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A B S T R A C T

Transformer networks have been widely used in the fields of computer vision, natural language processing,
graph-structured data analysis, etc. Subsequently, explanations of Transformer play a key role in helping
humans understand and analyze its decision-making and working mechanism, thereby improving the trust-
worthiness in its real-world applications. However, it is difficult to apply the existing explanation methods
for convolutional neural networks to Transformer networks, due to the significant differences between their
structures. How to design a specific and effective explanation method for Transformer poses a challenge in the
explanation area. To address this challenge, we first analyze the semantic coupling problem of attention weight
matrices in Transformer, which puts obstacles in providing distinctive explanations for different categories of
targets. Then, we propose a gradient-decoupling-based token relevance method (i.e., GradToken) for the visual
explanation of Transformer’s predictions. GradToken exploits the class-aware gradient to decouple the tangled
semantics in the class token to the semantics corresponding to each category. GradToken further leverages
the relations between the class token and spatial tokens to generate relevance maps. As a result, the visual
explanation results generated by GradToken can effectively focus on the regions of selected targets. Extensive
quantitative and qualitative experiments are conducted to verify the validity and reliability of the proposed
method.
1. Introduction

As a recent research hotspot in the deep neural network family,
Transformer (Chu et al., 2021; Han et al., 2023; Liu et al., 2021)
has gained significant attention, particularly when applications based
on GPT (Generative Pre-trained Transformer) (Brown et al., 2020)
models enter our daily lives. Transformer was firstly proposed in the
field of natural language processing (Vaswani et al., 2017). With the
proposed Vision Transformer (ViT) (Dosovitskiy et al., 2021) in 2021,
Transformers have been widely used in object recognition (Vasanthi &
Mohan, 2023), anomaly detection (Chen, You, Zhang, Xi, & Le, 2022),
and image segmentation (Zhang et al., 2024), just to name a few.

In the literature, a number of works, e.g., see Carion et al. (2020),
Cheng, Liu, Fan, Feng, and Jia (2024), Yuan, Hou, Jiang, Feng, and
Yan (2023), focus on application research on Transformers. However,
Transformers suffer from the black-box dilemma, which limits their
applications in the critical areas (Qiang, Pan, Li, Li, Jang, & Zhu, 2022),
such as autonomous driving, medical diagnosis, and digital finance.
Unfortunately, addressing explanatory research (Chefer, Gur, & Wolf,
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2021b) on Transformers has not been well studied yet. Obviously,
the explanatory research on Transformer provides valuable insights for
understanding its structure, guiding its analysis and design (Ma et al.,
2023), supporting its practical applications in critical scenarios (Qiang
et al., 2022), and assisting its utilization in other tasks (Xu, Ouyang,
Bennamoun, Boussaïd, & Xu, 2022).

The structure of Transformer networks differs significantly from
that of convolutional networks (CNNs) (He, Zhang, Ren, & Sun, 2016;
Simonyan & Zisserman, 2015). CNN mainly consisting of convolutional
layers and pooling layers, performs each feature extraction within a
local region. Different from CNN, Transformer consists of alternating
self-attention modules and multi-layer perceptron (MLP) modules as
its core components, which can encode or decode token variables.
Compared to CNN, information inside Transformer can be interacted
globally. Additionally, Transformer contains the structures such as
patch embedding, positional encoding, class token, and GELU activa-
tion layers (Hendrycks & Gimpel, 2016) (which allow the activated
tokens containing negative values), which increase the specificity and
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Fig. 1. Visualizations for the model predictions via running the baselines Grad-
CAM (Selvaraju, Cogswell, Das, Vedantam, Parikh, & Batra, 2020), LRP (Bach et al.,
2015), RawAtten (Clark, Khandelwal, Levy, & Manning, 2019), Rollout (Abnar &
Zuidema, 2020), and the proposed GradToken. (a) GradCAM and LRP fail to highlight
the target regions. (b) Both RawAtten and Rollout cannot discriminate different targets.
In contrast, GradToken can focus on the targets and have better selectivity.

complexity of its structure. Furthermore, the output layer of Trans-
former (e.g. ViT (Dosovitskiy et al., 2021)) is not processed by global
pooling (as in CNN), instead, the class token is chosen and fed into
the final linear classification layer, resulting in the other tokens in
the last layer being untrained. The specificity and complexity of the
Transformer network increase the difficulty of its explanatory study.

In recent years, some visual explanation methods, such as Grad-
CAM (Selvaraju et al., 2020) and LRP (Bach et al., 2015), have been
proposed to explain CNNs. However, when directly applied to explain
the Transformer network, GradCAM and LRP may produce visual-
izations that highlight background regions unrelated to the model’s
decisions (as shown in Fig. 1(a)). In contrast to directly applying expla-
nation methods designed for CNNs, some works (e.g., RawAtten (Clark
et al., 2019; Kovaleva, Romanov, Rogers, & Rumshisky, 2019)) utilize
the similarity matrix obtained from attention computation in Trans-
former as the explanation. This similarity matrix tends to highlight
foreground regions where potential targets may present. Another en-
hanced method called Rollout (Abnar & Zuidema, 2020) combines
multiple layers of attention weights and propagates the attention from
higher layers to lower layers using matrix multiplication. However,
both RawAtten and Rollout suffer from reliability issues in their expla-
nations. Specifically, these methods simply focus on foreground regions
without the ability to differentiate between different targets (as shown
in Fig. 1(b)), resulting in a lack of selectivity.

To address the limited reliability of current visual explanation meth-
ods for Transformer networks, we revisit the computational process of
attention and analyze the information interaction between the class
token and the other tokens. In Transformer, the class token is not
directly supervised by category-specific information, resulting in a
lack of association with different semantic categories. As a result, the
similarity computed between the class token and the other tokens
can only distinguish foreground and background regions, but cannot
discriminate regions of different categories. Therefore, a pivotal point
of our investigation lies in decoupling the class token to align with
the semantics of different categories without changing the network
structure when explaining the vision Transformer.

In this paper, we propose a gradient-decoupling-based token rel-
evance method named GradToken for visualizing and explaining the
vision Transformer. In the proposed GradToken, we first select a target
class in the output layer and compute the gradient of the prediction
score with respect to the class token. Then, the similarity between
the gradient of the class token and other spatial tokens is computed,
generating a corresponding relevance map. By decoupling the gradient
of the class token from the tangled semantics of multiple classes,
the generated relevance map can focus on the selected target class.
Furthermore, we investigate how to exploit information across multi-
level attention layers to propagate the relevance map from higher layers
to lower layers. Specifically, we utilize the similarity matrix from lower
layers to refine the relevance maps from higher layers, leading to
superior explanatory results. To verify the effectiveness of the proposed
2 
method, segmentation experiments are conducted on the ImageNet-
Segmentation dataset (Guillaumin, Küttel, & Ferrari, 2014) and the
PASCAL VOC dataset (Everingham, Gool, Williams, Winn, & Zisserman,
2010). Perturbation experiments are performed on the ImageNet clas-
sification dataset (Russakovsky et al., 2015). The experimental results
demonstrate that the proposed GradToken achieves higher accuracy
and better reliability compared to the current explanation methods.

The main contributions of this paper are summarized as follows:

• A gradient-based semantic decoupling method is proposed to
decouple the tangled semantics of class token. It can associate the
class token with the semantic information of the target category
to improve the target selectivity of the explanation. This seman-
tic decoupling process does not require changing the original
structure of Transformer.

• A category relevance computation method is proposed to compute
the relevance of spatial tokens to different categories. It can
effectively generate the relevance map of each category for the
visual explanation of Transformer.

• The effects of different attention aggregation and propagation
schemes, multi-head relevance integration schemes, and rele-
vance propagation depths on the explanation results are fully
studied. Extensive experiments show the superiority of the pro-
posed method.

2. Related work

An increasing number of methods have been introduced to ex-
plain Transformer networks, especially to reveal the important features
for the decision-making of the networks in a visualization way. In
the following, we introduce explanation methods based on attention,
relevance, gradients, integrated gradients, etc.

2.1. Attention-based visual explanation methods

Considering that the self-attention mechanism in Transformers builds
relevances between pairwise tokens by assigning scores, RawAtten
was proposed to explain Transformer models based on the attention
mechanism (Clark et al., 2019; Kovaleva et al., 2019). Its core idea is
to use attention weights to evaluate the relevance between the model’s
output tokens and input tokens. However, Serrano and Smith (2019)
found that erasing the strongly responsive regions in the visualizations
generated by RawAtten does not have a significant impact on the
model’s performance. The findings indicate that the explanation results
obtained by RawAtten are not reliable.

As an improvement of RawAtten, Abnar and Zuidema (2020) pro-
posed Rollout to probe the flow of crucial information from the input
layer to the higher layers of the network, and computes the relevances
among all layers and positions through consecutive matrix multipli-
cations. However, both RawAtten and Rollout suffer from a common
issue, namely, the lack of associating the visual explanations with
specific categories, leading to low reliability of the explanation results.

