
Pattern Recognition Letters 24 (2003) 2883–2893

www.elsevier.com/locate/patrec
k�-Means: A new generalized k-means clustering algorithm q

Yiu-Ming Cheung *

Department of Computer Science, Hong Kong Baptist University, 7/F Sir Run Run Shaw Building, Kowloon Tong, Hong Kong

Received 23 July 2002; received in revised form 11 April 2003
Abstract

This paper presents a generalized version of the conventional k-means clustering algorithm [Proceedings of 5th

Berkeley Symposium on Mathematical Statistics and Probability, 1, University of California Press, Berkeley, 1967, p.

281]. Not only is this new one applicable to ellipse-shaped data clusters without dead-unit problem, but also performs

correct clustering without pre-assigning the exact cluster number. We qualitatively analyze its underlying mechanism,

and show its outstanding performance through the experiments.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Clustering analysis; k-Means algorithm; Cluster number; Rival penalization
1. Introduction

Clustering analysis is a fundamental but im-

portant tool in statistical data analysis. In the past,

the clustering techniques have been widely applied
in a variety of scientific areas such as pattern rec-

ognition, information retrieval, microbiology ana-

lysis, and so forth.

In the literature, the k-means (MacQueen, 1967)

is a typical clustering algorithm, which aims to

partition N inputs (also called data points inter-

changeably) x1; x2; . . . ; xN into k� clusters by as-

signing an input xt into the jth cluster if the
indicator function IðjjxtÞ ¼ 1 holds with
q This work was supported by a Faculty Research Grant of

Hong Kong Baptist University with the project code: FRG/02-

03/I-06.
* Tel.: +852-3411-5155; fax: +852-3411-7892.

E-mail address: ymc@comp.hkbu.edu.hk (Y.-M. Cheung).

0167-8655/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S0167-8655(03)00146-6
IðjjxtÞ ¼ 1 if j ¼ arg min16 r6 kkxt �mrk2;
0 otherwise:

�
ð1Þ

Here, m1;m2; . . . ;mk are called seed points or units

that can be learned in an adaptive way as follows:

Step 1. Pre-assign the number k of clusters, and

initialize the seed points fmjgkj¼1.

Step 2. Given an input xt, calculate IðjjxtÞ by Eq.

(1).
Step 3. Only update the winning seed point mw,

i.e., IðwjxtÞ ¼ 1, by

mnew
w ¼ mold

w þ gðxt �mold
w Þ; ð2Þ

where g is a small positive learning rate.

The above Step 2 and Step 3 are repeatedly

implemented for each input until all seed points

converge.
ed.

mail to: ymc@comp.hkbu.edu.hk

2884 Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893
Although the k-means has been widely applied

in image processing, pattern recognition and so

forth, it has three major drawbacks:

(1) It implies that the data clusters are ball-shaped

because it performs clustering based on the
Euclidean distance only as shown in Eq. (1).

(2) As pointed out in (Xu et al., 1993), there is

the dead-unit problem. That is, if some units

are initialized far away from the input data

set in comparison with other units, they then

immediately become dead without learning

chance any more in the whole learning pro-

cess.
(3) It needs to pre-determine the cluster number.

When k equals to k�, the k-means algorithm

can correctly find out the clustering centres

as shown in Fig. 1(b). Otherwise, it will lead

to an incorrect clustering result as depicted

in Fig. 1(a) and (c), where some of mjs do not

locate at the centres of the corresponding

clusters. Instead, they are either at some
boundary points among different clusters or

at points biased from some cluster centres.

In the literature, the k-means has been ex-

tended by considering the input covariance ma-

trix in clustering via Eq. (1) so that it can work

on ellipse-shaped data clusters as well as ball-

shaped ones. Furthermore, there have been sev-
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

2

3

4

5

(a)

-0.5 0 0.5 1 1.5 2
-1

0

1

2

3

4

5

(b)

