8);

3: form sub-MSTs for the new child nodes and their corre-
sponding data points according to Eq.(10);

Based on the above-mentioned density estimation, we also
present our DL linkage to comply with the topology as follows.
For a data point xh,i inside a leaf node vh’s subset Xh , a set
of data points with higher density values than xh,i is selected
out from Xh as X

�θh,i
h = {xh, j |θh, j ≥ θh,i , j = 1, 2, . . . , sh,

j �= i}. In X
�θh,i
h , the winner xh,w with the shortest distance

to xh,i is selected out by

w = argmin{ j |xh, j∈X
�θh,i
h }||xh,i − xh, j ||2 (10)

and linked with xh,i through an edge with length
||xh,i − xh,w||2. When all of the data points in Xh are linked
with their winner points, a sub-MST has been formed for Xh .
In Fig. 3, we take the same data set and topology shown
in Fig. 1 as an example to show the sub-MSTs formed through
DL. According to the sub-MSTs, subsets should be linked to
form a complete MST. Therefore, nodes in the same layer
sharing the same parent node are also linked to form sub-MSTs
according to their density values. It is commonly recognized
that the hierarchical clustering result can be expressed in the
form of an MST instead of a dendrogram because they contain
the same information and can be converted to each other
easily [16], [17], [24]. Therefore, the hierarchical cluster-
ing task can also be converted to form an MST for our
GMTT framework with DL linkage. When sub-MSTs are
formed for all of the leaf nodes’ subsets and all of the nodes
sharing the same parent, a complete MST linking all of the
data points has been formed. The entire GMTT hierarchical
clustering framework is summarized in Algorithm 6.

Here, we also introduce how to transform the MST into
a dendrogram according to the corresponding topology and
MST in three stages.

Stage 1: Only data points belonging to leaf nodes’ subsets
are considered for merging. Specifically, for a leaf
node vh , all the pairs of linked data points in
its subset Xh are stacked together according to
the ascending order of their edge lengths. The
stacked pairs form a local merging queue (LMQ)
qh . After the LMQs: {q1, q2, . . . , qul }, are formed

882 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Fig. 4. Six LMQs: {q1, q2, . . . , q6}, are formed according to the corre-
sponding sub-MSTs in Fig. 3. At the beginning, q3(1) = p(x8, x9) is the
most similar pair among the candidates C (dashed frame). Therefore, x8 and
x9 are merged first and p(x8, x9) is removed from q3.

for all the ul leaf nodes, a candidate set
C = {q1(1), q2(1), . . . , qul (1)} containing the
pairs with the shortest edges in each LMQ is
formed. A set of lengths of the edges D =
{d1(1), d2(1), . . . , dul (1)} of the candidates is also
formed. Then, the most similar pair qg(1) that
should be merged is found by

g = argmin
1≤i≤ul

D(i). (11)

After the merging, qg(1) is removed from both
set C and qg . Subsequently, the current most
similar pair in qg is popped up into C . The above-
mentioned operations are iteratively performed
until an all-leaf-parent (ALP) node in T becomes
an all-candidate-parent (ACP) node. For a nonleaf
node, if all its child nodes are leaf nodes, it is
an ALP. When all the data points belonging to the
subsets of ALP’s child nodes are merged together
within their subsets, the ALP becomes an ACP.
Fig. 4 illustrates the merging procedure of Stage 1
using the 20-point data set from Figs. 3, and 5
shows the corresponding dendrogram. After merg-
ing the data points according to Fig. 5, an ALP
v2,1,2 becomes an ACP. Therefore, both the child
nodes of ACP and data points belong to the subsets
of all the other leaf nodes should be considered for
merging in Stage 2.

Stage 2: Because the topology only guarantees the
monotonicity of nodes that are lineal consanguinity
of each other, lengths of edges between ACP’s
leaf nodes are not guaranteed to be larger than
the edges linking unmerged data points belonging
to the subsets of all the leaf nodes. Therefore,
pairs of ACPs’ leaf nodes are viewed as merging
candidates and should be considered together with
the data point candidates for merging. Suppose
that vh is the only ACP at the beginning of
Stage 2, pairs of its leaf nodes should also be
stacked to form an LMQ Qh for node vh according
to their edge lengths. Afterward, the closest pair
of nodes Qh(1) is put into the candidate set C .
Because data points belonging to the subsets

Fig. 5. Dendrogram at the end of Stage 1.

Fig. 6. Topology at the end of Stage 2.

Fig. 7. Dendrogram at the end of Stage 2.

Fig. 8. Dendrogram at the end of Stage 3.

of ALP’s child nodes continue to be merged,
more ALPs will become ACPs in Stage 2. Because
ACPs’ child nodes also continue to be merged in
Stage 2, when all the child nodes of an ACP are
merged together, the ACP becomes a leaf node.
In Stage 2, the merging of leaf nodes and data
points is performed repeatedly until all of the
ALPs become ACPs. Fig. 6 demonstrates the
topology at the end of Stage 2. The corresponding
dendrogram is presented in Fig. 7.

