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Abstract— Multidimensional data (i.e., tensors) with miss-
ing entries are common in practice. Extracting features from
incomplete tensors is an important yet challenging problem
in many fields such as machine learning, pattern recognition,
and computer vision. Although the missing entries can be
recovered by tensor completion techniques, these completion
methods focus only on missing data estimation instead of effective
feature extraction. To the best of our knowledge, the problem of
feature extraction from incomplete tensors has yet to be well
explored in the literature. In this paper, we therefore tackle
this problem within the unsupervised learning environment.
Specifically, we incorporate low-rank tensor decomposition with
feature variance maximization (TDVM) in a unified framework.
Based on orthogonal Tucker and CP decompositions, we design
two TDVM methods, TDVM-Tucker and TDVM-CP, to learn
low-dimensional features viewing the core tensors of the Tucker
model as features and viewing the weight vectors of the CP model
as features. TDVM explores the relationship among data samples
via maximizing feature variance and simultaneously estimates the
missing entries via low-rank Tucker/CP approximation, leading
to informative features extracted directly from observed entries.
Furthermore, we generalize the proposed methods by formulating
a general model that incorporates feature regularization into
low-rank tensor approximation. In addition, we develop a joint
optimization scheme to solve the proposed methods by integrating
the alternating direction method of multipliers with the block
coordinate descent method. Finally, we evaluate our methods
on six real-world image and video data sets under a newly
designed multiblock missing setting. The extracted features are
evaluated in face recognition, object/action classification, and
face/gait clustering. Experimental results demonstrate the supe-
rior performance of the proposed methods compared with the
state-of-the-art approaches.
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I. INTRODUCTION

FEATURE extraction is a fundamental and significant topic
in many fields such as machine learning, pattern recog-

nition, data mining, and computer vision. In recent decades,
many methods for feature extraction have been developed,
such as the classical principal component analysis (PCA) [1].
In real-world, many data such as color images, videos, and
4-D fMRI data are multidimensional, i.e., tensors, and have
become increasingly popular and ubiquitous in many applica-
tions [2]. Tensor decomposition is a powerful computational
tool for extracting valuable information from tensorial data,
which can effectively perform dimensionality reduction, fea-
ture extraction, and so on.

To learn features from tensorial data, many multilinear
methods have been proposed based on tensor decomposition
[3]–[6]. There are two popular and fundamental decomposition
models: Tucker decomposition [7], which decomposes a tensor
into a core tensor multiplied by a factor matrix along each
mode, and CANDECOMP/PARAFAC (CP) decomposition
[8], [9], which factorizes a tensor into a weighted sum of rank-
one tensors. Based on the Tucker model, for example, multi-
linear PCA (MPCA) [3] is developed as a popular extension of
PCA and can directly extract features from higher order ten-
sors. Furthermore, based on CP decomposition, a semiorthogo-
nal MPCA with relaxed start (SOMPCARS) [6] improves [10]
by relaxing the orthogonality constraint and initialization on
factors. In addition, robust methods such as robust tensor PCA
(TRPCA) [11] have been well studied for learning features
from data with corruptions (e.g., noise and outliers).

In practice, some entries of tensors are often missing in the
acquisition process, costly experiments, and so on [12], [13].
The reasons for missing data are numerous. For example,
in social science, when data are collected in surveys, it is likely
that some people refuse to answer a few questions related to
personal privacy or sensitive topics, thus resulting in missing
values with arbitrary patterns [14]. In industrial applications,
some data, such as images, are corrupted with irregular pat-
terns due to the insufficient resolution of a device or the dys-
function of equipment [15]. Overall, missing data are common
in real-world [16]. In these scenarios, the feature learning
methods mentioned above cannot work well due to missing
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data. How to correctly handle missing data is a fundamen-
tal yet challenging problem in many fields [15], [17], [18],
which is critical to many real-world applications such as classi-
fication [12], [16], [19], image inpainting [20], and clustering
[21], [22]. However, to the best of our knowledge, effectively
extracting features from incomplete tensors has yet to be well
explored.

There are two possible approaches to solving the problem
of extracting features from incomplete tensors. One natural
solution is to fill in the missing values and then view the
recovered tensors as the extracted features. Many tensor com-
pletion techniques have been extended from matrix completion
(MC) cases [23], [24], which are widely used for predicting
missing data given partially observed entries and have drawn
much attention in many applications such as image/video
recovery [25], [26]. For example, Liu et al. [25] defined
the Tucker-based tensor nuclear norm by combining nuclear
norms of all matrices unfolded along each mode and pro-
posed a high-accuracy low-rank tensor completion (HaLRTC)
algorithm for estimating missing values in tensor visual data.
Jain and Oh [27] developed an alternating minimization algo-
rithm (TenALS) for tensors with a fixed low-rank orthogo-
nal CP decomposition, which yields good completion results
for incomplete data under certain conditions (e.g., a good
CP-rank [28]). Furthermore, Liu et al. [26] proposed a tensor
nuclear norm regularized CP decomposition method (TNCP)
for tensor completion by imposing the Tucker-based tensor
nuclear norm on factor matrices. Although these tensor com-
pletion methods can recover data well under typical conditions,
they focus only on tensor recovery without considering the
relationship among data samples for effective feature extrac-
tion. In addition, by treating the recovered data as learned
features, the dimension of features cannot be reduced.

Another straightforward approach is a “two-step” strat-
egy: applying tensor completion algorithms (e.g., HaLRTC)
to estimate missing entries first and then feature extraction
methods (e.g., MPCA) on the recovered tensors to learn the
features, i.e., “tensor completion methods + feature extrac-
tion methods.” For example, low-rank approximation with
nonnegative tucker decomposition (LRANTD) [4] employs
nonnegative Tucker decomposition for incomplete tensors by
incorporating low-rank representation (LRA) with nonnegative
feature extraction. LRANTD requires a tensor completion
algorithm to estimate the missing entries in the preceding LRA
step. This approach likely amplifies the approximation error as
the missing data and the features are learned in separate stages.
In addition, the reconstruction error from the tensor completion
step can deteriorate the performance of feature extraction in
the subsequent step. Moreover, the “two-step” strategy com-
bining two separate methods is usually not computationally
efficient.

On the other hand, a few supervised methods have been
proposed for classifying low-rank missing data [12], [16], and
some studies have integrated a discriminant analysis crite-
rion into low-rank matrix/tensor completion models for fea-
ture classification [29], [30]. However, these methods require
labels, which are expensive and difficult to obtain, in practice,
especially for incomplete data.

To solve the problem of feature extraction for incom-
plete tensors, we incorporate low-rank tensor decomposition
with feature variance maximization (TDVM) into a unified
framework. In this paper, we focus on two popular tensor
decompositions for TDVM and design two methods: TDVM-
Tucker and TDVM-CP based on Tucker and CP models,
respectively. These two methods are essentially deployed
under a general unsupervised model that incorporates low-
rank tensor decomposition with feature regularization (TDFR).
TDFR simultaneously estimates missing data via low-rank
approximation and explores the relationship among samples
via feature regularization. In other words, TDVM-Tucker and
TDVM-CP specify TDFR by employing low-rank Tucker/CP
decomposition for low-rank approximation and using feature
variance maximization as the feature constraint. Specifically,
TDVM-Tucker imposes the Tucker-based tensor nuclear norm
on the core tensors of Tucker decomposition with orthonor-
mal factor matrices (also known as higher order singular
value decomposition (HOSVD) [31]) while minimizing the
approximation error, and meanwhile maximizes the variance
of core tensors. Here, the learned core tensors (analogous to
the singular values of a matrix) are viewed as the extracted
features. TDVM-CP realizes the low-rank CP approximation
by minimizing the CP-based tensor nuclear norm [32] of
weight vectors and the reconstruction error based on orthogo-
nal CP decomposition, and meanwhile maximizes the variance
of learned feature vectors for feature regularization. The
weight vector of the orthogonal CP decomposition of a tensor
(analogous to the vector of singular values of the SVD of a
matrix) is viewed as the feature vector.

TDVM incorporates Tucker- and CP-based tensor nuclear
norm regularization with variance maximization on features
while estimating missing entries, which results in infor-
mative features extracted directly from observed entries.
Moreover, TDVM-Tucker aims to learn low-dimensional ten-
sorial features from high-dimensional incomplete tensors (i.e.,
tensor-to-tensor projection [10]), while TDVM-CP can extract
low-dimensional vectorial features (i.e., tensor-to-vector pro-
jection [10]). The proposed methods differ from both tensor
completion methods and “two-step” strategies as follows.

1) Tensor completion methods aim to recover the incom-
plete tensors only without exploring the relation-
ship among samples for effective feature extraction.
In contrast, TDVM methods focus on extracting low-
dimensional features instead of estimating missing
data. Moreover, TDVM utilizes a feature constraint
(feature variance maximization) to capture the rela-
tionship among samples for extracting informative
features.

2) Unlike the “two-step” strategies, which learn the features
of incomplete data via two separate stages, TDVM
simultaneously estimates missing entries and learns low-
dimensional features directly from the observed entries
in the unified framework. Thus, TDVM can extract more
informative features and reduce computational cost.

3) Compared with the supervised methods, TDVM does not
require label information during feature learning, which
is more feasible in practice.
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Fig. 1. Tucker decomposition of a third-order tensor sample Xm , where the
core tensor Cm consists of extracted features from Xm .

We employ alternating direction method of multipliers
(ADMM) [33] and block coordinate descent (BCD) to opti-
mize TDVM models. After feature extraction via TDVM,
we evaluate the extracted features on six image and video
databases for three applications: face recognition, object/action
classification, and face/gait clustering. Partial work pertaining
to TDVM-Tucker has been published in the conference ver-
sion [34] of this paper, and the main contributions of this paper
are threefold.

1) We propose two unsupervised methods, TDVM-Tucker
and TDVM-CP, for feature extraction of incomplete
tensors. The TDVM methods explore the relationship
among tensor samples via feature variance maximization
while estimating missing values by low-rank approxima-
tion, leading to informative features extracted directly
from observed entries. Moreover, we discuss the gen-
eralization of TDVM by proposing the general model
TDFR.

2) We develop an ADMM-BCD joint optimization scheme
to solve the TDVM-CP model, in which each sub-
problem of TDVM-CP can be solved in a closed
form, although its overall objective is nonconvex and
nonsmooth.

