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In this paper, we study the problem of face identification from only one training sample per person
(OSPP). For a face identification system, the most critical obstacles towards real-world applications are
often caused by the disguised, corrupted and varying illuminated images in limited sample sets.
Meanwhile, storing fewer training samples would essentially reduce the cost for collecting, storing and
processing data. Unfortunately, most methods in the literature basically need large training sets for good
representation and generation abilities and would fail if there is only one training sample per person. In
this paper, we propose a two-step scheme for the OSPP problem by posing it as a representation and
matching problem. For the representation step, we present a novel manifold embedding algorithm,
namely sparse discriminative multi-manifold embedding (SDMME), to learn the intrinsic representation
beneath the raw data. We construct two sparse graphs to measure the sample similarity, based on two
structured dictionaries. Multiple feature spaces are learned to simultaneously minimize the bias from the
subspace of the same class and maximize the distances to the subspaces of other classes. For the
matching step, we use a distance metric based on the manifold structure to identify the person. Extensive
experiments demonstrate that the proposed method outperforms other state-of-the-art methods for the
problem of one-sample face identification, while the robustness with occlusion and illumination var-
iances highlights the contribution of our work.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of automatic face identification has attracted con-
siderable attentions in the field of computer vision and pattern
recognition [1–4]. Though it is a simple task for human beings to
recognize a familiar person, it nevertheless remains a challenging task
for machine vision, especially under complex conditions such as par-
tial occlusion, varying illumination and limited labeled training sam-
ples. In a real-world scenario, such as ID card identification and airport
surveillance, because of the difficulty in grasping face photographs or
limited ability of the system for data storage, there is usually only one
image for each individual. On the other hand, storing only one sample
for each person in the database has many advantages: they are easy to
collect, save storage space and reduce computational cost. Therefore,
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developing an efficient method for the task of face identification with
one-sample per person is of great significance.

In recent decades, many efforts have been devoted to human
face identification. There are many methods targeting at the pro-
blem of face recognition with corruption, occlusion and illumina-
tion variances. They have achieved impressive face recognition
performance on some databases with a large number of accessible
training samples. Unfortunately, most of these approaches rely to a
great degree on the size and representativeness of the training
dataset [5]. While these methods focus on improving the recog-
nition accuracy, they ignore the problem originated from the
dataset without sufficient training samples [6,7]. For the problem
of one-sample face identification with gross corruption and illu-
mination variation, many popular methods perform terribly or
even fail due to the ignorance of the sample deficiency. For
instance, the sparse representation-based classification (SRC) [8]
and its extensions [9,10] are effective methods for the problem of
face recognition with varying expression and illumination, as well
as occlusion and disguise. Nevertheless, the SRC-based methods
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basically need a sufficiently large set of training data to construct a
well-defined dictionary, which is not applicable in the scenario of
one-sample face identification.

In the literature, the problem of one-sample face identification
can be addressed by roughly two ways: holistic methods and
local methods. The holistic method includes linear subspace
learning methods, such as PCA [11–13], (PC)2A [14] and LPP
[15,16], and manifold learning methods like LLE [17], ISOMAP [18]
and LE [19]. This kind of methods aims to learn a low-
dimensional feature space by preserving the desired relation-
ships modeled by the similarity graphs and suppressing the
undesired ones. The PCA-based approaches can efficiently
recover the subspace structure of the high-dimensional data
contaminated by small Gaussian noise, but is extremely fragile to
gross corruption [20]. Meanwhile, these learning mechanisms
basically need a sufficiently large training dataset for a good
generation performance [3]. As regards the problem of one-
sample face identification, these approaches may easily fall into
the trap of overfitting and lose the generalization capability.
Moreover, the graph structure of these approaches highly
depends on the choice of parameters, which may result in an
unstable graph. For example, the structure of the adjacency graph
is changing with parameters such as the ϵ in ϵ-ball graph and k in
k-NN graph. However, it is difficult to obtain a theoretical suitable
and adaptive parameter setting for the optimal graph [21].

The other kinds of holistic methods, such as SVD perturbation
[22] and Enhanced (PC)2A (E(PC)2A) [23], generate new samples or
different representations from the original training samples.
Adding these imitated images could effectively enlarge the sample
number and transform the problem of face identification with one
training sample per person to an ordinary face identification
problem. However, one major drawback of this kind of methods is
that the augmented samples are highly correlated to the original
ones and thus cannot be considered as independent samples [24].