Stage 3. After Stage 2, the candidate set C only contains
pairs of nodes in this stage. These nodes are finally
merged according to their edge lengths until all
of the candidates are merged together. The final
dendrogram of the 20-point data example formed
after Stage 3 is shown in Fig. 8.

The transformation algorithm is summarized in Algorithm 7.

CHEUNG AND ZHANG: FAST AND ACCURATE HIERARCHICAL CLUSTERING BASED ON GMTT 883

Algorithm 7 MST-Dendrogram Transformation Algorithm
Input: MST M , topology T trained through Algorithm 5
Output: Dendrogram D
1: generate LMQs for the subset of each leaf node;
2: generate merging candidates C;
3: while C is not empty do
4: if new ACP occurs then
5: generate LMQ for the ACP;
6: move the closest pair from the LMQ to C;
7: end if
8: merge the most closest pair in C;
9: remove the merged pair from C;

10: if the merged pair’s LMQ is not empty then
11: move the present closest pair from the LMQ to C;
12: end if
13: end while

Traditional linkages, i.e., SL, AL, and CL, can also be
applied to the GMTT framework, and their results can be
transformed into dendrograms easily. Here, we offer guidance
regarding how to apply them to the GMTT framework.

SL: Similar to the proposed DL, SL can also form an
MST for hierarchical clustering tasks. Therefore,
SL can be applied by taking the place of DL in the
GMTT framework. The MST produced by it can be
transformed into a dendrogram using Algorithm 7.

AL: Differing from DL and SL, AL merges data points
according to the average distance between the
present members of clusters and does not produce an
MST. Therefore, we apply it to directly produce the
candidate set C without forming LMQs. Whenever a
pair of objects (data points or nodes) is selected from
C for merging, AL will produce a new candidate
among the objects with the same parent node as the
merged one.

CL: CL can be applied in the same manner as AL.
When applying the three traditional linkages, nodes are viewed
as data objects and processed according to their real values.

C. Incremental Hierarchical Clustering Based on GMTT

Streaming data processing is a significant challenge for
hierarchical clustering approaches. To make the GMTT frame-
work feasible for the processing of streaming data, we present
its incremental version. We first train a coarse topology
through GMTT using the former part of inputs. Then, for
each new input, the coarse topology is dynamically updated
through the incremental version of GMTT, which is abbre-
viated as IGMTT. Specifically, for a streaming data set X
with n objects, the coarse topology is trained through the
GMTT algorithm using the former r streaming inputs of X
with the upper limitation UL and branching factor B . Then,
for each new input xi , the closest leaf node vh of xi is found
by searching T from top to bottom according to the lineal
consanguinity relationship. Subset Xh of vh incorporates the
new input, and the size sh of Xh is updated by s(new)

h =
s(old)

h + 1. If vh is judged as a coarse node, the updating is

Algorithm 8 IGMTT Hierarchical Clustering Framework
Input: Streaming data set X
Output: MST M
1: train a coarse topology T using the former r inputs;
2: for i = r + 1 to n do
3: search to find the closest leaf node vh for xi ;
4: Xh = Xh ∪ xi and s(new)

h = s(old)
h + 1;

5: if vh is a full-coarse node then
6: generate B new nodes through Algorithm 4;
7: measure the density for the new child nodes and
8: their corresponding data points;
9: form sub-MSTs for the new child nodes and their

10: corresponding data points;
11: end if
12: end for

triggered to update T by initializing and training B or Bs

new child nodes for vh . To make the IGMTT algorithm more
efficient, we choose a reasonable and efficient updating trigger
condition. That is, the updating is only triggered when a full
coarse node occurs. Otherwise, the algorithm will directly
process the next input.

In our IGMTT framework, the MST connecting all the data
points and nodes should also be updated dynamically accord-
ing to each input. Specifically, for a new input xi , the density
values of existing data points and nodes are updated using the
same trigger condition of the IGMTT algorithm for topology
training. That is, if the subset Xh of node vh is judged as a
full coarse node after accepting xi , B new child nodes are
initialized and trained for vh . The density values of the data
points belonging to the subsets of the new child nodes and
the child nodes themselves are calculated using (6) and (9).
Then, sub-MSTs of each of the new child nodes’ subsets and
the new child nodes themselves are formed according to DL.
The result of the IGMTT framework can also be transformed
into a dendrogram according to Algorithm 7. To better explain
the details of our IGMTT framework, we summarize it
in Algorithm 8.

D. Discussion and Complexity Analysis

In this section, we further discuss and analyze the capabil-
ities and potential limitations of the proposed GMTT frame-
work in terms of distribution type and dimensionality of data
sets. For the IGMTT framework, the relationship between
clustering quality and the number of data points for training
the coarse topology is also discussed.

1) Distribution Type: The proposed GMTT-DL approach
is robust to different data distribution types, especially
the overlapping type since the GMTT algorithm extracts
the structural distribution of data and the DL linkage
considers both the global and local distributions of data.
For some special distribution types, i.e., chain-shaped,
spherical-shaped, and ring-shaped distributions, its per-
formance will not be very competitive compared to some
traditional approaches that have an obvious bias for these
distributions. However, these special distribution types
will not occur individually in most of the real data sets.

