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Abstract— In sparse empirical risk minimization (ERM) mod-
els, when sensitive personal data are used, e.g., genetic, health-
care, and financial data, it is crucial to preserve the differential
privacy (DP) in training. In many applications, the information
(i.e., features) of an individual is held by different organizations,
which give rise to the prevalent yet challenging setting of the
featurewise distributed multiparty model training. Such a setting
is also beneficial to the scalability when the number of features
exceeds the computation and storage capacity of a single node.
However, existing private sparse optimizations are limited to
centralized and samplewise distributed datasets only. In this
article, we develop a differentially private algorithm for the
sparse ERM model training under the featurewise distributed
datasets setting. Our algorithm comes with guaranteed DP, nearly
optimal utility, and reduced uplink communication complexity.
Accordingly, we present a more generalized convergence analysis
for block-coordinate Frank–Wolfe (BCFW) under arbitrary sam-
pling (denoted as BCFW-AS in short), which significantly extends
the known convergence results that apply to two specific sampling
distributions only. To further reduce the uplink communication
cost, we design an active private feature sharing scheme, which is
new in both design and analysis of BCFW, to guarantee the con-
vergence of communicating Johnson–Lindenstrauss transformed
features. Empirical studies justify the new convergence as well
as the nearly optimal utility theoretical results.

Index Terms— Differential privacy (DP), distributed optimiza-
tion, empirical risk minimization (ERM), sparse optimization.

I. INTRODUCTION

SPARSE empirical risk minimization (ERM) [1]–[4] is an
important machine learning model, which learns from

data collected from individuals. Despite its usefulness and the
large body of research for improving its efficiency [5]–[7],
its involvement of sensitive individual data poses increasing
privacy concerns, especially in applications of healthcare,
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financial, and biomedicine. To avoid breaching the privacy
of the individuals, privacy-preserving techniques have been
developed to ensure that the adversary cannot infer any indi-
vidual data from the output of the learning process. Beginning
with the seminal work [8], which proposes to carry out the
private ERM training under the formal statistical differential
privacy (DP) notion [9], different types of differentially private
optimization algorithms have been developed to suit various
computing contexts. In particular, existing works focus on
training the model with centralized datasets [10]–[14] and
samplewise distributed datasets [15]–[18]. For example, when
samples distribute among user sites, Lou et al. [16] and
Han et al. [18] proposed privacy-preserving strategies for
the stochastic (sub) gradient (SGD) method to avoid sensi-
tive user information leakage during distributed optimization.
Agarwal et al. [15] and Jin et al. [17] further reduced the
uplink communication cost by utilizing gradient quantization
techniques [19]–[24]. These existing research studies, although
providing a decent privacy-preserving guarantee with optimal
utility and efficiency for centralized and samplewise distrib-
uted settings, leave the featurewise distributed private training
barely studied.

However, such a featurewise distributed setting appears
in many real applications, where the information describing
an individual is collected and held by different parties such
as different sets of sensory systems, different organizations,
different hospitals, and so on. For example, in the application
domain of healthcare and biomedicine [25]–[27], a person’s
medical records and biometric information (like genomic data)
are sensitive personal information that can be held by several
medical organizations and clinics. Besides, for applications
whose datasets have a large number of features, splitting
features among many computing nodes help improve the
scalability of the system. Unfortunately, the existing differ-
entially private ERM algorithms are limited to centralized and
samplewise distributed settings only.

Under the circumstances, this article will concentrate on
the featurewise distributed dataset setting. We begin by iden-
tifying two key design considerations of such a distributed
algorithm: uplink communication cost, and utility. Considering
a typical “one server and many users” distributed training
architecture, we call the information from user nodes to
the server node as uplink communication, while calling the
information broadcasted by the server node to all users by
downlink communication. The uplink communication is com-
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puted based on the sensitive individual information held by
the user nodes, which can release individual privacy. On the
other hand, downlink communication is considered public
because it will maintain DP property even without any privacy
protection mechanism. It is from the postprocessing property
of the DP [9], the postprocessed information (i.e., downlink
communication here) will not further compromise the privacy
of the algorithm, as long as the uplink communication is
private enough. As such, the key design consideration for
private training using a distributed dataset lies in preventing the
adversary from inferring sensitive individual information by
spying on the uplink communication. Intuitively, minimizing
the uplink communication complexity means less exposure of
sensitive data and reduced potential of personal data leakage.
Thus, less uplink communication would generally require less
privacy protection budget for ensuring DP. The second is the
utility of the algorithm. In general, with the privacy-preserving
restriction, the utility of a privatized algorithm tends to drop.
In order to avoid deteriorating the utility of the algorithm,
it requires careful balancing the privacy and utility.

A. Motivating Example: Federated Learning (FL)

A motivating example of the above setting is FL
[28]–[30], which is an emerging paradigm of the more general
distributed learning that receives increasing research interest
nowadays. The FL aims to train a joint global model by
the collective participation of all clients (e.g., model devices
or organizations) under the coordination of a central server,
while requiring no communication of the local raw data but
only intermediate model parameters. The FL is recognized
as a superior specification of the general distributed learning
in terms of the privacy-preserving due to the elimination of
the raw data transmission. In addition, an ideal FL algorithm
should have low communication cost since the participating
clients in general have limited communication capacity. Thus,
“privacy and communication efficiency are always first-order
concerns in FL,” as quoted from [30].

As can be seen, our aims of jointly training an accurate
model, while reducing the uplink communication cost and
ensuring privacy-preserving, are well-aligned with the FL,
the cross-silo FL [30] to be specific. However, most existing
FL studies (and even the broader distributed learning) focus
on the samplewise distributed setting, while the featurewise
distributed setting has not been properly addressed in exist-
ing research. Thus, this article can be regarded as studying
an under-studied FL setting that focuses on the featurewise
distributed setting.

B. Contributions

We propose a distributed private block-coordinate
Frank–Wolfe under arbitrary sampling (BCFW-AS) algorithm
for solving sparse ERM specific to the featurewise distributed
computing context. Moreover, the proposed algorithm features
uplink communication efficiency and the same nearly optimal
utility as that in the centralized setting. At first glance,
it seems straightforward by integrating the report-noisy-max
for privacy protection [31] with the existing distributed

FW design. However, such direct combinations either:
1) do not have known differentially private strategy for
communicating active features, which is indispensable for
computing local partial gradient (PG) under the featurewise
distributed setting [32] or 2) require each user node to have
full replication of the entire feature set, which is undesirable
as local features need to be communicated with an extra
preprocessing step [33]. The seemingly different aspects of
incapabilities actually attribute to the same reason: existing
randomized BCFW algorithms have limited convergence
guarantees that apply to two simple block sampling
distributions only, i.e., uniform serial sampling and τ -nice
sampling. In this regard, we make primarily two contributions.

1) BCFW-AS : After revisiting existing BCFW algo-
rithms and analysis, we develop a more general conver-
gence analysis for BCFW-AS. In addition to a universal
convergence analysis, our approach enjoys greater flexibility
than existing analysis [33], [34] whose analysis is highly
dependent on the specific samplings. Furthermore, in con-
trast to existing expected separable overapproximation (ESO)
inequality-based coordinate descent under arbitrary sampling
algorithms [35]–[38], we develop our convergence analysis by
introducing a new notion called expected curvature, which is a
more fundamental quantity for FW algorithms than ESO-based
counterparts.

2) Private BCFW for Featurewise Distributed Dataset:
We provide an uplink communication efficient private algo-
rithm based on the inexact BCFW-AS for solving the sparse
ERM. We design two key building components: private index
computation and private active feature sharing. Both are able
to reduce uplink communication cost and provide privacy
protection. Our analysis shows the algorithm has favorable
properties like strict DP, nearly optimal utility, reduced uplink
communication cost.