2.2. Relevance-based visual explanation methods

Layer-wise Relevance Propagation (LRP) (Bach et al., 2015) was
also applied to explain the decisions of Transformer models (Chefer
et al., 2021b). LRP is used to propagate the relevance of the output
token layer by layer back to the input tokens. Building upon LRP, Voita,
Talbot, Moiseev, Sennrich, and Titov (2019) proposed a method called
Partial Layer-wise Relevance Propagation (PLRP), which captures the
relative importance of attention heads in each Transformer encoder
block. However, PLRP only considers the local information of relevance
for each attention head and does not propagate the relevance scores to
the input tokens.
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Chefer et al. (2021b) proposed TransAttrib to propagate the target
relevance from the output token layer by layer to the input tokens based
on the Deep Taylor Decomposition (Montavon, Lapuschkin, Binder,
Samek, & Müller, 2017) rule. TransAttrib integrates both the gradients
of attention weights and relevance scores, and combines the inte-
grated results from multiple attention modules. However, TransAttrib
exhibits errors in visualizations generated for lower layers of the net-
work. The visualizations generated by this method may neglect some
discriminative features.

More recently, Vukadin, Afrić, Šilić, and Delač (2024) proposed
absLRP to both explain CNN and Transformer. To generate sparse and
contrastive visualization maps, absLRP discards the negative parts from
neurons’ contributions and adopts the absolute final output of neurons
for normalization. However, the generated maps may be too sparse,
which neglect some important features.

2.3. Gradient-based visual explanation methods

Based on TransAttrib (Chefer et al., 2021b), Chefer, Gur, and Wolf
(2021a) further proposed a generic explanation method to explain
a multimodal encoder–decoder Transformer model. Instead of using
layer-wise relevance propagation, this method adopts a calculation
similar to GradCAM (Selvaraju et al., 2020) to obtain the visual ex-
planatory results. Compared to TransAttrib, this method offers a more
concise computation. Subsequently, Qiang et al. (2022) proposed Atten-
tive Class Activation tokens (AttCAT) to explain Transformers. AttCAT
fully utilizes features, gradients, and attention weights to generate
explanatory results. Recently, Leem and Seo (2024) introduced At-
tention Guided CAM (AGCAM) to advance the visual explanation of
Transformer. AGCAM replaces sof t max with sigmoid to normalize the
attention weights to obtain better feature maps when computing the
gradients-weighted feature maps.

There are also several methods that employ the integrated gra-
dients (Sundararajan, Taly, & Yan, 2017) to explain Transformers.
For example, Hao, Dong, Wei, and Xu (2021) proposed to calcu-
late the integrated gradients for individual attention heads, and then
compute the element-wise multiplication between the integrated gra-
dients and the attention weight matrix. Yuan, Li, Xiong, Cao, and Dou
(2021) introduced a Markov Chain-based method, which computes the
element-wise multiplication between the integrated gradient matrix
and the state transition matrix. Moreover, Xu, Yan, Ding and Liu (2022)
proposed a Rollout attribution method, which computes the importance
scores of different heads in the multi-head attention by using the
integrated gradients algorithm. Additionally, this method utilizes the
Rollout algorithm (Abnar & Zuidema, 2020) to calculate a series of
matrix multiplications on the visualizations from each layer.

2.4. Other explanation method

Different from the above types of methods, which are input-specific,
Ghiasi et al. (2022) employed an activation maximization technique,
which is input-agnostic, to visualize Transformer models. To enhance
the visualization quality, various constraints are utilized, including to-
tal variance regularization, Gaussian smoothing constraint, color jitter
augmentation, and color drift augmentation. Xie, Li, Cao, and Zhang
(2023) proposed Vit-CX to cluster the feature maps from the attention
module as the masks and perform multiple feedforwards to compute the
impact scores according to the masked images, which are incorporated
with random noise to mitigate artifacts. Vilas, Schaumlöffel, and Roig
(2023) revealed that the intermediate representations in Transformers
can be projected to the class embedding space by linear transforma-
tions and their back-propagations, which can further detect the class
importance.

Among the visual explanation methods for Transformer networks,
attention-based methods utilize attention weights that incorporate tan-
gled semantics from multiple classes, limiting their focus to foreground
3 
Fig. 2. Diagram of the self-attention module and the gradient back-propagated to the
query tensor 𝐐(𝑏).

Fig. 3. Diagram of the extraction process for the attention relevance vector 𝐑(𝑏). 𝐑(𝑏)

is a general explanations without distinguishing different categories of predictions. The
dashed lines in the diagram represent corresponding relationships.

regions where potential targets may exist. Some methods derived
from the explanation of CNNs, such as relevance-based methods and
gradient-based methods, do not fully take into account the unique
characteristics of Transformer networks, resulting in unsatisfactory
explanation results. Our work tries to tackle these issues through the
following investigation.

3. Method

In this section, we first analyze the semantic coupling problem in the
self-attention module in the Transformer network. Then, we propose a
gradient-decoupling-based relevance method for the visual explanation
of Transformer. Specifically, the gradient-based class relevance compu-
tation, the attention aggregation and propagation, and the multi-head
relevance integration are elaborated.

3.1. Problem analysis

A vision Transformer model typically contains multiple (assumed
to be 𝐵) Transformer encoder blocks. Each of these encoder blocks
consists of a multi-head self-attention module, an MLP module, a skip-
connection layer, and normalization layers. In the following, we focus
on the multi-head self-attention module in the Transformer encoder
block.

First, we introduce the background knowledge and mathematical
definitions of self-attention to facilitate the subsequent analysis and
description. For the multi-head self-attention module (MHSA) in the
𝑏-th Transformer encoder block, its input tokens are projected into
three tensors, i.e., the query tensor 𝐐(𝑏) ∈ R𝐻×(1+𝑆)×𝐷, the key tensor
𝐊(𝑏) ∈ R𝐻×(1+𝑆)×𝐷 and the value tensor 𝐕(𝑏) ∈ R𝐻×(1+𝑆)×𝐷, where 𝐻
denotes the number of heads, (1 + 𝑆) denotes the total length of class
and spatial tokens (𝑆 corresponds to the length of spatial tokens), and
𝐷 denotes the number of channels. As illustrated in Fig. 2, the attention
weight matrix 𝐀(𝑏) ∈ R𝐻×(1+𝑆)×(1+𝑆) is calculated by the scaled dot
product (Vaswani et al., 2017) of the query tensor and the key tensor,
which is written as follows:

𝐀(𝑏) = sof t max(𝐐
(𝑏)𝐊(𝑏)𝑇

√
). (1)
𝐷
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Fig. 4. Framework of the gradient-decoupling-based token relevance method (i.e., GradToken). ‘‘MHSA’’ denotes the multi-head self-attention module. On the lower right, the
gradient 𝐆𝑄 is used to calculate the similarity with the key tensor 𝐊 to obtain the class relevance 𝐌. On the lower left, the relevance map 𝐌 is propagated with the aggregated
attention matrix 𝐀. The pink lines denote the back-propagation. The blue lines denote feature transfer. Notice that K and M are converted into two-dimensional maps for the
convenience of displaying.
The matrix multiplication between 𝐐(𝑏) and 𝐊(𝑏) realizes the querying
of the query tensor on the key tensor, obtaining the product between
each pair of tokens within the tensors. Each row in 𝐀(𝑏) indicates the
similarity of a single token to all tokens in that row. The attention
weight matrix 𝐀(𝑏) is multiplied with the value tensor 𝐕(𝑏) to obtain
the attention output 𝐙(𝑏) ∈ R𝐻×(1+𝑆)×𝐷, as follows:

𝐙(𝑏) = 𝐀(𝑏)𝐕(𝑏). (2)

Then, we will analyze the self-attention matrix in explaining Trans-
former, which is adopted by our baseline method RawAtten (Clark
et al., 2019). The first row in the attention weight matrix 𝐀(𝑏) obtained
by Eq. (1) has a special meaning in that it reveals the similarity of the
class token to each of the other (spatial) tokens. Therefore, the first row
and the second column to (1 +𝑆)-th column in 𝐀(𝑏) can be taken out and
averaged over multiple heads to obtain the attention relevance vector
𝐑(𝑏) ∈ R𝑆 (shown in Fig. 3):

𝐑(𝑏) = 1
𝐻

𝐻
∑

ℎ=1
𝐀(𝑏)
ℎ,1,2∶(1+𝑆), (3)

where the subscript of 𝐀(𝑏)
ℎ,1,2∶(1+𝑆) corresponds to the head dimension

and two spatial dimensions. The vector 𝐑(𝑏) can be reshaped into a
two-dimensional map with the size of 𝑁 × 𝑁 (where 𝑁 =

√

𝑆) for
visualization.

Since the class token in the attention output 𝐙(𝑏) is trained and
is relevant to the final prediction, the similarity corresponding to the
first row in 𝐀(𝑏) contains certain semantics so that 𝐑(𝑏) can be used
to highlight foreground regions. However, using 𝐑(𝑏) to explain the
predictions of the Transformer model is not reliable. This is because
𝐀(𝑏)
ℎ,1,2∶(1+𝑆) in Eq. (3) is computed from the class token 𝐐(𝑏)

ℎ,1 in the
query tensor with the key tensor. Besides, 𝐐(𝑏)

ℎ,1 has not directly been
supervised by the specific category information during the training
procedure, resulting in its incapacity for distinguishing the semantics of
different categories. Thus, 𝐑(𝑏) can only perceive the tangled semantics,
rather than the specific semantics corresponding to a target category
during the explanation.