884 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

By contrast, overlapping is very common in real data
sets.

2) Dimensionality: The GMTT algorithm extracts the data
distribution structure by gradually creating necessary
nodes. New nodes gradually split the data space to detect
and represent the data distribution. Due to the curse of
dimensionality, the distribution of data points will be
sparser for high-dimensional data. As a result, nodes
trained through GMTT will be less representative, and
the structural distribution information offered by the
topology may have less contribution or even negative
contribution to improve the clustering quality. However,
the curse of dimensionality will also influence the other
hierarchical clustering approaches since Euclidean dis-
tance is commonly utilized by the existing approaches.

3) Coarse Topology: The IGMTT algorithm trains a coarse
topology using the former part of streaming data.
Because it extracts the structural distribution of data and
allows fine training for the coarse topology according
to the following inputs, the size of the former part
of streaming inputs for coarse topology training will
not influence the clustering quality significantly if the
distribution of streaming data does not change with
time. The case in which the data distribution changes
over time is another challenging problem for hierarchical
clustering, which is not considered in this paper.

The above-mentioned discussion is further justified by the
experimental results in Section IV.

We also prove that the time complexity of the GMTT and
IGMTT frameworks can be optimized to O(n1.5), which is
lower than O(n2) of traditional approaches.

Theorem 1: The GMTT framework has time complexity
O(n1.5) if the upper limitation UL is set at

√
n.

Proof: When the topology T trained through GMTT is
a total imbalanced tree, we will have the worst case time
complexity. In this case, the number of nonleaf nodes is
unl = (n − UL/(B − 1)UL). From the top to the bottom of T ,
the numbers of data points for training the nonleaf nodes can
be viewed as an arithmetic sequence {n, n − (B − 1)UL, n −
2(B − 1)UL, . . . , n − (unl − 1)(B − 1)UL}. Therefore, total
number of data points for training all the nonleaf nodes is
sn = nunl − ((B − 1)UL(u2

nl + unl)/2). For each of the data
points, B nodes should be considered to find the winner node
using (4). For each nonleaf node, the training will be repeated
I times for convergence. Therefore, the time complexity for
the topology training (Algorithm 6, line 1) is O(sn B I).

According to (6)–(8), UL − 1 data points and ul − 1 leaf
nodes should be considered to measure the density for a
data point, where ul = (n/UL) stands for the number of
leaf nodes in T . For n data points, the time complexity is
O(nUL + nul). According to (9), at most ul − 1 leaf nodes
should be considered to measure the density for a node. For
unl nonleaf nodes and ul leaf nodes, the time complexity is
O(ul(unl +ul)). Therefore, the time complexity for measuring
the density for all the data points and nodes (Algorithm 6,
line 2) is O(nUL + nul + ulunl + u2

l).
For each nonleaf node, a sub-MST should be constructed

for its B child nodes. For unl nonleaf nodes in total, the time

complexity is O(unl B2). For each of the leaf nodes, a sub-
MST should be constructed for its corresponding UL data
points. For ul leaf nodes in total, the time complexity
is O(ulU2

L). Therefore, the time complexity for constructing
the MST (Algorithm 6, line 3) is O(unl B2 + ulU2

L).
The overall time complexity of the proposed GMTT frame-

work is O(sn B I + nUL + nul + ulunl + u2
l + unl B2 + ulU2

L).
Here, I is a very small constant ranging from 2 to 10 according
to the experiment. B is always set to a small positive integer,
e.g., 2–4 in the experiments. When UL is set at

√
n, the overall

time complexity can be optimized to O(n1.5). �
With the same parameter setting, the complexity of

applying SL, AL, and CL to the GMTT framework is
also O(n1.5).

Theorem 2: The IGMTT framework has time complexity
O(n1.5) if the upper limitation UL is set at

√
n.

Proof: According to the proof of Theorem 1, the time
complexity of the coarse topology training (Algorithm 8,
line 1) is O(r1.5), where r is the size of training set
and r � n.

For n inputs, the time complexity for searching the closest
leaf node (Algorithm 8, line 3) according to unl nonleaf nodes
is O(Bunln).

According to Definition 1, lines 6–10 of Algorithm 8 will
be performed once for every UL(B − 1) new inputs. In other
words, they will be triggered n/UL(B − 1) times in total.

For each trigger, B new nodes should be trained by
UL(B−1) data points and the training will be repeated I times
for convergence (Algorithm 8, line 6). Therefore, the time
complexity for n/UL(B − 1) triggers is O(nI).

For each trigger, UL − 1 data points and ul − 1 leaf nodes
should be considered to measure the density for each of
the UL(B − 1) data points; ul − 1 leaf nodes should be
considered to measure the density for each of the B new
nodes (Algorithm 8, line 7). Therefore, the time complexity
for n/UL(B − 1) triggers is O((UL + ul)n + (uln/UL)).

For each trigger, a sub-MST for the corresponding UL

data points of each of the new nodes should be formed.
Therefore, the time complexity for B new nodes should
be O(BU2

L); A sub-MST should also be formed for the B new
nodes, which has time complexity O(B2). For n/UL(B − 1)
triggers, the time complexity for the MST construction part
(Algorithm 8, line 9) is O(ULn + (Bn/UL)).