For the local methods, such as local probabilistic subspace [24],
component-based SVM [25] and self-organizing maps (SOM
[26,27]), the face images are represented by a set of local features.
Heisele et al. [25] proposed a component-based framework for face
detection and identification. The facial semantic parts, such as eyes,
nose and mouth, are automatically detected and passed to a com-
bined SVM for identification. Matinez et al. [24] proposed a prob-
abilistic approach for face identification with partial occlusion and
expression variation. Six eclipse-shaped areas are used to learn the
eigenspace, where the distribution is modeled by Gaussian mixture
model. Finally a probabilistic identification approach is adopted to
compute the similarity. Tan et al. [27] extended the probabilistic
work by representing the face subspace with self-organizing maps
(SOM [26]). This representation is proved to be more compact,
intuitively comprehensible and robust to noise. Lu et al. [28] pro-
posed the DMMA approach to learn discriminative features from
image patches. Each image is partitioned into local patches of the
same size and each patch is treated as a data point. The DMMA
method aims to learn N different feature spaces for N classes. By
utilizing the class label information, the manifold margins are
maximized to learn more discriminant features. A local manifold
distance is used for manifold matching. Compared to the holistic
methods, the local methods have several advantages. Firstly, by
learning low-dimensional local features, we can effectively reduce
the feature dimension. Secondly, representing the image by a set of
local features can effectively overcome the sample deficiency.
Thirdly, local methods are more robust to corruption and illumi-
nation, since local patches are less likely to be corrupted than the
whole image. However, using only the local features may lead to a
loss in holistic information. Therefore, one has to provide a suitable
way combining both the local features and holistic information,
which is a quite challenging task.
In this paper we present a two-step scheme for one-sample face
identification with gross corruption and varying illumination.
Motivated by the Graph Embedding framework [29], we propose a
new manifold embedding approach for data representation, namely
sparse discriminative multi-manifold embedding (SDMME). First
we partition each image into several non-overlapping patches with
the same size. Based on two structured dictionaries, we build two
sparse graphs to model the interconnection among different pat-
ches. We learn multiple discriminative feature spaces for each
individual by maximizing the inter-manifold separability and
minimizing the intra-manifold variance. For recognition, we use a
global manifold distance to measure the similarity between sam-
ples. We evaluate the proposed SDMME approach on two publicly
available facial image databases. The contribution of our work
includes the following:

1. We present a class-conditional graph learning algorithm. From
the perspective of classification, instead of a global graph of all
classes, we learn the intrinsic graph (intra-manifold graph) and
the penalty graph (inter-manifold graph) within the training set.
Given N samples (each partitioned into M patches of the same
size), we have 2nMnN graphs overall. With these graphs, we can
efficiently characterize the relationships between data points. It
is worthy to be noted that with sparse regularization we will
learn a more stable and robust graph with fewer manually
tuned parameters.

2. Based on the two kinds of graphs, we propose a novel manifold
embedding approach (SDMME) for feature learning. We learn
the feature spaces to preserve the characteristics of the intra-
manifold graph and suppress the characteristics of the inter-
manifold graph at the same time. In the feature spaces, the bias
from the manifold of the same class is expected to be small and
the distances to the manifolds of other classes are expected to
be high. This would greatly improve the discriminant power of
the learned feature.

3. We develop an efficient approach for the challenging problem
of one-sample face identification. With the features learned by
SDMME, the original problem of face identification with one
training sample is cast as a problem with two parts: data
representation and manifold matching. We use a global mani-
fold metric which is more robust to occlusion and illumination
variations. The proposed method outperforms the state-of-the-
art face identification approaches handling the one training
sample problem.

The paper is organized in the following manner. In Section 1, we
introduce the problem of face recognition with a single training
sample per person and review some classical face recognition
methods. In Section 2, we present the details of the proposed
method. Experimental results and analysis are provided in Section 3.
In Section 4, we conclude the paper and suggest possible future
research directions.
2. Sparse discriminative multi-manifold embedding

2.1. Sparse representation

In the statistical signal processing community, the problem of
sparse representation had received much attention [30–32].
Sparse representation was originally designed to deal with com-
press sensing problems, searching for the possibility of using
lower sampling rates than the Shannon–Nyquist bound [33].
Recently the sparse representation technique had been proved to
be an effective tool in computer vision problems, such as image
restoration, object detection and face recognition [8,34,35]. In
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signal theory, a signal observation y with noise is usually modeled
as y¼ ŷþe, where ŷ denotes the original signal and e is the error
term that compensates the noise or the reconstruction error.
Classic coding theories such as the Fourier transform and the
Wavelet transform assume that there is a set of basis functions ψn,
such that the observation can be represented as a linear super-
position of the weighted basis functions y¼ PN