Our previous conference paper [39] only provides prelim-
inary theoretical results, and the private algorithm is only
applicable to LASSO (i.e., with least square loss) prob-
lem without any empirical evidence. In this extended paper,
we provide a more thorough and detailed theoretical analy-
sis and comparison for the BCFW-AS algorithm, including
both exact and inexact BCFW-AS algorithms. Furthermore,
we develop a more general differentially private algorithm
whose application is not limited to LASSO. For all the major
theoretical results, rigorous proofs are derived. In addition to
theoretical analysis, this extended version provides empirical
evidence to verify all major theoretical results one by one, and
also studies the impact of the parameters to the algorithms,
which are not provided in the conference version.

The remainder of this article is organized as follows.
Section II introduces the related work. Section III provides the
BCFW-AS algorithm and its convergence analysis. Section IV
proposes the algorithm for private feature-distributed ERM
training, along with guaranteed DP, nearly optimal utility,
and reduced uplink communication complexity. In Section V,
we present the empirical evidence to support the theoretical
guarantees. Section VI gives the concluding remarks. Finally,
the Supplementary Material contains additional lemmas and
proofs.
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TABLE I

SYMBOLS AND NOTATIONS USED IN THIS ARTICLE

II. RELATED WORK

Table I summarizes frequently used notation in this article.
In this section, we first make an overview of known con-
vergence guarantees for BCFW algorithms in Section II-A.
Next, Sections II-B and II-C introduce the basics of the DP
and the existing differentially private methods for training
under featurewise distributed setting, correspondingly. Then,
Section II-D introduces the state-of-the-art communication-
efficient distributed optimization approaches.

A. Sampling Distributions and Known Convergence Results
for BCFW Algorithms

We first revisit the BCFW algorithms by interpreting them
as randomized BCFW algorithms under the corresponding
sampling distributions to highlight the association of the
convergence analysis with the types of sampling distributions.
Table III summarizes the previous and our new BCFW algo-
rithms, samplings, and convergence guarantees. We follow
the naming convention used in existing arbitrarily sampled
coordinate descent papers [35], [37], [38] for referring several
common samplings.

1) Elementary Sampling: Jaggi [40] proposes the conven-
tional deterministic FW algorithm using the full gradient per-
iteration, which can be seen as sampling the coordinates
under elementary sampling with set [d], i.e., sampling set [d]
with probability one. With the step-size γ t = (2/(t + 2)),
it guarantees ht = f (xt ) − f (x∗) ≤ (2C f /(t + 2)), where
x∗ ∈ M denotes an optimum and C f is the curvature of
f (x) on the whole constraint set M, which measures the
nonlinearity of f (x) on the entire constraint set M, reflecting
the geometric property of f (x) on M

C f := sup
x,s∈M,
γ∈[0,1]

2

γ 2

(
f (x+γ (s−x))− f (x)−γ 〈s−x,∇ f (x)〉

)
.

(1)

The algorithm dFW [32] is a distributed FW method. During
one communication pass, each worker evaluates the partial lin-
ear oracle (LO) based on the local features and then sends both
the partial LO index and the associated local duality gap value
to the sever node for comparison. Subsequently, the partial
LO with the maximum local duality gap is selected and sent
back to all workers for the next update. However, the updates

of the local PG requires sharing of “active features” at each
communication round. It is unknown how to communicate
active features in a private and communication efficient way.

2) Uniform Serial Sampling: Lacoste-julien et al. [34] is a
randomized BCFW method selecting the block to be updated
in each iteration according to the uniform serial sampling,
i.e., samples one block at each iteration with uniform probabil-
ity. For analyzing the convergence, Lacoste-julien et al. [34]
designed the step-size γ t = (2d/(t + 2d)) and introduced
the product curvature to obtain ht ≤ ((2d(C⊗

f + h0))/(t +
2d)) primal gap. The product curvature C⊗

f := ∑d
i=1 Ci

f ,
where Ci

f is the blockwise partial curvature for measuring
the nonlinearity on individual Mi

Ci
f := sup

x,s∈M,
γ∈[0,1]

2

γ 2

(
f (x + γ (s[i] − x[i])) − f (x)

−γ 〈s(i) − x(i),∇(i) f (x)〉
)
. (2)

3) τ -Nice Sampling: AP-BCFW [33] is a parallel and
distributed BCFW method, provided that all user nodes have
the full replication of the entire dataset. During one com-
munication pass, each worker uniformly samples one block
from all blocks for updating and the server node summarizes
τ nonduplicate updates (discard duplicate update, e.g., two
workers sample the same node). Under ideal computational
facility, Wang [33] analyzed the convergence by equalizing
one communication pass as one iteration of centralized BCFW
selecting blocks for updating according to τ -nice sampling,
i.e., samples τ blocks with uniform probability. It requires yet
another set of step-size γ t = (2dτ/(τ 2t + 2d)) and expected
set curvature Cτ

f := (d
τ

)−1 ∑
S⊂[d],|S|=τ C (S)

f , where the set

curvature C (S)
f is

C S
f := sup

x,s∈M,
γ∈[0,1],|S|=τ

2

γ 2

(
f (x + γ (s[S] − x[S])) − f (x)

−γ 〈s(S) − x(S),∇(S) f (x)〉
)
. (3)

AP-BCFW is obviously unsuited to the distributed feature
set, since it would require copy-and-paste local features to
other nodes before computation, which incurs high communi-
cation cost and raises privacy concern.

4) (K , τ )-Distributed Sampling: This is probably the sim-
plest sampling scheme for the distributed optimization tasks
with disjointedly divided local blocks, where each user nodes
uniformly sampling τ blocks from their local blocks which
collectively constitutes K × τ random block updates from
K workers. However, existing random BCFWs do not have
convergence guarantee even for this simplest sampling.

5) Arbitrary Sampling: We consider a general BCFW that
has guaranteed convergence under arbitrary sampling with two
minimal assumptions: 1) the sampling is independent across
iterations, i.e., the sampling distribution at the present iteration
is independent of the sampling of the last iteration and 2) the
sampling is proper that any block has nonzero probability to
be sampled.
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B. Differential Privacy (DP)

The definition of DP [9] for a randomized algorithm ALG
with parameter ε, δ is formalized by

Definition 1: (ε, δ)-Differential Privacy ((ε, δ)-DP) A ran-
domized algorithm ALG is (ε, δ)-differentially private if, for
all neighboring datasets D and D′, which differ in only one
data sample and for all outputs O we have Pr(ALG(D) ∈
O) ≤ eε Pr(ALG(D′) ∈ O) + δ.
DP has composition properties, which enable a DP algorithm
to be constructed from building blocks and be applicable to
algorithms progressing over multiple iterations. For details,
refer to Lemmas A and B in the Supplementary Material.

C. Differentially Private Optimization for Featurewise
Distributed Dataset

1) Featurewise Distributed Private Optimization: The fea-
turewise distributed data is more challenging than the sam-
plewise distributed data under privacy restriction. For the
samplewise distributed setting, each user node has enough
information to take local updates (e.g., users can compute the
local gradient based on their local data samples), and only
the decision variables need to be communicated. However, for
the featurewise distributed data, apart from the decision vari-
able, additional information is required to be shared to perform
local updates (e.g., computing the local partial blockwise
gradient). In general, as more information sent by the user
node, it is more likely that sensitive individual privacy is
at risk, which makes the privacy protection design more
challenging. As a largely unexplored setting, to the best of our
knowledge, the very recent [45] is the only existing work that
has considered the same differentially private ERM learning
task with disjoint features held by different parties. They
propose to add privacy protection during preprocessing by
communicating perturbed sketched features [47] based on the
private Johnson–Lindenstrauss transform, i.e., Lemmas C and
D in the Supplement Material. Although the uplink communi-
cation is one-shot during the preprocessing and its sketching
step partially relieves the high communication complexity in
terms of the feature dimension d , its complexity is still linearly
dependent on the sample size n [i.e., O(n)].