The overall time complexity of the IGMTT framework is
O(r1.5 + Bunln + nI + (UL + ul)n + (uln/UL) + ULn +
(Bn/UL)). Similar to the GMTT framework, the time com-
plexity can be optimized to O(n1.5) with UL = √

n. �
The time complexity of the proposed MST-dendrogram

transformation algorithm is analyzed as follows. For a leaf
node, the time complexity for forming LMQ for the corre-
sponding UL data points is O(U2

L). For ul leaf nodes, the time
complexity is O(U2

Lul). In each merging step, the distance
between the first pairs in ul LMQs should be compared to
find the smallest one. For n − 1 merges, the time com-
plexity is O(uln). Therefore, the overall time complexity of
the transformation algorithm is O(U2

Lul + uln). When we
set UL at

√
n, the time complexity can also be optimized

to O(n1.5).

CHEUNG AND ZHANG: FAST AND ACCURATE HIERARCHICAL CLUSTERING BASED ON GMTT 885

Fig. 9. Three synthetic data sets.

TABLE I

STATISTICS OF THE 10 DATA SETS

IV. EXPERIMENTS

Experiments were conducted in three parts: 1) study of
the parameters; 2) performance evaluation of the GMTT
framework; and 3) performance evaluation of the IGMTT
framework. All of the experiments were performed on both
benchmark and synthetic data sets with different sizes, dimen-
sions, and distribution types. All of the real data sets were
collected from the UCI Machine Learning Repository1 [13],
and the synthetic data sets, Syn A–Syn C, are shown in Fig. 9.
Statistics of the data sets is given in Table I. All of the feature
values of the 10 data sets are normalized to the interval [0, 1]
using the min-max normalization scheme for the experiments.

A. Evaluation Measures

The quality of the hierarchy produced by the proposed
GMTT framework has been measured by two indices: hier-
archy accuracy (H-Acc) [34] and the Fowlkes Mallows index
(FM-index) [12].

The H-Acc is calculated by

AccH =
∑

ci∈C ‖ε(ci) ∩ ε(hi)‖
n

(12)

where n is the number of data points in the data set X and
ci stands for the i th class of the class set C . ε(ci) and ε(hi)
denote the set of data points within class ci in X and the set of
data points under sub-hierarchy hi , respectively. hi stands for
the subhierarchy in the hierarchy H , under which the points
correspond to the points in the data set X with the class ci .
hi can be defined as

hi = argmaxh j ∈H
‖ε(ci) ∩ ε(h j)‖
‖ε(ci) ∪ ε(h j)‖ . (13)

To measure the FM-index, the constructed hierarchy struc-
ture should be cut horizontally to produce the same number
of clusters as the number of classes of the original data.

1http://archive.ics.uci.edu/ml/

Suppose that R1 is the classification result produced by the
benchmark data set, and R2 is the clustering result produced
by horizontally cutting the hierarchy, the FM-index can be
computed by

FM =
√

TP

TP + FP
· TP

TP + FN
(14)

where TP is the total number of true positives, FP is the total
number of false positives, and FN stands for a false negative.
If two clustering results R1 and R2 match completely, the
FM-index will take the maximum value 1, and vice versa.

To determine whether the performances of the proposed
approaches are significantly better than those of their coun-
terparts, we also use the Wilcoxon signed-rank test [35] to
indicate the significance of improvements. In the experiments,
we use “−” and “+” to express the acceptance and rejection of
the null hypothesis, respectively. The acceptance and rejection
of the null hypothesis indicate that the performance of our
method is not significantly better and significantly better than
that of the counterparts, respectively. For all the comparisons
in the experiments, we use the commonly used significance
level of α = 0.05.

The experiments were conducted on a desktop computer
with an Intel(R) Xeon(R) CPU with the main frequency
of 3.30 GHz and 8 GB of DDR2-667 RAM.

B. Study of the GMTT Parameters

In the proposed GMTT framework, there are three para-
meters, i.e., the branching factor B , upper limitation UL , and
learning rate η. Each of them may influence the clustering
performance in different ways. Here, we discuss them indi-
vidually and also investigate the combination of any two of
them by fixing the remaining one.

1) Branching Factor B: A too-large value of B may cause
a flat topology, which makes the topology unable to
distinguish between high-density and low-density dis-
tributions of data. Moreover, a too-flat topology cannot
offer rich structural information for hierarchical cluster-
ing. Therefore, a too-large value of B may influence
the quality of the hierarchy. By contrast, a too-small B
may make the topology too deep. Too many layers will
lead to a high computational cost for topology training.
In addition, a too-small B will split data points into large
subsets in the topology, which may incorrectly split real
clusters and yield poor clustering accuracy. Therefore,
a too-small B may influence the run time and quality of
the GMTT framework.

2) Upper Limitation UL: A too-large UL may make the
subsets too large to distinguish different clusters. How-
ever, it will accelerate the run time of GMTT framework.
A too-small UL may lead to large amounts of computa-
tion because it yields a deep topology.