Fig. 1. The results of the k-means algorithm under two-cluster data

locations of the converged seed points mjs.
eral techniques proposed to solve the dead-unit

problem. Frequency Sensitive Competitive Learn-

ing (FSCL) algorithm (Ahalt et al., 1990) is a

typical example that circumvents the dead units

by gradually reducing the winning chance of the

frequent winning unit. As for the cluster number
selection, some works have been done along two

directions. The first one is to formulate the

cluster number selection as the choice of com-

ponent number in a finite mixture model. In the

past, there have been some criteria proposed for

model selection, such as AIC (Akaike, 1973,

1974), CAIC (Bozdogan, 1987) and SIC (Sch-

warz, 1978). Often, these existing criteria may
overestimate or underestimate the cluster number

due to the difficulty of choosing an appropriate

penalty function. In recent years, a number se-

lection criterion developed from Ying-Yang

Machine has been proposed and experimentally

verified in (Xu, 1996, 1997), whose computing

however is laborious. The other direction invokes

some heuristic approaches. For example, the
typical incremental clustering gradually increases

the number k of clusters under the control of a

threshold value, which unfortunately is hard to

be decided. Furthermore, Probabilistic Validation

(PV) approach (Har-even and Brailovsky, 1995)

performs clustering analysis by projecting the

high-dimension inputs into one dimension via

maximizing the projection indices. It has been
2.5 3 3.5 4 4.5 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

2

3

4

5

(c)

set with (a) k ¼ 1; (b) k ¼ 2; (c) k ¼ 3, where ��� denotes the

Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893 2885
shown that the PV can find out the correct

number of clusters with a high probability.

However, not only is this algorithm essentially

suitable for the linear-separable problems only

with the few number of clusters, but also re-

quests the clusters to be well-separated with the
overlap ignorable. Otherwise, its two-level clus-

tering validation procedure becomes rather time-

consuming, and the probability of finding the

correct number of clusters decreases. In addition,

another typical example is an improved version

of FSCL named Rival Penalised Competitive

Learning (RPCL) (Xu et al., 1993) that for each

input, not only the winner of the seed points is
updated to adapt to the input, but also its rival is

de-learned by a smaller learning rate (also called

de-learning rate hereafter). Many experiments

have shown that the RPCL can select the correct

cluster number by driving extra seed points far

away from the input data set, but its perfor-

mance is sensitive to the selection of the de-

learning rate. To our best knowledge, such a rate
selection so far has not been well-guided by any

theoretical result.

In this paper, we will present a new clustering

technique named STep-wise Automatic Rival-

penalised (STAR) k-means algorithm (denoted as

k�-means hereafter), which is actually a general-

ization of the conventional k-means algorithm, but

without its three major drawbacks as stated pre-
viously. The k�-means consists of two separate

steps. The first one is a pre-processing procedure,

which assigns each cluster at least a seed point.

Then, the next step is to adjust the units adaptively

by a learning rule that automatically penalises the

winning chance of all rival seed points in the

subsequent competitions while tuning the winning

one to adapt to an input. This new algorithm has a
similar mechanism to RPCL in performing clus-

tering without pre-determining the correct cluster

number. The main difference is that the proposed

one penalises the rivals in an implicit way, whereby

circumventing the determination of the rival de-

learning rate as presented in the RPCL. We have

qualitatively analyzed the underlying rival-pena-

lised mechanism of this new algorithm, and em-
pirically shown its clustering performance on

synthetic data.
2. A metric for data clustering

Suppose N inputs x1; x2; . . . ; xN are indepen-

dently and identically distributed from a mixture-

density-of-Gaussian population:

p�ðx;H�Þ ¼
Xk�
j¼1

a�
jGðxjm�

j ;R
�
j Þ; ð3Þ

with

Xk�
j¼1

a�
j ¼ 1; and a�

j P 0 for 16 j6 k�; ð4Þ

where k� is the mixture number, H� ¼ fða�
j ;m

�
j ;R

�
j Þj

16 j6 k�g is the true parameter set, and Gðxjm;RÞ
denotes a multivariate Gaussian density of x with

mean m (also called seed points or units) and co-

variance R. In Eq. (3), both of k� and H� are un-

known, and need to be estimated. We therefore
model the inputs by

pðx;HÞ ¼
Xk
j¼1

ajGðxjmj;RjÞ; ð5Þ

with

Xk
j¼1

aj ¼ 1; and aj P 0 for 16 j6 k; ð6Þ

where k is a candidate of mixture number, H ¼
fðaj;mj;RjÞj16 j6 kg is an estimator of H�. We
measure the distance between p�ðx;H�Þ and

pðx;HÞ by the following Kullback–Leibler diver-

gence function:

Qðx;HÞ¼
Z

p�ðx;H�Þlnp
�ðx;H�Þ
pðx;HÞ dx ð7Þ

¼
Xk
j¼1

Z
pðjjxÞp�ðx;H�Þlnp

�ðx;H�Þ
pðx;HÞ dx

¼
Xk
j¼1

Z
pðjjxÞp�ðx;H�ÞlnpðjjxÞp

�ðx;H�Þ
ajGðxjmj;RjÞ

dx

ð8Þ

with

pðjjxÞ ¼ ajGðxjmj;RjÞ
pðxt;HÞ ; 16 j6 k; ð9Þ

2886 Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893
where pðjjxÞ is the posterior probability of an in-

put x from the probability density function (pdf) j
as given x. It can be seen that minimizing Eq. (8)

is equivalent to the maximum likelihood (ML)

learning of H, i.e., minimizing Eq. (7), upon the
fact that

R
p�ðx;H�Þ ln p�ðx;H�Þdx is a constant

irrelevant to H. Actually, this relation was first

built in Ying-Yang Machine (Xu, 1995–1997),

which is a unified statistical learning approach

beyond ML framework in general, with a special

structural design of the four Ying-Yang compo-

nents. Here, we adhere to estimate H within the

ML framework only.
It should be noted that Eqs. (3) and (5) are both

the identifiable model, i.e., given a specific mixture

number, p�ðx;H�Þ ¼ pðx;HÞ if and only if H� ¼ H.

Hence, as given kP k�, Qðx;HÞ will reach the

minimum when H ¼ H�, i.e., p�ðx;H�Þ ¼ pðx;HÞ,
where H ¼ H � KðHÞ with KðHÞ ¼ fðaj;mj;
RjÞjaj ¼ 0; 16 j6 kg. Hence, Eq. (8) is an appro-

priate metric for data clustering by means of
pðjjxÞ. Here, we prefer to perform clustering based

on the winner-take-all principle. That is, we assign

an input x into cluster j if

IðjjxÞ ¼ 1 if j ¼ w ¼ arg max16 r6 kpðrjxÞ;
0 otherwise;

�
ð10Þ

which can be further specified as

IðjjxÞ ¼ 1 if j ¼ w ¼ arg minrqr;
0 otherwise

�
ð11Þ

with

qr ¼ ðxt �mrÞT
R�1

r ðxt �mrÞ� lnðjR�1
r jÞ� 2lnðarÞ

h i
:

ð12Þ

Consequently, minimizing Eq. (8) is approximate

to minimize

Rðx;HÞ ¼
Xk
j¼1

Z
IðjjxÞp�ðx;H�Þ

� ln
IðjjxÞp�ðx;H�Þ
ajGðxjmj;RjÞ

dx; ð13Þ

which, by the law of large number, can be further

simplified as
Rðx1;x2; . . . ; xN ;HÞ ¼ H � 1

N

XN
t¼1

Xk
j¼1

IðjjxtÞ

� ln½ajGðxjmj;RjÞ
 ð14Þ

as N is large enough, where H ¼ 1
N �PN

t¼1 ln p�ðxt;H
�Þ is a constant term irrelevant to

H. Hence, when all inputs fxtgNt¼1 are available, the

learning of H via minimizing Eq. (14) can be im-

plemented by the hard-cut Expectation–Maximi-
zation (EM) algorithm (Xu, 1995) in a batch way,

which however needs to pre-assign the mixture

number k appropriately. Otherwise, it will lead to

an incorrect solution. Here, we prefer to perform

clustering and parameter learning adaptively in

analog with the previous k-means, but has robust

clustering performance without pre-assigning the

exact cluster number. The paper (Xu, 1995) has
proposed an adaptive EM algorithm as well, but

its convergence properties and robustness have not

been well studied yet. Furthermore, the paper

(Wang et al., 2003) has presented a gradient-based

learning algorithm to learn the parameter set H via

minimizing the soft version of Eq. (14), i.e., replace

IðjjxtÞ by pðjjxtÞ in Eq. (14). Although the pre-

liminary experiments have shown its robust
performance on Gaussian-mixture clustering, it

actually belongs to a batch-way algorithm, and

updates all parameters at each time step without

considering the characteristics of the metric, result-

ing in considerable computations needed. In Sec-

tion 4, we therefore present an alternative adaptive

gradient-based algorithm to minimize Eq. (14) for

the parameter learning and clustering.
Before closing this section, two things should be

further noted. The first one is that Eq. (14) can be

degenerated to mean-square-error (MSE) function

if ajs are all forced to 1=k, and Rjs are all the same.

