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a b s t r a c t 

Speaker naming has recently received considerable attention in identifying the active speaking charac- 

ter in a movie video, and face cue alone is generally insufficient to achieve reliable performance due 

to its significant appearance variations. In this paper, we treat the speaker naming task as a group of 

matched audio-face pair finding problems, and present an efficient attention guided deep audio-face fu- 

sion approach to detect the active speakers. First, we start with VGG-encoding of face images and extract 

the Mel-Frequency Cepstrum Coefficients from audio signals. Then, two efficient audio encoding mod- 

ules, namely two-layer Long Short-Term Memory encoding and two-dimensional convolution encoding, 

are addressed to discriminate the high-level audio features. Meanwhile, we train an end-to-end audio- 

face common attention model to discriminate the face attention vector, featuring adaptively to accom- 

modate various face variations. Further, an efficient factorized bilinear model is presented to deeply fuse 

the paired audio-face features, whereby the joint audio-face representation can be reliably obtained for 

speaker naming. Extensive experiments highlight the superiority of the proposed approach and show its 

very competitive performance with the state-of-the-arts. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Biometric recognition greatly helps identifying, searching and

rganizing the human identities, and plays an important role in

any attractive identification applications. In particular, speaker

aming serves as a fundamental identification problem of localiz-

ng as well as labeling each visually speaking character in movies,

V series and live shows, and the reliability of such a system is

ow considered sufficient to support many high-level video anal-

sis systems such as video summarization [1] , semantic indexing,

edia retrieval [2] , interaction analysis [3] and so forth. For in-

tance, automatic labeling of the active speaking characters can

e directly applied in the generation of meta-data for indexing

nd fine-grained retrieval of specific scenes in large-scale video

atasets. However, as shown in Fig. 1 , it remains a challenging task

o achieve efficient speaker naming, mainly due to the severely

egraded videos (e.g., low-resolution and occlusion) and uncon-

trained activities (e.g., facial variations, changing pose and varying

iew points) in real-life movies. 

Intuitively, the modality of face, favored for its superiorities in-

luding easy to use and non-invasive detection, may probably be
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he most natural source to detect the speaking character [4] . Along

his line, some researchers select to mark the active speakers by

etecting their lip motions [5] . Nevertheless, the precise detections

f lip movements depend on the high-quality videos, otherwise,

he corresponding lip-dynamic states cannot be visually detected

n a reliable way [6] . In addition, the captured speakers are not all

n completely full-frontal faces, and this brings an additional chal-

enge that we now need to identify an active speaker even when

he face is not frontally observable. 

As a typical multimedia data, real-life TV series or movie videos

ften consist of multiple data types for attractive exhibition and

isplay. It has been shown that the selection of multi-modal data

ould help to alleviate the problems intrinsic to the techniques

ased on single modality. Since different modalities could charac-

erize the speaker from different views, the integration of multiple

ources could provide more information to name the speaker in

 reliable way. In the past, some researchers have made various

ttempts to combine both visual and textual information (i.e., sub-

itles or script) to boost the character naming performance. How-

ver, neither the subtitles nor the script contain the required in-

ormation to mark the identity of an active speaker in TV videos.

hat is because the subtitles record what is said, but not by whom,

hereas the script records who says what, but not when. In addi-

ion, the textual information within the unedited movies may be
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Fig. 1. The main steps of audio-face based speaker naming system. The red bounding box indicates the active speaker, while the yellow bounding box marks the non- 

speaking actor. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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unavailable to the subscribers, which may therefore limit their ap-

plication domains in practice. 

In a TV show, audio data is closely accompanied within the

video during the speaking process, and it is well accepted that the

audio cues also provide reliable information for speaker identifica-

tion [7] . For instance, audio information can be particularly helpful

to recognize the speaking character who performs far away from

the camera. Importantly, face and audio information can be syn-

chronously acquired and easily accessible. Nevertheless, the appro-

priate fusion between the audio and face data is still a non-trivial

task, and the main difficulties are four-fold: (1) Feature hetero-

geneity: face and audio samples are captured by different sensors,

and their feature types are totally different; (2) Data imbalance:

the data sizes between audio and face modalities may be differ-

ent in the same video clip, and such imbalance brings significant

challenges in training process; (3) Lack of correlation mining: face

and audio cues are able to characterize the identity of the same

speaker, and most existing works often ignore such correlations

for reliable fusion; (4) Information loss: most existing audio-face

fusion approaches usually process the data of different modalities

independently, and such individual mining scheme may result in

information loss. In addition, as shown in Fig. 1 , the existing audio-

face fusion methods may fail to detect the speaker with large facial

variations. Therefore, there is still a need to develop an efficient

speaker naming approach for high accuracy requirements. 

In recent years, there is a rising interest in processing the multi-

modal data with deep neural networks [8] . Inspired by these ap-

plications, we propose to treat the speaker naming task as a group

of matched audio-face pair finding problems, and present an effi-

cient attention guided deep audio-face fusion approach to detect

the active speakers. The proposed approach improves the state-

of-the-art works by providing the following three contributions:

a  
1) A novel two-dimensional convolution scheme is exploited for

patiotemporal audio feature extraction, whereby the discrimina-

ive audio features can be well obtained to characterize the active

peaker; (2) An end-to-end audio-face common attention architec-

ure is proposed, through which the reliable face attention vector

an be adaptively obtained to accommodate the large face varia-

ions; (3) A factorized bilinear model is exploited to deeply fuse

he paired audio-face features, whereby the joint audio-face repre-

entation can be reliably obtained for speaker naming. The experi-

ents have shown its outstanding performance. 

The remainder part of this paper is structured as follows: In

ection 2 , we briefly overview the related works concerning to

haracter naming and active speaker detection. Section 3 elabo-

ates the procedures and implementation details of the proposed

ramework. In Section 4 , we report the experimental results and

xtensive evaluations. Finally, we draw a conclusion in Section 5 . 