3) Learning Rate η: Both a too-large and a too-small η
will lead to a high computation cost and will influence
the clustering quality. When η is too large, the training
is very unstable after each adjustment and hard to
converge. When η is set too small, training needs many

886 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Fig. 10. Performance of GMTT-DL with different B-UL value combinations on four data sets.

Fig. 11. Performance of GMTT-DL with different B-η value combinations on four data sets.

iterations to converge and will become trapped in local
optima.

To experimentally investigate the impact of any pair of
the parameters, the proposed GMTT-DL has been performed
10 times for different value combinations of each pair of
the parameters on four typical data sets: Seed, which is a
real and small data set; Urban, which is a real and high-
dimensional data set; Magic, which is a real and large-size data
set; and Syn B, which is a synthetic data set with overlapped
clusters. For each pair of parameters, the remaining one is
fixed. As a rule of thumb, the value of η was set at 0.1

when investigating the impact of the B–UL relationship.
B was set at 4 when evaluating the UL–η relationship. Accord-
ing to the analysis in Section III-D, UL was set at

√
n when

studying the B–η relationship. For all of the experiments,
B = 1 and UL = 1 are not evaluated because they make the
GMTT algorithm meaningless. Because the size of the Magic
data set is large, the parameters UL and B are evaluated
with large and small spacing steps to better indicate the
relationships between parameters. The experimental results of
B–UL , B–η, and UL–η are presented in Figs. 10–12, respec-
tively. It can be observed that our discussion regarding the

CHEUNG AND ZHANG: FAST AND ACCURATE HIERARCHICAL CLUSTERING BASED ON GMTT 887

Fig. 12. Performance of GMTT-DL with different UL -η value combinations on four data sets.

TABLE II

H-ACC OF 8 COUNTERPARTS ON 10 DATA SETS

TABLE III

FM-INDEX OF 8 COUNTERPARTS ON 10 DATA SETS

three parameters is confirmed. Moreover, the clustering quality
in terms of the H-Acc and FM-index of the GMTT framework
is very robust to different parameter value combinations except
for some extreme values, e.g., B = 2, UL = 2, η = 1, and
η = 0.001. From the run time results, it can be observed
that the run time is the lowest when the value of UL is
approximately

√
n, which also confirms the time complexity

analysis in Section III-D. According to the experimental results
and the above-mentioned discussion, we set B = 4, η = 0.1,
and UL = √

n for all of the data sets in the following
experiments.

C. Performance Evaluation of the GMTT Framework

To investigate the effectiveness of the GMTT framework,
we have compared its performance with that of the traditional

hierarchical clustering framework combined with traditional
linkage strategies, i.e., SL, AL, and CL. For each data set,
the H-Acc and FM-index were calculated to measure the
performance of all the counterparts. Because there are ran-
domization procedures in the GMTT framework, we perform
it 10 times and take the average performance as the final
result. The experimental results are given in Tables II and III.
For each data set, the best result is highlighted via boldface.
“+” and “−” beside the GMTT frameworks stand for the
Wilcoxon test results. It can be observed that the GMTT
framework obviously boosts the performance of SL, AL, and
CL on most of the 10 data sets. T-SL outperforms its GMTT
version on the Syn C data set because the data distribution
type of Syn C is chain shaped, which is preferred by SL.
The performance of T-AL is also obviously better than that

888 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

TABLE IV

H-ACC PERFORMANCE COMPARED WITH STATE-OF-THE-ART COUNTERPARTS ON 10 DATA SETS

TABLE V

FM-INDEX PERFORMANCE COMPARED WITH STATE-OF-THE-ART COUNTERPARTS ON 10 DATA SETS

of its GMTT version on the Syn B data set because the
data distribution type of Syn B is spherical shaped, which is
preferred by AL. We can also observe from the experimental
results that the performances of different linkages with the
GMTT framework are close to each other with competitive
performance on most of the data sets. This indicates that the
GMTT framework dominates the clustering performance and
that different linkage strategies will not obviously influence
the performance. In general, the GMTT framework is robust
to different linkage strategies and outperforms the traditional
one in terms of hierarchy quality.

To verify the effectiveness of the proposed GMTT-DL
approach, we have compared its performance with that of
all the other linkage strategies with the GMTT frame-
work, i.e., GMTT-SL, GMTT-AL, and GMTT-CL. Moreover,
the state-of-the-art hierarchical clustering approaches, i.e., the
potential-based framework with edge-weighted tree linkage
(P-EL) [23] and the RP-based framework with SL (RP-SL)
and AL (RP-AL), have also been compared. To make the
comparison fair, we use the autoparameter-selection version
of the RP-based approaches. The hierarchy quality of all
the counterparts in terms of the FM-index and H-Acc are
compared in Tables IV and V, respectively. Because there are
randomization procedures in the GMTT framework, the stan-
dard deviations of all the linkages with the GMTT framework
are also presented. The best and the second best results are
highlighted by boldface and underlining, respectively. It can
be observed from the experimental results that GMTT-DL
outperforms the other counterparts on most of the data sets.
Although its performance is not always the best one for all of
the data sets, its performance is still competitive. Moreover,
almost all of the winners on each data set are GMTT-based
approaches, which indicate the effectiveness of the GMTT
framework. It can also be observed from the results that
GMTT-DL can effectively cope with the overlapping problem
since most of the real data sets and the Syn A and Syn B