Under the circumstances, the clustering based on

Eq. (11) is actually the conventional k-means al-

gorithm. The other thing is that the term lnðarÞ with

r 6¼ w in Eq. (12) is automatically decreased be-
cause of the summation constraints among ars in

Eq. (6) when aw is adjusted to adapt the winning of

cluster w for an input xt. Consequently, all rival

seed points are automatically penalised in a sense of

winning chance while the winner is modified to

adapt to the input xt. In the next section, we will

Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893 2887
show that such a penalization can drive the winning

chance of extra seed points in the same cluster to-

wards zero.

3. Rival-penalised mechanism analysis of the metric

For simplicity, we consider one cluster with two

seed points denoted as m1 and m2, respectively. In

the beginning, we assume that aðsÞ
1 ¼ aðsÞ

2 with

s ¼ 0, where the superscript sP 0 denotes the

number of times that the data have been repeat-

edly scanned. Hence, based on the data assignment

condition in Eq. (11), m
ð0Þ
1 and m

ð0Þ
2 divide the

cluster into two regions: Regions 1 and 2 by a

separating line Lð0Þ as shown in Fig. 2(a). In gen-

eral, the number nð0Þ1 of the inputs falling in Region

1 is different from nð0Þ2 in Region 2. Without loss of

generality, we further suppose nð0Þ1 > nð0Þ2 . During

data scanning, if m
ð0Þ
j wins to adapt to an input xt,

að0Þ
j will be increased by a unit Da towards mini-

mizing Eq. (14). Since nð0Þ1 > nð0Þ2 , after scanning all
the data points in the cluster, the net increase of

að0Þ
1 will be about ðnð0Þ1 � nð0Þ2 ÞDa, and the net de-

crease of að0Þ
2 will be in the same amount due to the

constraint that að0Þ
1 þ að0Þ

2 ¼ 1. Consequently, the

separating line between Region 1 and Region 2 is

moved towards the right direction as shown in Fig.

2(b). That is, the area of Region 1 is being
L
(0)

Separating Line

Region 1

Region 2

m1
(0) m2

(0)

(a)

Fig. 2. The region boundaries of the seed points m1 and m2 that divid

line L with (a) the initial region boundary, and (b) the boundary afte
expanded towards the right meanwhile Region 2 is

being shrunk. This scenario will be always kept

along with s increase until the seed point m2 is

stabilized at the boundary of the cluster with its

associated a2 ¼ 0. From Eq. (11), we know that q2

tends to positive infinity. That is, m2 has actually
been dead without chance to win again. Although

m2 still stays in the cluster, it cannot interfere with

the learning of m1 any more. Consequently, m1 will

gradually converge to the cluster center through

minimizing Eq. (14).

In the above, we have ignored the effects of Rjs

in Eq. (12) for simplicity. Actually, Rjs are insen-

sitive to the gradual change of the region bound-
aries in comparison with mjs and ajs. That is, the

dominant term of determining the linear moving

direction is the third term in Eq. (12). Moreover,

the previous analysis merely investigates a simple

one-cluster case. In general, the analysis of multiple

clusters is more complicated because of the inter-

active effects among clusters, particularly when

their overlaps are considerable. Under the cir-
cumstances, the results are similar to the one-

cluster case, but the extra seed points may not die

at the cluster boundary. Instead, they may stay at a

position with a small distance to the boundary. In

Section 5, we will give out some experiments to

further justify these results.
New Separating Line

L
(0)

Region 1

Region 2

m1
(1) m2

(1)

L
(1)

Move
Right

(b)

e the cluster into two regions: Regions 1 and 2 by a separating

r all data points in the cluster have been scanned once.