3) We evaluate the proposed methods on six tensor data
sets with newly designed multiblock missing (MbM)
settings. Tensors with multiblock data missing are not
only more general, as they cover the existing pixel-based
and block-based missing settings, but also more difficult
and practical in real-world scenarios. More importantly,
the experimental results show that the proposed methods
outperform the state-of-the-art approaches with signifi-
cant improvements.

The rest of the paper is organized as follows. We review related
preliminaries and related works in Section II. Then, we present
the proposed methods and the general model in Section III.
We report the empirical results in Section IV and conclude
this paper in Section V.

II. PRELIMINARIES AND RELATED WORK

A. Notations and Operations

The number of dimensions of a tensor is the order and each
dimension is a mode of it. A vector is denoted by a bold lower
case letter x ∈ R

I and a matrix is denoted by a bold capital
letter X ∈ R

I1×I2 . A higher order (N ≥ 3) tensor is denoted by
a calligraphic letter X ∈ R

I1×···×IN . The i th entry of a vector
a ∈ R

I is denoted by a(i), and the (i, j)th entry of a matrix
X ∈ R

I1×I2 is denoted by X(i, j). The (i1, . . . , iN )th entry
of an N th-order tensor X is denoted by X (i1, . . . , iN ), where
in ∈ {1, . . . , In} and n ∈ {1, . . . , N}. The Frobenius norm of
a tensor X is defined by �X�F = �X ,X �1/2. � ∈ R

I1×···×IN

is a binary index set: �(i1, . . . , iN ) = 1 if X (i1, . . . , iN )
is observed, and �(i1, . . . , iN ) = 0 otherwise. P� is the
associated sampling operator that acquires only the entries
indexed by �

(P�(X ))(i1, . . . , iN )

=
�
X (i1, . . . , iN ), if (i1, . . . , iN ) ∈ �

0, if (i1, . . . , iN ) ∈ �c (1)

where �c is the complement of �.
Definition 1 (Mode-n Product): A mode-n product of X ∈

R
I1×···×IN and U ∈ R

In×Jn is denoted by Y = X ×n

U� ∈ R
I1×···×In−1×Jn×In+1×···×IN , with entries given by

Yi1 ···in−1 jnin+1 ···iN = �
in Xi1 ···in−1in in+1···iN Uin , jn , and Y(n) =

UT X(n) [10].
Definition 2 (Mode-n Unfolding): It is also known as

matricization, is the process of reordering the elements of a
tensor into matrices along each mode [2]. A mode-n unfolding
matrix of a tensor X ∈ R

I1×···×IN is denoted as X(n) ∈
R

In×�n∗ 	=n In∗ .

B. Tucker and CP Decomposition

1) Tucker Decomposition: It represents a tensor Xm ∈
R

I1×I2×···×IN as a core tensor with factor matrices [2]

Xm = Cm×1U(1)×2U(2) · · ·×N U(N) (2)

where {U(n) ∈ R
In×Rn , n = 1, 2 · · · N, and Rn < In}

are factor matrices with orthonormal columns and Cm ∈
R

R1×R2×···×RN is the core tensor with lower dimension. The
Tucker-rank of an N th-order tensor X is an N-dimensional
vector, denoted as r = [R1, . . . , Rn, . . . , RN ], whose nth entry
Rn is the rank of the mode-n unfolded matrix X(n)

m of Xm .
Fig. 1 illustrates this decomposition. In this paper, Tucker-rank
is equivalent to the dimension of features (each core tensor).
Based on Tucker decomposition, Liu et al. [25] have defined
Tucker-based tensor nuclear norm.

Definition 3: Tucker-based tensor nuclear norm [25] of
a tensor X is defined as �X�∗ = �N

n=1 �X(n)�∗ =�N
n=1

�Rn
j=1 σ j , where X(n) is the mode-n unfolding matrix

of X and σ j is the singular values of the unfolded matrix.
2) CP Decomposition: It decomposes a tensor Xm ∈

R
I1×···×IN as the sum of a set of weighted rank-one tensors

Xm =
R�

r=1

dmr u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r

= Dm×1U(1)×2U(2) · · · ×N U(N) (3)

where each common factor {u(n)
r , n = 1, . . . , N} is a unit

vector with a weight absorbed into the weight vector d =
[dm1, . . . dmr , · · · dm R]� ∈ R

R , and ◦ denotes the outer prod-
uct [2]. Fig. 2 shows that CP decomposition can also be
reformulated as Tucker decomposition where the core tensor
Dm is superdiagonal, i.e., Dm(r, . . . , r) = dmr . R is the CP-
rank as the minimum number of rank-one components. In this
paper, CP-rank is equivalent to the dimension of features
(each weight vector). Based on orthogonal CP decomposition,
we have defined the CP-based tensor nuclear norm.
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Fig. 2. CP decomposition of a third-order tensor sample Xm , where the
core tensor Dm is superdiagonal and its elements {dm1, dm2, . . . , dm R} (i.e.,
feature vector dm ) are viewed as extracted features from Xm .

Definition 4: CP-based tensor nuclear norm [32] of a ten-
sor X is defined as the L1 norm of the weight vector d of its
orthogonal CP decomposition �X�CP = �d�1.

C. Reated Work
Considering the target problem of extracting features

from incomplete data, there are four categories of related
approaches, which are briefly summarized as follows.

1) Tensor Completion Approach: Tensor completion
approach is extended from the matrix case [23] and
widely used for recovering missing data. There are many
successful tensor completion methods, such as HaLRTC [25],
TenALS [27], and TNCP [20], [26], [35]–[37]. These
completion methods can yield good recovery results under
typical conditions, but they focus only on estimating missing
data instead of extracting informative features.

2) Feature Extraction Approach: Many tensor methods have
been proposed for feature extraction directly from multilinear
data, e.g., the classical MPCA [3]–[6], [11], [38]–[42]. These
methods can achieve state-of-the-art results for learning fea-
tures from complete (and noisy) tensors; however, they cannot
perform well on data with missing values.

3) Supervised Classification Approach: Some classification
algorithms have been well studied for classifying low-rank
missing data [12], [16]. In addition, few studies have integrated
a discriminant analysis criterion into low-rank matrix/tensor
completion models for classification [29], [30]. However, these
methods require labels which are expensive and difficult to
obtain in practice, especially for incomplete data.

4) Subspace Clustering Approach: Subspace clustering
models such as sparse subspace clustering (SSC) [43] were
applied in the presence of missing data in [21] and [22].
In addition, some studies have incorporated MC approaches
with subspace clustering for incomplete matrices [44], [45].
However, these algorithms do not yield good results for
learning features from incomplete tensors because they are
developed for clustering incomplete vectors/matrices.

In Section IV, we compare the proposed unsupervised meth-
ods with related state-of-the-art algorithms selected the above-
mentioned category Section II-C3 as they are supervised.

III. PROPOSED: TDVM-TUCKER AND TDVM-CP
A. Problem Definition

Given a total M tensor samples {T1, . . . ,Tm , . . . ,TM } with
missing entries in each sample Tm ∈ R

I1×···×IN . In is the
mode-n dimension. We denote T = [T1, . . . ,Tm , . . .TM ] ∈
R

I1×···×IN ×M , where M are the number of tensor samples
concatenated along the mode-(N + 1) of T . To achieve the
feature extraction (dimension reduction) objective, we aim to
directly extract low-dimensional features from the given high-
dimensional incomplete tensors T .

Remark 1: This problem is different from the case of data
with corruptions (e.g., noise and outliers), which has been well
studied in [11], [43], [46], and [47]. Missing data could be
equivalent to the corruption case only if the corruptions are
arbitrary and the indices of corruptions are known. However,
in reality, the magnitudes of corruptions are not arbitrarily
large. In other words, here, we study a different feature
extraction problem that existing methods cannot solve well.

To solve this problem, we propose an unsupervised feature
extraction approach by incorporating low-rank tensor decom-
position with feature variance maximization (TDVM). Based
on two widely used Tucker and CP decomposition models,
we develop two algorithms of TDVM as follows.

B. TDVM-Tucker: Learning Low-Dimensional Tensor
Features

We first propose a TDVM method based on orthogonal
Tucker decomposition. We impose the Tucker-based tensor
nuclear norm on the core tensors while minimizing the
reconstruction error, and meanwhile maximize the variance
of core tensors (features), i.e., incorporating low-rank Tucker
decomposition with feature variance maximization, namely,
TDVM-Tucker

min
Xm ,Cm ,U(n)

M�
m=1

1

2
�Xm − Cm×1U(1) · · · ×N U(N)�2

F

+
M�

m=1

�Cm�∗ −
M�

m=1

1

2
�Cm − C̄�2

F

subject to P�(Xm)=P�(Tm), U(n)�U(n) =I, n =1· · ·N
(4)

where {U(n) ∈ R
In×Rn }N

n=1 are common factor matrices with
orthonormal columns. I ∈ R

Rn×Rn is an identity matrix.
Cm ∈ R

R1×···×RN is the core tensor, which consists of the
extracted features of an incomplete tensor Tm with observed
entries in �. �Cm�∗ is the Tucker-based tensor nuclear norm
of Cm . C̄ = (1/M)

�M
m=1 Cm is the mean of core tensors

(extracted features).
To optimize the objective function of TDVM-Tucker using

ADMM, we apply the variable splitting technique, introduce
a set of auxiliary variables {Sm ∈ R

R1×···×RN , m = 1 · · · M},
and then reformulate (4) as follows:

min
Xm ,Cm ,Sm,U(n)

M�
m=1

1

2
�Xm − Cm×1U(1) · · · ×N U(N)�2

F

+
M�

m=1

�Sm�∗ −
M�

m=1

1

2
�Cm − C̄�2

F ,

subject to P�(Xm)=P�(Tm), Sm =Cm, U(n)�U(n) =I.

(5)

Remark 2: The objective function (5) integrates three terms
into a unified framework. The first and second term lead to
low-rank Tucker approximation that aims to minimize the
reconstruction error and obtains low-dimensional features.
Because imposing the Tucker-based tensor nuclear norm on
a core tensor Cm is equivalent to that on its original tensor
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Xm [48], we obtain a low-rank solution, i.e., Rn can be
small (Rn < In). Therefore, the feature subspace is naturally
low-dimensional. Moreover, imposing nuclear norm on core
tensors instead of original ones reduces the computational cost.
The third term (minimizing − �M

m=1(1/2)�Cm − C̄�2
F ) aims to

maximize the variance of learned features inspired by PCA.
TDVM-Tucker thus explores the relationship among tensor
samples via feature variance maximization while estimating
the missing data via low-rank Tucker approximation.