. Related works 

In the past, automatic naming of an active character was gen-

rally considered as the principal actor identification problem [9] ,

nd previous character identification works can be roughly cat-

gorized into two branches: labeling every character appearance

ith a unique identity and naming the active speaking actor in

he current scene. Although these two topics are a little different,

hey often share the similar data processings and our work mainly

alls into the latter one. This section makes an extensive survey on

hese two topics. 

Character annotation is both an important and challenging

roblem in multimedia analysis, and this topic is often tackled

irectly based on the face information [10] . However, character

aming via single face modality often suffers from the large vari-

tions in pose, illumination and facial expression [11] . Recently,
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t has been shown that the utilization of multi-modal data al-

ows better retrieval of the data and makes the automatic label-

ng of images possible. In photographs, the face of imaged per-

on is likely to appear when his or her name is mentioned in the

aption. Along this way, Berg et al. [12] first employed the clus-

ering procedure to build an appearance model for each character,

nd then automatically labeled the faces in photographs with the

ames of people obtained from textual captions. Similarly, Ozkan

nd Duygulu [13] addressed a graph model to find the most simi-

ar subset among the set of possible faces, provided that the query

ame was given. Experimentally, these methods may work well for

rontal faces on mug shots under controllable lighting conditions,

ut which are unlikely to produce meaningful results on TV videos.

In videos, the aligned scripts and subtitles are able to pro-

ide supervisory information for character naming, and a pioneer

ork was proposed in [14] . Within this work, a face was la-

eled with the name that incorporated the largest temporal over-

ap with a group of similar face sequences. This work was theo-

etically sound, but the meaningful evaluations were not reported.

ater, Yang and Hauptmann [15] predicted the most likely name

or each person by using the multiple text features, while Evering-

am et al. [16] built a group of exemplar sets for all characters

y using aligned transcripts. In addition, Sivic et al. [17] exploited

 weak supervision from the aligned subtitle to automatically la-

el the characters. Later, Parkhi et al. [18] formulated the charac-

er naming as a multiple-instance learning task and attempted to

ark the principal characters in TV videos by using the supervi-

ory information provided by an aligned transcript. Although these

pproaches are able to annotate most face-tracks in videos, they

ainly focus on processing the nearly frontal faces under control-

able environments. To adapt more challenging face-tracks, Tapaswi

t al. [19] characterized the actor appearance as a Markov Random

ield (MRF) and integrated cues from face, speech and clothing in

 common framework. Later, they further revisited the problem

f matching subtitles with the face-tracks as a joint optimization

roblem [20] . Similarly, Bojanowski et al. [21] utilized the scripts

s weak supervision to learn a joint model for actor and action in

ovies, whereby the name of each person can be well annotated

n a clustering framework. Experimentally, these methods are able

o label the character appearances in a TV video, even if the face

annot be fully detected or tracked. Nevertheless, the clothing ap-

earance and human actions are often inconsistent with different

iews and times, which may degrade their identification perfor-

ances in changing scenes. 

In contrast to label all characters in the scene, active speaker

aming aims to mark the face of a speaking character who has the

ame identity as the ongoing voice in a TV video, and the other

haracters with no speech signal available (i.e., non-speaking ac-

ors) are regarded as the distractors. Intuitively, visual speaker de-

ection can be directly achieved by detecting the face with signifi-

ant lip motions. Along this way, Everingham et al. [5] first utilized

wo thresholds to categorize the face sequences into “speaking”

nd “non-speaking” states, and then combined the subtitle/script

lignments to name the speakers. Soon after, Jou et al. [22] first de-

ected the mouth region within affine-aligned faces and then per-

ormed a hybrid multi-modal approach to mark the active speaker

n broadcast videos, while Bauml et al. [23] tagged the speaking

aces by thresholding the nearest neighbor distance of the mouth

egion to the previous frame. Although these lip-motion based

ethods are able to mark the speaking characters in the TV videos,

he lip-dynamic states can not be reliably detected in non-frontal

ace sequences or low quality videos [24] . 

Real-life TV series or movie videos are typical multimedia data,

nd the audio data is closely synchronized with the video modality

uring the speaking process. Meanwhile, it has been demonstrated

hat the audio cues can provide reliable information for speaker
dentification [25,26] . Inspired by recent success of convolutional

eural networks (CNN), Hu et al. [27] proposed a multi-modal CNN

ramework to fuse the face and audio data for active speaker nam-

ng. However, this method simply concatenated the audio-face fea-

ures, which was found to be sensitive to the large facial variations.

eanwhile, this method did not consider the temporal property

ithin the audio data such that the corresponding speaker naming

erformance was a bit poor. Later, Ren et al. [28] further fused the

udio-face features in time direction by Long Short-Term Memory

LSTM). This approach has shown its outstanding performance in

haracterizing the temporal dependency across audio and face ex-

mples. Nevertheless, the high-level audio-face features fused by

uch method are not fully compatible with each other. As a result,

ome distractors, i.e., non-speaking actors, may be mistakenly rec-

gnized as the speaking character. Therefore, it is still imperative

o develop an efficient speaker naming algorithm from a practical

iewpoint. 

. The proposed methodology 

In a TV video, the speaker refers to the actor who is speaking,

nd the goal of our proposed speaker naming approach is to iden-

ify the active speaking actor by using the audio and face infor-

ation. To this end, we treat the speaker naming task as a group

f matched audio-face pair finding problems, and propose an ef-

cient attention guided deep audio-face fusion approach to detect

he active speaker. As shown in Fig. 2 , we start with VGG-encoding

f face images and address two audio feature encoding modules,

amely two-layer Long Short-Term Memory (LSTM) encoding and

wo-dimensional convolution encoding, to discriminate audio fea-

ures. Then, we address a common attention model to discriminate

he face attention vector, and further exploit a factorized bilinear

odel to fuse the paired audio-face features for efficient speaker

aming. 