2) Private Frank-Wolfe Algorithm: Talwar et al. [31]
proposed a centralized private FW for the ERM problem
constrained by an atomic norm. In each iteration, the FW
algorithm greedily selects an LO from the atomic norm set A
(has a finite number of atomic norms) by picking the one with
the largest duality gap. Talwar et al. [31] selected the iterative
LO by the “Report-Noisy-Max” mechanism [9] (a particular
variant of the more general exponential mechanism), which
ensures the DP. For the LASSO task, [31] is proved to provide
nearly optimal utility guarantee. Since the utility guarantee
is based on the convergence analysis, the adaptation of the
method to a distributed setting is nontrivial due to the missing
convergence result for BCFW-AS. Furthermore, with features
distributed among user nodes, apart from the LO evaluation,
the gradient computation also requires additional perturbation
for privacy protection, whose effect on utility demands careful
quantization and further analysis.

Definition 2 (Report-Noisy-Max): Given a dataset D,
denote a collection of P functions v1, . . . , v p, . . . , vP defined
on D with �1-sensitivity ι. The Report-Noisy-Max selects
the index whose perturbed value function is the maximum.
That is: p̂∗ = arg maxp∈[P] v̂ p, where v̂ p = v p + pert with
pert ∼ Lap(ι/ε).

Lemma 1 (Privacy Guarantee for Report-Noisy-Max Mech-
anism [9]): The Report-Noisy-Max mechanism preserves
(2ε, 0)-DP.

D. Communication-Efficient Distributed Optimization for
ERM

Communication cost has been recognized as the bottle-
neck issue on the scalability of the distributed optimiza-
tion algorithms. Significant research attention is drawn to
reduce the communication cost for the samplewise distrib-
uted setting. Among the latest progress, the quantized SGD
methods [19]–[21] have achieved state-of-the-art communi-
cation efficiency in terms of the communication compres-
sion rate. In each iteration, the user nodes compress the
stochastic gradient to low-precision representation by quan-
tization operators before sending it to the server. For example,
signSGD [21]–[24] achieves the most aggressive communica-
tion reduction ratio of 96.8% by compressing each element
of the gradient to {−1,+1}. In particular, QFW [46] utilizes
the quantization to reduce the communication cost for the
Frank–Wolfe algorithm, which also applied only to the sam-
plewise distributed setting.

DP has been incorporated with the quantized SGD.
cpSGD [15] proposes a two-step quantized SGD with DP
protection, which first uses the stochastic k-level quantization
to compress the gradient, then adds the DP protection by
the binomial mechanism perturbation. vqSGD [42] designs
a DP quantization to unify the compression and perturbation
steps together. Very recently, DP-signSGD [17] uses a random-
ized sign operator to make signSGD algorithm differentially
private.

Sketching is also a popular technique to reduce the
communication cost [43], [44], which randomly reduces a
long uplink message into a smaller length. These methods
share some similarities with our work since our private
Johnson–Lindenstrauss transform is also a general type of
sketching. However, their method is based on SGD to sketch
the gradient, while ours is a coordinate descent method where
we sketch the active feature. In particular, DP-FedAvg [44]
proposes a differentially private federated averaging algorithm
for the FL setting, which applies the CountSketch to the
gradient. Again, these methods only apply to the samplewise
distributed setting.

E. Summary and Comparison of Related Work

Table II summarizes the related work into four categories
based on types of techniques: signSGD-related, quantized
SGD-related, sketching-related and FW-related. We have the
following discussions.

Discussion 1: (Comparing Our Method With Related
Work)
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TABLE II

SUMMARY AND COMPARISON OF RELATED WORK

1) Under the samplewise distributed setting, there emerge
many algorithms following different lines of techniques
to achieve both DP and communication-efficiency, while
under the featurewise distributed setting, our method
is the only one that has considered both (i.e., no DP
method ever considers the communication efficiency).

2) State-of-the-art communication efficient methods are
based on the gradient compressed SGD (e.g., quantized
SGD and signSGD), which aggressively save uplink
communication by over 96.8%. As will be seen, our
method achieves a similar aggressive uplink communi-
cation compression ratio based on a different technique,
which is able to save the communication and protects
DP simultaneously.

3) Sketching is also a promising technique for reducing
the communication cost. Most recently, Liu et al. [44]
proposed a CountSketch-based method for achieving
communication efficiency and DP at the same time,
which is the closet result with ours in terms of the
design philosophy. However, there are three key dis-
tinctions: 1) they consider the samplewise distributed
setting; 2) they apply the sketch on the difference of
the decision variables, while we applied on the active
feature; and 3) their design crucially relies on the
specific CountSketch, while ours is the more general
JL-transform, which includes many different sketching
techniques.

4) Compared with Frank–Wolfe methods, ours has the
most general algorithm design and convergence guar-
antee. In addition, our method achieves the same com-
munication efficiency in terms of the communication
compression ratio by a different technique than the
quantization-based method [46]. In fact, our design
of the JL-transform for reducing the communication
cost itself is new to the FW literature, even without
the privacy mechanisms. Finally, our method provides
rigorous DP protection without deteriorating the utility.

III. BCFW-AS

A. Problem Formulation

We consider the sparse optimization problem

arg min‖x‖1≤η

n∑
i=1

f (x; Di) (4)

where Di represents the i th (i = 1, . . . , n) sample of the
n × d dataset D, n is the sample size, and d is the feature
dimension. With the featurewise distributed setting, the n × d
data matrix is partitioned vertically with each disjoint partition
held by one of K user nodes. f (x) is a smooth convex loss
function, e.g., least square loss, logistic loss, and smoothed
hinge loss. The �1 norm is coordinate separable, meaning
each coordinate component can be computed independently:
‖x‖1 = ∑d

j=1 |x j |, where | ·| computes the absolute value of
the j th component of x. For notational simplicity, we denote
the constraint set as M = M1×, . . . ,×Md . This notation
is also for generality: our convergence result in Section III is
not limited to the �1-norm constraint but also applies to more
general coordinate separable convex compact M.

B. Algorithm Overview

Our BCFW-AS enjoys greater generality in both the design
and convergence guarantee, which include the following three
aspects: 1) applicable to arbitrary proper sampling distribution;
2) introducing a new universal step-size choice; and 3) sup-
porting approximate PG computation and approximate partial
linear oracle evaluation. Correspondingly, we introduce the
following new developments.

For 1), we introduce a new notion called the “expected
curvature,” which compactly associates the directional curva-
tures of the loss function with the sampling distribution of the
BCFW algorithm. In essence, the curvature reflects the largest
deviation of the loss function f (x) from its linear approxima-
tion on the constraint set M. Previous methods propose to cal-
culate the curvature along some particular sets of coordinates,
which captures the largest deviation deterministically without
considering the sampling distribution. In contrast, the expected
curvature takes the sampling distribution into consideration,
which measures the largest deviation “averaged” over all
choices of random sets of coordinates that are sampled during
the BCFW execution. This way, it manifests the interaction
between the geometric property along different directions and
the probability of these directions being sampled.

For 2), we observe that the existing designs of the step-size
is specific to the sampling distribution they use. The step-size
designed for one sampling distribution cannot be easily
adapted to another. We discover that the proper step-size cru-
cially relies on the minimum entry of the sampling probability
(denoted by pmin). To this end, we design the step-size to
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be γ t = (2/(pmin · t + 2)), where γ t is the step-size at
iteration t . For arbitrary samplings, this universal step-size
still guarantees the convergence of the algorithm without
a sampling-by-sampling redesign, which will be shown in
Theorems 1 and 2.

For 3), the PG and the partial LO are two major steps
of BCFW and computed based on the raw data. We allow
both computations to be evaluated approximately, where the
approximation ratios are measured by the parameters 	g ≥ 0
for PG and 	l ≥ 0 for LO, respectively. It includes the
BCFW with exact PG and LO computations as a special case,
which corresponds to 	g = 0 and 	l = 0. In addition to
the generality, the approximations have two more significant
benefits. First, it often costs lower computational complexity
than the exact evaluation in practice [48]. Second, since both
steps are directly based on the raw data, the approximations
will help accommodate the perturbations injected to both steps
for privacy-preserving purpose, as will be seen in Section IV.
Under mild assumptions, we will show that BCFW-AS is
guaranteed to converge even with the approximations, as will
be seen in Theorem 2.