TABLE VI

WILCOXON SIGNED-RANK TEST BETWEEN GMTT-BASED

APPROACHES AND THE OTHER THREE COUNTERPARTS

TABLE VII

WILCOXON SIGNED-RANK TEST BETWEEN GMTT-DL AND THE

OTHER GMTT-BASED APPROACHES IN TERMS OF H-ACC

TABLE VIII

WILCOXON SIGNED-RANK TEST BETWEEN GMTT-DL AND THE

OTHER GMTT-BASED APPROACHES IN TERMS OF FM-INDEX

data sets have overlapped clusters. This is because the topology
trained through GMTT extracted the structural distribution
information of data sets and the DL considers the global
and local distribution information together. In addition,
the standard deviations indicate that all of the GMTT-based
approaches have stable performance on different data sets.
In Table VI, the experimental results of the GMTT-based
approaches and the other three state-of-the-art counterparts,
i.e., P-EL, RP-SL, and RP-AL, given in Tables IV and V are
compared by the Wilcoxon test. From the test results, we can
see that GMTT-DL and GMTT-SL are significantly better than
all of the other counterparts in terms of H-Acc and FM-index.
We also test the significance between GMTT-DL and all of
the other GMTT-based approaches in Tables VII and VIII.

CHEUNG AND ZHANG: FAST AND ACCURATE HIERARCHICAL CLUSTERING BASED ON GMTT 889

TABLE IX

H-ACC PERFORMANCE OF IGMTT-DL AND IHC ON 10 DATA SETS

Fig. 13. Run time on the Magic, Occupy, and synthetic data sets. For the
Magic and Occupy data sets, the bars from left to right stands for GMTT-DL,
P-EL, RP-SL, RP-AL, T-SL, T-AL, and T-CL, respectively.

The results indicate that GMTT-DL significantly outperforms
GMTT-SL, GMTT-AL, and GMTT-CL.

To verify the efficiency of GMTT-DL, the run times of all
of the counterparts on the two large-scale data sets, Magic and
Occupy, are compared in Fig. 13. The run times on each data
set are recorded and visualized by histograms for comparison.
To better observe the changing orientation of the run time
for all of the approaches, we also run all of the counterparts
on a synthetic data set with its size increased from 1000 to
200 000 by a step size of 20 000. From Fig. 13, we can observe
from the run time of the Magic and Occupy data sets that the
proposed approach takes much less time in comparison with
all of the other counterparts. According to the run time of
the synthetic data set with changing size, we can find that
the run times of T-SL, T-AL, and T-CL increase dramatically
with the size of the data set. Compared with them, the run
times of the four fast hierarchical clustering approaches,
i.e., GMTT-DL, P-EL, RP-SL, and RP-AL, increase obvi-
ously slower. Although the run time of GMTT-DL remains
the smallest on the synthetic data set with sizes from
1000 to 200 000, RP-SL and RP-AL have lower growth rates
than GMTT because their time complexity is lower. If the
size of the synthetic data set continues increasing, the run
times of the RP-based approaches will be smaller than that
of the proposed GMTT-DL. However, the hierarchy quality
of RP-SL and RP-AL is limited by T-SL and T-AL as
discussed in Section I. Therefore, the performance of
GMTT-DL is still competitive. Generally speaking, GMTT-DL
is very competitive compared to the state-of-the-art counter-
parts when both the hierarchy quality and processing speed
are considered in practical applications.

D. Performance Evaluation of IGMTT Framework

Furthermore, to verify the effectiveness and efficiency of
the IGMTT framework, we compared it with another popular
IHC method. The two online approaches were also performed
on all 10 data sets. Because IHC does not form a binary hier-
archy, its FM-index performance cannot be measured. There-
fore, the two online approaches are only compared in terms
of H-Acc. It can be observed from the experimental results
shown in Table IX that IGMTT-DL evidently outperforms

Fig. 14. Run time on the Magic, Occupy and synthetic data sets. For the
Magic and Occupy data sets, the left and right bars stand for IGMTT-DL and
IHC, respectively.

IHC on most of the data sets. Because IHC is an approximation
of T-SL, it has higher accuracy on the Syn C data set,
which is composed of chain-shaped clusters. As discussed in
Section III-D, high-dimensional data will influence the perfor-
mance of the GMTT framework. Therefore, the performance
of IGMTT-DL is not better than that of IHC on the Protein
data set, which has 77 attributes. According to the standard
deviation recorded in Table IX, the performance of IGMTT-DL
is obviously more stable than that of IHC on all of the data sets
since the clustering procedure of IGMTT-DL is supervised by
the topology, which reasonably represents the structural distri-
bution of data sets. For IGMTT-DL and IHC, the significance
level of the difference between their performances in terms of
H-Acc is also tested through the Wilcoxon signed-rank test.
“+” besides IGMTT-DL indicates that the H-Acc performance
of IGMTT-DL is significantly better than that of IHC.