2888 Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893
4. k*-Means algorithm

From the results of Section 3, we know that the

data assignment based on the condition in Eq. (11)

can automatically penalise the extra seed points
without requiring any other efforts. Hence, the k�-
means algorithm consists of two separate steps.

The first step is to let each cluster acquires at least

one seed point, and the other step is to adjust the

parameter set H via minimizing Eq. (14) mean-

while clustering the data points by Eq. (11). The

detailed k�-means algorithm is given out as fol-

lows:
Step 1: We implement this step by using Fre-

quency Sensitive Competitive Learning (Ahalt

et al., 1990) because they can achieve the goal as

long as the number of seed points is not less than

the exact number k� of clusters. Here, we suppose

the number of clusters is kP k�, and randomly

initialize the k seed points m1;m2; . . . ;mk in the

input data set.
Step 1.1: Randomly pick up a data point xt

from the input data set, and for j ¼ 1; 2; . . . ; k, let

uj ¼
1 if j ¼ w ¼ arg minrkrkxt �mrk;
0 otherwise;

�
ð15Þ

where kj ¼ nj=
Pk

r¼1 nr, and nr is the cumulative

number of the occurrences of ur ¼ 1.

Step 1.2: Update the winning seed point mw

only by

mnew
w ¼ mold

w þ gðxt �mold
w Þ: ð16Þ

Steps 1.1 and 1.2 are repeatedly implemented

until the k series of uj, j ¼ 1; 2; . . . ; k remain un-

changed for all xts. Then go to Step 2. In the

above, we have not included the input covariance

information in Eqs. (15) and (16) because this step
merely aims to allocate the seed points into some

desired regions as stated before, rather than

making a precise value estimate of them. Hence,

we can simply ignore the covariance information

to save the considerable computing cost in the

estimate of a covariance matrix.

Step 2: Initialize aj ¼ 1=k for j ¼ 1; 2; . . . ; k,

and let Rj be the covariance matrix of those data
points with uj ¼ 1. In the following, we adaptively

learn ajs, mjs and Rjs towards minimizing Eq. (14).
Step 2.1: Given a data point xt, calculate

IðjjxtÞs by Eq. (11).

Step 2.2: Update the winning seed point mw

only by

mnew
w ¼ mold

w � g
oR
omw

����
mold

w

¼ mold
w þ gR�1

w ðxt �mold
w Þ;

ð17Þ

or simply by Eq. (16) without considering R�1
w . In

the latter, we actually update mw along the direc-

tion of R�1
w

oR
omw

that forms an acute angle to the

gradient-descent direction. Further, we have to

update the parameters ajs and Rw. The updates of

the former can be obtained by minimizing Eq. (14)

through a constrained optimization algorithm in

view of the constraints on ajs in Eq. (6). Alterna-

tively, we here let

aj ¼
expðbjÞPk
r¼1 expðbrÞ

; 16 j6 k; ð18Þ

where the constraints of ajs are automatically

satisfied, but the new variables bjs are totally free.

Consequently, instead of ajs, we can learn bnew
w

only by

bnew
w ¼ bold

w � g
oR
obw

����
bold
w

¼ bold
w þ gð1 � aold

w Þ;
ð19Þ

with the other bjs unchanged. It turns out that aw

is exclusively increased while the other ajs are

penalised, i.e., their values are decreased. Here,

please note that, although ajs are gradually con-

vergent, Eq. (19) always makes the updating of b
increase without an upper bound upon the fact the

aw is always smaller than 1 in general. To avoid

this undesirable situation, one feasible way is to

subtract a positive constant cb from all bjs when

the largest one of bjs reaches a pre-specified posi-

tive threshold value. As for Rw, we update it with a

small step size along the direction towards mini-

mizing Eq. (14), i.e.,

Rnew
w ¼ ð1 � gsÞRold

w þ gsztz
T
t ; ð20Þ

where zt ¼ xt �mold
w , and gs is a small positive

learning rate. In general, the learning of a covari-

ance matrix is more sensitive to the learning step

Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893 2889
size than the other parameters. Hence, to make Rw

learned smoothly, by rule of thumb, gs can be

chosen much smaller than g, e.g., gs ¼ 0:1g. Since

Eqs. (11) and (17) involve R�1
j s only rather than

Rjs, to save computing costs and calculation
stability, we therefore directly update R�1

w by re-

formatting Eq. (20) in terms of R�1
w . Consequently,

we have

R�1new
w ¼ R�1old

w

1 � gs
I

"
� gsztz

T
t R

�1old
w

1 � gs þ gsz
T
t R

�1old
w zt

#
; ð21Þ

where I is an identity matrix.