C. Expected Curvature

The expected curvature is formally defined as follows.
Definition 3: (Expected Curvature) The expected curvature

of f (x) with arbitrary proper sampling S is defined as

CES
f = sup

x,s∈M,
γ∈[0,1]

ET ∼S
[ 2

γ 2
f (x + γ (s[T ] − x[T ])) − f (x)

−γ 〈s[T ] − x[T ],∇ f (x)〉
]
. (5)

Discussion 2: Let the probability of sampling the subset
T be p(T ). Equation (5) associates the directional curvature
along T with its probability p(T ) by p(T ) · [(2/γ 2) f (x +
γ (s[T ]− x[T ]))− f (x)−γ 〈s[T ]− x[T ],∇ f (x)〉], and averages
it over combinations of directions T ∼ S that are possible
under S. The final expected curvature achieves the supreme by
accounting both the directional curvatures and their probabili-
ties being sampled. Intuitively, under the arbitrary sampling
S, expected curvature averages deviation between the loss
function and its linear approximation over all combinations
of proper x, s, γ and picks the “averaged largest pair,” which
ensures the overall supremacy along the majority of the
directions. As for the rare case where the “averaged largest
pair” does not capture the largest curvature precisely, the prob-
ability is too small for them to affect the overall convergence.
In other words, BCFW-AS allows “bad updates” to happen
occasionally, as long as their probabilities to be sampled are
low.

In Propositions 1–4, we compare the expected curvature
with: 1) Lipschitz smoothness ESO in [35], [36], and [38]
and 2) existing hand-crafted curvatures for specific samplings.
These are well-studied geometric quantities used by even
the latest coordinate descent algorithms [49]. Through the
comparison, we show that the expected curvature is not only
reasonable in definition but also more suitable for the FW-type

algorithm. The proofs are in Appendix E in the Supplementary
Material for completeness. To ease the comparison, we follow
the compared methods and assume the following.

Assumption 1: There is an n × d matrix A (e.g., data
matrix) such that for all x, y ∈ M

f (y) ≤ f (x) + 〈y − x,∇ f (x)〉 + 1

2
(y − x)� A� A(y − x).

1) Comparison With ESO: The expected curvature is upper
bounded by the ESO quantity times the squared diameter.

Proposition 1: Under Assumption 1, let us denote the pair-
wise probability matrix of arbitrary sampling S by P, the diam-
eter of Mi by DMi . By choosing β = (β1, . . . , βd), where
βi = min{σ ′(P), σ ′(A� A)}‖Ai‖2

2, where σ ′(P), σ ′(A� A) are
the largest normalized eigenvalues of the matrices P and A� A,
then CES

f ≤ ∑d
i=1 piβi D2

Mi
.

In the above proposition, βi is exactly one of the ESO
quantities obtained in [38] under the same assumption. Qu and
Richtárik [38] have also provided many other estimation of
βi . We omit those comparisons because we can also show the
same result in a similar fashion.

2) Comparison With Existing Curvatures: The expected
curvature is a tighter estimation of the geometry constant com-
pared to existing case-by-case designed curvatures. Due to this
tightness, the convergence speed obtained by BCFW-AS will
also be tighter, as will be shown in Remark 3 in Section III-E.

Proposition 2: Recall the global curvature C f of [32]
and [40] under elementary sampling, the product curvature
C⊗

f of [34] under uniform serial sampling, and expected set
curvature Cτ

f of [33] under τ -nice sampling as introduced in
Section II-A. Then, the following relationships hold:

CEelement
f = C f , CEuni·seri

f ≤ 1

d
C⊗

f , CEτnice
f ≤ Cτ

f (6)

where all the left-hand side terms denote the expected curva-
ture under the corresponding samplings.
By Proposition 2, the expected curvature is always upper
bounded by existing specific curvature constants introduced
for specific samplings, which will result in refined convergence
results as shown in Section III-C3.

3) Computing Expected Curvature Given Samplings:
At first glance, the definition of the expected curvature
seems abstract. Yet, as long as the sampling is given,
we show that an accurate estimation of the expected cur-
vature can be calculated. For illustration, we present the
calculation of expected curvature under τ -nice sampling and
(K , τ )-distributed sampling.

Proposition 3: Under Assumption 1, the expected curvature
with τ -nice sampling, denoted by CEτnice

f , satisfies: CEτnice
f ≤

τμ1 + τ (τ − 1)μ2, where μ1 = supi∈[d] ‖Ai(si − xi )‖2
2, μ2 =

supi, j∈[d],i �= j (Ai (si − x j ))
�(A j (si − x j )).

The above estimation matches the expected set curvature
in [33], thus reconfirming the comparison in Proposition 2.

Proposition 4: Under Assumption 1, the expected curvature
with (K , τ )-distributed sampling, denoted by CE(K ,τ )

f , satisfies

CE(K ,τ )
f ≤ K τμ1 + K τ (τ − 1)μ2 + K (K − 1)τ 2μ3, where

μ1 = supi∈[d] ‖Ai(si − xi )‖2
2, μ2 = supi, j∈Pk ,i �= j (Ai (si −

x j))
�(A j(si − x j)), μ3 = supi∈Pk1 , j∈Pk2 ,k1 �=k2

(Ai(si −
x j))

�(A j(si − x j)).
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Finally, let us conclude the expected curvature subsection with
the following discussion.

Remark 1: As pointed out in [40], the curvature constant is
vital in its own stand.

1) It is more intrinsic to the geometric property of the
loss function on the constraint set. For example, it can
be a much tighter geometry constant than the common
Lipschitz smoothness related quantity.

2) It is affine invariant, so it applies to arbitrary choices
of norms. As a result, our approach via introducing the
expected curvature is a fundamentally new development
to the FW-type algorithms.

D. Algorithm Description

Algorithm 1 presents the BCFW-AS algorithm under the
arbitrary proper sampling of S. For notational convenience,
in this section, i ∈ [d] can be either a single coordinate or
a block of coordinates that we do not explicitly differentiate
the two meanings with an additional notation. In Section IV,
i will refer to a single coordinate. For the sampling S,
we denote the probability of the sampling block i by pi

and collectively the probability vector of sampling each block
by p := {p1, . . . , pd}. Let pmin denote the smallest entry
in p.

We use the superscript t to denote the number of iterations.
In each iteration, line 3 samples a random set of blocks T t

from {1, 2, . . . , d} according to the sampling distribution S;
line 5 computes the approximate PG ∇̂(i) f (x) with inexactness
parameter 	i

g ; line 6 evaluates the approximate partial LO ŝ(i)

with the inexactness parameter 	i
l ; line 7 updates the block

i th decision variable for the sampled blocks i ∈ T t with
the step-size γ t = (2/(pmin · t + 2)). Concisely, we can
add up ŝt

i for all i ∈ T t to denote ŝt
[T t ] = ∑

i∈T t ŝt
[i].

Then, the overall update across all sampled blocks can be
summarized as xt+1

[T t ] = xt + γ t (ŝt
[T t ] − xt

[T t ]).