.1. Problem formulation and solution overview 

Speaker naming aims to identify and mark the face of a speak-

ng character who has the same identity as the ongoing voice. In

he current scene, the other characters with no speech signal avail-

ble are regarded as the distractors, and these non-speaking actors

eed not to be identified. For the sake of clarity, let X = { x i } c i =1 
de-

ote the set of detected faces in the scene, and y represent the

ngoing audio signal, the task of speaker naming is inherently a

emantic matching problem, which can be achieved by predicting

he most likely face by: 

ˆ  = arg max 
x i ∈ X 

p(x i | y ; θ ) , (1)

here θ is the learning parameter. By characterizing the same

dentity, one detected face and the ongoing audio component are

ell matched if they come from the same speaker, and such

atched audio-face pair could deliver a higher likelihood value. In

ontrast to this, if the detected face and the ongoing audio compo-

ent are captured from different actors, such non-matched audio-

ace pair generally produces a relatively small likelihood value. Let

 ∈ {1, 0} denote the label of audio-face pair (i.e., 1 for the matched

air and 0 for the non-matched pair), we treat the speaker nam-

ng task as a group of paired audio-face data finding problems, and

redict the most likely face as follows: 

ˆ  = argmax 
x i ∈ X 

p(l = 1 | x i , y ; θ ) (2)

As shown in Fig. 1 , the detected actors in the current scene may

ary at different time. Therefore, the number of predictive func-

ion depends on the detected face examples in the scene. For an
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Fig. 2. Schematic pipeline of the proposed speaker naming framework. 

Fig. 3. An audio encoding scheme via two-layer stacked LSTMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g  

s  

t  

A  

i  

g  

t  

c

 

s  

[  

c  

h  

m  

s  

t  

i  

t  

a  

w  

w

3

 

r  

c  

b  

i  

r  

s  
input audio-face pair ( x i , y ), it is necessary to learn a joint repre-

sentation of these two heterogeneous modalities. With an efficient

multi-modal fusion method that encodes the relationship between

face cue x i and audio example y , it becomes easier to learn a clas-

sifier for solving Eq. (2) . In the following, we present our speaker

naming approach in detail. Specifically, the face features are ex-

tracted by the standard VGG-face model [29] , and two alternative

audio feature encoding methods are proposed in Section 3.2 . Sub-

sequently, the proposed audio-face common attention model and

deep fusion scheme are carefully stated in tandem. 

3.2. Audio feature encoding module 

In general, the raw audio features characterized by mel-

frequency cepstral coefficients (MFCCs) are not discriminative

enough for speaker identification. The main reason lies that the

raw MFCCs fail to characterize the temporal properties of audio

signals. In recent years, deep neural networks have emerged to

be a powerful tool for state-of-the-art speech recognition [30] and

speaker identification [31,32] . Inspired by these works, two kinds

of audio encoding modules, two-layer LSTMs encoding and two-

dimensional convolution encoding, are presented in this section. As

suggested in [27] , we extract the standard MFCCs from raw audio

signals as the input of learning networks. 

3.2.1. Audio encoding via two-layer LSTMs 

LSTM has been designed to address the gradient vanishing and

exploding problems within the conventional Recurrent Neural Net-

works (RNNs). In essence, LSTM provides a solution by incorporat-

ing memory units that allow the network to learn when to for-
et the previous hidden states and when to update these hidden

tates. That is, LSTM network computes a mapping from an input

o an output at time t by calculating the unit activations iteratively.

 standard LSTM model is shown in the left part of Fig. 3 , where

 t , f t , o t and c t are respectively the input gate, forget gate, output

ate and cell activation vectors, and they are of the same size as

he cell output activation vector m t . g and h are respectively the

ell input and cell output activation functions. 

In recent years, a stack of multiple LSTM layers and its exten-

ions have been successfully applied to sequential data analysis

33,34] . In deep leaning networks, the low-level layers generally

ontain much information about the raw data features, while the

igh-level layers often comprise much information about the se-

antic features. Inspired by these findings, we utilize a two-layer

tacked LSTM (abbreviated as 2L-LSTM) network to discriminate

he audio features. A pictorial illustration of the 2L-LSTM network

s shown in Fig. 3 , where the output from the lower layer becomes

he input of the upper layer. Similarly, the dropouts are utilized

fter each LSTM layer (i.e., dropout ratio is 0.3) [34] . Accordingly,

e concatenate the last output of each stacked LSTM layer as the

hole audio feature vector for discriminative representation. 

.2.2. Audio encoding via two-dimensional convolution 

CNN can be generally regarded as a variant of the standard neu-

al network, and its great success has been demonstrated on many

omputer vision tasks [35] . Since LSTM often requires a large num-

er of memory cells and output units to store the temporary data

nformation, it is computationally expensive to produce the final

esult. Differently, the weights of convolutional layers in CNN are

hared across different channels, which can significantly reduce the
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Fig. 4. An audio encoding scheme via 2D-convolutional operations. 
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ayer parameters. It is noted that CNN explicitly characterize the

tructural locality in feature space and could provide the model

ith temporal invariance. Accordingly, we propose to encode au-

io feature in a convolutional way. 

Within the CNN based applications, the input data are gener-

lly organized as a number of two-dimensional (2D) feature maps

36,37] . Since the audio signal is a time-series data, the raw MFCC

eatures can be easily organized into the pattern (BatchSize, Se-

uenceLength, FeatureDimension). As shown in Fig. 4 , we utilize a

D-convolutional operation (abbreviated as 2D-CONV) to normal-

ze both frequency and temporal variations, and employ a pool-

ng layer to produce the final output. Similar to the data pro-

essing in CNN [36] , we reshape the raw MFCCs into the pattern:

BatchSize, 1, SequenceLength, FeatureDimension). Often, the con-

olutional kernels with different sizes can be selected for discrim-

native feature learning. For example, an input raw MFCC feature

s shaped into the size of (1, 1, 49, 75) and the sizes of convolu-

ional kernels are set at (3, 75), (4, 75), (5, 75). Meanwhile, the

izes of kernel filters and convolutional strides are fixed to (1, 1,

), whereby the outputs of convolutional layers are (47, 1), (46, 1)

nd (45, 1), respectively. Consequently, we can utilize the pooling

peration to get three values and further concatenate them as the

nal output vector. In practice, we can map the raw audio data into

igh-dimensional feature space by utilizing different filters, setting

ifferent kernel sizes and pooling them into one vector as the final

utput. 