i ¼ 1 αiψ iþe. In
sparse coding, with an overcomplete dictionary and sparse reg-
ularization, most weights of the basis function are set to zero, i.e.
the observation signal is sparsely coded with the basis functions.
Wright et al. [8] define the basis functions by the set of all training
samples A¼ ½x1; x2;…; xN�, where fxi; i¼ 1;…;Ng are column-wise
concatenated vectors of training samples. Then the observation
sample can be represented as

y¼ Aαþe¼ Aαþ Iαe ¼ Bβ ð1Þ

where α¼ ½α1;α2;…;αN �T ARN�1, αeARN�1, B¼ ½A; I� and
β¼ ½α;αe�.

The sparsity of a vector α is measured by the value of its l0
norm JαJ0. Therefore, sparse representation is obtained through
solving an optimization problem:

α̂ ¼ arg minJαJ0; s:t: y¼ Bβ ð2Þ

The l0 regularized minimization problem is proven to be NP-
hard [36]. However, it has been found that if the solution α̂ is
sparse enough, the l0 minimization problem is equal to the solu-
tion of the l1 regularized version [30,31]. Thus α̂ is approximated
through l1 regularized minimization:

α̂ ¼ arg minJαJ1; s:t: y¼ Bβ ð3Þ

or the relaxed version

α̂ ¼ arg minJαJ1; s:t: Jy�BβJ2oϵ ð4Þ

This l1-minimization problem can be effectively solved through a
linear programming process [37,38]. The sparse coefficient vector
α̂ can be regarded as an image feature and be applied to classifi-
cation in later steps.

2.2. Sparse neighborhood preserving embedding

Cheng et al. [21] proposed the sparse neighborhood preserving
embedding (SNPE) method for multiple vision tasks of semi-
supervised learning, subspace learning and data clustering. Similar
to LLE and its linear extension NPE, sparse neighborhood preserving
embedding (SNPE) aims to obtain an optimal embedding which
preserves the neighborhood similarity relationship. Different from LLE,
which models the neighborhood similarity relationship with a k-NN
graph, the SNPE approach constructs a sparse graph and preserves the
graph relation through the embedding. The target graph is G¼ ðX;WÞ,
where X ¼ ½x1; x2;…; xi;…; xN�ARD�N is the set of training samples
and W is the graph weight matrix. For xi in the sample set, we denote
the sample dictionary as Ai ¼ ½x1; x2;…; xi�1; xiþ1;…; xN �ARD�ðN�1Þ

and the expanded dictionary as Bi ¼ ½Ai I�ARD�ðNþD�1Þ. The sparse
coding is achieved by solving the l1-minimization problem:

α̂ ¼ arg minJαJ1; s:t: xi ¼ Biβ ð5Þ

Note that αARN�1 and β¼ ½α;αe�. Then the graph weightW is set as

wij ¼
α̂ j; i4 j

1; i¼ j

α̂ j�1; io j

8><
>:

ð6Þ

where α̂ j is the j-th element of α̂ . To achieve the optimal embedding
P, the SNPE approach aims to minimize the reconstruction error. The
SPNE approach is formulated as the following optimization problem:

min
P

XN
i ¼ 1

JPTxi�PTXwi J2; s:t: P
TXXTP ¼ I ð7Þ

The constraint PTXXTP ¼ I is added to avoid degenerate solutions. By
solving the objective function, we have a unified projection matrix P
which preserves the graph relationship. The projection matrix P
represents a transformation from the original high-dimensional
datum into a low-dimensional one. The low-dimensional repre-
sentation of the original manifold point xi can be calculated as
yi ¼ PTxi. The reconstruction error is measured by the l2 norm for
simplicity and efficiency.

The optimization problem can be solved by transforming it into
a generalized eigenvalue problem:

XðI�WÞT ðI�WÞXTp¼ λXXTp ð8Þ
The projection P is computed as the eigenvectors corresponding to
the largest d eigenvalues:

P ¼ ½ p1; p2;…; pd �ARD�d ð9Þ
2.3. Class-conditional graph learning with sparse criterion

We denote the sample matrix as X ¼ ½x1; x2;…; xN�. First we par-
tition each sample into M non-overlapping patches of the same size
(shown as in Fig. 1) and concatenate the patches into vectors by col-
umn. For the i-th subject xi, let Xi ¼ fxi;j j j¼ 1;2;…;Mg be the set of
vectors of corresponding patches, where xi;j is the j-th vector of xi. For
local methods, with loss of global information in the partitioning
process, it is essential to incorporate global information to the system.
The most commonly used way of incorporating global information is
to construct a graph that measures the similarity relationship between
local patches, such as k-NN graph. However, the k-NN graph heavily
depends on the graph parameters. For the problem of face identifi-
cation, the sparse graph (or l1-graph) has proved to be more robust to
noise and more adaptive in neighborhood structures [21].