3.2. Gradient-based class relevance computation

In order to solve the tangled semantic problems of RawAtten, we
propose a gradient-decoupling-based method for computing the rele-
vance of tokens, referred to as GradToken. GradToken uses gradients
4 
to decouple the class token so as to correspond to different semantic
categories, as shown in Fig. 4. Specifically, the score 𝐲𝑐 of the target
category in the output layer is first selected. Then, following the chain
rule, we can compute the gradient 𝜕𝐲𝑐∕𝜕𝐙(𝑏) of the target score 𝐲𝑐
w.r.t. the multi-head self-attention 𝐙(𝑏), by sequentially calculating its
gradients w.r.t. MLP module, normalization layer, and skip connection
layer. As shown in Fig. 2, the gradient of the target score 𝐲𝑐 w.r.t. the at-
tention weight matrix 𝐀(𝑏) is solved according to matrix multiplication
as follows:
𝜕𝐲𝑐
𝜕𝐀(𝑏)

=
𝜕𝐲𝑐
𝜕𝐙(𝑏)

𝐕(𝑏)𝑇 . (4)

Denoting 𝐐(𝑏)𝐊(𝑏)𝑇 ∕
√

𝐷 in Eq. (1) by 𝐎(𝑏), the gradient of 𝐲𝑐 w.r.t. 𝐎(𝑏)

is:
𝜕𝐲𝑐
𝜕𝐎(𝑏)

=
𝜕𝐲𝑐
𝜕𝐀(𝑏)

sof t max−1(𝐎(𝑏))

=
𝜕𝐲𝑐
𝜕𝐙(𝑏)

𝐕(𝑏)𝑇 sof t max−1(𝐎(𝑏)),
(5)

where sof t max−1(⋅) denotes the derivative function of the sof t max(⋅).
Subsequently, the gradient of the target score w.r.t. 𝐐(𝑏) is derived
according to the relationship between 𝐐(𝑏) and 𝐎(𝑏) as follows:
𝜕𝐲𝑐
𝜕𝐐(𝑏)

= 1
√

𝐷

𝜕𝐲𝑐
𝜕𝐎(𝑏)

𝐊(𝑏)

= 1
√

𝐷

𝜕𝐲𝑐
𝜕𝐙(𝑏)

𝐕(𝑏)𝑇 sof t max−1(𝐎(𝑏))𝐊(𝑏).
(6)

After the above gradient computation, the semantic information related
to the selected target class is associated with the gradient of 𝐐(𝑏).
By choosing different output targets 𝑐, we can obtain 𝜕𝐲𝑐∕𝜕𝐐(𝑏) for
different semantic classes.

Eq. (6) accomplishes the semantic decoupling for different classes.
However, since the output of the last layer only contains the class token
and not all tokens in the query tensor 𝐐(𝐵) are trained, it is necessary
to extract useful information from the gradient of 𝐐(𝐵). As shown in
Fig. 5, we extract the vector with semantic meaning (i.e., the gradient
of the class token 𝐆(𝑐)

𝑄ℎ
∈ R𝐷) from the gradient 𝜕𝐲𝑐∕𝜕𝐐(𝑏)

|𝑏=𝐵 obtained
from Eq. (6):

𝐆(𝑐)
𝑄ℎ

=
𝜕𝐲𝑐
𝜕𝐐(𝐵)

[ℎ, 1, ∶], (7)

where [ℎ, 1, ∶] means that the ℎ-th head, the first row (i.e., the class
token), and all columns (i.e., all channels) are extracted. Thus, the 𝐆(𝑐)

𝑄ℎobtained from Eq. (7) corresponds to the gradient of the class token in
the ℎ-th head of 𝐐(𝐵) in the last layer.
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Fig. 5. Diagram of the extraction process for the gradient of the class token 𝐆𝑄. 𝐆(𝑐)
𝑄

corresponds to the specific target category of prediction 𝐲𝑐 . The dashed lines in the
diagram represent corresponding relationships.

Considering that the key tensor 𝐊(𝐵) is also trained, the proposed
GradToken incorporate the information from the key tensor 𝐊(𝐵) for
visualization. Similar to the conventional attention calculation, the
decoupled gradient 𝐆(𝑐)

𝑄ℎ
is used to calculate the similarity with 𝐊(𝐵),

which can be achieved through a 1 × 1 convolution Conv(⋅, ⋅), as
follows:

𝐌(𝑐)
ℎ = Conv(𝐊ℎ,𝐆

(𝑐)
𝑄ℎ

), ℎ = 1, 2,… , 𝐻 , (8)

where 𝐌(𝑐)
ℎ ∈ R𝑆 is the class relevance vector of the ℎ-th head for the

𝑐th target. 𝐊ℎ is the input variable of the convolution, denoting the
matrix of the ℎ-th head of the key tensor 𝐊(𝐵), and 𝐆(𝑐)

𝑄ℎ
is utilized as

the weight of the convolution. It is worth noting that the convolution
weight here is not obtained by learning, but by computing the gradient
of the target score 𝐲𝑐 w.r.t. 𝐐(𝐵) during the inference procedure.

In Eq. (8), 𝐊ℎ can be understood as high-level semantic features
containing both foreground and background information. 𝐆(𝑐)

𝑄ℎ
rep-

resents the gradient-decoupled class token, which is associated with
the selected target class. By convolving 𝐊ℎ with 𝐆(𝑐)

𝑄ℎ
, we obtain the

relevance between each spatial token and the selected target class. This
reveals the importance of each spatial token to the target class in the
prediction of the Transformer network.

3.3. Attention aggregation and propagation

The class relevance vector 𝐌(𝑐)
ℎ obtained by Eq. (8) represents the

visualization result for the 𝐵-th Transformer encoder block (i.e. the
last encoder block before the classifier). To enhance the visualization
results, we now consider how to visualize the relevance map of lower-
layer encoder blocks. The existing method TransAttrib (Chefer et al.,
2021b) also computes the relevance maps of attention weight matrices
in the lower layers of the Transformer network. These maps are then
multiplied together using the Rollout algorithm (Abnar & Zuidema,
5 
2020) across all layers to obtain the final visualization result. However,
it has been observed that the relevance maps obtained in the lower
layers are inferior. This observation is similar to the findings of the pre-
vious investigations (Cheng, Fang, Liang, Zhang, Shen, & Wang, 2022;
Selvaraju et al., 2020) on the visualization of CNNs. The lower layers of
the network exhibit poorer semantic discriminability compared to the
higher layers. During the visualization process for the lower layers, the
back-propagated gradients tend to diverge, resulting in a loss of focus
on the target.

However, the lower Transformer encoder blocks also contain rich
spatial information that can be utilized to enhance the visualization
results. Specifically, the weight matrix 𝐀(𝑏) from the lower encoder
block implies the relevance between different spatial tokens and can
be used to propagate the relevance from higher layers to lower layers.
According to Eq. (1), the attention weight matrix 𝐀(𝑏) can be computed
from the query tensor 𝐐(𝑏) and the key tensor 𝐊(𝑏) in the Transformer
encoder blocks. The multi-layer attention weight matrices 𝐀(𝑏) can be
integrated through various aggregation and propagation schemes.

Four types of aggregation and propagation schemes are given as
follows:

3.3.1. Rollout & element-wise multiplication
First, the attention weight matrices 𝐀(𝑏)

ℎ of the lower layers are
aggregated using the Rollout algorithm to obtain the aggregated matrix
�̇� ∈ R(1+𝑆)×(1+𝑆), as shown in the following equation:

𝐋(𝑏) = 𝐈 + 1
𝐻

𝐻
∑

ℎ=1
𝐀(𝑏)
ℎ , 𝑏 = 1, 2,… , 𝐵 − 1, (9)

�̇� = 𝐋(𝐵−1)...𝐋(2)𝐋(1), (10)

where 𝐈 denotes the identity matrix with the same dimension of 𝐀(𝑏)
ℎ .

Then, we propagate the class relevance from the last layer to the lower
layer by the element-wise multiplication:

𝐌(𝑐)
ℎ = �̇�1,2∶(1+𝑆) ⊙𝐌(𝑐)

ℎ , ℎ = 1, 2,… , 𝐻 , (11)

where ⊙ denotes the element-wise multiplication. �̇�1,2∶(1+𝑆) indicates
the similarity between the class token and the spatial tokens.

3.3.2. Rollout & matrix multiplication
First, Eq. (9) is used to aggregate the multi-head self-attention

weight matrix from each layer, to obtain the matrix 𝐋(𝑏) (where 𝑏 =
1, 2,… , 𝐵 − 1). Then, the matrices 𝐋(𝑏) for all layers are multiplied
together to obtain the aggregated matrix �̃� ∈ R(1+𝑆)×(1+𝑆):

�̃� = 𝐋(1)𝐋(2)...𝐋(𝐵−1). (12)

Finally, the class relevance from the last layer is propagated to the
lower layers by matrix multiplication:

𝐌(𝑐)
ℎ = �̃�2∶(1+𝑆),2∶(1+𝑆)𝐌

(𝑐)
ℎ , ℎ = 1, 2,… , 𝐻 , (13)

where �̃�2∶(1+𝑆),2∶(1+𝑆) ∈ R𝑆×𝑆 denotes the submatrix corresponding
to the spatial tokens extracted from �̃�. �̃�2∶(1+𝑆),2∶(1+𝑆) indicates the
similarity between each pair of spatial tokens. It is worth noting that
the order of matrix multiplication in Eq. (12) is different from that in
Eq. (10) because they apply to different ways of relevance propagation.