.3. End-to-end audio-face common attention model 

Face feature maps derived from the VGG extractor generally

ontain much information about the appearances, key points and

tructural information [29] . However, the face regions always ex-

ibit the large variations caused by the expression, hair style and

ncontrollable background clutters, which often make the face rep-

esentation less discriminative. An attention mechanism allows the

odel to effectively learn which component is important for the

iven example [38] , and its successful applications include image

etrieval [39] , object classification [40] and visual question answer-

ng [41] . Note that, both of the face and audio data are able to char-

cterize the identity of the same speaker, and these two modalities

hould share the semantic consistency intrinsically. More specif-

cally, predicting face attention associated with its corresponding

udio counterpart allows the model to effectively discriminate the

alient location, whereby the semantic consistency between the

ore face components and its corresponding audio part can be well

reserved. 

Since the encoded audio feature vector is in one-dimensional

epresentation, it is difficult to fuse it with VGG-face feature map
irectly. To tackle this problem, as depicted in Fig. 2 , we tile the

udio feature into the same shape as the face representation in

ach channel, and the soft attention mechanism is employed to

iscriminate the common attention vector [42] . For each spatial

rid location k , we first concatenate the paired audio-face features

nto one tensor at each channel direction, and then utilize two

onvolutional layers to predict the attention weight for each grid

ocation. Given an input attention map a t at channel t , we apply

he softmax to generate a normalized soft attention map: 

¯ t,i = 

exp (a t,i ) ∑ K 
k =1 exp (a t,k ) 

(3) 

here K is the total number of the spatial grid locations. Once the

ttention map is obtained, we can take a weighted sum of the in-

ut VGG-face features using attention map to discriminate the face

ttention vector z t : 

 t = 

K ∑ 

k =1 

ā t,k fea k (4) 

here fea k represents the VGG-face feature map at spatial grid lo-

ation k . 

In practice, the dimension of raw audio features (i.e., MFCCs)

s relative small at each time step, here we set the output size of

etwork at 512 to balance the trade off between parameter num-

er and discrimination power. For each spatial grid location in vi-

ual face representation (i.e., last convolutional layer of VGG-face

conv5-3]), we concatenate the slice of the visual face feature with

ts corresponding audio counterpart. Accordingly, a group of com-

ined feature maps of size 1024 × 14 × 14 are obtained for common

ttention learning. As depicted in Fig. 2 , we employ two convo-

utional layers to capture the relationships of audio-face pair and

redict the common attention weight for each grid location. As dis-

ussed in [41] , the multiple attention maps are able to enhance the

utput of attentional image features, and the trained network with

wo attention maps has shown the best performance. Inspired by

his finding, we first utilize one convolutional layer with kernels in

ize of 512 × 1 × 1 to map the combined features from 1024 to 512,

nd then employ another convolutional layer to output two atten-

ion maps of size 2 × 14 × 14. Consequently, we take a weighted

um of the VGG-face features using these two normalized attention

aps and concatenate them to create the face attention vector. 

Typical attention maps derived from different audio-face pairs

re shown in Fig. 5 . For the matched audio-face pair, it can be

ound that the responses within two attention maps mainly cen-

ralize on the locations of core parts in the feature map. Differ-

ntly, the corresponding responses of non-matched audio-face pair

ave scattered for a larger part and some responses are far away
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Fig. 5. Examples of attention maps derived from the matched and non-matched audio-face pairs, in which the ongoing audio signals are captured from the actor ‘Sheldon’. 
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from the locations of core components in the feature map, espe-

cially for the derived attention map in the first channel (i.e., atten-

tion_map_1). Further, we plot 2D kernel density estimation (KDE)

on the produced attention maps. As shown in Fig. 5 . it can be ob-

served that the attention densities of non-matched audio-face pair

have spanned over a larger area, for reason that the selected face

example and audio signals are captured from different actors. By

contrast, the attention densities of matched audio-face pair (i.e.,

come from the same speaker) mainly aggregate on an extremely

dense area. Since the face features will be weighted sum with

those attended responses, the derived face attention vector can be

adaptively utilized to accommodate different facial variations. 

3.4. Deep audio-face fusion via factorized bilinear model 

As introduced in Section 3.1 , the fusion of audio-face data plays

an important role in speaker naming. In general, concatenation or

element-wise summations are most frequently utilized schemes for

heterogeneous feature fusion. Since the distributions of audio and

face features often vary significantly and their feature dimensions

are generally different, the representation capacity of these simple

fused schemes may be insufficient for reliable speaker naming per-

formance. 

In recent years, fusion by bilinear model is able to capture the

inherent interactions between two different modalities more ex-

pressively and usually outperforms the simple fusion approaches

(e.g., concatenation) [43] . Inspired by such learning architecture,

we exploit a factorized bilinear model (FBM) to fuse the paired

audio-face features. Without loss of generality, bilinear model con-

siders each feature pair by a linear transformation: 

z i = x 

T W i y + b i (5)

where x ∈ R 

n and y ∈ R 

m are the input feature vectors from two

different modalities (e.g., high-level features of face and audio),

W i ∈ R 

n ×m is a weight matrix and b i is a bias item for the output

item of linear model z i . Although the bilinear model can capture

the pairwise interactions between two modalities, it often induces

a huge number of parameters that may lead to large computations.