Algorithm 1 BCFW Algorithm Under Arbitrary Sampling

1: Input: Initial feasible variable x0, step sequence γ t , sam-
pling distribution S, inexactness parameters 	i

g and 	i
l ,

maximum iteration T ;
2: for t = 0, 1, . . . , T − 1 do
3: Generate a random set T t ⊂ [d] according to the

sampling distribution S;
4: for each i ∈ T t do
5: Compute the approximate partial gradient ∇̂(i) f (xt),

which satisfies eq.(8);
6: Compute the approximate partial linear oracle ŝt

(i),
which satisfies eq.(9);

7: Update xt+1
(i) = xt

(i) + γ t (ŝt
(i) − xt

(i));
8: end for
9: end for

10: Output: xT ;

E. Convergence Analysis for BCFW With Arbitrary Sampling

In this section, we derive the convergence results for both
the exact and the inexact BCFW-AS algorithm. For the former,

TABLE III

COMPARISON OF BCFW CONVERGENCE RESULTS

it provides a direct comparison to the existing case-by-case
crafted BCFW algorithms under specific samplings, which
verifies its superiority in terms of the generality, tightness in
convergence, and easiness to use. For the latter, the inexactness
provides the opportunity for further gradient compression and
privacy perturbation, which are essential to the development of
communication efficient and differentially private distributed
BCFW algorithms, as exemplified in Section IV.

1) Convergence of BCFW-AS With Exact Update: Equipped
with the expected curvature, we derive the convergence result
of BCFW-AS with exact gradient and LO computation, which
corresponds to (	i

g, 	
i
l ) = (0, 0),∀i ∈ [1, d]. It highlights

the essential roles of the expected curvature and the universal
step-size played in the algorithm design and the proof process.

Theorem 1 (Convergence Result of BCFW-AS With Exact
Update): Let DM denote the diameter of the constraint set M,
|T | denote the maximum sampling set size among iteration
1, . . . , t . Assume the calculation of the PG is accurate and the
local LO is taken to be optimal, i.e., (	i

g, 	
i
l ) = (0, 0),∀i ∈

[1, d]. For each iteration t ≥ 0, the iterates xt generated by
Algorithm 1 with step-size γ t = 2

pmin·t+2 satisfy

E[ f (xt )] − f (x∗) ≤ 2(h0 + (CES
f /pmin))

pmin · t + 2
(7)

where x∗ denotes an optimum of the problem, h0 := f (x0)−
f (x∗), pmin denotes the minimum entry of probability vector
p, CES

f is the expected curvature for arbitrary sampling S.
Discussion 3: Theorem 1 shows the superiority of the

BCFW-AS compared to existing BCFW algorithms with par-
ticular samplings: 1) BCFW-AS recovers all existing BCFW
algorithms by simply substituting pmin into the universal
step-size; 2) BCFW-AS provides convergence results for all
existing methods with comparable or even tighter rates; and
3) BCFW-AS enables the adoption of more interesting new
sampling schemes like (K , τ )-distributed sampling and even
importance sampling, stratified sample, and so on.

We summarize the comparison in Table III with better
results highlighted in bold. For each row, it provides the
comparison between the convergence results achieved by
our BCFW-AS and the existing methods under the same
algorithm-independent conditions, including sampling distri-
bution, initial primal gap of h0, data dimension of d, n, and
approximation parameter of δ. Table III indicates that: 1) ours
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has the best generality to be applied to all types of sampling
distributions, including the new (K , τ )-distributed sampling
and the arbitrary sampling; 2) under the elementary sampling,
we achieve the same convergence rate of O(1/t) and the
same dependence on the curvature C f ; 3) under the uniform
serial sampling, we obtained a tighter convergence, since our
expected curvature constant can be smaller, as indicated by
Proposition 2; and 4) under the τ -nice sampling, we recover
an overall compatible convergence rate, where our dependence
on the curvature-related term is better, while the dependence
on the initial primal gap is inferior.

2) Convergence of BCFW-AS With (	g, 	l )-Approximation:
Next, we extend the convergence guarantee to the inex-
act BCFW-AS which evaluates 	g-approximate PG and 	l -
approximate LO, which are formalized by Assumption 2.

Assumption 2 (Inexact LO and Inexact Gradient): Let γ t

denote the step-size at iteration t , CES
f denote expected

curvature of function f with sampling S.

1) Let 	i
g be the inexact gradient constant parameter and

∇(i) f (x) be the exact PG at x. The PG ∇̂(i) f (x) satisfies

‖∇̂(i) f (x) − ∇(i) f (x)‖∗
(Mi )

≤ 	i
gγ

t CES
f

2
(8)

where ‖·‖∗
(Mi )

is the dual norm defined on Mi .
2) Let 	i

l be a constant parameter. The inexact LO ŝ(i)

satisfies

〈ŝ(i), ∇̂(i) f (x)〉 ≤ min
s(i)∈Mi

〈s(i), ∇̂(i) f (x)〉 + 	i
l γ

t CES
f

2
.

(9)

Remark 2: Assumption 2 is a mild one. First, (8) means
the inexact PG can be (	i

gγ
t CES

f /2) away from the exact
PG under the dual norm given by the constraint Mi . For
the �1 norm, it means the maximum norm between the
inexact and the exact PG should not be too large. Second,
(9) means the inexact LO ŝ(i) does not need to exactly
minimize mins(i)∈Mi 〈s(i), ∇̂(i) f (x)〉. It can be (	i

l γ
t CES

f /2)
larger than the minimum value. In Section IV, we will see
that Assumption 2 suits well with the random perturbation of
the privacy mechanisms and the approximation error of the
Johnson–Lindenstrauss transform used for the communication
compression. That is, the approximation errors introduced
by privacy mechanisms automatically satisfy Assumption 2.
Thus, we do not need to worry about the satisfactory of these
assumptions at all, when apply the convergence result to our
private algorithm.

Theorem 2 (Convergence Result of BCFW-AS With
(	g, 	l)-Approximations): Under Assumption 2, let DM
denote the diameter of constraint set M and |T | denote the
maximum sampling set size among iteration 1, . . . , t . Take
	g = maxi 	i

g , 	l = maxi 	i
l , 	 = (DM + |T |)	g + 	l |T |).

For each t ≥ 0, the iterates xt generated by Algorithm 1 with
step-size γ t = (2/(pmin · t + 2)) satisfy

E[ f (xt )] − f (x∗) ≤ 2(h0 + ((1 + 	)/pmin)CES
f )

pmin · t + 2
(10)

Algorithm 2 Differentially Private Inexact BCFW-AS With
Distributed Features for Sparse Optimization

Input: Initial feasible variable x0 = 0d , active feature aggre-
gation q̂−1 = 0d , step sequence γ t , maximum iteration T ,
�1-norm ball size η, differential privacy parameters (ε, δ);

1: Server node initialize: broadcast JL-transform matrix J ;
2: User node initialize: receive JL-transform matrix J ;
3: for t = 0, 1, . . . , T − 1 do
4: On Each User Node k ∈ 1, . . . , K :
5: Receive xt and q̂t−1 from Server;
6: For each i ∈ Pk , compute ∇̂i f (xt) by Table V;
7: vi = ∇̂i f (xt ) + pert ;
8: ˆidx

t
k = sign(vi ) · arg maxi∈Pk vi ;

9: Send ˆidx
t
k and ât

k = J a| ˆidx
t
k | + ξ to Server;

10: On Server Node:
11: Wait and Receive ˆidx

t
k and ât

k from all K workers;
12: ŝt = η

∑K
k=1 −sign( ˆidx

t
k)e[ ˆidx

t
k ];

13: xt+1 = (1 − γ t )xt + γ t ŝt ;
14: q̂t = (1 − γ t−1)q t−1 + γ t−1 ∑K

k=1 −sign(idx t
k)

η
n ât−1

|idxt
k |;

15: Broadcast xt+1 and q̂ t to all K workers;
16: end for
Output: xT ;

where x∗ denotes an optimum of the problem, h0 := f (x0)−
f (x∗), pmin denotes the minimum entry of probability vector
p, CES

f is the expected curvature for arbitrary sampling S.

IV. UPLINK COMMUNICATION EFFICIENT

DIFFERENTIALLY PRIVATE BCFW WITH

DISTRIBUTED FEATURES

To exemplify the powerfulness of the inexact BCFW-AS,
we consider the sparse optimization for featurewise distributed
datasets with the uplink communication efficiency and the
DP restrictions. Theorem 2 plays a crucial role in ensuring
the convergence as well as analyzing the utility and uplink
communication cost.