Steps 2.1 and 2.2 are repeatedly implemented

until k series of IðjjxtÞ with j ¼ 1; 2; . . . ; k remain

unchanged for all xts.
5. Experimental results

We performed two experiments to demonstrate

the performance of k�-means algorithm. Experi-

ment 1 used the 1000 data points from a mixture of

three Gaussian distributions:

pðxÞ ¼ 0:3G x
1

1

� �
;

0:1; 0:05

0:05; 0:2

� �����

�

þ 0:4G x
1

5

� �
;

0:1; 0

0; 0:1

� �����

�

þ 0:3G x
5

5

� �
;

0:1; �0:05

�0:05; 0:1

� �����

�
:

ð22Þ

As shown in Fig. 3(a), the data form three well-
separated clusters. We randomly initialized six

seed points in the input data space, and set the

learning rates g ¼ 0:001 and gs ¼ 0:0001. After

Step 1 of k�-means algorithm, each cluster has

been assigned at least one seed point as shown in

Fig. 3(b). We then performed Step 2, resulting in

a1, a5 and a6 converging to 0.2958, 0.3987 and

0.3055 respectively, while the others converged to
zero. That is, the seed points m2, m3 and m4 are the

extra ones whose winning chances have been

penalised to zero during the competitive learning

with other seed points. Consequently, as shown in

Fig. 3(c), the three clusters have been well recog-

nized with
m1 ¼
1:0087

0:9738

 !
; R1 ¼

0:0968; 0:0469

0:0469; 0:1980

 !

m5 ¼
0:9757

4:9761

 !
; R5 ¼

0:0919; 0:0016

0:0016; 0:0908

 !

m6 ¼
5:0163

5:0063

 !
; R6 ¼

0:1104; �0:0576

�0:0576; 0:1105

 !
;

ð23Þ

while the extra seed points m2, m3 and m4 have

been pushed to stay at the boundary of their cor-

responding clusters. It can be seen that this result

is accordance with the analysis in Section 3.

In Experiment 2, we used 2000 data points that

are also from a mixture of three Gaussians as
follows:

pðxÞ ¼ 0:3G x
1

1

� �
;

0:15; 0:05

0:05; 0:25

� �����

�

þ 0:4G x
1

2:5

� �
;

0:15; 0

0; 0:15

� �����

�

þ 0:3G x
2:5

2:5

� �
;

0:15; �0:1

�0:1; 0:15

� �����

;

�
ð24Þ

which results in a serious overlap among the
clusters as shown in Fig. 4(a). Under the same

experimental environment, we first performed Step

1, resulting in the six seed points distributed in the

three clusters as shown in Fig. 4(b). Then we

performed Step 2, which led to a2 ¼ 0:3879,

a3 ¼ 0:2925, and a6 ¼ 0:3196 while the others be-

came to zero. Consequently, the corresponding

converged mjs and Rjs were:
m2 ¼
0:9491

2:4657

 !
; R2 ¼

0:1252; 0:0040

0:0040; 0:1153

 !

m3 ¼
1:0223

0:9576

 !
; R3 ¼

0:1481; 0:0494

0:0494; 0:2189

 !

m6 ¼
2:5041

2:5161

 !
; R6 ¼

0:1759; �0:1252

�0:1252; 0:1789

 !
;

ð25Þ

0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7
Initial Positions of Seed Points

(a)

0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

(b)

0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

(c)

Fig. 3. The positions of six seed points marked by �+� in the input data space at different steps in Experiment 1: (a) the initial positions,

(b) the positions after Step 1 of the k�-means algorithm, and (c) the final positions after Step 2.

2890 Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5
Initial Positions of Seed Points

(a)

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

(b)

-1 0 1 2 3 4 5 6 7 8 9
-1

0

1

2

3

4

5

(c)

Fig. 4. The positions of six seed points marked by �+� in the input data space at different steps in Experiment 2: (a) the initial positions,

(b) the positions after Step 1 of the k�-means algorithm, and (c) the final positions after Step 2.

Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893 2891

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

Fig. 5. The final positions of six seed points marked by �+� in the input data space, where the seed points are updated by Eq. (16).

2892 Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893
while the other three extra seed points were
stabilized at

m1 ¼
0:7394

�0:2033

� �
; m4 ¼

8:4553

4:0926

� �
;

m5 ¼
2:5041

2:5166

� �
: ð26Þ

As shown in Fig. 4(c), m1 and m5 have been pushed

to stay at the boundary of their corresponding

clusters. However, we also found that m4 had been

driven far away from the input data set, but not

stayed at the cluster boundary. The reason is that

the main diagonal elements of R4 are generally
very small, i.e., those of R�1

4 become very large.

Subsequently, the updating of m4 (i.e., the second

term in Eq. (17)) is considerably large when the

fixed learning step size g is not sufficiently small. It

turns out that m4 is strongly driven to the outside

far away from the correspond cluster. Actually,

when we update all mjs by Eq. (16) instead of Eq.

(17), all converged seed points will then finally stay
within the clusters as shown in Fig. 5, where all

extra seed points die near the boundaries of their

corresponding clusters upon the effects of the

cluster overlapping. Again, this experimental re-

sult is consistent with the analysis in Section 3.
6. Conclusion

We have presented a new generalization of

conventional k-means clustering algorithm. Not
only is this new one applicable to ellipse-shaped
data clusters as well as ball-shaped ones without

dead-unit problem, but also performs correct clus-

tering without pre-determining the exact cluster

number. We have qualitatively analyzed its rival-

penalised mechanism, and shown its outstanding

clustering performance via the experiments.
References

Ahalt, S.C., Krishnamurty, A.K., Chen, P., Melton, D.E., 1990.

Competitive learning algorithms for vector quantization.

Neural Networks 3, 277–291.

Akaike, H., 1973. Information theory and an extension of the

maximum likelihood principle. In: Proc. Second Internat.

Symposium on Information Theory, pp. 267–281.

Akaike, H., 1974. A new look at the statistical model identifi-

cation. IEEE Trans. Automatic Control AC-19, 716–

723.

Bozdogan, H., 1987. Model selection and Akaike�s information

criterion the general theory and its analytical extensions.

Psychometrika 52 (3), 345–370.

Har-even, M., Brailovsky, V.L., 1995. Probabilistic validation

approach for clustering. Pattern Recognition Lett. 16, 1189–

1196.

MacQueen, J.B., 1967. Some methods for classification and

analysis of multivariate observations. In: Proceedings of 5th

Berkeley Symposium on Mathematical Statistics and Prob-

ability, 1. University of California Press, Berkeley, CA, pp.

281–297.

Schwarz, G., 1978. Estimating the dimension of a model. Ann.

Statist. 6 (2), 461–464.

Wang, T.J., Ma, J.W., Xu, L., 2003. A gradient BYY harmony

learning rule on Gaussian mixture with automated model

selection, Neurocomputing, in press.

Xu, L., 1995. Ying-Yang Machine: A Bayesian–Kullback

scheme for unified learning and new results on vector

Y.-M. Cheung / Pattern Recognition Letters 24 (2003) 2883–2893 2893
quantization. In: Proc. 1995 Internat. Conf. on Neural

Information Processing (ICONIP�95), pp. 977–988.

Xu, L., 1996. How many clusters? A Ying-Yang Machine based

theory for a classical open problem in pattern recognition.

In: Proc. IEEE Internat. Conf. Neural Networks, vol. 3.

1996, pp. 1546–1551.
Xu, L., 1997. Bayesian Ying-Yang Machine, clustering and

number of clusters. Pattern Recognition Lett. 18 (11–13),

1167–1178.

Xu, L., Krzy _zzak, A., Oja, E., 1993. Rival penalized competitive

learning for clustering analysis, RBF net, and curve

detection. IEEE Trans. Neural Networks 4, 636–648.

	k*-Means: A new generalized k-means clustering algorithm
	Introduction
	A metric for data clustering
	Rival-penalised mechanism analysis of the metric
	k*-Means algorithm
	Experimental results
	Conclusion
	References