To handle this problem, an efficient way is to factorize the pro-

jection matrix W i into two low-rank matrices: W i = U i V 

T 
i 
, where

U i ∈ R 

n ×d and V i ∈ R 

m ×d impose a restriction on the rank d with

constraint d ≤ min( n, m ). Accordingly, Eq. (5) can be further rewrit-

ten as follows: 

z i = x 

T U i V 

T 
i y + b i (6)

In general, the first item in the right part of Eq. (6) can be fur-

ther transformed with Hadamard product or element-wise multi-
lication to capture the inherent correlations between two hetero-

eneous modalities: 

 

T U i V 

T 
i y = 1 T (U 

T 
i x ◦ V 

T 
i y ) (7)

here 1 ∈ R 

d denotes a column vector of ones, and ◦ represents

he Hadamard or element-wise product. In order to obtain the

utput feature vector z ∈ R 

o , whose elements are { z i }, there still

eed to learn two three-order tensors: U = [ U 1 , . . . , U o ] ∈ R 

n ×d ×o

nd V = [ V 1 , . . . , V o ] ∈ R 

m ×d ×o . To reduce the order of the tensors

 and V by one, we replace 1 with linear projection P ∈ R 

d×o and

q. (6) can be converted into the following form: 

 = P 

T (U 

T x ◦ V 

T y ) + b (8)

here b ∈ R 

o is the bias vector. In general, the application of non-

inear activation functions often help to increase the representa-

ive capacity of bilinear model. Therefore, the non-linear activation

unctions are added after each linear mapping, and Eq. (8) can be

urther rewritten as follows: 

 = σ (P 

T (σ (U 

T x ) ◦ σ (V 

T y )) + b ) (9)

here σ denotes an arbitrary non-linear activation function such

s ReLU, sigmoid or tanh. Suppose x and y respectively represent

he face attention vector and audio feature vector, the values of x

re all larger than 0 while y is in the range of [ −1 , 1] . To avoid in-

ormation loss, we utilize different non-linear activation functions

o map the heterogeneous values into a finite interval. Since the

lement-wise multiplication is introduced to capture the correla-

ions between two modalities, the magnitude of the output neu-

ons may vary dramatically. To resist this attack, a non-linear acti-

ation function (i.e., ReLU) is further added to regularize the out-

ut of network: 

 = ReLU (P 

T ( ReLU (U 

T x ) ◦ tanh (V 

T y )) + b ) (10)

During the training process, the fusion parameters of FBM can

e updated and optimized through the error back-propagation.

nce the paired audio-face features are fed into the fusion model,

n output of a softmax function acted on a fully connected layer is

elected to compute the final decision values. In general, one face

nd the input audio data are well matched if they come from the

ame actor, and such audio-face pair could deliver a higher likeli-

ood value. On the contrary, the non-matched audio-face pair gen-

rally produces a relatively small likelihood value, and such de-

ected face and the ongoing audio component are generally col-

ected from different actors. Accordingly, we classify these audio-

ace pairs into matched or non-matched classes, and the loss func-

ion in training process is a standard classification loss. As a result,

he active speaking actor can be well detected by predicting the
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Table 1 

The frame numbers of leading actors in BBT dataset. 

Leading roles (Actors) in BBT dataset 

Subsets Howard Lenoard Penny Raj Sheldon 

S 01 E 01 1953 13454 6616 1762 14 4 41 

S 01 E 02 2588 8889 4473 4294 9660 

S 01 E 04 2154 4931 4355 1953 12536 

S 01 E 05 2097 7689 4797 1631 9307 

S 01 E 06 3602 11303 6023 5785 11871 

Train 12394 46266 26264 15425 57815 

S 01 E 03 3009 11418 4527 2242 7357 

Table 2 

The frame numbers of leading actors in Friends dataset. 

Leading roles (Actors) in Friends dataset 

Subsets Chandler Joey Monica Phoebe Rachel Ross 

S 01 E 03 2412 925 1857 2309 878 1608 

S 04 E 04 3881 5081 3921 4255 4098 3434 

S 07 E 07 4542 4589 3708 3531 4693 4626 

S 10 E 15 5333 4 4 45 3776 3845 2758 6822 

Train 16168 15040 13262 13940 12373 16490 

S 05 E 05 6621 3585 6556 2196 4998 5593 

m  

t

4

 

o  

t  

m  

t  

[  

S  

t  

i  

S  

p  

S  

p  

a  

t  

i

 

t  

a  

l  

f  

l  

L  

(  

c  

r

4

 

t  

c  

5  

b  

a  

g  

t  

F  

s  

t  

r  

2  

M  

d  

t  

s

 

w  

M  

c  

o  

a  

d  

p  

r  

d  

p  

d  

w  

m  

c  

a  

i  

i  

f

4

 

s  

s  

c  

s

s

w  

p  

t  

p

4

 

d  

t  

t  

e  

b  

p  

b  

d  

a  

c  

d  

r  

u  

a  

g  

a  

f

 

2  
ost likely speaker for a given face and audio input within the de-

ected actors in the current scene. 

. Experiment 

In the experiments, two public available datasets: BigBang The-

ry (BBT) and Friends [27,28] , are selected for evaluation. These

wo TV series have been proved to be very challenging for

ulti-modal data analysis, mainly due to various image degrada-

ions, low resolutions and high variations on facial appearances

19,23] . For BBT dataset, the audio-face pairs selecting from S 01 E 01,

 01 E 02, S 01 E 04, S 01 E 05 and S 01 E 06 series are enrolled as the

raining set, while those collecting from S 01 E 03 are taken as test-

ng set. For Friends dataset, the audio-face pairs selecting from

 01 E 03 (Season 01, Episonde03), S 04 E 04, S 07 E 07 and S 10 E 15 cor-

us are served as the training set, while those choosing from

 05 E 05 are taken as the evaluation set. All the experiments are im-

lemented using Python and conducted on a computer running at

n Intel®Core TM i5 3.40 GHz processor with 8 GB memory. In the

raining, we utilize Adam solver with similar parameter settings as

n [41] and d is fixed at 4. 