1) Derivation of TDVM-Tucker by ADMM: To facilitate the
derivation of (5), we reformulate the equation by unfolding
each tensor variable along mode-n and absorbing the con-
straints.1 Thus, we obtain the Lagrange function as follows:

L =
M�

m=1

N�
n=1

�
1

2

��X(n)
m − U(n)C(n)

m H(n)���2
F

+ ��S(n)
m

��∗ + �
Ymn, C(n)

m − S(n)
m

�
+ μ

2

��C(n)
m − S(n)

m

��2
F − 1

2

��C(n)
m − C̄(n)

��2
F

	
(6)

where H(n) = U(N)

 · · ·
 U(n+1)



U(n−1) · · · 
 U(1) ∈

R

�
j 	=n I j ×�

j 	=n R j , and μ and {Ymn ∈ R
Rn×�

j 	=n R j , n =
1, . . . , N, m = 1, . . . , M} are the Lagrange multipliers. X(n)

m ∈
R

In×�
j 	=n I j and {C(n)

m , S(n)
m , C̄(n)} ∈ R

Rn×�
j 	=n R j are the

mode-n unfolded matrices of Xm and {core tensor Cm , auxil-
iary variable Sm , mean of features C̄}, respectively.

ADMM solves the problem (6) by successively minimizing
L over {S(n)

m , U(n), C(n)
m , X(n)

m }, and then updating Ymn .
a) Update S(n)

m : Equation (6) with respect to S(n)
m is

LS(n)
m

=
M�

m=1

N�
n=1

���S(n)
m

��∗ + μ

2

��

C(n)

m + Ymn
�
μ

� − S(n)
m

��2
F

�
(7)

where S(n)
m is computed via soft-thresholding operator [49]

S(n)
m = prox1/μ



C(n)

m + Ymn
�
μ

� = Udiag

�
max σ − 1

μ
, 0

	
V�

(8)

where prox is the soft-thresholding operation and
U diag(max σ − (1/μ), 0)V� is the SVD of (C(n)

m + Ymn/μ).
b) Update U(n): Equation (6) with respect to U(n) is

LU(n) =
M�

m=1

N�
n=1

1

2
�X(n)

m − U(n)C(n)
m H(n)��2

F

subject to U(n)�U(n) = I. (9)

The minimization of (9) over the matrices {U(1), . . . , U(N)}
with orthonormal columns is equivalent to the maximization
of the following problem [50]:

U(n) = arg max trace


U(n)�X(n)

m



C(n)

m H(n)����
(10)

where trace() is the trace of a matrix, and we denote W(n) =
C(n)

m H(n)�. The problem (10) is actually the well-known
orthogonal Procrustes problem [51], whose the global optimal
solution is given by the SVD of X(n)

m W(n)�, that is,

U(n) = Û(n)(V̂(n))
�

(11)

1For simplicity, the iteration number k is omitted in the updates of all
variables in TDVM-Tucker and TDVM-CP optimization.

where Û(n) and V̂(n) are the left and right singular vectors of
SVD of X(n)

m W(n)�, respectively.

Algorithm 1 Low-Rank TDVM-Tucker
1: Input: Incomplete tensors P�(T ), �, μ, and the maximum

iterations K , feature dimension D = [R1, . . . , RN ] (Tucker-rank),
and stopping tolerance tol.

2: Initialization: Set P�(Xm) = P�(Tm ),P�c (Xm) = 0, m =
1, · · · , M; initialize {Cm}M

m=1 and {U(n)}N
n=1 randomly; ρ =

10, μmax = 1e10.
3: for k = 1 to K do
4: for m = 1 to M do
5: for n = 1 to N do
6: Update S(n)

m , U(n) and C(n)
m by (8), (11), and (13), respec-

tively.
7: Update Ymn by Ymn = Ymn + μ(C(n)

m − S(n)
m ).

8: end for
9: Update Xm by (15).

10: end for
11: If �Cm − Sm�2

F /�Cm�2
F < tol, break; otherwise, continue.

12: Update μk+1 = min(ρμk , μmax ).
13: end for
14: Output: Tensorial features: C = [C1, . . . , Cm , . . . CM ] ∈

R
R1×···×RN ×M .

c) Update C(n)
m : Equation (6) with respect to C(n)

m is

LC(n)
m

=
M�

m=1

N�
n=1

⎛
⎜⎝��X(n)

m − U(n)C(n)
m H(n)���2

F

+ μ

2

��C(n)
m − S(n)

m + Ymn
�
μ

��2
F

− 1

2

������
�

1 − 1

M

	
C(n)

m − 1

M

M�
j 	=m

C(n)
j

������
2

F

⎞
⎟⎠

(12)
setting the partial derivative ∂LC(n)

m
/∂C(n)

m to zero, we get

C(n)
m = M2

M2μ + 2M − 1

×
⎛
⎝μS(n)

m − Ymn + U(n)�X(n)
m H(n)

−
⎛
⎝�

1

M
− 1

M2

	 M�
j 	=m

C(n)
j

⎞
⎠

⎞
⎠. (13)

d) Update Xm: Equation (5) with respect to Xm is

M�
m=1

1

2
�Xm − Cm×1U(1)×2U(2) · · ·×N U(N)�2

F

subject to P�(Xm) = P�(Tm) (14)

by deriving the Karush–Kuhn–Tucker (KKT) conditions for
function (14), we can update Xm by

Xm = P�(Xm) + P�c(Cm×1U(1)×2U(2) · · · ×N U(N)). (15)

We summarize the proposed method, TDVM-Tucker,
in Algorithm 1.



1808 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Remark 3: TDVM-Tucker explores the relationship among
tensor samples via feature variance maximization while esti-
mating the missing data via low-rank Tucker approximation,
leading to low-dimensional informative features directly from
observed entries. The proposed methods differ from both ten-
sor completion methods and “two-step” strategies as follows.

1) Tensor completion methods aim to recover incomplete
tensors only without exploring the relationship among
samples for effective feature extraction. In contrast,
TDVM-Tucker focuses on extracting low-dimensional
features instead of estimating missing data. Moreover,
TDVM utilizes a feature constraint (feature variance
maximization) to capture the relationship among sam-
ples for extracting informative features.

2) Unlike the “two-step” strategies, which learn the fea-
tures of incomplete data via two separate stages,
TDVM-Tucker simultaneously estimates missing entries
and learns low-dimensional features directly from the
observed entries in the unified framework. The “two-
step” strategies can amplify the approximation error
because the missing data and the features are learned
in separate stages, and the reconstruction error from the
tensor completion step can deteriorate the performance
of feature extraction in the subsequent step. This claim
has been verified by our experimental results (as shown
in Tables I–III in Section IV-C). Therefore, TDVM-
Tucker and TDVM-CP (which is introduced in the
following) can extract more informative features within
the unified framework.

C. TDVM-CP: Learning Low-Dimensional Vector Features

We further propose another new TDVM method to learn
low-dimensional vectorial features based on CP decompo-
sition, i.e., incorporating low-rank CP decomposition with
feature variance maximization, namely TDVM-CP. Because
tensor decomposition with missing data is more challenging
than that with complete data in traditional problems, here,
we consider incorporating orthogonality into the CP model for
TDVM-CP [i.e., imposing orthogonality constraints on factors
{u(n)

r } in (3)] with the following two motivations:
1) Like HOSVD [31], CP decomposition can be regarded

as a generalization of SVD to tensors [52]. It appears
natural to inherit the orthogonality of SVD in the CP
model.

2) The orthogonality constraint is considered unnecessary
in general or even impossible in certain cases in exact CP
decomposition [53]–[55], but some studies have proved
that imposing orthogonality in CP decomposition can
transform a nonunique tensor model into a unique one
with guaranteed optimality [27], [54], [56].

Like the orthogonality used in TDVM-Tucker, we believe
that imposing orthogonality constraints can help TDVM-CP
estimate missing values and extract features better. In addition,
here, we do not use the Tucker-based nuclear norm [25];
instead, we use a new CP-based tensor nuclear norm2 [32]
to achieve low-rank CP approximation.

2For easy reading, we use �dm�1 instead of �Xm�CP in the derivation.

In other words, TDVM-CP couples orthogonal CP decom-
position with the CP-based tensor nuclear norm for the low-
rank approximation while maximizing the variance of learned
features as the feature regularization term. Thus, the objective
function of TDVM-CP is as follows:

min
Xm ,dm ,u(n)

r ,R

M�
m=1

1

2

�����Xm −
R�

r=1

dmr u(1)
r ◦ · · · ◦ u(N)

r

�����
2

F

+
M�

m=1

λ�dm�1 −
M�

m=1

1

2
�dm − d̄�2

2,

subject to P�(Xm)=P�(Tm), u(n)
r

�
u(n)

r =1, n =1 · · · N

u(n)
r

�
u(n)

q = 0, q = 1 · · · r − 1, r = 1 · · · R (16)

where �dm�1 is the CP-based tensor nuclear norm on each
weight vector, and we view the weight vector dm ∈ R

R of
the orthogonal CP decomposition (analogous to the vector of
singular values of a matrix) as the feature vector extracted
from a tensor sample Xm . d̄ = (1/M)

�M
m=1 dm is the

mean of the weight vectors (extracted features). λ > 0 is a
penalty parameter. Compared with TDVM-Tucker, TDVM-CP
can obtain much lower dimensional features because it learns
vectorial features from each tensor sample.