A. Featurewise Distributed Sparse Regression

For notational simplicity, we consider the following bal-
anced featurewise distributed setting:

A = [
User 1︷ ︸︸ ︷

a1, . . . , ad/K , . . . . . . ,

User K︷ ︸︸ ︷
ad/K ·(K−1)+1, . . . , ad] (11)

where the n samples by d features dataset A is evenly split
among K user nodes with each holding d/K features ai ∈
R

n×1. We assume the features are sparse, i.e., nnz(a) is a
constant and is much smaller than d, n, i.e., nnz(a) = O(d)
and nnz(a) = O(n). We denote the index set associated with
user k’s features by Pk .

B. Algorithm Overview

1) Key Steps in Basic Form: The server node will perform
simple functionalities of aggregating user nodes’ updates and
broadcasting the aggregations back to user nodes, which is
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light in computation and thus beneficial to the scalability. The
major new designs will lie in the user nodes’ side. We use the
subscript k ∈ {1, . . . , K } to denote the local variables of node
k and again use the superscript t ∈ {1, . . . , T } to denote the
iteration number. According to the BCFW-AS update, each
user node takes two key steps per-iteration.

1) Partial LO Computation: The partial LO is the signed
index idx t

k , which can be computed as

idx t
k = −sign(∇i t

k
f (xt )) · i t

k,

where i t
k = arg max

i∈Pk

|∇i f (xt )|. (12)

2) PG Computation: Each user node evaluates ∇(Pk ) f (xt)
with respect to their own features. In the featurewise
distributed setting, it cannot be evaluated independently
solely based on local features without exchanging a
global information. For example, for the least-square
loss case, the computation by user node k is

for each i ∈ Pk,∇i f (xt ) = a�
i

(
1

n
Axt

)
− a�

i

(
1

n
y
)
(13)

where AP1,...,k−1,k+1,...,K are kept on the other K − 1 user
nodes. This is the essential difficulty of the featurewise
distributed setting compared to the samplewise distrib-
uted setting where the gradients can be evaluated solely
based on the local samples.

2) Uplink Communication-Efficient Designs: The commu-
nication of idkt

k is extremely communication efficient, which
costs only 1-bit for the sign and one unsigned integer for
the index. We focus on the uplink communication-efficient
design to reduce the communication cost for computing the
PG. We propose a two-level uplink communication reduction
mechanism.

1) Level at the Number of Features: We propose the “share-
at-need” feature sharing strategy to communicate only
the nonduplicate “active features” (i.e., the features need
to be communicated, formally defined in Definition 4
later). At first glance, it seems that the distributed dataset
A (of size n × d) needs to be fully exchanged in order
to compute the PG ∇i f (xt ) in (13), which causes high
communication cost and severe privacy leakage. At the
first level of communication reduction, we decrease the
number of features to be communicated from d to at
most T for each user node, where T � d is the
total number of iterations. Our strategy is to introduce
an intermediate variable q t = (1/n)Axt and update it
iteratively, which suffices to compute the PG in (13). The
update of qt requires only a subset of features (called
active features), thus the user nodes only need to share
the features at need.

2) Level at the Length of One Feature: We further
reduce the length of the shared active features from
n to m, where m � n. We introduce a private
Johnson–Lindenstrauss transform, which sketches the
active feature in a DP manner to simultaneously reduce
the communication and protect the privacy.

3) DP Designs: Each user nodes need to send the signed
index and the active feature through uplink communication
iteratively, both of which are computed based on the users’
data and thus require privacy protections. We design the
following two privacy-preserving mechanisms.

1) Private Signed Index Computation: In essence, idx t
k

in (12) is a direction chosen from 2|Pk | (i.e., ±i, i ∈
Pk) directions in a way that its associated value
sign(idx t

k)∇|idxt
k | f (xt) is the largest among all 2|Pk |

values. In other words, the signed index idx t
k gets

reported if its associated value reaches the maximum.
It suggests the correspondence with the “Report-noisy-
max” mechanism in Definition 2. To protect the privacy,
we will perturb the values (i.e., each element of the PG)
by calibrated DP noise and select the direction ˆidx

t
k

whose perturbed associate value reaches maximum.
2) Private Active Feature Sharing: In the algorithm

description part, we will see that only the feature with
the index ˆidx

t
k needs to be shared, which is the active

feature at iteration t . As mentioned, we will utilize the
private JL-transform by carefully calibrating the noise
magnitude to balance the privacy and the utility.

C. Algorithm Description

The algorithm is summarized in Algorithm 2. The server
side update is as simple as aggregating all the partial LOs
to update the decision variable and broadcasting the updated
decision variable and private active features back to all user
nodes. The following are user nodes’ side mechanisms.

1) Uplink Communication-Efficient Mechanisms: We intro-
duce the intermediate variable qt = (1/n)Axt , which can be
updated iteratively

qt = (1 − γ t−1)q t−1 + γ t−1
K∑

k=1

−sign
(

ˆidx t
k

)η

n
at−1

| ˆidxt
k |. (14)

Definition 4 (Active Feature): The active feature sent by
user k at iteration t is the feature whose index is | ˆidx

t
k |.

We denote it by a| ˆidx
t
k | and its differentially private counterpart

by â| ˆidx
t
k |.

Equation (14) indicates each user node only need to send a
single active feature per-iteration. Overall, no more than T
nonduplicate active features are required for communicating
across T iterations. The PG can then be computed by qt . For
example, for the least square loss, it is

for each i ∈ Pk,∇i f (xt ) = a�
i (qt ) − a�

i

(
1

n
y
)

(15)

while more general cases are deferred to Section IV-E.
2) DP Mechanisms: After identifying uplink communica-

tion variables of the index and active feature, we design
privacy mechanisms to ensure they do not leak sensitive user
information.

1) Private Signed Index Computation: To leverage the
“Report-noisy-max” mechanism to preserve privacy for
the computation of idx , instead of selecting the index
based on clean associated value, we selects based on
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the noise-perturbed associated value. It has the following
procedures.

a) For each i ∈ Pk , compute noise injected PG
by vi = sign(i)∇i f (x) + pert, where pert is a
Laplacian noise

pert ∼ Lap

(
(2Gη/K n) · √

2T log(1/(δ/2))(
ε

2K

)
/2

)
.

b) Pick ˆidx
t
k = sign(vi∗ )i∗, where vi∗ = maxi∈Pk vi .

2) Private Active Feature Sharing: We apply the private
Johnson-Lindenstrauss transformation to the active fea-
tures at

| ˆidx | ∈ Atrans, given by

ât
| ˆidx | = J at

| ˆidx | + ξ (16)

where J is an m×n Gaussian sketch matrix [50] (a type
of Johnson-Lindenstrauss transformation matrix) and ξ

is an m × 1 perturbation vector. The perturbation is
calibrated to be

ξ j ∼ N (0, π2), π =
σ(J)

√
K T

√
2
(
ln

(
1
δ

) + ε/2
)

nε/2
(17)

where σ(J) is the leading singular value of J and j ∈
1, . . . , m.

Discussion 4 (Our Novelties and Strengths): 1) We
extend the “Report-noisy-max” in the centralized
Frank-Wolfe algorithm [31] to the featurewise
distributed setting. Compared to the centralized case
where only the signed index is inexact, the gradient
is also inaccurate due to the perturbed active features.
Our design and analysis ensure that our extension of
the “Report-noisy-max” still guarantees the same nearly
optimal utility as in the centralized setting.

2) The sketched active feature sharing for reducing the
communication cost itself is new to the distributed
FW algorithm, even without the privacy protection
designs. Also, our analysis shows that with our designed
m, Algorithm 2 is guaranteed to converge with the
same O(1/T ) rate, i.e., communication reduction for
free.