It is noted that the performance of speaker naming depends on

he accuracy of the underlying face detector. Since the face regions

re already cropped within these two public datasets, we just uti-

ize these processed datasets for fair evaluation. Meanwhile, we re-

er to [27] and only report the speaker naming performance on the

eading roles, including five characters in BBT dataset (i.e., Howard,

eonard, Penny, Raj and Sheldon) and six actors in Friends dataset

i.e., Chandler, Joey, Monica, Phoebe, Rachel and Ross). The statisti-

al frames of these two datasets are shown in Table 1 and Table 2 ,

espectively. 

.1. Data processing 

The popular VGG-face model is selected as the face fea-

ure extractor [29] , and we derive the face feature maps from

onv 5 − 3 layer as the input of our network model, whose size is

14 × 14 × 14. As introduced in [27] , the sequential data including

oth faces and audio cues over 0.5 s time window can be treated

s the same resources that come from one speaking character. In

eneral, the video often comprises of 24 frames per second, and

here are 12 consecutive frames within each face sequence at 0.5 s.
or audio data processing, we set 0.5 s time window over audio

equence to ensure the usability of the resulting system, because

he changes of acoustic features over 0.5 s time window can be

egarded as the feature unit. As shown in Fig. 6 , a window size of

0 ms and a frame shift of 10 ms are employed to process the raw

FCC audio features. Accordingly, we extract the mean and stan-

ard deviation of 25D MFCCs, and also derive the standard devia-

ion of 2 − �MFCCs, resulting in a total of 75 features per audio

ample. 

In a video clip, each face sequence has only 12 time steps,

hich are inconsistent with the 49 time steps in audio sequences.

eanwhile, the face and audio data may differ a bit with the in-

reasing of age. For instance, the whole Friends TV series are taken

ver a large time periods across ten years, and the facial appear-

nces of leading roles are varying to some degree. To maximize the

iversity of the training set, we randomly sample the face exam-

les of each actor in different seasons. More specifically, we first

andomly sample the face examples within the periods of per au-

io clip (0.5 s window size) and then composite the audio-face

airs. For matched training pairs, we randomly choose the face

ata of current speaker at all seasons and group these samples

ith the current audio data for positive training pairs. For the non-

atched training pairs, we randomly choose the face examples ex-

luding the current speaker and pair these samples with the input

udio data for negative training pairs. It is noted that the label sets

n [28] represent the identity of leading actors, while the label sets

n our training model denote the matched or non-matched audio-

ace pairs. 

.2. Evaluation metric 

The active speaker can be detected by predicting the most likely

peaker within the detected actors in the current scene. Given a

peaking clip, there is only one speaker in the scene and the de-

ision can be obtained by Eq. (2) . Therefore, we can define the

peaker naming accuracy (snA) as follows: 

nA = 

N [ p sn == s tr ] 

N s tr 

× 100% (11) 

here p sn and s tr , respectively, denote the labels of predicted sam-

les and ground truth, N [ p sn == s tr ] and N s tr , respectively, represent

he numbers of correctly named samples and total testing exam-

les. 

.3. Audio encoding performance analysis 

In Section 3.2 , two different audio encoding modules are ad-

ressed to discriminate the high-level audio features. Note that,

he lengths of processed audio clips (0.5 s) are significantly less

han the ones in traditional speaker identification [31,32] . In gen-

ral, the short audio clips capturing from the same speaker can

e categorized as the same class. To validate the efficiency of the

roposed audio encoding schemes, we select the MFCCs as the

aseline and perform unsupervised classification on different au-

io encoding modules. Specifically, support vector machine (SVM)

nd nearest neighbour (NN) are selected as the classifiers. The

lassification results tested on BBT (S01E03) and Friends (S05E05)

atasets are shown in Table 3 , it can be observed that the audio

epresentations encoded by both of 2L-LSTM and 2D-CONV mod-

les have delivered the better classification accuracies than that

chieved by the MFCC counterparts. Although the SVM classifier is

enerally more powerful than NN classifier, the proposed 2L-LSTM

nd 2D-CONV modules can well discriminate the high-level audio

eatures. 

Further, it can be found that the audio features derived from

D-CONV encoding module have delivered a higher classification
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Fig. 6. Audio data precessing procedure, in which a window size of 20 ms and a frame shift of 10ms are employed to generate 75 × 49 MFCCs within 0.5,s time window. 

Table 3 

Audio classification obtained by different encoding modules. 

Encoding Modules Classification accuracy 

BBT (S01E03) Friends (S05E05) 

MFCCs + SVM 0.621 0.634 

2L-LSTM + NN 0.743 0.764 

2D-CONV + NN 0.792 0.813 
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accuracy than the results obtained from 2L-LSTM encoding mod-

ule. That is, the audio features encoded by 2D-CONV are more

semantically interpretable than the features encoded by 2L-LSTM

scheme. Essentially, a LSTM layer is composed of recurrently con-

nected memory blocks, each of which contains one or more recur-

rently connected memory cells. That is, the outputs of each cell

consist of the outputs of previous steps and current inputs, and

there is no exploitation about the future input features. Accord-

ingly, the audio information may not be well exploited by the last

output of 2L-LSTM encoding module. In contrast to this, 2D-CONV

encoding module employs different kernels to capture the local re-

lationship among neighboring feature frames, which can access to

both past and future features for a given time. For instance, a ker-

nel of size 5 × 75 can extract the discriminative local features with

two steps front and back from the current frame. Therefore, these

outputs derived from different convolutional kernels can be well

utilized as the inputs of the next pooling layer. As a result, the

final outputs not only can preserve much information about the

identity, but also contain the temporal information for discrimina-

tive analysis. 

Moreover, we set the input per-batch size at M = 50 , and record

the running time of these two audio encoding methods. In the ex-

periments, the execution time of per-batch audio processing ob-

tained by 2D-CONV encoding module was significantly less than

the results obtained by the 2L-LSTM encoding module, i.e., 2D-

CONV only spent 4.767 s to produce the encoding features, while

2L-LSTM cost over 130 s to process per-batch audio data. The

main reason lies that the stacked 2L-LSTM network requires a
arge number of output units and memory cells to store the tem-

orary data information, thereby the learning of related param-

ters are computationally expensive. In contrast to this, the 2D-

onvolutional operation needs not to store and process large tem-

orary data, which can significantly reduce the processing time. 