1) ADMM-BCD Joint Optimization for TDVM-CP: To
solve the objective function (16) which is nonconvex and
nonsmooth, we design an ADMM-BCD joint optimization
scheme. We divide all the target variables into M × (R + 1)

groups: {{dmr , u(1)
r , u(2)

r , . . . , u(N)
r }R

r=1,Xm}M
m=1, where we

optimize a group of variables while fixing the other groups,
and update one variable while fixing the other variables in
each group. After updating the R + 1 groups for each sample
using BCD, we jump to the outside loop to update all samples
iteratively using ADMM. To apply ADMM, we introduce
a set of auxiliary variables {sm ∈ R

R}M
m=1 for the weight

vectors {dm}M
m=1, i.e., sm = dm ∈ R

R, m = 1 · · · M . Then,
we formulate the Lagrangian function of (16) as follows:

L =
M�

m=1

⎛
⎝1

2

�����Xm −
R�

r=1

dmr u(1)
r ◦ · · · ◦ u(N)

r

�����
2

F

+ λ�dm�1

− 1

2
�sm − s̄�2

2 + �ym, dm − sm� + γ

2
�dm − sm�2

2

�

− η


u(n)

r
�

u(n)
r − 1

� −
r−1�
q=1

μqu(n)
r

�
u(n)

q (17)

where γ, η, {μq}r−1
q=1, and ym are the Lagrange

multipliers.
In the ADMM-BCD joint optimization, we first update the

variables {dmr , u(1)
r , u(2)

r , . . . , u(N)
r }R

r=1 of each data sample
via BCD. Thus, we formulate (17) with respect to the r th
group {dmr , u(1)

r , u(2)
r · · · , u(N)

r } as follows:

L
dmr ,u

(n)
r

= 1

2

��Xmr − dmr u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r

��2
F + λ|dmr |

+ γ

2
�dmr + ymr/γ − smr�2

2

− η


u(n)

r
�

u(n)
r − 1

� −
r−1�
q=1

μqu(n)
r

�
u(n)

q (18)
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where Xmr = Xm − �r−1
q=1 dmqu(1)

q ◦ u(2)
q ◦ · · · ◦ u(N)

q is the
residual of the approximation of each tensor sample.

a) Update u(n)
r : Equation (18) with respect to u(n)

r is

Lu(n)
r

= 1

2

��Xmr − dmr u(n)
r ◦ u(2)

r · · · ◦ u(N)
r

��2
F

− η


u(n)

r
�

u(n)
r − 1

� −
r−1�
q=1

μqu(n)
r u(n)

q . (19)

Then, we set the partial derivative of Lu(n)
r

with respect to

u(n)
r to zero and eliminate the Lagrange multipliers, and get

u(n)
r = 


Xmr × j
�
u( j )

r
�

j 	=n

��
dmr

−
⎛
⎝r−1�

q=1

u(n)
q

�
(Xmr × j {u( j )

r } j 	=n) u(n)
q

⎞
⎠�

dmr (20)

where Xmr × j {u( j )
r } j 	=n = Xmr ×1 u(1)

r · · ·×(n−1)u(n−1)
r ×(n+1)

u(n+1)
r · · · ×N u(N)

r , j = 1, 2, . . . , n − 1, n + 1, . . . , N , and we
normalize u(n)

r = u(n)
r /�u(n)

r �2. Note that we only update the
variable groups with nonzero weights (i.e., dmr 	= 0).

b) Update dmr : Equation (18) with respect to dmr is

Ldmr = 1

2

��Xr − dmr u(1)
r ◦ u(2)

r · · · ◦ u(n)
r

��2
F + λ|dmr |

+ γ

2
�dmr + ymr/γ − smr�2

2. (21)

Setting the partial derivative ∂Ldmr /∂dmr to zero, we obtain

dmr = 1

(1 + γ )



γ smr − ymr + Xr ×1 u(1)

r ×2 u(2)
r

· · · ×N u(N)
r − λ|dmr |/∂dmr

�
. (22)

According to the soft-thresholding algorithm [57] for L1
regularization, we update dmr by

dmr = shrinkt (Q) =

⎧⎪⎨
⎪⎩

Q − t (Q > t)

0 (|Q| ≤ t)

Q + t (Q < −t)

(23)

where shrink is the shrinkage operator [57], and t =
(λ/(1 + γ )), Q = (1/(1 + γ ))(γ smr − ymr + Xr ×1 u(1)

r ×2

· · · ×N u(N)
r ).

After updating {dmr , u(1)
r , u(2)

r , . . . , u(N)
r }R

r=1 by the BCD
method, we jump out of the inner loop for each tensor sample
and update the variables {sm ,Xm}M

m=1 for all tensor samples
iteratively via ADMM.

c) Update sm: Equation (17) with respect to sm is

Lsm =
M�

m=1

1

2
γ �dm + ym/γ − sm�2

2 −
M�

m=1

1

2
�sm − s̄�2

2 (24)

where ym consists of Lagrange multipliers. Then, we set the
partial derivative ∂Lsm /∂sm to zero and obtain

sm = M2

γ M2 + 1 − 2M + M2 (γ dm + ym)

+ M − 1

γ M2 + 1 − 2M + M2

M�
j 	=m

s j . (25)

d) Update Xm: Equation (16) with respect to Xm is

min
Xm

1

2

�����Xm −
R�

r=1

dmr u(1)
r ◦ u(2)

r · · · ◦ u(N)
r

�����
2

F
subject to P�(Xm) = P�(Tm) (26)

by deriving KKT conditions for (26), Xm is updated by

Xm = P�(Xm) + P�c

�
R�

r=1

dmr u(1)
r ◦ u(2)

r · · · ◦ u(N)
r

�
. (27)

Using the ADMM-BCD joint optimization, we solve each
subproblem of (16) in a closed form. Finally, we summarize
the proposed TDVM-CP in Algorithm 2.

Algorithm 2 Low-Rank TDVM-CP
1: Input: Incomplete tensors P�(T ), �, λ, feature dimension D =

R (CP-rank), maximum iterations K , and tol.
2: Initialization: Set P�(Xm) = P�(Tm), P�c (Xm) = 0, γ = 10;

Initialize {u(1)
r , u(2)

r , · · · u(N)
r }R

r=1, {dm }M
m=1 randomly.

3: for k = 1, . . . , K do
4: for m = 1, . . . , M do
5: Xmr = Xm ;
6: for r = 1, . . . , R do
7: if dmr 	= 0 then
8: Update u(n)

r and dmr by (20) and (23), respectively.
9: Xmr = Xmr − dmr u(1)

r ◦ u(2)
r · · · ◦ u(N)

r .
10: end if
11: end for
12: Update sm and Xm by (24) and (27) respectively.
13: Update ym = ym + γ (dm − sm)
14: end for
15: If �dm − sm�2

2/�dm�2
2 < tol, break; otherwise, continue.

16: end for
17: output: Vectorial features D = [d1, . . . dm , · · · dM ] ∈ R

R×M .

Remark 4: TDVM-CP is similar in spirit to TDVM-Tucker,
but it can yield features with lower dimension than TDVM-
Tucker: the former extracts low-dimensional vector features
from each data sample, while the latter aims to learn low-
dimensional tensor features from each sample. Thus, using
TDVM-CP to extract features can reduce the computational
cost and memory requirements for further applications such
as classification and clustering.

D. Computational Complexity Analysis
For TDVM-Tucker, we set the feature dimensions (Tucker-

rank) R1 = R2 · · · = RN = R for simplicity. In each itera-
tion, the time complexity of computing the soft-thresholding
operator (8) is O(M N RN+1 ). The time complexities of mul-
tiplications in (11)/(13) and (15) are O(M N R(

�N
j=1 I j )) and

O(M R(
�N

j=1 I j )), respectively. Thus, the total time complex-

ity of TDVM-Tucker is O(M(N + 1)R(
�N

j=1 I j )) in each
iteration. For TDVM-CP, the time complexity of performing
the shrinkage operator in (23) is O(R(

�N
j=1 I j ). This is also

the time complexity of computing {u(n)
r }N

n=1 and (27). Hence,
the total time complexity of TDVM-CP is O(M R(

�N
j=1 I j )

in each iteration.

E. Discussion: General Model—TDFR
The proposed TDVM-Tucker and TDVM-CP essentially can

be summarized into a general model, i.e., low-rank tensor
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decomposition with feature regularization (TDFR)

min
X ,Z

F(X , Z) + G(Z) subject to P�(X ) = P�(T ) (28)

where F(X , Z) refers to a low-rank tensor decomposition
model and G(Z) is a regularization of target features Z .
X ∈ R

I1×I2×···IN ×M is the approximation of incomplete data
(tensors) T based on observed entries indexed by �. Z is a
component of X and could be a lower dimensional tensor (e.g.,
a core tensor of Tucker model) or vector (e.g., a weight vector
of CP model) that consists of all features extracted from T .

In this paper, we specify TDFR by TDVM-Tucker and
TDVM-CP. In addition, we briefly discuss more specific cases
of TDFR. For example, considering the whole data set as
a tensor including all samples along the last mode, we can
specify TDFR as follows:

min
X ,C,U(n),Z

1

2
�X − C×1U(1)×2U(2) · · · ×N U(N)×N+1Z�2

F

+ �C�∗ − 1

2
�Z��2

F

subject to P�(X )=P�(T ), U(n)�U(n) =I, n =1· · · N

(29)

where the (N + 1)th factor matrix Z ∈ R
M×R(N+1) are viewed

as the extracted features from T = [T1, . . . ,Tm , . . .TM ] ∈
R

I1×···×IN ×M . Such usage of treating the (N + 1)th factor
matrix as features can also be found in [58] and [59].
Inspired by PCA, the third term: min −(1/2)�Z��2

F =
max trace(ZZ�), aims to maximize the variance of extracted
features. Due to space limitations, more specific cases are
discussed in Appendix A of the Supplementary Material.3

Remark 5: As TDFR simultaneously estimates missing
data via low-rank tensor approximation and explores the
relationship among samples via feature regularization (e.g.,
maximizing variance of features in TDVM), we assume that
TDFR can solve the problem of extracting features from
incomplete tensors. In addition to the two proposed methods,
there are many variants of specific cases of the general model
TDFR.

1) For the low-rank approximation F(X , Z) of (28),
we cannot only use Tucker and CP decompositions
in conjunction with the Tucker- and CP-based tensor
nuclear norm but can also consider other tensor decom-
position models such as Tensor SVD [11], [60], Tensor-
train decomposition [61], [62], etc., coupled with other
constraints such as tensor nuclear norm [11], [60] to
achieve low-rank tensor approximation.

2) For the feature regularization term G(Z), we can use
not only variance maximization for regularization such
as TDVM but also other constraints such as uncorrela-
tion or orthogonality, etc., to learn informative features.