3.3.3. Average & element-wise multiplication
First, the attention weight matrices 𝐀(𝑏)

ℎ of the lower layers are
aggregated by averaging operation to obtain the aggregated matrix
�̄� ∈ R(1+𝑆)×(1+𝑆), as follows:

�̄� = 1
𝐵

1
𝐻

𝐵−1
∑

𝑏=1

𝐻
∑

ℎ=1
𝐀(𝑏)
ℎ . (14)

Then, the class relevance from the last layer is propagated to the lower
layers by element-wise multiplication:

𝐌(𝑐)
ℎ = �̄�1,2∶(1+𝑆) ⊙𝐌(𝑐)

ℎ , ℎ = 1, 2,… , 𝐻 . (15)
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3.3.4. Average & matrix multiplication
First, the attention weight matrices 𝐀(𝑏)

ℎ of the lower layers are
aggregated by averaging operation, calculated in the same way as in
q. (14). Then, the class relevance from the last layer is propagated to
he lower layers by matrix multiplication:
(̂𝑐)
ℎ = �̄�2∶(1+𝑆),2∶(1+𝑆)𝐌

(𝑐)
ℎ , ℎ = 1, 2,… , 𝐻 . (16)

Among the four aggregation and propagation schemes mentioned
bove, the aggregated matrix, i.e., �̇�1,2∶(1+𝑆), �̃�2∶(1+𝑆),2∶(1+𝑆), �̄�1,2∶(1+𝑆),

and �̄�2∶(1+𝑆),2∶(1+𝑆), are all related to spatial positions. However, the
spatial tokens in the attention weight matrix of the last layer, i.e.,
(𝐵)
ℎ,2∶(1+𝑆),2∶(1+𝑆), has not been trained, so it is discarded during the

aggregation and propagation process. Through experimental compar-
ison (see Section 4.4.1), it shows that the fourth scheme (i.e., Average
& Matrix Multiplication) yields the best results. In the fourth scheme,
he averaging operation balances the influence of attention matrices
rom different layers, while the matrix multiplication operation adjusts

the initial class relevance vector by weighted reorganization, which is
easonable. Therefore, the scheme of Average & Matrix Multiplication

is chosen as the attention aggregation and propagation approach.

3.4. Multi-head relevance integration

The class relevance vector obtained by the above aggregation and
ropagation process has 𝐻 heads. However, the final visualization map
oes not contain the multi-head dimension. Therefore, further integra-
ion of multi-head class relevance vector is required. The integration
f multi-head class relevance vector in this section is not a simple
ost-processing step. It is important for the selection and fusion of
ulti-head semantics. Different integration schemes will lead to large
ifferences in the generated visualization results. Two specific schemes
f multi-head relevance integration are given as follows:

3.4.1. Average
The direct ‘‘average’’ scheme for multi-head integration is com-

putationally simple, which computes the average values of the class
relevance vector �̂�(𝑐)

ℎ across the heads, as follows:

(̂𝑐) = 1
𝐻

𝐻
∑

ℎ=1
�̂�(𝑐)

ℎ . (17)

However, there is a limitation in Eq. (17) for the multi-head relevance
integration. It may amplify the influence of certain class relevance
heads with negative values, leading to negative relevance in the gener-
ated visualization map. The qualitative and quantitative results in the
experimental section provide evidence for this issue.

3.4.2. ReLU & average
To address the limitation of the above scheme, we first take positive

values from each head and then averages them over multiple heads by
the following formula:

(̂𝑐) = 1
𝐻

𝐻
∑

ℎ=1
ReLU(�̂�(𝑐)

ℎ ). (18)

where the ReLU(⋅) function is used to truncate the negative values to
ero for each element in the vector. Eq. (18) only takes the positive

value of each head of the class relevance vector, thus mitigating the
influence of negative values from certain heads on the overall inte-
gration. This allows the generated visualization map to focus on the
target region. Based on the experimental validation, the scheme of

eLU & Average achieves better results and is chosen as the multi-head

elevance integration approach.

6 
3.5. Method summary

As illustrated in Algotithm 1, the class relevance vector is obtained
by Eqs. (6), (7) and (8) in Section 3.2. Then, the class relevance vector
is propagated to lower layers by Eqs. (14) and (16) in Section 3.3.
Finally, the multi-head relevance vector is integrated by using Eq. (18)
in Section 3.4. The integrated relevance vector can be converted to
a two-dimensional relevance map and then interpolated to the same
size as the input image to generate a visualization of the Transformer
model’s prediction regarding the 𝑐-th category. Through the compu-
tations in the above formulations, we can achieve the disentangled
class relevance, which is further enhanced by the propagation and
integration operations, leading to better explanation results.
Algorithm 1: Method summary of GradToken

Input : 𝐈: Image; 𝐜: class
Output: 𝐕(𝑐): Visualization map

1 𝐐(𝑏),𝐊ℎ,𝐀
(𝑏)
ℎ , 𝐲𝑐 ← Feedforward with 𝐈;

2 𝜕𝐲𝑐∕𝜕𝐐(𝑏) ← Compute the gradient of 𝐲𝑐 w.r.t. 𝐐(𝑏) by Eq. (6);
3 𝐆(𝑐)

𝑄ℎ
← Extract the gradient of the class token from 𝜕𝐲𝑐∕𝜕𝐐(𝑏) by

Eq. (7);
4 𝐌(𝐜)

𝐡 ← Convolve the gradient of the class token 𝐆(𝑐)
𝑄ℎ

with the key
tensor 𝐊ℎ by Eq. (8);

5 �̄� ← Aggregate attention weight matrices 𝐀(𝑏)
ℎ by Eq. (14);

6 �̂�(𝐜)
𝐡 ← Propagate the class relevance 𝐌(𝐜)

𝐡 with �̄� by Eq. (16);
7 �̂�(𝐜) ← Integrate the multi-head relevance �̂�(𝐜)

𝐡 by Eq. (18);
8 𝐕(𝑐) ← Reshape and interpolate the integrated relevance �̂�(𝐜)

Since other methods can also realize the visual explanation of
Transformer to some extent, we discuss the connections and differences
between the proposed GradToken and three other typical methods:

3.5.1. Rollout
Both Rollout and GradToken make use of multi-level attention

eight matrices 𝐀 for computation. However, the results obtained
y Rollout are category-independent. The proposed GradToken uses
radients to decouple the semantics of different categories such that
he target category can be distinguished from other categories.

3.5.2. TransAttrib
Both TransAttrib and GradToken make use of gradient information

for computation. However, TransAttrib computes the gradients with
respect to the attention weight matrix 𝐀, while GradToken computes
the gradients with respect to the query tensor 𝐐 and then convolves it
with the key tensor 𝐊. Furthermore, the gradients obtained through
GradToken contain richer information (as seen in Eqs. (5) and (6)).
Therefore, there are significant differences in the gradient computation
processes between TransAttrib and GradToken.

3.5.3. GradCAM
Both GradCAM and GradToken can be seen as firstly computing

gradients to obtain a weight vector, which is then used to weigh
a multi-dimensional matrix. However, in GradCAM, when computing
gradients with respect to the attention weight matrix 𝐀, each attention
head can only be assigned a single value, which is then used to weigh
over the attention head. This process does not preserve channel in-
ormation. In contrast, GradToken performs convolution independently
or each attention head, where each convolution operation can capture

information from multiple channels (as shown in Fig. 4). Thus, GradTo-
en is capable of producing more accurate visualizations by leveraging
hannel information.

Through the above discussion, we can find that the proposed
ethod has significant improvements over the other methods, espe-

cially in the aspects of the gradient and convolution computations for
relevance, leading to better visual explanation.
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4. Experiments

To evaluate the effectiveness of the proposed method, extensive
quantitative and qualitative experiments are conducted in this sec-
ion, including semantic segmentation experiments, perturbation ex-

periments, generalization experiments (i.e., language evaluations), and
isual comparison experiments. Then, ablation experiments are per-

formed on aggregation and propagation of low-layer attention, integra-
tion of multi-head relevance, and depth of class relevance propagation.
In the following experiments, the proposed GradToken is compared
with ten other advanced methods, including GradCAM (Selvaraju et al.,
2020), LRP (Bach et al., 2015), PLRP (Voita et al., 2019), RawAt-
ten (Clark et al., 2019), Rollout (Abnar & Zuidema, 2020), TransAt-
trib (Chefer et al., 2021b), AttCAT (Qiang et al., 2022), ViT-CX (Xie
t al., 2023), absLRP (Vukadin et al., 2024), and AGCAM (Leem & Seo,

2024).

4.1. Experimental settings

4.1.1. Evaluation datasets and models
In order to evaluate the effectiveness and reliability of the proposed

method, we follow the settings of Chefer et al. (2021b) to conduct
the experiments on four datasets: ImageNet 2012 object classifica-
tion (Russakovsky et al., 2015), ImageNet-Segmentation (Guillaumin
t al., 2014), PASCAL VOC (Everingham et al., 2010) and Movies
eviews (Zaidan & Eisner, 2008). The ImageNet dataset consists of ap-

proximately 1.2 million training images, 50,000 validation images, and
a total of 1,000 categories. ImageNet-Segmentation is an improved
dataset based on ImageNet, where binary segmentation masks are
annotated on images. This dataset contains 4,276 images and a total of
45 categories. The VOC dataset contains 21 classes including the back-

ground class and three standard splits, i.e., training set (1464 images),
validation set (1449 images) and test set (1456 images), and an extra
augmented training split, i.e., trainaug set (10582 images) (Hariharan,

rbelaez, Bourdev, Maji, & Malik, 2011). The Movies Reviews dataset
contains 1600 reviews in the training set, 200 reviews in the validation
set, and 200 reviews in the test set. The experiments are conducted
on the classical Transformer models, i.e., ViT-B/16 (Dosovitskiy et al.,
2021) and BERT-B (Devlin, Chang, Lee, & Toutanova, 2019), for the
vision task and the language task, respectively.