.4. Speaker naming performance analysis 

Since the speakers in TV series often exist large facial varia-

ions and non-frontal appearances during the speaking process, it

s unsuitable to name the active speaker by detecting the facial

ey points or lip-dynamic states. In the literature, Tapaswi et al.

19] and Bauml et al. [23] have reported all character naming ac-

uracies on BBT dataset, respectively reached up to 77.81% and

0.80% on evaluating the S01E03 subset. The former approach uti-

ized the face and clothing appearance for speaker identification,

hile the latter method tagged the speaking faces by using subti-

les and transcripts in the videos. Since our proposed approach se-

ects the face and audio data to achieve speaker naming, it is very

ifficult to perform a relatively fair and meaningful comparison

ith these two approaches appropriately. With the same audio-

ace data, we carefully compare the proposed approach with Hu

t al. [27] and Ren et al. [28] to evaluate the speaker naming per-

ormance. Specifically, Hu et al. [27] exploited a multi-modal CNN

ramework to automatically learn the fusion function between face

nd audio cues, while Ren et al. [28] presented a multi-modal

STM model to characterize the long-term dependencies across the

udio and face modalities. Since Ren et al. [28] only provided the

rained models of the second season on BBT dataset, and we thus

ainly focus on comparing our proposed approach with Ren et al.

28] on BBT dataset extensively. 

For each detected face in a video frame, we group it with the

udio cues of the current speaker, and input them into our net-

ork model to predict its probability. Note that, all the detected

aces in a video frame are independent, and we choose the ac-

or who produces the maximal probability as the active speaking

haracter. Representative naming examples tested on two datasets
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Fig. 7. Representative active speaker naming examples. The green bounding box indicates the active speaker, while the yellow bounding box annotates the distractors. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

The snA performances of leading actors in BBT dataset. 

Actors Times Frames Hu [27] Ren [28] Our (2L-LSTM) Our (2D-CONV) 

Howard 31 775 74.97% 86.47% 87.09% 89.41% 

Lenoard 91 2275 74.51% 86.71% 87.12 % 86.32% 

Penny 15 375 74.93% 87.35% 86.67% 89.06 % 

Raj 5 125 73.33% 84.66% 85.33% 86.47 % 

Sheldon 52 1300 75.78% 86.37% 87.85% 88.92 % 

Average 194 4850 74.93% 86.59% 87.23% 87.73 % 
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Table 5 

The snA performances of leading actors in Friends dataset. 

Actors Times Frames Hu [27] Our (2L-LSTM) Our (2D-CONV) 

Chandler 35 875 80.38% 83.11% 85.38 % 

Joey 30 750 80.08% 82.82% 84.94 % 

Monica 35 875 80.91% 83.45% 85.84 % 

Phoebe 12 300 82.48% 83.02% 85.68 % 

Rachel 35 875 80.68% 82.88% 84.70 % 

Ross 42 1050 81.71% 84.31% 86.58 % 

Average 31 4725 80.92% 83.35% 85.56 % 
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re shown in Fig. 7 , it can be clearly observed that our proposed

pproach is able to well identify the active speaker in real video

xamples. In particular, the matched probabilities are very high if

he detected faces are of high quality, e.g., frontal appearance or

igh resolution. For instance, the matching probabilities of ‘Shel-

on’ (i.e., first image in the first row) and ‘Chandler’ (i.e., first im-

ge in the third row) have reached up to 0.961 and 0.982, respec-

ively. Although some matching probabilities are a bit small when

he faces are not completely frontal, e.g., 0.780 of ‘Monica’ (i.e.,

hird image of second row), our proposed approach is also able to

etect their speaking states. 

Further, the snA values tested on individual actors and different

atasets are shown in Tables 4 and 5 , respectively. It can be ob-

erved that Hu et al. [27] and Ren et al. [28] have delivered a bit

ower snA values on BBT dataset, and the speaking actors within a

ertain part of video frames were mistakenly identified. Similarly,

he snA values of leading actors obtained by Hu et al. [27] are all

ess than 83% when tested on Friends dataset. In contrast to this,

ur proposed speaker naming approach has yielded an improved

erformance than those obtained by Hu et al. [27] and Ren et al.

28] . The main reason lies that the methods [27,28] seldom con-
 t  
ider the large face variations. It is noted that the face appearances

n TV series always accompany with significant changes in scale,

ose and expressions, which often make it difficult to characterize

he active speaker and correlate the audio components in a reliable

ay. 

Compared to compress an entire face image into a static rep-

esentation, our proposed approach exploits a common attention

odel to discriminate the face attention vector adaptively. Al-

hough the detected TV faces often suffer from the large vari-
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Table 6 

Ablation results of different learning combinations. 

Dataset Actors N-Att. + Con. Att. + Con. N-Att. + FBM Att. + FBM 

BBT Howard 85.69% 86.46% 86.16% 89.41 % 

Lenoard 86.38% 86.43 % 86.12% 86.32% 

Penny 87.21% 87.03% 87.57% 89.06 % 

Raj 85.13% 85.48% 86.64% 86.47 % 

Sheldon 84.04% 86.85% 86.22% 88.92 % 

Average 85.67% 86.57% 86.28% 87.73 % 

Friends Chandler 83.56% 85.51 % 84.67% 85.38% 

Joey 83.34% 84.25% 84.24% 84.94 % 

Monica 82.40% 85.46% 86.09 % 85.84% 

Phoebe 84.28% 84.13% 84.25% 85.68 % 

Rachel 80.36% 84.73% 85.62 % 84.70% 

Ross 83.75% 85.10% 83.62% 86.58 % 

Average 82.81% 84.97% 84.78% 85.56 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Overall snA performances with different ( d, o ) values in 

FBM module. 