IV. EXPERIMENTS

We evaluate the performance of the proposed TDVM-
Tucker and TDVM-CP on six real-world tensor data sets with
30%–90% missing entries under MbM settings. “MR” refers

3Supplementary Material:https://www.dropbox.com/sh/zbqyofzwc5lsd0w/
AABiDJVamrMuwwVfGUd-uvOfa?dl=0

to the missing ratio. We implement the proposed methods in
MATLAB, and all experiments are performed on a PC (Intel
Xeon(R) 4.0-GHz, 64-GB memory).

A. Experimental Setup

1) Data: We evaluate TDVM-Tucker and TDVM-CP on six
real-world data sets for three applications, including four third-
order tensors and two fourth-order tensors4:

1) For face recognition, we use two face data sets: one
is a subset of the Facial Recognition Technology Data-
base (FERET)5 [63], which has 721 face samples from
70 subjects. Each subject has 8–31 face images with
at most 15◦ of pose variation, and each face image is
normalized to an 80 × 60 gray image. The other data
set is a subset of the extended Yale Face Database
B (YaleB)6 [64], which has 2414 face samples from
38 subjects. Each subject has 59–64 near frontal images
under different illuminations and each image is normal-
ized to a 32 × 32 gray image.

2) For object/action classification tasks, we evaluate two
data sets: one is a subset of the COIL-100 image
database, which contains 100 different objects, each
viewed from 72 different angles7 [65]. The size of
each sample (totally 1000 samples) is normalized to a
64×64 gray image following [66]. The other data set is
a subset of the Weizmann action data set8 [67], which
consists of 80 videos of 8 actors performing 10 dif-
ferent actions: “bending,” “jumping,” “jumping jacks,”
“jumping in place,” “running,” “galloping sideways,”
“skipping,” “walking,” “one hand-waving,” and “two
hands waving.” Each video is resized to 32 × 22 × 10.

3) For face/gait clustering tests, we also test two data
sets: one is a subset of the AR face database [68],
which contains 1200 face images with size 55 × 40
of 100 subjects including images of nonoccluded faces,
and face occluded by scarves/glasses following [66]9;
the other data set is the gallery set (731 samples from
71 subjects) of the University of South Florida (USF)
HumanID “Gait Challenge” database10 [69]. Each gait
video sample is resized to 64 × 44 × 20.

2) Compared Methods: We compare TDVM-Tucker and
TDVM-CP with 17 methods in four categories11

4For fast evaluation, we use resized tensor samples with smaller dimensions,
while the proposed methods are applicable to original (larger) tensors without
subsampling (resizing). Refer to Appendix D of the Supplementary Material
for results on large tensors.

5http://www.dsp.utoronto.ca/ haiping/MSL.html
6http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
7http://machineilab.org/users/pengxi
8http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html
9http://machineilab.org/users/pengxi
10http://www.dsp.utoronto.ca/ haiping/MSL.html
11We have also compared with the state-of-the-art tensor SVD (t-SVD)

methods such as [70] and its combined two-step strategies. Although the t-
SVD-based tensor completion methods slightly outperform the Tucker- and
CP-based methods (such as HaLRTC and TNCP), they still give much poorer
feature extraction results than our TDVM methods. Because the proposed
methods are based on the Tucker and CP models, we do not present the
comparison against t-SVD methods here for simplicity and please refer to
Appendix C of the Supplementary Material for these results.
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1) Three Tucker-/CP-based tensor completion methods:
HaLRTC [25], TenALS [27], and TNCP [26].

2) Nine {tensor completion methods + feature extrac-
tion methods} (i.e., “two-step” strategies): HaLRTC
+ MPCA [3], TenALS + MPCA, TNCP + MPCA,
HaLRTC + SOMPCARS [6], TenALS + SOMPCARS,
TNCP + SOMPCARS, HaLRTC + LRANTD [4],
TenALS + LRANTD, TNCP + LRANTD.

3) One robust tensor feature learning method: TRPCA [11].
4) Four clustering methods (used for the comparison of

clustering with missing data): SSC [43], zero-fill + SSC
(ZF + SSC) [21], SSC by columnwise expectation-based
completion (SSC-CEC) [21], and sparse representation
with missing entries and MC (SRME-MC) [22].

We compare the 13 methods of the first three categories
with respect to face recognition and object/action classification
tasks, and compare all 17 methods in face/gait clustering tests.
After feature extraction, we use the nearest neighbors classifier
(NNC) to evaluate the extracted features for face recognition
and object/action classification. For face/gait clustering tests,
we use the K -means [71] to cluster the features extracted by
the first 13 methods and use a spectral clustering technique as
a postprocessing step for the four subspace clustering methods.

3) Multiblock Missing Setting: In this paper, we design an
MbM setting to generate random missing patterns of tensors.
According to the data sample size, we use a set of tensorial
blocks with different sizes as missing blocks to generate
missing entries randomly in each tensor sample. We progress
from the largest missing blocks to the smallest missing blocks
to generate missing patterns until the required ratio of missing
entries is achieved. For example, we can use a random set of
missing blocks {32×20×10, 20×15×5, 4×3×4, 1×1×1}
to obtain an incomplete USF gait database (sample size
64 × 44 × 20) with 50% missing entries. We first use the k
largest (32×20×10) blocks to create missing entries randomly
until the (k + 1)th largest block exceeds the required MR
(e.g., k = 5); then, we use the p second largest (20 × 15 × 5)
blocks until the (p + 1)th second largest block exceeds the
required MR (e.g., p = 12). We continue by using the s third
largest (4×3×4) blocks (e.g., s = 25) to generate the missing
data successively. Finally, we use the q smallest missing blocks
with the smallest size (e.g., q = 70) to make up the remaining
missing region. Thus, we use (k + p + s + q) missing blocks
of different sizes to generate an incomplete USF gait tensor
sample with 50% missing entries. Here, these missing blocks
can be overlapped (i.e., the values of k, p, s, andq are different
in different samples) and the missing blocks are distributed
randomly in each tensor sample. Hence, the irregular missing
shapes (positions of missing data, i.e., �) are different in
each tensor sample, while the total number of missing entries
is the same. Nevertheless, one can set any types of MbM
sets with multiple blocks of different sizes under the MbM
setting. Fig. 3 illustrates the data samples with missing entries
generated by the proposed MbM setting.

Remark 6: The MbM setting generates different irregular
missing shapes (missing patterns) in tensor samples, which is
more general and practical in real-world applications. MbM
setting with only one type of block (with size = 1) is

Fig. 3. Examples of (a) one sample of FERET database and (b) four
frames of the first video sample (20 frames) of USF gait database, with
{30%, 50%, 70%, 90%} missing entries generated by MbM settings.

equivalent to the pixel-based missing (uniformly selecting MR
(e.g., MR = 50%) pixels (entries) from each tensor sample
as missing at random) which is widely used in matrix/tensor
completion fields. MbM setting with only one type of block
(with size > 1) is equivalent to the block-based missing setting
(randomly selecting a single block entry of each tensor sample
as missing) which is also commonly used in missing data
imputation. In other words, existing missing data settings are
special cases of our MbM setting. Intuitively, handling data
with general MbM is more difficult than that with pixel-
based missing and block-based missing if the number of
missing entries is the same. The reason is that the MbM
setting is somehow close to the nonrandom missing setting,
especially when MR is higher (e.g., when MR= 90%, some
whole rows/columns of images/videos are missing as shown
in Fig. 3), although the MbM setting is essentially random
block missing with overlapping.

4) Parameter Settings: We set the maximum iterations
K = 500, tol = 1e − 5 for all methods, although
our methods usually converge within 10 iterations.
For Tucker decomposition-based methods, namely,
TDVM-Tucker and LRANTD, we set the feature
dimension D = [R1, R2, . . . , RN ] (Tucker-rank) = round
(1/2 × ([I1, I2, . . . IN ])) for each tensor sample. For CP
decomposition-based methods, namely, TDVM-CP, TenALS,
and TNCP, we set D = R (CP-rank) = round (min{1/2 ×
mean([I1, I2, . . . , IN ]), min([I1, I2, . . . , IN ])}) for each
sample. For other parameters of the compared methods,
we have tuned the parameters based on the original papers
to obtain the best results under same experimental settings.
On the other hand, we further evaluate extracted features
for classification via NNC, in which we randomly select
L = {1, 7} extracted feature samples from each subject of
FERET for training in NNC. Similarly, we set L = {5, 50},
{1, 8}, and {1, 7} on the YaleB, COIL-100, and Weizmann
data sets, respectively.
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Fig. 4. Classification results of Weizmann with 30%–90% missing entries
generated by seven different MbM settings via TDVM-Tucker and TDVM-CP
(feature dimension D = {16 × 11 × 5, 10}, respectively). (a) TDVM-Tucker
on Weizmann with MbM settings. (b) TDVM-CP on Weizmann with MbM
settings.

B. Analysis of Different (Parameter) Settings and
Convergence

1) Effect of Different Multiblock Missing Settings: Here,
we study the effect of applying TDVM-Tucker and TDVM-
CP to data sets with different MbM settings. We randomly
set seven MbM sets using different types of missing blocks to
generate missing pattern on the Weizmann database to obtain
incomplete Weizmann data, i.e., MbM set 1 using only one
type of block with size {8 × 6 × 3}, which also refers to the
commonly used block-based missing setting; MbM set 2 using
two types of blocks: {5×4×8, 7×3×2}; MbM set 3 using three
types of blocks: {8×5×3, 3×5×2, 2×2×2}; MbM set 4 using
four types of blocks: {10×8×6, 4×7×5, 3×3×3, 1×1×1};
MbM set 5 using four types of blocks: {15 × 7 × 3, 3 × 13 ×
9, 12×12×4, 2×2×2}; MbM set 6 using five types of blocks:
{12×6×10, 8×5×4, 4×7×5, 2×3×4, 2×2×2}; and MbM
set 7 using only one type of block with size = 1 (1 × 1 × 1),
which is equivalent to the pixel-based missing setting widely
used in matrix/tensor completion. Using the seven MbM sets,
we generate an incomplete Weizmann database (32 × 22 ×
10 × 80) with 30%–90% missing entries. TDVM-Tucker and
TDVM-CP directly extract 16 × 11 × 5 × 80 and 10 × 80
features from these incomplete tensors, respectively, and these
features are further evaluated via NNC using L = 7 video
feature samples per subject (each subject has eight samples)
as training.