To verify the efficiency of IGMTT-DL, its run time is
also compared with that of IHC. The experimental settings
are the same as for the efficiency verification experiment of
GMTT-DL in Section IV-C. From Fig. 14, we can see that both
the run time and growth rate of IGMTT-DL are remarkably
lower than those of IHC.

In general, IGMTT-DL can incorporate new streaming
inputs effectively and efficiently in hierarchical clustering
tasks.

V. CONCLUSION

This paper has presented a topology training algorithm,
GMTT, which can train a multilayer topological structure
for a data set to fit its density distribution. Based on the
GMTT algorithm, a hierarchical clustering framework has
been designed, featuring lower time complexity and higher
clustering quality compared to the existing approaches.
The proposed framework can remarkably boost the perfor-
mance of the existing traditional linkage strategies and has
competitive performance when combined with the proposed
DL linkage. We have analyzed that the GMTT framework
improves the time complexity of hierarchical clustering
to O(n1.5) without sacrificing the hierarchy quality. Although
three parameters should be set, its performance is robust to the
parameter settings, which makes it easily utilized in different
application domains. Furthermore, its incremental version,

890 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

IGMTT, has also been proposed to expand its application
domain. The IGMTT-based framework has the same time com-
plexity as the GMTT framework but can dynamically update
the topology and successively incorporate new inputs to update
the corresponding hierarchy structure. Experiments have
shown the promising results of the GMTT-DL and IGMTT-DL
approaches in comparison with the existing counterparts.

REFERENCES

[1] H. F. Bassani and A. F. Araujo, “Dimension selective self-organizing
maps with time-varying structure for subspace and projected clustering,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 458–471,
Mar. 2015.

[2] M. M. Breunig, H.-P. Kriegel, P. Kröger, and J. Sander, “Data bubbles:
Quality preserving performance boosting for hierarchical clustering,” in
Proc. ACM SIGMOD Conf., 2001, pp. 79–90.

[3] M. M. Breunig, H.-P. Kriegel, and J. Sander, “Fast hierarchical clustering
based on compressed data and optics,” in Proc. 4th Eur. Conf. Princ.
Data Mining Knowl. Discovery, 2000, pp. 232–242.

[4] I. Cattinelli, G. Valentini, E. Paulesu, and N. A. Borghese, “A novel
approach to the problem of non-uniqueness of the solution in hierarchical
clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 7,
pp. 1166–1173, Jul. 2013.

[5] Y.-M. Cheung, “k*-means: A new generalized k-means clustering algo-
rithm,” Pattern Recognit. Lett., vol. 24, no. 15, pp. 2883–2893, 2003.

[6] Y.-M. Cheung, “A competitive and cooperative learning approach to
robust data clustering,” in Proc. IASTED Int. Conf. Neural Netw.
Comput. Intell., 2004, pp. 131–136.

[7] Y.-M. Cheung, “A rival penalized em algorithm towards maximizing
weighted likelihood for density mixture clustering with automatic model
selection,” in Proc. 17th Int. Conf. Pattern Recognit., vol. 4, 2004,
pp. 633–636.

[8] Y.-M. Cheung, “Maximum weighted likelihood via rival penalized EM
for density mixture clustering with automatic model selection,” IEEE
Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 750–761, Jun. 2005.

[9] Y.-M. Cheung, “On rival penalization controlled competitive learning for
clustering with automatic cluster number selection,” IEEE Trans. Knowl.
Data Eng., vol. 17, no. 11, pp. 1583–1588, Nov. 2005.

[10] F. Corpet, “Multiple sequence alignment with hierarchical clustering,”
Nucl. Acids Res., vol. 16, no. 22, pp. 10881–10890, 1988.

[11] F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann, “Time-
hierarchical clustering and visualization of weather forecast ensembles,”
IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 1, pp. 831–840,
Jan. 2017.

[12] E. B. Fowlkes and C. L. Mallows, “A method for comparing two
hierarchical clusterings,” J. Amer. Statist. Assoc., vol. 78, no. 383,
pp. 553–569, 1983.

[13] A. Frank and A. Asuncion, “UCI machine learning repository,” School
Inform. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep.,
2010. [Online]. Available: http://archive.ics.uci.edu/ml

[14] S. Furao, T. Ogura, and O. Hasegawa, “An enhanced self-organizing
incremental neural network for online unsupervised learning,” Neural
Netw., vol. 20, no. 8, pp. 893–903, Oct. 2007.

[15] S. Furao, A. Sudo, and O. Hasegawa, “An online incremental
learning pattern-based reasoning system,” Neural Netw., vol. 23, no. 1,
pp. 135–143, Jan. 2010.

[16] J. C. Gower and G. J. S. Ross, “Minimum spanning trees and single
linkage cluster analysis,” Appl. Statist., vol. 18, no. 1, pp. 54–64, 1969.

[17] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

[18] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, 1967.

[19] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical clus-
tering using dynamic modeling,” Computer, vol. 32, no. 8, pp. 68–75,
Aug. 1999.

[20] H. Koga, T. Ishibashi, and T. Watanabe, “Fast agglomerative hierarchical
clustering algorithm using locality-sensitive hashing,” Knowl. Inf. Syst.,
vol. 12, no. 1, pp. 25–53, 2007.