4.1.2. Evaluation metrics
The segmentation experiments adopt a referenced evaluation met-

ric, where ground truth labels are provided as references. In the ex-
periments, the target localization accuracy is evaluated by comparing
the visualization result with the segmentation label. Specifically, three
segmentation evaluation metrics are adopted: pixel accuracy (PAcc),
mean average precision (mAP), and mean intersection over union
(mIoU).

The perturbation (Chefer et al., 2021b) experiments adopt a weak
eference evaluation metric, which provides the original classification
abels for evaluation of the reliability of the explanatory results. This
valuation metric is not affected by manually set thresholds. Given a
enerated visualization, the pixels of the input image are gradually
rased based on the sort order of the response strength in the visu-
lization. The average top-1 accuracy of the classification is recorded
or each step of pixel perturbation. Then, the perturbation score is

measured by calculating the area under the accuracy curve (AUC)
ased on the recorded multi-step accuracy results. In the perturbation
xperiments, 10% of the image pixels are erased in each step.

For the language evaluation, we follow the setting of ERASER
DeYoung et al., 2020) and TransAttrib (Chefer et al., 2021b) to val-
date if the generated explanatory results support predictions of the
entiment classification. In particular, the token-F1 score on the test set

is adopted to evaluate the results generated by competitors. The token-
1 score measures the overlap between the human-labeled rationale
okens and top-k tokens generated by explanation methods, where 𝑘 ∈

10, 80] with steps of 10 tokens. i
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Table 1
Segmentation performance (%) of the proposed GradToken and competitors on the
ImageNet-Segmentation and VOC validation datasets. Results of Rollout, RawAtten,
GradCAM, LRP, PLRP, and TransAttrib on the ImageNet-Segmentation dataset are from
the literature (Chefer et al., 2021b). Higher values in the table indicate better results.
Bold and underline denote the best and second-best results under each evaluation
criterion. ViT-CX needs multiple feedforward passes. Other methods need a single
feedforward or backward pass..

Method ImageNet-Segmentation VOC

PAcc mAP mIoU PAcc mIoU

Rollout (ACL2020) 73.54 84.76 55.42 64.15 24.85
RawAtten (ACLW2019) 67.84 80.24 46.37 61.21 18.40
GradCAM (IJCV2020) 64.44 71.60 40.82 69.03 24.85
LRP (PLOS ONE2015) 51.09 55.68 32.89 46.79 16.45
PLRP (ACLW2019) 76.31 84.67 57.94 66.76 29.89
TransAttrib (CVPR2021) 79.70 86.03 61.95 76.43 44.31
AttCAT (NeurIPS2022) 71.78 74.62 47.54 70.05 24.36
ViT-CX (IJCAI2023) 76.95 75.03 56.71 74.24 37.88
absLRP (ACM TIST2024) 71.04 78.37 52.26 48.75 29.90
AGCAM (2024) 81.15 87.77 63.70 78.73 42.47
GradToken (Ours) 84.51 86.10 68.24 79.48 46.02

4.2. Quantitative evaluation

To evaluate the localization accuracy, explanatory reliability, and
eneralization of the proposed method, we perform segmentation ex-
eriments, perturbation experiments, and generalization experiments,
espectively in the following.

4.2.1. Segmentation experiment
Ideally, a visual explanation for model classification decisions should

focus on the region where the target is located. In other words, if the
visualization result generated by the explanatory method can success-
fully locate the target, it indicates that the method has a good visual
explanatory effect. Therefore, to validate the effectiveness of the pro-
posed explanation method, we conduct the segmentation experiments
by evaluating the target localization accuracy.

First, based on the predictions of the Transformer model, the class
with the highest classification score is selected as the target for vi-
sual explanation on the ImageNet-Segmentation dataset. On the VOC
dataset, the ground truth class labels are chosen as the targets. Then,
he explanation methods are adopted to generate visualization maps.
ote that the post-processing of normalization and binarization are

applied to all methods to obtain segmentation maps from visualization
aps. We search the best thresholds with the step of 0.1 within the

ange of [0, 0.9] after normalization for each method to achieve the
est performance.

Table 1 presents the segmentation results obtained by the proposed
radToken and ten other methods on the ImageNet-Segmentation and

VOC validation datasets. Compared to the other methods, the proposed
GradToken achieves the highest PAcc and mIoU on both datasets. On
the ImageNet-Segmentation dataset, in terms of PAcc, the proposed
GradToken achieves a score of 84.51%, which is 16.67% higher than
the baseline method RawAtten (67.84%). This demonstrates that the
roposed GradToken effectively focuses on the target of explanation by
ecoupling the semantic information of class token using gradients. In
erms of mIoU, the proposed GradToken achieves a score of 68.24%,
hich is 27.42% higher than the classic CNN explanation method
radCAM (40.82%). This is mainly because the proposed GradToken
omputes not only the dimensions of attention heads but also the
imensions of attention channels. Furthermore, PAcc and mIoU ob-
ained by GradToken are respectively 3.36% and 4.54% higher than the
econd-best method AGCAM (i.e., 81.15% and 63.70%). mAP obtained
y GradToken is 7.73% higher than absLRP, but 1.67% lower than
GCAM. This might be due to AGCAM using a special normalization
n attention maps (Leem & Seo, 2024).

Multi-class semantic segmentation experiment on the VOC dataset
s more challenging for all the explanation methods, considering none
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of these methods has an mIoU of more than 50%. Though, GradToken
achieves an mIoU of 46.02%, which is 1.71% higher than TransAttrib
and 16.12% higher than absLRP. Overall, the proposed GradToken
exhibits the outstanding segmentation performance on the ImageNet-
Segmentation and VOC datasets, indicating GradToken possesses better
accuracy and target selectivity for visual explanation of Transformer
models.

4.2.2. Perturbation experiment
In the perturbation experiments, the model’s predictions are mea-

sured. This is a straightforward way to validate if the generated expla-
ations are accountable for the model’s predictions. Thus, to further
alidate the reliability of the proposed method, we conduct perturba-
ion experiments, including positive and negative ones.

For positive perturbation experiments, the image pixels are erased
in the decreasing order of response strength. In an ideal visualization
result, the strongest response should have the greatest impact on the
classification prediction. Hence, when it is erased, the accuracy should
rop sharply, resulting in a smaller AUC. For negative perturbation
xperiments, the image pixels are erased in the increasing order. Eras-
ng unimportant pixels leads to a slow decrease in accuracy, resulting
n a higher AUC. We set the target category for explanation in two
ays. One way is the ‘‘label unknown’’ setting, where no class label

s provided in advance, and the class with the highest predicted score
s selected as the target category for explanation. The other way is the
‘label known’’ setting, where the class label in the dataset is used as
he target category for explanation.

Table 2 presents the AUC scores of the proposed GradToken and
eight other methods on the ImageNet validation set for two ways
i.e., a total of four types) of perturbation experiments. Rollout and
awAtten only use the attention weight matrices in the Transformer
etwork when generating the visualization maps and do not consider
he relationship between the attention matrices and the target in the
utput. Thus, the experimental results for these two methods with
abel known setting are omitted, as the given labels are meaningless

to them. It is also observed that the LRP and PLRP methods achieve
nearly identical AUC scores for both ways of label unknown setting
and label known setting. This is because these two methods cannot
differentiate the target category during visualization, resulting in the
same visualization results regardless of the selected target.

The proposed GradToken achieves AUC scores of 15.97% for the
label unknown setting and 14.89% for the label known setting in
the positive perturbation experiment (lower AUC is better). On the
other hand, in the negative perturbation experiment (higher AUC is
better), GradToken achieves 58.37% for the label unknown setting
and 59.61% for the label known setting. Compared to the baseline
RawAtten, the proposed GradToken decreases the positive perturbation
AUC score by 8.02% and increases the negative perturbation AUC score
by 12.82%. Compared to GradCAM, the proposed GradToken achieves
significant performance improvements, i.e., improvements of 18.09%
for the label unknown setting and 18.67% for the label known setting
in the positive perturbation, and improvements of 16.85% for the label
unknown setting and 17.59% for the label known setting in the negative
perturbation. The proposed GradToken shows significant advantages
in AUC scores compared to Rollout, RawAtten, GradCAM, LRP, and
AttCAT. This indicates that the proposed method possesses stronger
target selection capability, further validating its reliability. Compared
to ViT-CX, GradToken achieves better performance in the negative
perturbation experiment with the label unknown setting, and achieves
competitive results in the positive perturbation experiments. It is un-
derstandable that ViT-CX has an advantage in the perturbation metric,
since the method implementation of ViT-CX is iteratively evaluating the
impact of mask on the predicted score.