Fig. 4 shows that on the Weizmann data set with various
missing patterns using different random MbM sets, both
TDVM-Tucker and TDVM-CP consistently yield good results.
Two cases are particularly worth mentioning. On the Weiz-
mann data set with MbM set 1 and set 7, TDVM-Tucker
and TDVM-CP can achieve better classification results than
other cases (MbM set 2–6), especially when MR >70%. This
verifies our claim mentioned in Remark 6: handling data
with the MbM setting which uses multiple missing blocks
(MbM set 2–6) is more difficult than that with existing block-
based missing (MbM set 1) and pixel-based missing (MbM
set 7) settings. For general MbM settings (MbM set 2–6),
TDVM-Tucker and TDVM-CP can obtain similar results with
an acceptable deviation of classification accuracy. On the
other hand, using these MbM sets with different types of
missing blocks, the achieved MRs are likely slightly different,
especially for these MbM sets without size = 1 block to
make up the remaining missing entries. For example, with

Fig. 5. Classification results on Weizmann with 30%–90% missing entries
(MbM set = {10×8×6, 4×7×5, 3×3×3, 1×1×1}) via TDVM-Tucker and
TDVM-CP with seven different feature dimensions. (a) TDVM-Tucker with
different feature dimensions. (b) TDVM-CP with different feature dimensions.

Fig. 6. Classification results on Weizmann with 50% missing entries (MbM
set ={10×8×6, 4×7×5, 3×3×3, 1×1×1}) via TDVM-Tucker and TDVM-
CP with 11 different values of μ and λ, respectively. (a) TDVM-Tucker with
different μ. (b) TDVM-CP with different λ.

MbM set 5, we actually obtain Weizmann with 29.94%–
89.92% instead of exact 30%–90% missing entries because
of the sizes of the missing blocks. This slight difference of an
actual number of missing entries can also slightly affect the
classification results, leading to an increase in the deviation of
classification accuracy under different MbM settings.

In short, the proposed TDVM-Tucker and TDVM-CP are
not highly sensitive to the missing patterns overall and consis-
tently yield good results under various MbM settings. Thus,
in the following tests, we test data sets with four types of
missing blocks in MbM settings for simplicity, and each MbM
set includes the size = 1 block to ensure the total number of
missing entries is the same under different MbM settings.

2) Effect of Different Feature Dimensions: We study the
effect of different feature dimensions used in TDVM-Tucker
and TDVM-CP for feature extraction on an incomplete Weiz-
mann database. Fig. 5 shows that, with different dimen-
sions of features, TDVM-Tucker and TDVM-CP yield similar
classification results stably on the whole, except in the case of
TDVM-Tucker with D7 = 2 × 2 × 2 (i.e., only eight features
are extracted from each 32×22×10 video) where the number
of features is too limited to achieve good results. TDVM-
CP obtains much fewer learned features, but it consistently
achieves good results. On the other hand, as TDVM-Tucker
and TDVM-CP are based on the orthogonal Tucker and CP
models, respectively, the dimension of effective features for
TDVM-Tucker is upper bound by the data dimension in each
mode, and that of TDVM-CP is limited by the minimum
sample dimension. Thus, setting {D1 = 30 × 30 × 30 >
32 × 22 × 10} for TDVM-Tucker and {D1 = 32, D2 =
21, D3 = 15 > 10 = min [32, 22, 10]} for TDVM-CP leads to
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Fig. 7. Convergence curves of TDVM-Tucker and TDVM-CP in terms of
relative error—�Gm −Sm�2

F /�Gm�2
F and �dm − sm�2

2/�dm�2
2, respectively,

on Weizmann with 50% missing entries (MbM set = {10 × 8 × 6, 4 × 7 ×
5, 3 × 3 × 3, 1 × 1 × 1}). (a) TDVM-Tucker. (b) TDVM-CP.

a slight deterioration of classification performance, especially
in the cases of Weizmann with higher MR (e.g., MR = 90%),
as shown in Fig. 5(a) and (b), respectively.

In short, the proposed methods are not sensitive to the
feature dimensions. Since a larger feature dimension will lead
to higher computational costs and memory requirements, and
we aim to learn low-dimensional features, we thus set D =
round (1/2 × ([I1, I2, . . . IN ])) and D = round (min{1/2 ×
mean([I1, I2, . . . , IN ]), min([I1, I2, . . . , IN ])}) for TDVM-
Tucker and TDVM-CP by default, respectively.

3) Sensitivity Analysis of Parameter μ and λ: Fig. 6 shows
the classification results given features extracted by TDVM-
Tucker and TDVM-CP with 11 different values for the penalty
parameters μ and λ, respectively, on Weizmann videos with
50% missing entries via an MbM set. Fig. 6(a) shows that
TDVM-Tucker yields good results stably with different values
of μ. Fig. 6(b) shows that the feature extraction performance
of TDVM-CP is also stable and not sensitive to the values of
λ, except for the case in which λ = 1. In other words, the
proposed methods are not sensitive to the parameters overall.
In addition, as the parameters ρ and γ can be fixed (fix ρ = 10,
γ = 1) within Algorithms 1 and 2, respectively, based on
preliminary studies, we thus do not examine them here.

In short, we do not need to carefully tune the parameters μ
and λ for TDVM-Tucker and TDVM-CP, respectively. In this
paper, we fix μ = λ = 10 for all tests.

4) Convergence: We study the convergence of TDVM
in terms of the relative error on a Weizmann data set
with 50% missing entries via an MbM set. Fig. 7 shows
that TDVM-Tucker converges within 10 iterations while
TDVM-CP requires more iterations (about 20) to reach con-
vergence. If set tol = 1e − 5, our methods converge fast with
around 5–10 iterations.

C. Evaluation of Extracted Features from Incomplete Tensors

To save space, we report the results of six real tensor
data sets with {30%, 50%, 70%, 90%} missing pixels under
random MbM settings in Tables I–III.12 We highlight the best
results in bold font and underline the second best results, and
we use “–” to indicate that the method diverges (e.g., TenALS)
in some cases. The average results of 10 runs are reported.

12The proposed methods are based on low-rank decompositions and thus
can yield good results on tensors with good low-rank structure even when the
MR reaches 90%. However, if too many (e.g., 95%, 99%) entries are missing,
the performance of our methods will drop dramatically.

1) Face Recognition: Table I shows that TDVM-Tucker
and TDVM-CP consistently outperform all the methods com-
pared in all cases. Specifically, TDVM-Tucker and TDVM-CP
directly learn 40 × 30 × 721 features and 35 × 721 features
from FERET (80 × 60 × 721) with {30%, 50%, 70%, 90%}
missing pixels via a random MbM set ({32 × 32, 10 × 4, 8 ×
16, 1×1}). As shown in the left half of Table I, TDVM-Tucker
and TDVM-CP share the two best recognition results, while
TDVM-CP shows greater advantages, particularly when the
number of training features is smaller (e.g., L = 1). As the
MR increases, the performance of the compared methods drops
more quickly than that of our methods, which retain high accu-
racy. When there are 90% missing entries, TDVM-Tucker and
TDVM-CP outperform all other methods by {60.9%, 59.4%}
on average, respectively.

As reported in the right half of Table I, TDVM-Tucker
and TDVM-CP outperform the 13 competing methods by
29.1%–69.2% and 47.3%–75.5% on average, respectively.
TDVM-CP consistently yields the best results in all cases,
especially in the case of L = 5 (use only 5 fea-
ture samples per subject for training), where the method
outperforms the second best performing method (TDVM-
Tucker) by {36.7%, 45.8%, 44.4%, 36.8%} on YaleB with
{30%, 50%, 70%, 90%} missing entries, respectively. Here,
TDVM-CP only uses 16 × 2414 features extracted directly
from the YaleB database (32×32×2414). Moreover, HaLRTC,
TRPCA, and TNCP perform better than other existing methods
on the whole, although their results are much worse than ours.

2) Object/Action Classification: We further evaluate the
proposed methods using COIL-100 object images (64 × 64 ×
1000) and Weizmann action videos (32 × 22 × 10 × 80) for
object and action classification, respectively. Table II shows
that TDVM-Tucker and TDVM-CP outperform the compared
methods in all cases. Specifically, TDVM-Tucker outper-
forms the other methods by {34.7%, 38.5%, 50.8%, 63.9%}
in cases of COIL-100 with {30%, 50%, 70%, 90%} miss-
ing values, respectively, where TDVM-CP outperforms these
compared methods by {32.8%, 39.1%, 45.3%, 60.8%}, respec-
tively, using 32 features learned from each object sample.
These results clearly demonstrate that, with more missing
entries, the proposed methods show more superiority, par-
ticularly when the missing rate reaches 90% where the
performance of the other methods drops sharply. This obser-
vation is further confirmed in the cases of Weizmann action
videos. Although some compared methods such as HaLRTC
+ LRANTD, TNCP, and TNCP + LRANTD also achieve
good results, especially in the cases of MR ≤ 70%, these
state-of-the-art methods cannot maintain good performance
with increasing missing data (MR > 70%). In this scenario,
TDVM-CP achieves the best performance although it extracts
only 10 features from each video sample. Moreover, TenALS
and its combined “two-step” strategies fail to work on the
higher order data set (Weizmann).

3) Face/Gait Clustering: For clustering tasks, we test
on AR facial images (55 × 40 × 1200) and USF gait
videos (64 × 44 × 20 × 731). To measure the clustering
performance, we adopt two metrics: normalized mutual infor-
mation (NMI) and clustering accuracy (ACC). Table III shows
that TDVM-Tucker and TDVM-CP still outperform all other
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TABLE I

FACE RECOGNITION RESULTS [AVERAGE RECOGNITION RATES (IN PERCENTAGE)] ON THE FERET AND YALEB DATABASE
WITH {30%, 50%, 70%, 90%} MISSING ENTRIES UNDER MBM SETTINGS

TABLE II

CLASSIFICATION RESULTS (AVERAGE CLASSIFICATION ACCURACIES (IN PERCENTAGE)] OF THE COIL-100 OBJECT IMAGES AND
WEIZMANN ACTION VIDEOS WITH {30%, 50%, 70%, 90%} MISSING ENTRIES UNDER MBM SETTINGS

methods, including the four state-of-the-art clustering meth-
ods. Although these subspace clustering methods have shown
good performance in the original papers, they do not achieve
good results (and even fail to work on a few cases in which MR
≥ 70%) on these incomplete tensors probably because they
are not applicable in this scenario (i.e., tensors with MbM).
Here, TDVM-Tucker achieves the best clustering results in
all cases followed closely by TDVM-CP. In terms of NMI,
TDVM-Tucker and TDVM-CP outperform the other methods
by at least 36.7% and 33.5% on average on the AR data set,
and this improvement increases to over 40.5% and 37.5% on
average on the USF gait database, respectively. In terms of
ACC, the results of the 17 compared methods are worse than
those of measuring in NMI, while TDVM-Tucker and TDVM-
CP achieve much better clustering accuracy, particularly on the
gait videos with 55.8% and 50.1% improvements on average,
respectively.