3) The sketching is also key to ensuring nearly optimal
utility. Note that the gradient inexact parameter is the
much smaller O(log(n)/n) with sketch (see Table IV
and Theorem 4), compared to that of O(

√
n/n) without

sketch. Hence, the sketched features require much less
noise for preserving DP. Otherwise, the optimal utility
of O((n)(2/3)) is impossible to be preserved with inex-
actness parameter as large as O(

√
n/n).

D. Analysis of Algorithm 2

In the following, we analyze the DP, utility, and uplink
communication cost of Algorithm 2.

TABLE IV

SUMMARIZATION OF PARAMETERS IN THEOREM 4

1) DP: The sensitive information of the users are leaked via
the uplink communications of the indices and active features.
The following two lemmas show that the proposed privacy
mechanisms are sufficient to guarantee DP.

Lemma 2: Private active feature sharing preserves
(ε/2, δ/2)-DP.

Lemma 3: Private index computing preserves (ε/2, δ/2)-
DP.

Then, the overall privacy guarantee can be obtained.
Theorem 3: Algorithm 2 is (ε, δ)-differentially private.

Proof: Applying serial composition property in Lemma A
to compose Lemmas 2 and 3, Algorithm 2 is (ε, δ)-DP. �

2) Utility: In this section, we compare the utility of Algo-
rithm 2 with the centralized DP Frank–Wolfe method [31],
which proves that the nearly optimal utility for private LASSO
is O(1/n2/3). The utility is defined to be the excess empirical
risk [10], [13], [31], as formalized in the following definition.

Definition 5: (Excess Empirical Risk [31]) Let the loss
function be f (x) = (1/n)

∑n
i=1 f (x; Di) and the constraint

set be x ∈ M. For a differentially private algorithm A with
output xO , the excess empirical risk R(A) is defined as

R(A) := EA

[
1

n

n∑
i=1

f (xO; Di)

]
− min

x∈M
1

n

n∑
i=1

f (x; Di) (18)

where the expectation is taken with respect to the randomness
of the differentially private algorithm A.
The utility analysis is based on the convergence result of
BCFW-AS developed in Section III with the sampling being
(K , τ )-distributed sampling. As perturbation and sketching are
introduced, the gradient and LO are inexact. The key step
is to show Algorithm 2 satisfies Assumption 2 and show
that ŝt and ∇̂ f (xt) are 	l -LO and 	g-PG correspondingly.
The following theorem presents the utility guarantee and the
parameters appeared are summarized in Table IV, where θ is
the JL-transform parameter and G = (1/n)‖A�(Ax− y)‖∞ =
O(1), τ = d/K is the number of features held by each user
node.

Theorem 4: Let

T =
(

CE(K ,τ )
f nε

Cg + Cl

) 2
3

.
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TABLE V

EXAMPLES OF PG UPDATES BY ACCUMULATED ACTIVE FEATURES

Algorithm 2 with least square loss update for the PG has the
following privacy loss under the (ε, δ)-DP restriction:

E[ f (xT )] − min
x∈M

f (x)

= O

(
(Cg + Cl)

2
3 (CE(K ,τ )

f )
1
3 log(2GηK τn)

(nε)
2
3

)
.

Remark 3: According to Theorem 4, the utility is of order
O(1/n2/3), where O(·) hides constants and log factors, which
is of the same order of the utility result O(1/n2/3) of the cen-
tralized private FW method [31]. The utility result describes
the relation of the privacy loss and the number of samples
required. According to [31], this rate is nearly optimal meaning
no algorithm can achieve smaller privacy risk given the same
number of training samples expect a logarithm factor of n.

3) Uplink Communication Complexity: The uplink commu-
nication comes from: 1) K T integers for sending the private
index (rather than the entire d×T float local decision variables
x) and 2) m×K T for sending the private active features. With
T in Theorem 4 and m in Table IV, we have Corollary 1.

Corollary 1: Algorithm 2 has uplink communication com-
plexity O((1/θ)2 log(n)1/3 K (n)2/3).

Remark 4: Compared to the one-shot communication at the
preprocessing phase proposed by method [45], our uplink
communication cost has better dependence on the sample size
with O(n2/3 log(n)1/3) than theirs with O(nr log r), which
shows our “share-at-need” feature sharing is more efficient
than random sketching at preprocessing.

E. Extension to General Sparse ERM Optimization

In this section, we specify the computation of the approxi-
mate PG based on aggregated private active features q̂t , with
different choices of loss functions, which applies to least
square loss, logistic loss, and squared hinge loss as examples.

The least-squares loss, the update is given in Section IV-A.
For logistic loss, the term requiring global information sharing
is [

exp(−y1D1xt )

1 + exp(−y1D1xt)
, . . . ,

exp(−ynDn xt)

1 + exp(−ynDn xt)

]
.

Again, q t = Axt is the sole term that requires to be
communicated and can be done iteratively by active feature
sharing. As for the private algorithm, the server side is the

same as the private LASSO case in Algorithm 2. For the user
node, after getting q̂t , to computer the ∇̂i f (xt), it updates by

∇̂i f (xt) = a�
i

[
y1 exp(y1 J� q̂t

1)

1 + exp(y1 J� q̂t
1)

; . . . ; yn exp(yn J� q̂t
n)

1 + exp(yn J� q̂t
n)

]
.

Similarly, for hinge loss

∇̂i f (xt)

= a�
i

[
y1 max{0, 1 + J� q̂t

1}; . . . ; yn max{0, 1 + J�q̂ t
n}

]
.

Finally, we summarize computation in Table V. As can be seen,
to apply Algorithm 2 for different losses, it suffices to switch to
corresponding computation of PG computed according to q̂t .

V. EXPERIMENTAL RESULTS

In this section, we evaluate the following two aspects:
1) the convergence of the non-private BCFW-AS with a focus
of different sampling distributions and 2) the performance
of the differentially private BCFW-AS applied to the sparse
optimization problem. To achieve this goal, we design six
groups of experiments. In particular, groups 1 and 2 evaluate
the nonprivate BCFW-AS, while groups 3–6 evaluate the
differentially private BCFW-AS. In each group, a series of dif-
ferent choices of dataset generation parameters and algorithm
settings are made, which are based on different purposes of
the experiments. To this end, we will verify all the theoretical
results one by one, and also study the parameter sensitivity of
the proposed algorithm.

We use both synthetic datasets and real datasets. For all
datasets, in order to best suit to the featurewise distributed
setting, the number of features is larger than the number of
samples. For the synthetic datasets, we generate the feature
matrix A of size [n, d] with a series of different feature
sparsity ratios and the nonzero elements are from N (0, 1).
We generate the ground truth variable x with a variable
sparsity ratios and the nonzero elements are from N (0, 1).
We let y = Ax+noise, where the elements of noise are from
N (0, 0.001). For the real datasets, we choose three datasets
from Libsvm database [51]: colon-cancer, leukemia, and
rcv1.

For each setting of the experiments, we randomly repeat its
realization for 20 times and report the average results.
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Fig. 1. Convergence of BCFW under different sampling distributions: objective value versus iteration number. The feature sparsity of the dataset varies from
[0.1,0.01,0.001] (left to right) and the variable sparsity varies from [0.1,0.01,0.001] (top to bottom).

A. Comparison of BCFW-AS Under (K , τ )-Distributed
Sampling With Known Simpler Samplings

First, we verify Theorems 1 and 2, especially the impact
of pmin to the convergence, by comparing BCFW-AS with
existing BCFW algorithms, each with different samplings:
elementary, τ -nice, and (K , τ )-distributed. The former two
have known convergence results, while the convergence of
the last one comes from our Theorems 1 and 2. For τ -nice,
we set τ to 4000, so that each feature has 0.4 probability
of being sampled. For (K , τ )-distributed, we set K = 2 and
keep τ as 4000. According to Theorem 1, since pmin is 1,
0.4, and 0.16 for elementary, τ -nice and (K , τ )-distributed
accordingly, we expect elementary one to be the fastest while
the (K , τ ) one to be the slowest. Under six combinations of
feature sparsity ratios and variable sparsity ratios, we run the
FW algorithms with the different sampling distributions and
plot the loss function value against the number of iterations.
In Fig. 1, we plot the objective value versus the number of
iterations. According to Fig. 1, BCFW is able to convergence
under various samplings. Also, the convergence speed is
related to the minimum sampling ratio, i.e., the larger the
minimum sampling ratio, the faster the convergence speed.
Therefore, the empirical evidence from Fig. 1 is consistent
with Theorems 1 and 2.