In summary, the proposed GradToken achieves the superior per-
formance in the perturbation experiments on the ImageNet validation
et, demonstrating the strong reliability of the generated visualization

results.
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Table 2
AUC scores (%) obtained by the proposed GradToken and competitors in the perturba-
ion experiments on the ImageNet validation set. The results of competitors are from
he literature (Chefer et al., 2021b). ↓ denotes the lower the better. ↑ denotes the
igher the better. Bold and underline denote the best and second-best results under
ach evaluation criterion.
Method Positive ↓ Negative ↑

Label Label Label Label
Unknown Known Unknown Known

Rollout (ACL2020) 20.05 – 53.1 –
RawAtten (ACLW2019) 23.99 – 45.55 –
GradCAM (IJCV2020) 34.06 33.56 41.52 42.02
LRP (PLOS ONE2015) 41.94 41.93 43.49 43.49
PLRP (ACLW2019) 19.64 19.64 50.49 50.49
TransAttrib (CVPR2021) 17.03 16.04 54.16 55.04
AttCAT (NeurIPS2022) 21.00 20.02 39.54 41.69
ViT-CX (IJCAI2023) 14.78 13.72 55.86 57.57
GradToken (Ours) 15.97 14.89 58.37 59.61

Fig. 6. Token-F1 scores obtained by the proposed GradToken and six other methods
on the Movie Reviews dataset. This figure shows, as the top-k tokens (𝑘 ∈ [10, 80]) are
selected at each step as the rationals from the explanatory results, the matching degree
(token-F1) between these explanatory rationales and the ground truth rationales.

4.2.3. Generalization on the language model
To verify the generalization of the proposed method, we conduct the

xperiment on the language model. Specifically, we test on the BERT
model (Devlin et al., 2019) which is trained on the Movie Reviews
training set for the sentiment classification task. The input of the model
s a paragraph of text, and the output is the classification of sentiment.

The ground truth rationales are annotated by human workers to point
out which textual segments (tokens) are important for sentiment classi-
fication. Explanation methods can assign importance scores to all input
tokens, which are sorted according to the scores. Top-k tokens can be
chosen as the rationals for the prediction corresponding to the setting
of 𝑘 ∈ [10, 80]. The matching degree between the rationals extracted by
explanation methods and the ground truth rationales is evaluated with
the token-F1 score on the Movie Reviews test set. A higher matching
degree (i.e., token-F1 score) indicates a better explanation for the
model’s classification decision.

Fig. 6 shows token-F1 score obtained by each method correspond-
ing to top-k tokens chosen as the rationals. Rollout and LRP achieve
lower token-F1 scores compared to other methods, because these two
methods lack target selectivity. Benefiting from the gradient decoupling
for the target class, GradToken outperforms all competitors at each
step, which indicates the explanatory results generated by GradToken
are matched better with the labeled rationals than the competitors.
Especially when the number of tokens increases, GradToken exhibits a
more significant advantage in terms of the token-F1 scores over other
methods, e.g., RawAttn, GradCAM, LRP, and Rollout. This experiment
shows the superiority and the generalization ability of GradToken on
the language model, except for the vision model.
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Fig. 7. Qualitative comparison of the single-class visualizations generated by the proposed GradToken and five other methods.
4.3. Qualitative comparison

To visually analyze and validate the proposed GradToken, we qual-
itatively compare GradToken with five competitors, including Grad-
CAM (Selvaraju et al., 2020), ViT-CX (Xie et al., 2023), RawAtten (Clark
et al., 2019), Rollout (Abnar & Zuidema, 2020), and TransAttrib (Chefer
et al., 2021b), for both single-class and multi-class visual explanations
of Transformer models.

4.3.1. Single-class visualization
After a Transformer model makes a prediction, the class with the

highest prediction score is selected as the target for visual explanation.
Fig. 7 shows the visualization results for the Transformer’s prediction
of the single-class target, where the samples are from the ImageNet
dataset. The second to seventh columns display the generated visual
heatmaps for the samples, where red indicates a higher relevance to
the target and blue indicates a lower relevance.

As shown in Fig. 7, GradCAM and RawAtten focus on relatively
small regions in most cases. Both methods also capture some irrelevant
background areas. For example, in Fig. 7(b) and (d), which contains a
bird and a dog respectively, GradCAM and RawAtten highlight some
background regions. The proposed GradToken, benefiting from the
utilization of gradients of the target, effectively highlights the target,
with less background noise in the generated visualizations. Compared
to RawAtten, Rollout and AGCAM can capture larger regions of interest.
However, Rollout and AGCAM also struggle to differentiate between
target objects and other non-target objects, as seen in the sea animal
and people in Fig. 7(a), and the bird and wood in Fig. 7(b). ViT-
CX hilights larger regions of objects while with more noise in the
background, such as the cases in Fig. 7(b) and (d). In contrast, the
proposed GradToken, by decoupling the class token, shows better target
selectivity in multiple examples. Compared to Rollout, TransAttrib can
more effectively focus on the target class. However, the visualizations
generated by TransAttrib tend to focus on smaller regions, such as
the small region of the sailboat in Fig. 7(e), and it also ignores most
of the features of multiple buses in Fig. 7(c). On the other hand,
the proposed GradToken benefits from the advantages of low-layer
attention aggregation and propagation, allowing it to focus on larger
9 
target regions. This also demonstrates the global perception ability of
the Transformer model.

Overall, compared to the other methods, the visualizations gener-
ated by GradToken can more accurately and completely focus on the
regions where the target class is present.

4.3.2. Multi-class visualization
To validate the reliability of the proposed GradToken, we also test

the visual explanations with regard to multi-class targets in images.
A common way to examine the reliability of explanatory methods is
to assess their sensitivity to different classes. Ideally, the explanatory
results should differ for classes that have different semantics. If the
results for different classes vary significantly, it indicates a certain
extent of reliability in the explanatory method. Conversely, if the results
for different classes are exactly the same, it suggests poor reliability of
the explanatory method. Fig. 8 illustrates the visualization results of
the proposed GradToken and five other methods for the Transformer’s
predictions of multi-class targets. The texts above and below the input
images in the figure represent the target classes selected in the visual
explanations.

In Fig. 8(a), the image of a cat and dog is a classic example
commonly used in the field of explanations. The bodies of the cat
and dog have similar colors, and the image contains variations in
lighting and shadows, posing challenges to achieving an effective visual
explanation. It can be observed that RawAtten mainly focuses on the
dog, while Rollout focuses not only on the dog but also on the cat
and background regions. However, these two methods fail to provide
discriminative explanations for different target classes. GradCAM, ViT-
CX and TransAttrib can discriminate different targets, but the regions
they focus on are not precise enough. For example, GradCAM only
focuses on the belt of the dog, which is a non-discriminative feature.
In contrast, the proposed GradToken successfully highlights regions
relevant to both the dog and cat classes. In Fig. 8(b), the image of
elephants and zebras includes multiple instances, each of which is
in small size in the view and is cluttered with each other. When
explaining the elephant class, RawAtten fails to effectively highlight
the region where the elephants are located. When explaining the zebra
class, TransAttrib and GradCAM ignore the rightest zebra. However, the
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Fig. 8. Qualitative comparison of the multi-class visualizations generated by the proposed GradToken and five other methods. The texts above and below the input images indicate
the target classes of the visualizations.
proposed GradToken can effectively highlight the multiple instances of
elephants and zebras. In Fig. 8(c), a bird standing on a cow is a rare
scene. RawAtten, Rollout, ViT-CX, and AGCAM struggle to distinguish
between the target class and the non-target class or background. The
visualizations generated by GradCAM and TransAttrib only highlight
a small portion of the cow’s back. On the other hand, the proposed
GradToken can not only distinguish between the bird and the cow, but
also accurately and completely highlight the regions relevant to the
targets. Compared to the other methods, the visualizations generated
by GradToken provide more reliable and accurate explanations for
different target classes.

In summary, the comparative results of the single-class target visual-
ization experiments (Fig. 7) and the multi-class target visualization ex-
periments (Fig. 8) validate the accuracy and reliability of the proposed
GradToken for visual explanations. These results also demonstrate the
effectiveness of the designs including the gradient decoupling and the
attention propagation. Furthermore, the qualitative comparative ex-
periments complement the quantitative experiments and support their
results from another perspective.

4.4. Ablation study

In this section, we conduct ablation studies on the ImageNet-
Segmentation dataset to investigate the impact of attention aggregation
and propagation, multi-head relevance integration, and depth of class
relevance propagation on visualization results.

Third, Element-wise Multiplication contributes to mAP, while Ma-
trix Multiplication contributes to PAcc. Comparing the aggregation and
propagation schemes of GradToken-1 vs. GradToken-2, and GradToken-
3 vs. GradToken-4, it can be observed that Element-wise Multiplication
helps improve mAP (i.e. 88.01% >83.57% and 86.98% >86.10%). In
contrast, Matrix Multiplication then helps to improve PAcc (i.e. 82.14%
>81.73%, 84.51% >81.49%).
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Table 3
Effect of using different aggregation and propagation schemes on segmentation per-
formance (%). Higher values indicate better results. ⊙ denotes the element-wise
multiplication. ⊗ denotes the matrix multiplication. Bold font denotes the optimal result
under each evaluation criterion.

Method Rollout Average ⊙ ⊗ PAcc mAP mIoU

GradToken-0 – – – – 77.67 77.09 58.28
GradToken-1 ✓ – ✓ – 81.73 88.01 65.43
GradToken-2 ✓ – – ✓ 82.14 83.57 65.11
GradToken-3 – ✓ ✓ – 81.49 86.98 63.99
GradToken-4 – ✓ – ✓ 84.51 86.10 68.24

4.4.1. Effect of attention aggregation and propagation
To evaluate the influence of different attention aggregation and

propagation schemes on the generation of visualization maps, we inves-
tigated four types of attention aggregation and propagation schemes in
GradToken, along with a scheme without aggregation or propagation.
They are : GradToken-0 (no aggregation or propagation); GradToken-
1 (Rollout & Element-wise Multiplication); GradToken-2 (Rollout &
Matrix Multiplication); GradToken-3 (Average & Element-wise Multi-
plication); GradToken-4 (Average & Matrix Multiplication).