4) Time Cost: We report the average time cost of fea-
ture extraction in Appendix B of the Supplementary Mate-
rial. TDVM-Tucker is faster than the compared methods in
most cases although our implementations are not optimized
for efficiency as our focus here is accuracy. TDVM-CP
is slightly slower than TDVM-Tucker because it requires
more iterations to achieve convergence. In addition, HaL-
RTC, TNCP, and TRPCA are more efficient than other
existing methods, while certain “two-step” strategies such as
TenALS + MPCA/LRANTD are very time consuming (more
than 50 times slower than TDVM). Nevertheless, the efficiency
can be improved, for example, by using sparse implementa-
tions in the future work.

D. Summary of Experimental Results
1) The proposed methods, TDVM-Tucker and TDVM-

CP, outperform the 17 competing methods with
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TABLE III

CLUSTERING RESULTS [AVERAGE NMI AND CLUSTERING ACCURACY (ACC) (IN PERCENTAGE)] ON THE AR FACIAL IMAGES
AND USF GAIT VIDEOS WITH {30%, 50%, 70%, 90%} MISSING ENTRIES UNDER MBM SETTINGS

15.3%–75.5% improvements in all cases of face recogni-
tion, object/action classification and face/gait clustering
on six real-world image and video data sets. With more
missing entries, our methods show more advantages with
much better results than other methods. These results
verify the effectiveness and the superiority of incorporat-
ing low-rank tensor decomposition with feature variance
maximization.

2) TDVM-Tucker and TDVM-CP consistently achieve
good results regardless of various MbM settings and
parameters. In addition, our methods also demonstrate
its stability and superiority with respect to feature
dimension reduction, benefitting from low-rank
(low-dimensional) tensor decomposition. Although
TDVM-CP yields the best results in fewer cases
than TDVM-Tucker, it extracts low-dimensional
vector features resulting in more dimensionality
reduction. TDVM-CP, therefore, not only provides
informative features but also reduces more time
cost and memory space for further application
(e.g., classification).

3) HaLRTC, HaLRTC + LRANTD, and HaLRTC + SOM-
PCARS are the best performing existing algorithms
on the whole in Tables I–III, respectively. TNCP and
TNCP + LRANTD also achieve the best results in
some cases, while TenALS shows much worse per-
formance (and even fails to work) than HaLRTC and
TNCP. Nevertheless, the proposed methods outperform
these tensor completion methods significantly. That sup-
ports our prediction: tensor completion methods only
focus on recovering missing data and do not explore
the relationship among samples for effective feature
extraction.

4) Although a few “two-step” strategies show slight
improvement in some cases, more “two-step” strate-

gies (e.g., TNCP + SOMPCARS, TenALS + MPCA/
SOMPCARS) perform worse than when using only the
tensor completion methods (e.g., TNCP and TenALS)
in most cases with high computational costs. That con-
firms our assumption, the reconstruction error from the
completion step can deteriorate performance in feature
extraction step, and “two-step” strategies usually work
slowly. Moreover, although TRPCA is the state-of-the-
art robust feature learning method for corrupted tensors,
it does not perform well on these incomplete tensors as
we predicted.

5) Although SSC, SSC-CEC, ZF + SSC, and SRME-MC
have achieved good clustering results shown in the orig-
inal papers, they are not applicable to these incomplete
tensors with irregular missing patterns via MbM settings,
and even fail to work in a few cases in which MR
≥ 70% as shown in Table III. This probably because
these subspace clustering methods cannot handle this
scenario as we discussed with the authors. In addition,
these results also supports our claim: the MbM setting
is more general and difficult than existing widely used
pixel-based and block-based missing settings (e.g., used
in the tensor completion and SSC methods), which is
also verified in Section IV-B1.

V. CONCLUSION

In this paper, we have proposed two unsupervised methods,
TDVM-Tucker and TDVM-CP, to solve the problem of fea-
ture extraction from incomplete tensors, based on orthogonal
Tucker and CP decompositions, respectively. We first pro-
pose the TDVM approach that incorporates low-rank TDVM
into the unified framework. Focusing on orthogonal Tucker
and CP decompositions, we have further proposed TDVM-
Tucker that learns low-dimensional tensor features viewing
the core tensors as features and TDVM-CP which extracts
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low-dimensional vector features viewing the weight vectors as
features. TDVM-Tucker and TDVM-CP explore the relation-
ship among data samples via feature variance maximization
while estimating the missing entries via low-rank Tucker/CP
approximation. We further discuss the generalization of the
proposed methods by formulating the general model TDFR.
In addition, we have developed the ADMM-BCD joint opti-
mization scheme to solve the TDVM-CP model. Finally,
we have evaluated our methods on six real-world image
and video data sets with missing entries under the newly
designed MbM settings. Experimental results demonstrate that
the proposed methods not only stably yield similar good
results under various MbM settings and different parame-
ters on the whole but also outperform the state-of-the-art
methods with significant improvements in the applications
of face recognition, object/action classification, and face/gait
clustering.

ACKNOWLEDGMENT

The authors would like to thank Prof. R. Vidal,
Prof. D. Robinson, and Dr. R. Fan for their code sharing and
helpful discussion.

REFERENCES

[1] I. T. Jolliffe, Principal Component Analysis (Springer Series in
Statistics), 2nd ed. Berlin, Germany: Springer, 2002.

[2] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[3] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “MPCA: Multilin-
ear principal component analysis of tensor objects,” IEEE Trans. Neural
Netw., vol. 19, no. 1, pp. 18–39, Jan. 2008.

[4] G. Zhou et al., “Efficient nonnegative tucker decompositions: Algo-
rithms and uniqueness,” IEEE Trans. Image Process., vol. 24, no. 12,
pp. 4990–5003, Dec. 2015.

[5] X. Li et al., “MR-NTD: Manifold regularization nonnegative Tucker
decomposition for tensor data dimension reduction and representation,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 8, pp. 1787–1800,
Aug. 2017.

[6] Q. Shi and H. Lu, “Semi-orthogonal multilinear PCA with relaxed start,”
in Proc. 24th Int. Conf. Artif. Intell., 2015, pp. 3805–3811.

[7] L. R. Tucker, “Implications of factor analysis of three-way matri-
ces for measurement of change,” Problems Meas. Change, vol. 15,
pp. 122–137, 1963.

[8] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an ‘explanatory’ multimodal factor analysis,” UCLA
Working Papers Phonetics, vol. 16, pp. 1–84, 1970.

[9] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an N-way generalization of ‘Eckart-Young’
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[10] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorrelated
multilinear principal component analysis for unsupervised multilinear
subspace learning,” IEEE Trans. Neural Netw., vol. 20, no. 11,
pp. 1820–1836, Nov. 2009.

[11] C. Lu et al., “Tensor robust principal component analysis: Exact recovery
of corrupted low-rank tensors via convex optimization,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 5249–5257.

[12] D. Williams et al., “On classification with incomplete data,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, no. 3, pp. 427–436, Mar. 2007.

[13] E. Acar et al., “Scalable tensor factorizations for incomplete data,”
Chemometrics Intell. Lab. Syst., vol. 106, no. 1, pp. 41–56, 2011.

[14] D. Williams et al., “Incomplete-data classification using logistic regres-
sion,” in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 972–979.

[15] G. Doquire and M. Verleysen, “Feature selection with missing
data using mutual information estimators,” Neurocomputing, vol. 90,
pp. 3–11, Aug. 2012.

[16] E. Hazan, R. Livni, and Y. Mansour, “Classification with low rank and
missing data,” in Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 257–266.

[17] K. Lakshminarayan et al., “Imputation of missing data using machine
learning techniques,” in Proc. 2nd Int. Conf. Knowl. Discovery Data
Mining, 1996, pp. 140–145.

[18] P. J. García-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal,
“Pattern classification with missing data: A review,” Neural Comput.
Appl., vol. 19, no. 2, pp. 263–282, 2010.

[19] H. Ozkan, O. S. Pelvan, and S. S. Kozat, “Data imputation through
the identification of local anomalies,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 10, pp. 2381–2395, Oct. 2015.

[20] Y. Liu et al., “Generalized higher order orthogonal iteration for tensor
learning and decomposition,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 12, pp. 2551–2563, Dec. 2016.

[21] C. Yang, D. Robinson, and R. Vidal, “Sparse subspace clustering
with missing entries,” in Proc. 32nd Int. Conf. Mach. Learn., 2015,
pp. 2463–2472.

[22] J. Fan and T. W. S. Chow, “Sparse subspace clustering for data with
missing entries and high-rank matrix completion,” Neural Netw., vol. 93,
pp. 36–44, Sep. 2017.

[23] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Found. Comput. Math., vol. 9, no. 6, pp. 717–772,
2009.

[24] Q. Shi, H. Lu, and Y.-M. Cheung, “Rank-one matrix completion with
automatic rank estimation via l1-norm regularization,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4744–4757, Oct. 2018.

[25] J. Liu et al., “Tensor completion for estimating missing values in
visual data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1,
pp. 208–220, Jan. 2013.

[26] Y. Liu et al., “Trace norm regularized CANDECOMP/PARAFAC
decomposition with missing data,” IEEE Trans. Cybern., vol. 45, no. 11,
pp. 2437–2448, Nov. 2015.

[27] P. Jain and S. Oh, “Provable tensor factorization with missing data,” in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1431–1439.

[28] V. de Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best
low-rank approximation problem,” SIAM J. Matrix Anal. Appl., vol. 30,
no. 3, pp. 1084–1127, 2008.