B. Comparison of BCFW Under (K , τ )-Distributed Sampling
With Varying K

In this section, we verify Theorems 1 and 2 with the
different settings of K and sampling ratio. For the new conver-
gence result of BCFW-AS with (K , τ )-distributed sampling,
we study the convergence behavior of BCFW-AS with a vary-
ing number of K . We set the number of user nodes K to be 2,
4, 8, 16. For the same dataset, with increasing K , we expect
the algorithm to converge faster, because more workers are
working on it. In fact, BCFW algorithms can be viewed as
greedy-type algorithms, which iteratively combine K atomic
norms in every iteration until all relevant atomic norms are

Fig. 2. Convergence of BCFW under (K , τ )-distributed sampling distribu-
tions with a series of K .

found. Thus, with K increasing, BCFW-AS converges faster.
We plot the objective value versus the number of iterations
in Fig. 2, which shows that the one with a larger K converges
faster. This result is consistent with our expectation.

C. Comparison of DP-BCFW With Centralized DP-FW

In this section, we verify Theorem 4, especially the claim
in Remark 3 that our distributed algorithm achieves the com-
parable utility as the centralized DP-FW [31]. We compare
with centralized private algorithm [31] and use the nonpri-
vate raw FW method as the baseline. The result is shown
in Fig. 3. We use two sets of data dimensions ([d, n] =
[20 000, 2000], [2000, 200]) and two sets of sparsity ratios
(10% and 5%), resulting in four combinations of settings. For
the distributed BCFW, we use K = 4 user nodes. We report
the training loss with respect to the number of iterations.
According to Fig. 3, both private algorithms converge slower
than the nonprivate algorithm, and converge to a larger training
loss. It is consistent with our expectation, because the private
algorithms introduce perturbation. Furthermore, our distributed
private FW is faster and converges at slightly better loss than
the centralized one [31]. As a result, the private algorithm
also enjoys the speedup with more workers as its nonprivate
counterpart, which is shown in experiment group 2. With faster
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Fig. 3. Comparison of distributed DP-BCFW with centralized DP-FW with the centralized nonprivate FW as baseline.

Fig. 4. Verifying Theorem 4 with privacy risk versus number of training
samples n in log–log scale.

Fig. 5. Effect of changing the number of user nodes K .

Fig. 6. Effect of changing the privacy budget ε.

convergence, less noise are accumulated to provide a slightly
better accuracy.

D. Comparison of DP-BCFW With Different Number of
Training Samples

In this part, we continue verifying Theorem 4, with a
focus on the excess empirical risk dependence on the num-
ber of training data samples. We generate the dataset A
containing 10 000 samples. The ground truth variable x and
the response y follow the same distribution given in the
beginning of Section V. The sparsity ratio is set to 1%.

Fig. 7. Effect of changing the ratio of the privacy budget ε.

Fig. 8. Effect of changing the sketched active feature length m.

We use a series of random subsets of samples with sizes
n = [500, 1000, 2000, 4000, 8000] from A for private train-
ing. We then measure the excess empirical risk by taking
differences of the training losses, which are between the one
measured at the output of the private algorithm and the one
measured at the ground truth variable. We plot the excess
empirical risk (y-axis) in log against the number of training
data samples (x-axis) in log (i.e., log–log scale). In the figure,
we compare the centralized DP-FW [31] with our distributed
BCFW with different number of user nodes (K = 2, 4, 8, 16).
According to Theorem 4, under log–log scale plots, we expect
that the figure will be approximately a decreasing linear
line, because the excess empirical risk will drop given the
increasing number of training samples. In addition, because
of the other constants hidden by O(·), it will not be a strictly
straight line.

The result is in Fig. 4. All algorithms have decreased
privacy risk with increasing number of training data samples.
In addition, with more worker nodes, the excess empirical
risk gets smaller, which shows the advantage of distributed
DP-BCFW we proposed. Finally, the excess empirical risk
under a larger n drops a bit slower and make it not a strictly
straight line, which is also consistent with our expectation.
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Fig. 9. Comparisons on three real datasets: colon-cancer, leukemia and rcv1.

E. Effect of Changing Parameters of DP-BCFW

We study the parameter sensitivity of our proposed algo-
rithm. In all algorithms, we use the converged training loss
of the centralized nonprivate FW and private FW [31] as
baselines, while varying the parameters of our DP-BCFW
algorithm. We use the same [n, d] = [800, 8000] dataset with
sparsity 1%.

1) The Effect of Changing K : For the user node K ,
we change it from 2, 4, 8, and 16. According to Fig. 5,
all private algorithms have decreased losses compared
to the nonprivate FW because of the injected noise for
privacy protection purpose. More worker nodes result to
better performance, which is consistent with its nonpri-
vate counterpart.

2) The Effect of Different ε: First, we change privacy budget
ε from 0.001 to 10 and plot the training loss versus
iteration number. According to Fig. 6, the decrease of
both losses are almost unaffected by the change of ε,
which means the estimation of the gradient and active
index in each iteration are still accurate enough despite
the perturbations injected for privacy protection. It also
supports Assumption 2 and Remark 2 that the assump-
tion of inexactness is reasonable and the approximation
errors do not affect the convergence of BCFW. Second,
we fix the privacy budget to be (ε, δ) = (1.0, 1/n) and
vary the ratio of the privacy budget assigned to the
private sign index and the private active feature to be
1 : 9, 3 : 7, 5 : 5, 7 : 3, 9 : 1. The result is in Fig. 7,
which shows the different division of the privacy budget
ratio also does not affect the convergence.

3) The Effect of Changing m: According to Fig. 8, the per-
formance of the algorithm is almost unaffected by
changing of the sketched size m. Also, we can reduce
the size of the communicated features to be as small as
1% of its original length, meaning the communication
cost can be greatly reduced without sacrificing the
performance.

F. Performance of DP-BCFW on Real Datasets

Finally, we compare the distributed DP-BCFW on three real
datasets. We distribute the features on 2, 4, 8, 16 user nodes.
We use the nonprivate centralized FW and the centralized
DP-FW [31]. The result is in Fig. 9, which shows the same
trend with the results on the synthetic datasets. That is, more
user nodes result to the better performance, and the utility drop
is within a reasonable range when compared to the nonprivate
FW.

VI. CONCLUSION

In this article, we studied the featurewise distributed sparse
optimization with uplink communication efficiency and DP
restrictions. We approached the problem in a principled way.
First, we propose the BCFW-AS and established its con-
vergence for both exact and inexact per-iteration updates.
To achieve this, we have designed a new universal step-size
and defined a new expected curvature notion, both are supe-
rior than existing case-by-case crafted quantities under cor-
responding samplings. Equipped with the powerful inexact
BCFW-AS, we have developed the differentially private
BCFW-AS algorithm, which enjoys lower uplink communi-
cation and nearly optimal in utility. These advantages have
been rigorously proved in theory. We have also verified the
theoretical advantages by empirical evidences.

In the future, we will extend the distributed setting con-
sidered in this article to a completely decentralized setting,
which eliminates the need of introducing the centralized
server. We expect the decentralized extension to bring about
several advantages, including: 1) more practicality in terms
of system implementation because the “honest but curious”
assumption for the centralized server can be challenging to
ensure in practice; 2) more flexibility in terms of communi-
cation network topology where each user node can have their
own set of neighbors to communicate; and 3) better scalability
with respect to the number of users because it eliminates the
bottleneck issue in the distributed setting where the server has
increasing difficulty in handling all the uplink communication
from a growing number of users.
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