Table 3 shows the segmentation results obtained by GradToken
using the above five aggregation and propagation schemes on the
ImageNet-Segmentation dataset. The experimental results indicate the
followings:

First, each type of attention aggregation and propagation con-
tributes to improved explanations. As shown in Table 3, GradToken-0
without aggregation and propagation achieves a PAcc of 77.67%, an
mAP of 77.09%, and an mIoU of 58.28%. After applying attention
aggregation and propagation, PAcc is improved to 84.51% (GradToken-
4), mAP is improved to 88.01% (GradToken-1), and mIoU is im-
proved to 68.24% (GradToken-4). Low-layer attention aggregation and
propagation plays a significant role in improving all three scores.

Second, different aggregation and propagation schemes are suitable
for different metrics. GradToken-1, which uses Rollout & Element-wise
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Fig. 9. Visualization maps generated by different aggregation and propagation schemes.
Table 4
Effect of using different multi-head relevance integration schemes on segmentation
performance (%). Higher values indicate better results. Bold font denotes the optimal
result under each evaluation criterion.

Method average ReLU & PAcc mAP mIoU
average

GradToken-i ✓ – 75.11 74.28 51.32
GradToken-ii – ✓ 84.51 86.10 68.24

Multiplication as the aggregation and propagation scheme, achieves
the highest mAP (88.01%). GradToken-4, which uses Average & Matrix
Multiplication as the aggregation and propagation scheme, achieves the
highest PAcc and mIoU (84.51% and 68.24%, respectively). However,
no single aggregation and propagation scheme performs best on all
three metrics simultaneously.

In addition to the quantitative analysis, Fig. 9 presents qualitative
comparison results. GradToken-0 without aggregation and propagation
leads to generating holes in the middle of the target region, and
missing key features like the dog’s eyes. GradToken-1 highlights key
features that are already present, but fails to compensate for the miss-
ing features. GradToken-2 can compensate for missing features in the
hole positions but results in an excessively large target region, even
generating responses in the background region. GradToken-3 highlights
some background regions on the left, and introduces new holes in
the dog’s neck on the right. GradToken-4 not only compensates for
missing key features in the hole positions but also avoids highlighting
the background region. Visually, GradToken-4 with the aggregation and
propagation scheme of Average & Matrix Multiplication exhibits the
best performance. Considering the optimal performance achieved in
terms of PAcc, mIoU, and visual results, Average & Matrix Multipli-
cation is selected as the attention propagation and aggregation scheme
in the proposed method.

4.4.2. Effect of multi-head relevance integration
To evaluate the influence of different multi-head relevance inte-

gration schemes on the visualizations generated by GradToken, we
investigate two variants of multi-head relevance integration in Grad-
Token: GradToken-i (Average) and GradToken-ii (ReLU & Average).
Table 4 presents the segmentation results obtained by GradToken with
the two multi-head relevance integration schemes on the ImageNet-
Segmentation dataset, and Fig. 10 illustrates qualitative comparison
results.

As shown in Table 4, directly averaging the class relevance vectors
across multiple heads leads to lower PAcc, mAP, and mIoU. As depicted
in Fig. 10, when visualizing the target class (‘‘dog’’) using GradToken-
i, which directly averages the class relevance vectors, the values of the
target region turn negative. When the visualizations corresponding to
the class relevance vectors from the 12 heads are displayed one by
one (as shown in Fig. 10), it can be observed that the visualizations
corresponding to the class relevance vectors from the second, fourth,
seventh, eighth, ninth, and eleventh heads are negative. If the class
relevance vectors of all heads are simply added together, some heads’
negative values in the region of interest may exceed the sum of positive
values from other heads. Therefore, as an improvement to the multi-
head integration scheme in GradToken-i, GradToken-ii applies ReLU
11 
Fig. 10. Multi-head relevance integration and distribution of positive and negative
values across different heads. The left side shows the input image and the visualization
maps obtained by using two different multi-head integration schemes. The right side
shows the visualization maps of twelve heads. The numbers in the figure indicate the
head index. Red indicates the positive value and blue indicates the negative value.
Some heads with negative values cause the integrated relevance of the target to turn
negative in GradToken-i, while having no effect on GradToken-ii.

activation to all class relevance vectors and then computes their aver-
age, effectively suppressing the impact of negative values from certain
heads on the overall visualization. As shown in the visualization result
of GradToken-ii on the left side of Fig. 10, GradToken-ii successfully
highlights the target region. From Table 4, it can also be observed that
GradToken-ii, which adopts the ReLU & Average multi-head integration
scheme, achieves an improvement of 9.40% in PAcc, an improvement
of 11.82% in mAP, and an improvement of 16.82% in mIoU.

In summary, GradToken-ii, with the ReLU & Average integration
scheme, effectively integrates the class relevance vectors from multiple
heads, resulting in improved segmentation performance. Hence, ReLU
& Average is selected as the multi-head relevance integration scheme.

4.4.3. Effect of class relevance propagation depths
To analyze the influence of the depth of class relevance propagation

on the visualization results of GradToken, we investigate propagating
the high-layer class relevance to different lower layers, specifically
propagating it in reverse order to the eleventh, tenth, . . . , second,
and first layers of the network. Similarly, the segmentation results
are used to evaluate the visualization performance with regard to the
propagation depth.

As shown in Fig. 11, when class relevance is back-propagated from
the last layer to the eleventh layer, all three scores (PAcc, mAP, and
mIoU) decrease significantly compared to the case without propaga-
tion. As the depth of propagation increases, the three scores gradually
improve. When class relevance is back-propagated to the eighth layer,
the scores start to surpass those obtained without class relevance
propagation and continue to increase in the subsequent propagations.
Notably, when class relevance is back-propagated to the second layer,
mAP and mIoU reach their highest values of 86.12% and 68.27%,
respectively. However, when class relevance continues to be propa-
gated to the first layer, mAP and mIoU slightly decrease, while PAcc
reaches its highest value of 84.51%. This may be due to the fact
that the attention weight matrix in the lowest layer emphasizes local
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Fig. 11. The effect of class relevance back-propagation depths on segmentation
performances. The highest score of each metric is annotated in the figure. Notice that
the layer number ‘‘12’’ denotes no back-propagation.

spatial similarities, so propagation through the first layer leads to a
light reduction in the region of interest, thereby affecting mAP and
IoU. However, the enhancement of local similarities can highlight

alient regions, thus improving PAcc. Taking into account the overall
erformance of PAcc, mAP, and mIoU, we select the lowest layer as the

destination for class relevance propagation, i.e., back-propagating from
he last layer to the first layer.

5. Conclusion

To address the interpretability of vision Transformer networks, we
have proposed GradToken, a gradient-decoupling-based method, to
ompute the token relevance. By calculating the gradients of the output
ayer’s target score with respect to the class token, GradToken decou-

ples the tangled semantics within the class token and associates them
with the semantics of different categories. Furthermore, GradToken
performs convolution operations between the decoupled class token
and spatial tokens, obtaining the relevance vector for each category,
which can be transformed into the corresponding visualization map
for Transformer’s explanation. Experimental results on the ImageNet,
ImageNet-Segmentation, and VOC datasets have shown that, compared
to other state-of-the-art methods, GradToken not only provides discrim-
inative explanations for different targets but also generates visualiza-
tions with more accurate target boundaries and less background noise,
thus resulting in superior performance and reliable explanation.

Limitations. This work mainly focuses on the visual explanation
for vision Transformer and explores a little on language Transformer.
In future work, the explanation method can be expanded to other
modal data, e.g., audio or text-image/video multimodalities. The main
idea of gradient decoupling can be reused in the new tasks, but the
target of the gradient computation should be adjusted corresponding
to the input and output modality. Besides, the proposed method only
addresses the explanation of Transformer networks with class tokens
(e.g., ViT). To adapt to other Transformer architectures without class
tokens, one possible solution is treating the average token of query
tensors as the class token to compute the gradient and further obtain
class-aware relevance.

CRediT authorship contribution statement

Lin Cheng: Writing – original draft, Visualization, Methodology,
nvestigation, Formal analysis, Data curation, Conceptualization. Yan-
ie Liang: Writing – review & editing, Validation, Formal analysis.
ang Lu: Writing – review & editing, Supervision, Funding acquisition.
iu-ming Cheung: Writing – review & editing, Validation.
12 
Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the author(s) used OpenAI’s
ChatGPT in order to check grammar and improve readability and
language. The paper is original by the author, and the tool does not
provide any ideas or semantic changes. After using this tool/service,
the author(s) reviewed and edited the content as needed and take(s)
full responsibility for the content of the publication.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This study was supported in part by the National Natural Science
oundation of China under Grant 62376233; in part by the General
esearch Fund of Research Grants Council under Grant 12202622; in
art by the Natural Science Foundation of Fujian Province under Grant
024J09001; in part by the China Fundamental Research Funds for the
entral Universities under Grant 20720230038; and in part by Xiaomi
oung Talents Program.

Data availability

Data will be made available on request.

References

Abnar, S., & Zuidema, W. H. (2020). Quantifying attention flow in transformers. In
Pro. ACL (pp. 4190–4197).