[29] T. T. Wu and K. Lange, “Matrix completion discriminant analysis,”
Comput. Stat. Data Anal., vol. 92, pp. 115–125, Dec. 2015.

[30] C. Jia, G. Zhong, and Y. R. Fu, “Low-rank tensor learning with
discriminant analysis for action classification and image recovery,” in
Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 1228–1234.

[31] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21,
no. 4, pp. 1253–1278, 2000.

[32] Q. Shi, H. Lu, and Y.-M. Cheung, “Tensor rank estimation and com-
pletion via CP-based nuclear norm,” in Proc. ACM Conf. Inf. Knowl.
Manage., 2017, pp. 949–958.

[33] S. Boyd, “Alternating direction method of multipliers,” in Proc. NIPS
Workshop Optim. Mach. Learn., 2011, pp. 1–70.

[34] Q. Shi, Y.-M. Cheung, and Q. Zhao, “Feature extraction for incomplete
data via low-rank tucker decomposition,” in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discovery Databases, 2017, pp. 564–581.

[35] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of
incomplete tensors with automatic rank determination,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1751–1763, Sep. 2015.

[36] W. Hu et al., “The twist tensor nuclear norm for video completion,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 12, pp. 2961–2973,
Dec. 2016.

[37] X. Chen et al., “A generalized model for robust tensor factorization with
noise modeling by mixture of Gaussians,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 11, pp. 5380–5393, Nov. 2018.

[38] Z. Fan et al., “Modified principal component analysis: An integration of
multiple similarity subspace models,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 8, pp. 1538–1552, Aug. 2014.

[39] Y. Zhou, H. Lu, and Y.-M. Cheung, “Bilinear probabilistic canonical
correlation analysis via hybrid concatenations,” in Proc. 31st AAAI Conf.
Artif. Intell., 2017, pp. 2949–2955.

[40] X. Peng et al., “Automatic subspace learning via principal coefficients
embedding,” IEEE Trans. Cybern., vol. 47, no. 11, pp. 3583–3596,
Nov. 2017.

[41] F. Ju et al., “Vectorial dimension reduction for tensors based on Bayesian
inference,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10,
pp. 4579–4592, Oct. 2018.

[42] Y. Zhou and Y. M. Cheung, “Probabilistic rank-one discriminant analy-
sis via collective and individual variation modeling,” IEEE Trans.
Cybern., to be published. [Online]. Available: https://ieeexplore.ieee.org/
document/8481385/authors#authors, doi: 10.1109/TCYB.2018.2870440.

[43] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

http://dx.doi.org/10.1109/TCYB.2018.2870440


SHI et al.: FEATURE EXTRACTION FOR INCOMPLETE DATA VIA LOW-RANK TDFR 1817

[44] B. Eriksson, L. Balzano, and R. Nowak, “High-rank matrix completion,”
in Proc. 15th Int. Conf. Artif. Intell. Stat., 2012, pp. 373–381.

[45] E. Elhamifar, “High-rank matrix completion and clustering under self-
expressive models,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 73–81.

[46] J. Wright et al., “Robust face recognition via sparse representation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227,
Feb. 2009.

[47] G. Liu and S. Yan, “Latent low-rank representation for subspace seg-
mentation and feature extraction,” in Proc. 13th IEEE Int. Conf. Comput.
Vis., Nov. 2011, pp. 1615–1622.

[48] Y. Liu et al., “Generalized higher-order orthogonal iteration for tensor
decomposition and completion,” in Proc. Adv. Neural Inf. Process. Syst.,
2014, pp. 1763–1771.

[49] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, 2010.

[50] F. Shang, Y. Liu, and J. Cheng, “Generalized higher-order tensor
decomposition via parallel ADMM,” in Proc. 28th AAAI Conf. Artif.
Intell., 2014, pp. 1279–1285.

[51] N. Higham and P. Papadimitriou, “Matrix procrustes problems,” Univ.
Manchester, Manchester, U.K., Tech. Rep., 1995.

[52] W. Chu and Z. Ghahramani, “Probabilistic models for incomplete multi-
dimensional arrays,” in Proc. 12th Int. Conf. Artif. Intell. Stat., 2009,
pp. 89–96.

[53] J. B. Denis and T. Dhorne, “Orthogonal tensor decomposition of
3-way tables,” in Multiway Data Analysis. Amsterdam, The Netherlands:
North-Holland, 1989, pp. 31–37.

[54] T. Zhang and G. H. Golub, “Rank-one approximation to high order
tensors,” SIAM J. Matrix Anal. Appl., vol. 23, no. 2, pp. 534–550, 2001.

[55] G. Bergqvist and E. G. Larsson, “The higher-order singular value
decomposition: Theory and an application,” IEEE Signal Process. Mag.,
vol. 27, no. 3, pp. 151–154, May 2010.

[56] A. Anandkumar et al., “Tensor decompositions for learning latent
variable models,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 2773–2832,
2014.

[57] S. Osher et al., (2011). “Fast linearized Bregman iteration for
compressive sensing and sparse denoising.” [Online]. Available:
https://arxiv.org/abs/1104.0262

[58] B. Cao et al., “t-BNE: Tensor-based brain network embedding,” in Proc.
SIAM Int. Conf. Data Mining, 2017, pp. 189–197.

[59] J. Zhang et al., “Low-rank regularized heterogeneous tensor decomposi-
tion for subspace clustering,” IEEE Signal Process. Lett., vol. 25, no. 3,
pp. 333–337, Mar. 2018.

[60] Z. Zhang et al., “Novel methods for multilinear data completion and
de-noising based on tensor-SVD,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 3842–3849.

[61] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, Jan. 2011.

[62] J. A. Bengua et al., “Efficient tensor completion for color image and
video recovery: Low-rank tensor train,” IEEE Trans. Image Process.,
vol. 26, no. 5, pp. 2466–2479, May 2017.

[63] P. J. Phillips et al., “The FERET evaluation methodology for face-
recognition algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22,
no. 10, pp. 1090–1104, Oct. 2000.

[64] K.-C. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces for face
recognition under variable lighting,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 5, pp. 684–698, May 2005.

[65] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image library
(COIL-100),” Dept. Comput. Sci., Columbia Univ., Tech. Rep. CUCS-
005-96, 1996.

[66] X. Peng et al., “Constructing the L2-graph for robust subspace learning
and subspace clustering,” IEEE Trans. Cybern., vol. 47, no. 4, pp. 1053–
1066, Apr. 2016.

[67] M. Blank et al., “Actions as space-time shapes,” in Proc. 10th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2, Oct. 2005, pp. 1395–1402.

[68] A. M. Martinez, “The AR face database,” CVC, New Delhi, India,
Tech. Rep. 24, 1998.

[69] S. Sarkar et al., “The humanid gait challenge problem: Data sets,
performance, and analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 2, pp. 162–177, Feb. 2005.

[70] Z. Zhang and S. Aeron, “Exact tensor completion using t-SVD,” IEEE
Trans. Signal Process., vol. 65, no. 6, pp. 1511–1526, Mar. 2015.

[71] D. Cai. (2011). Litekmeans: The Fastest MATLAB Implementation
of Kmeans. [Online]. Available: http://www.zjucadcg.cn/dengcai/Data/
Clustering.html

Qiquan Shi (S’16) received the B.E. degree in
information security from the Computer School of
Wuhan University, Wuhan, China, in 2013, and the
Ph.D. degree in computer science from Hong Kong
Baptist University, Hong Kong, in 2018.

He is currently a Researcher with the Huawei
Noah’s Ark Lab, Hong Kong. His current research
interests include tensor decomposition, missing data
estimation, feature extraction, and machine learning.

Yiu-Ming Cheung (F’18) received the Ph.D. degree
from the Department of Computer Science and
Engineering, Chinese University of Hong Kong,
Hong Kong.

He is currently a Full Professor with the Depart-
ment of Computer Science, Hong Kong Baptist Uni-
versity, Hong Kong. His current research interests
include machine learning, pattern recognition, visual
computing, and optimization.

Dr. Cheung is a IET/IEE Fellow, BCS Fellow,
RSA Fellow, and IETI Distinguished Fellow. He is

the Founding Chairman of the Computational Intelligence Chapter, IEEE
Hong Kong Section, and the Chair of the IEEE Computer Society Technical
Committee on Intelligent Informatics. He also serves as an Associate Editor
for the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING
SYSTEMS, Pattern Recognition, Knowledge and Information Systems, and the
International Journal of Pattern Recognition and Artificial Intelligence.

Qibin Zhao (SM’12) received the Ph.D. degree in
computer science from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2009.

From 2009 to 2017, he was a Research Scientist
with the RIKEN Brain Science Institute, Wako,
Japan. He is currently a Unit Leader for tensor
learning with the RIKEN Center for Advanced
Intelligence Project, Guangzhou, China, and also
a Visiting Professor with the Saitama Institute of
Technology, Fukaya, Japan, and a Visiting Associate
Professor with the Tokyo University of Agriculture

and Technology, Fuchu, Japan. He has authored or co-authored more than
90 papers in international journals and conferences and two monographs.
His current research interests include machine learning, tensor factorization,
computer vision, and brain signal processing.

Dr. Zhao serves as an Editorial Board Member for Science China Techno-
logical Sciences.

Haiping Lu (S’02–M’09) received the B.Eng. and
M.Eng. degrees in electrical and electronics engi-
neering from Nanyang Technological University,
Singapore, in 2001 and 2004, respectively, and the
Ph.D. degree in electrical and computer engineering
from the University of Toronto, Toronto, Canada,
in 2008.

From 2013 to 2016, he was an Assistant Professor
of computer science with Hong Kong Baptist Uni-
versity, Hong Kong. He is currently a Lecturer in
machine learning with the Department of Computer

Science, The University of Sheffield, Sheffield, U.K. He is the leading author
of the book Multilinear Subspace Learning: Dimensionality Reduction of
Multidimensional Data (CRC Press, 2013). His current research interests
include machine learning, brain/medical imaging, and tensor analysis.

Dr. Lu was a recipient of the 2013 IEEE CIS Outstanding Ph.D. Dissertation
Award, the 2014–2015 Early Career Award by Research Grants Council of
Hong Kong, and the AAAI-18 Outstanding Program Committee Member
Award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