Settings BBT dataset Friends dataset 

FBM ( d = 2 , o = 1024 ) 87.63% 85.43% 

FBM ( d = 4 , o = 512 ) 87.71% 85.52% 

FBM ( d = 8 , o = 256 ) 87.69% 85.48% 

FBM ( d = 4 , o = 256) 87.35% 85.43% 

FBM ( d = 4 , o = 1024 ) 87.73 % 85.56 % 

FBM ( d = 4 , o = 2048 ) 87.71% 85.56 % 
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o  
ations in pose and facial expression, the proposed common at-

tention model is able to well discriminate the core face features,

thereby the proposed deep audio-face fusion module is capable of

detecting the active speaker in a reliable way. For instance, the

snA value was reached up to 89.41% (2D-CONV) when the actor

‘Howard’ was speaking in the testing sequence. The main advan-

tages of our proposed approach are three-fold: (1) The core face

features derived from the proposed audio-face common attention

model is robust against various facial variations; (2) The fusion

by FBM can capture the inherent interactions of paired audio-face

features more expressively; (3) The non-matched audio-face pairs

are selected as the negative examples to train the network model,

whereby some confused examples can be well differentiated. The

experimental results have shown its outstanding performance. 

4.5. Ablation studies 

Differing from the multi-modal architecture in [27] , we have

carefully considered the attention mechanism and factorized bi-

linear fusion. Next, we further evaluate the effectiveness of each

learning module and validate the performance of different learn-

ing combinations. For VGG-face features, we utilize the fully con-

nected layers after the non-linear pooling to obtain 1024 dimen-

sional feature vector. Without attention mechanism, we concate-

nate the VGG-face feature with 2D-CONV audio feature as the

baseline (abbreviated as N-Att.+Con.), and also employ the FBM

to fuse the paired audio-face features (abbreviated as N-Att.+FBM).

By considering the attention mechanism, we further concatenate

the face attention vector and the audio feature vector (abbrevi-

ated as Att.+Con.) to perform speaker naming task. Accordingly,

we compare our proposed attention guided deep audio-face fusion

approach (abbreviated as Att.+FBM) with these different learning

combinations. 

Table 6 shows the speaker naming performances obtained by

different learning combinations. Com paring with non-attention

mechanism and concatenation fusion, it can be found that the

utilization of attention mechanism or FBM often improves the

speaker naming accuracies in most cases. For instance, the average

naming accuracies derived from ‘Att.+Con.’ reach up to 86.57% and

84.97%, respectively tested on BBT and Friends datasets. That is,

the attention mechanism often contributes to a better performance

than the model without attention. Similarly, the fusion by FMB also

improves the speaker naming performance than that obtained by

the concatenation fusion. Further, our proposed method (Att.+FBM)

generally outperforms these different learning combinations and

performs better in naming most active speakers. The average nam-

ing accuracies obtained by our method reach up to 87.73% and

85.56%, respectively evaluated on BBT and Friends datasets. That

is, the proposed audio-face common attention model is adaptive to

facial appearance variations, while the presented deep audio-face
usion scheme is capable of capturing the inherent interactions of

udio-face pair more expressively. 

It is noted that there are two variables (i.e., d and o ) to deter-

ine the hyper-parameters in FBM module. Further, we evaluate

he performance of FBM with different parameter settings. One the

ne hand, we fix the d × o as a constant, i.e., 2048. As shown in

able 7 , the number of factors determined by d affects the perfor-

ance. If the value of d is increased from 2 to 8, the overall perfor-

ances have gained the improvements of 0.06% and 0.05%, respec-

ively evaluated on the BBT and Friends. Meanwhile, the perfor-

ance has approached almost saturation when d is equal to 8. This

henomenon can be explained by the fact that a large d involves a

arge window to sum pool the features, which can be treated as a

ompressed representation and may loss some information. On the

ther hand, we fix d at 4, and vary the value of o from 256 to 2048.

t is worth noting that the increase of o does not produce further

mprovements. A possible reason is that the high-dimensional fea-

ures may be easier to overfit. From the experimental results, it

an be found that parameter d and o are insensitive to the overall

erformance, and the settings of d = 4 and o = 1024 are suitable for

fficient fusion of the paired audio-face features. 

.6. Complexity analysis 

In our learning model, we improve the multi-modal architec-

ure in [27] by considering the discriminative audio encoding, at-

ention mechanism and factorized bilinear fusion. Intrinsically, our

earning network is not difficult, for reason that the audio-face fea-

ures are learned independently and their learning parameters are

ot shared across different modalities. Meanwhile, the computa-

ional complexities of attention mechanism and FBM have proven

o be acceptable [42,43] , and these two modules can be easily

rained in an end-to-end manner. More importantly, the presented

udio-face common attention model is able to discriminate the

ore face features, while the fusion by FBM can capture the inher-

nt interactions between heterogeneous audio-face features more

xpressively. The experimental results have shown that the deeply

used audio-face features often yield outstanding speaker naming

erformance. 

. Conclusion 

This paper has presented an efficient attention guided deep

udio-face fusion approach to achieve speaker naming. The pro-

osed approach not only can discriminate the high-level features

rom both of the face and audio modalities, but also could auto-

atically learn the fusion function to seamlessly fuse the audio-

ace features. Accordingly, the presented speaker naming frame-

ork provides an effective way to distinguish the matched or non-

atched audio-face pairs such that the active speakers can be well

etected. The extensive experiments have shown that the proposed

pproach is adaptive to different facial variations and can well

ame the speaking actors in various challenging TV series. 

Further research is warranted along the present lines of work in

rder to solve several challenging problems. For example, if the au-
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io signals are corrupted by the significant background noise, the

roposed common attention model may fail to jointly discriminate

he face attention vector. Therefore, it would be necessary to ex-

end the presented algorithm so that it can handle the noise prob-

em adaptively. In addition, questions like how to efficiently handle

he crowd talking in outdoor scenes and how to adaptively name

he new coming speakers, deserve further attention in future stud-

es. 
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