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. In O. D. Suarez (Ed.), PLoS One, 10(7), Article e0130140.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al. (2020).
Language models are few-shot learners. In Proc. NeurIPS: vol. 33, (pp. 1877–1901).

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020).
End-to-end object detection with transformers. In Pro. ECCV (pp. 213–229).

Chefer, H., Gur, S., & Wolf, L. (2021a). Generic attention-model explainability
for interpreting bi-modal and encoder-decoder transformers. In Pro. ICCV (pp.
387–396).

Chefer, H., Gur, S., & Wolf, L. (2021b). Transformer interpretability beyond attention
visualization. In Pro. CVPR (pp. 782–791).

Chen, L., You, Z., Zhang, N., Xi, J., & Le, X. (2022). UTRAD: Anomaly detection and
localization with U-transformer. Neural Networks, 147, 53–62.

Cheng, L., Fang, P., Liang, Y., Zhang, L., Shen, C., & Wang, H. (2022). TSGB: Target-
selective gradient backprop for probing CNN visual saliency. IEEE Transactions on
Image Processing, 31, 2529–2540.

Cheng, C., Liu, W., Fan, Z., Feng, L., & Jia, Z. (2024). A novel transformer autoencoder
for multi-modal emotion recognition with incomplete data. Neural Networks, 172,
Article 106111.

Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., et al. (2021). Twins:
Revisiting the design of spatial attention in vision transformers. In Proc. NeurIPS
(pp. 9355–9366).

Clark, K., Khandelwal, U., Levy, O., & Manning, C. D. (2019). What does BERT look
at? An analysis of BERT’s attention. In Pro. ACL workshop (pp. 276–286).

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Pro. NAACL-HLT (pp.
4171–4186).

DeYoung, J., Jain, S., Rajani, N. F., Lehman, E., Xiong, C., Socher, R., et al. (2020).
ERASER: A benchmark to evaluate rationalized NLP models. In Pro. ACL (pp.
4443–4458).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., et
al. (2021). An image is worth 16x16 words: Transformers for image recognition at
scale. In Pro. ICLR.

Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J. M., & Zisserman, A. (2010).
The pascal visual object classes (VOC) challenge. International Journal of Computer
Vision, 88(2), 303–338.

Ghiasi, A., Kazemi, H., Borgnia, E., Reich, S., Shu, M., Goldblum, M., et al. (2022).
What do vision transformers learn? A visual exploration. CoRR abs/2212.06727.

http://refhub.elsevier.com/S0893-6080(24)00761-5/sb1
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb1
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb1
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb2
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb2
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb2
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb2
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb2
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb3
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb3
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb3
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb4
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb4
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb4
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb5
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb6
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb7
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb7
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb7
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb8
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb9
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb9
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb9
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb9
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb9
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb10
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb11
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb11
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb11
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb12
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb13
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb13
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb13
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb13
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb13
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb14
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb14
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb14
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb14
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb14
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb15
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb15
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb15
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb15
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb15
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb16
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb16
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb16


L. Cheng et al. Neural Networks 181 (2025) 106837 
Guillaumin, M., Küttel, D., & Ferrari, V. (2014). ImageNet auto-annotation with
segmentation propagation. International Journal of Computer Vision, 110(3),
328–348.

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., et al. (2023). A survey on
vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(1), 87–110.

Hao, Y., Dong, L., Wei, F., & Xu, K. (2021). Self-attention attribution: Interpreting
information interactions inside transformer. In Pro. AAAI (pp. 12963–12971).

Hariharan, B., Arbelaez, P., Bourdev, L. D., Maji, S., & Malik, J. (2011). Semantic
contours from inverse detectors. In Pro. ICCV (pp. 991–998).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Pro. CVPR (pp. 770–778).

Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Kovaleva, O., Romanov, A., Rogers, A., & Rumshisky, A. (2019). Revealing the dark
secrets of BERT. In Pro. EMNLP/IJCNLP (pp. 4364–4373).

Leem, S., & Seo, H. (2024). Attention guided CAM: Visual explanations of vision
transformer guided by self-attention. arXiv preprint arXiv:2402.04563.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). Swin trans-
former: Hierarchical vision transformer using shifted windows. In Pro. ICCV (pp.
10012–10022).

Ma, J., Bai, Y., Zhong, B., Zhang, W., Yao, T., & Mei, T. (2023). Visualizing and
understanding patch interactions in vision transformer. IEEE Transactions on Neural
Networks and Learning Systems, 1–10.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., & Müller, K.-R. (2017). Ex-
plaining nonlinear classification decisions with deep Taylor decomposition. Pattern
Recognition, 65, 211–222.

Qiang, Y., Pan, D., Li, C., Li, X., Jang, R., & Zhu, D. (2022). AttCAT: Explaining
transformers via attentive class activation tokens. In Proc. NeurIPS (pp. 5052–5064).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. International Journal of Computer
Vision, 115(3), 211–252.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020).
Grad-CAM: Visual explanations from deep networks via gradient-based localization.
International Journal of Computer Vision, 128(2), 336–359.
13 
Serrano, S., & Smith, N. A. (2019). Is attention interpretable? In Pro. ACL (pp.
2931–2951).

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition. In Pro. ICLR.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks.
In Pro. ICML (pp. 3319–3328).

Vasanthi, P., & Mohan, L. (2023). A reliable anchor regenerative-based transformer
model for x-small and dense objects recognition. Neural Networks, 165, 809–829.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. In Proc. NeurIPS (pp. 5998–6008).

Vilas, M. G., Schaumlöffel, T., & Roig, G. (2023). Analyzing vision transformers for
image classification in class embedding space. In Proc. NeurIPS.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., & Titov, I. (2019). Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In
Pro. ACL (pp. 5797–5808).

Vukadin, D., Afrić, P., Šilić, M., & Delač, G. (2024). Advancing attribution-based
neural network explainability through relative absolute magnitude layer-wise rele-
vance propagation and multi-component evaluation. ACM Transactions on Intelligent
Systems and Technology.

Xie, W., Li, X., Cao, C. C., & Zhang, N. L. (2023). ViT-CX: Causal explanation of vision
transformers. In Pro. IJCAI (pp. 1569–1577).

Xu, L., Ouyang, W., Bennamoun, M., Boussaïd, F., & Xu, D. (2022). Multi-class
token transformer for weakly supervised semantic segmentation. In Pro. CVPR (pp.
4300–4309).

Xu, L., Yan, X., Ding, W., & Liu, Z. (2022). Attribution rollout: a new way to interpret
visual transformer. Journal of Ambient Intelligence and Humanized Computing, 1–11.

Yuan, L., Hou, Q., Jiang, Z., Feng, J., & Yan, S. (2023). VOLO: Vision outlooker for
visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(5), 6575–6586.

Yuan, T., Li, X., Xiong, H., Cao, H., & Dou, D. (2021). Explaining information flow
inside vision transformers using Markov chain. In Proc. NeurIPS workshop.

Zaidan, O., & Eisner, J. (2008). Modeling annotators: A generative approach to learning
from annotator rationales. In Pro. EMNLP/IJCNLP (pp. 31–40).

Zhang, N., Yu, L., Zhang, D., Wu, W., Tian, S., Kang, X., et al. (2024). CT-Net:
Asymmetric compound branch transformer for medical image segmentation. Neural
Networks, 170, 298–311.

http://refhub.elsevier.com/S0893-6080(24)00761-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb17
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb18
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb18
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb18
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb18
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb18
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb19
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb19
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb19
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb20
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb20
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb20
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb21
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb21
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb21
http://arxiv.org/abs/1606.08415
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb23
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb23
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb23
http://arxiv.org/abs/2402.04563
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb25
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb26
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb26
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb26
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb26
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb26
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb27
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb27
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb27
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb27
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb27
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb28
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb28
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb28
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb29
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb30
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb30
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb30
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb30
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb30
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb31
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb31
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb31
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb32
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb32
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb32
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb33
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb33
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb33
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb34
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb34
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb34
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb35
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb35
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb35
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb36
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb36
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb36
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb37
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb37
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb37
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb37
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb37
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb38
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb39
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb39
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb39
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb40
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb41
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb41
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb41
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb42
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb42
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb42
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb42
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb42
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb43
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb44
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb44
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb44
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb45
http://refhub.elsevier.com/S0893-6080(24)00761-5/sb45

	GradToken: Decoupling tokens with class-aware gradient for visual explanation of Transformer network 
	Introduction
	Related Work
	Attention-based Visual Explanation Methods
	Relevance-based Visual Explanation Methods
	Gradient-based Visual Explanation Methods
	Other Explanation Method

	Method
	Problem Analysis
	Gradient-based Class Relevance Computation
	Attention Aggregation and Propagation
	Rollout & Element-wise Multiplication
	Rollout & Matrix Multiplication
	Average & Element-wise Multiplication
	Average & Matrix Multiplication

	Multi-head Relevance Integration
	Average
	ReLU & Average

	Method Summary
	Rollout
	TransAttrib
	GradCAM


	Experiments
	Experimental Settings
	Evaluation Datasets and Models
	Evaluation Metrics

	Quantitative Evaluation
	Segmentation Experiment
	Perturbation Experiment
	Generalization on the language Model

	Qualitative Comparison
	Single-class Visualization
	Multi-class Visualization

	Ablation Study
	Effect of Attention Aggregation and Propagation
	Effect of Multi-Head Relevance Integration
	Effect of Class Relevance Propagation Depths


	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