[21] A.-A. Liu, Y.-T. Su, W.-Z. Nie, and M. Kankanhalli, “Hierarchical
clustering multi-task learning for joint human action grouping and
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 1,
pp. 102–114, Jan. 2017.

[22] Y. Lu, X. Hou, and X. Chen, “A novel travel-time based similarity
measure for hierarchical clustering,” Neurocomputing, vol. 173, pp. 3–8,
Jan. 2016.

[23] Y. Lu and Y. Wan, “PHA: A fast potential-based hierarchical agglomera-
tive clustering method,” Pattern Recognit., vol. 46, no. 5, pp. 1227–1239,
2013.

[24] F. Murtagh, “A survey of recent advances in hierarchical clustering
algorithms,” Comput. J., vol. 26, no. 4, pp. 354–359, 1983.

[25] S. Nassar, J. Sander, and C. Cheng, “Incremental and effective data
summarization for dynamic hierarchical clustering,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2004, pp. 467–478.

[26] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Proc. Conf. Adv. Neural Inf. Process. Syst.,
Dec. 2001, pp. 849–856.

[27] M. G. Omran, A. P. Engelbrecht, and A. Salman, “An overview of clus-
tering methods,” Intell. Data Anal., vol. 11, no. 6, pp. 583–605, 2007.

[28] S. S. Ray, A. Ganivada, and S. K. Pal, “A granular self-organizing
map for clustering and gene selection in microarray data,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 9, pp. 1890–1906, Sep. 2015.

[29] J. Sander, X. Qin, Z. Lu, N. Niu, and A. Kovarsky, “Automatic extraction
of clusters from hierarchical clustering representations,” in Proc.
Pacific–Asia Conf. Knowl. Discovery Data Mining, 2003, pp. 75–87.

[30] J. Schneider and M. Vlachos, “On randomly projected hierarchical
clustering with guarantees,” in Proc. SIAM Int. Conf. Data Mining,
2014, pp. 407–415.

[31] H. K. Seifoddini, “Single linkage versus average linkage clustering
in machine cells formation applications,” Comput. Ind. Eng., vol. 16,
no. 3, pp. 419–426, 1989.

[32] F. Shen and O. Hasegawa, “A fast nearest neighbor classifier based
on self-organizing incremental neural network,” Neural Netw., vol. 21,
no. 10, pp. 1537–1547, Dec. 2008.

[33] S. Shuming, Y. Guangwen, W. Dingxing, and Z. Weimin, “Potential-
based hierarchical clustering,” in Proc. 16th Int. Conf. Pattern Recognit.,
2002, pp. 272–275.

[34] D. H. Widyantoro, T. R. Ioerger, and J. Yen, “An incremental approach
to building a cluster hierarchy,” in Proc. IEEE Int. Conf. Data Mining,
2002, pp. 705–708.

[35] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[36] L. Xu, T. W. S. Chow, and E. W. M. Ma, “Topology-based clustering
using polar self-organizing map,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 4, pp. 798–808, Apr. 2015.

[37] R. Xu and D. Wunsch, II, “Survey of clustering algorithms,” IEEE
Trans. Neural Netw., vol. 16, no. 3, pp. 645–678, May 2005.

[38] H. Zhang, X. Xiao, and O. Hasegawa, “A load-balancing self-organizing
incremental neural network,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 6, pp. 1096–1105, Jun. 2014.

[39] Y. Zhang, Y.-M. Cheung, and Y. Liu, “Quality preserved data
summarization for fast hierarchical clustering,” in Proc. Int. Joint
Conf. Neural Netw., 2016, pp. 4139–4146.

[40] Z. Zhang and Y.-M. Cheung, “On weight design of maximum weighted
likelihood and an extended EM algorithm,” IEEE Trans. Knowl. Data
Eng., vol. 18, no. 10, pp. 1429–1434, Oct. 2006.

[41] J. Zhou and J. Sander, “Data bubbles for non-vector data: Speeding-up
hierarchical clustering in arbitrary metric spaces,” in Proc. 29th Int.
Conf. Very Large Data Bases, 2003, pp. 452–463.

Yiu-ming Cheung (F’18) received the Ph.D. degree
from the Department of Computer Science and
Engineering, The Chinese University of Hong Kong,
Hong Kong.

He is currently a Full Professor with the Depart-
ment of Computer Science, Hong Kong Baptist Uni-
versity, Hong Kong. His current research interests
include machine learning, pattern recognition, visual
computing, and optimization.

He is a Fellow of IET, BCS, and RSA, and
a Distinguished Fellow of IETI. He serves as an

Associate Editor for the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS, Pattern Recognition, and so on.

Yiqun Zhang received the B.Eng. degree from
the School of Biology and Biological Engineering,
South China University of Technology, Guangzhou,
China, in 2013, and the M.Sc. degree from the
Department of Computer Science, Hong Kong
Baptist University, Hong Kong, in 2014, where he
is currently pursuing the Ph.D. degree with the
Department of Computer Science.

His current research interests include machine
learning, data mining, and pattern recognition.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