In this section, we design two kinds of graph based on class label
information: the intrinsic graph (or intra-manifold graph) that char-
acterizes the intra-class compactness and the penalty graph (or inter-
manifold graph) that characterizes the inter-class separability. For
graph construction, we must make three observations:

� All the graph points should be interrelated, including the pair of
points with large Euclidean distance, though their relationship
may be loose.

� In sparse coding, a sample is most likely to be sparsely represented
by the dictionary atoms from the same class, which implies that the
similarity between the same class sample should be larger than
others.

� In the graph construction step, all of the patch vectors are
unified with a unit l2 norm to avoid the imbalance between
dictionary atoms. In the later steps of recognition, however,
there is no need for the normalization.

To measure the representation capability of the samples from
the same class and all other classes, we design two different kinds
of dictionaries (taking the i-th class as an example): inter-manifold
dictionary:

Ainter
i ¼ X=Xi ¼ ½x1;1;…; xi�1;M ; xiþ1;1;…; xN;M �ARd�ðN�1ÞM ð10Þ

and intra-manifold dictionary:

Aintra
i ¼ Xi=xi;j ¼ ½xi;1;…; xi;j�1; xi;jþ1;…; xi;M�ARd�ðM�1Þ ð11Þ

To initialize the inter-manifold graph, we solve the l1 regularized
optimization problem

αinter
i;j ¼ arg minJαJ1; s:t: Jxi;j�Binter

i βJ2oϵ ð12Þ
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Fig. 1. Class-conditional Graph Learning: (a) Non-overlapping patches. There are 6� 6¼ 36 patches in this example. (b) In the intra-manifold graph, the vertices are patches
from the same person. Each vertex is connected to the center vertex, indicating that the similarity between each pair of vertices is taken into consideration. Because of the
sparse regularization, however, most graph weights are set to small values. (c) The intra-manifold graphs are expected to “shrink” through the embedding. (d) In the inter-
manifold graph, the vertices are from different classes. Note that the closest vertices are usually the same semantic parts of different people. (e) The inter-manifold graphs are
expected to “expand”.
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where Binter
i ¼ ½Ainter

i ; I�ARd�½ðN�1ÞMþd� and β¼ ½α;αe�. Then the j-th
column inter-manifold graph of the i-th subject is

winter
i;j;k ¼

jαinter
i;j;k j ; 0okr ði�1ÞM

1; ði�1ÞMokr iM

jαinter
i;j;k�M j ; iMokrNM

8>><
>>:

ð13Þ

where αinter
i;j;k and winter

i;j;k denote the k-th element of αinter
i;j

and winter
i;j , respectively. The inter-manifold graph of the i-th

sample is Winter
i ¼ ½winter

i;1 ;…;winter
i;M �ARNM�M . Similarly for

intra-manifold graph,

αintra
i;j ¼ arg minJαJ1; s:t: Jxi;j�Bintra

i βJ2oϵ ð14Þ
where Bintra

i ¼ ½Aintra
i ; I�ARd�½M�1þd� the j-th column of the i-th

intra-manifold graph is

wintra
i;j;k ¼

jαintra
i;j;k j ; 0oko j

1; k¼ j

jαinter
i;j;k�1 j ; jokoM

8>><
>>:

ð15Þ

where αintra
i;j;k and wintra

i;j;k denote the k-th element of αintra
i;j

and wintra
i;j , respectively. The intra-manifold graph of the i-th

sample is Wintra
i ¼ ½wintra

i;1 ;…;wintra
i;M �ARM�M .

The graph construction procedure is summarized in Algorithm 1.

Algorithm 1. Class-conditional graph construction based on l1
optimization
Inp

Ou
Ste

Ste
ut: Training dataset X ¼ ½x1; x2;…; xN �;
tput: The sparse class conditional graph Wi

inter and Wintra
i ;

p 1: Partition each training image into M patches. Con-
catenate the columns of each patch. The patches of xi are
denoted as xi;j; j¼ 1;…;M;
p 2: Normalize each data vector xi;j to have a unit norm;
p 3: Initialize the inter-manifold dictionary Ai
inter and the

intra-manifold dictionary Ai
intra for each class i, i¼ 1;2;…;N;

p 4: Solve the l1 regularized optimization problem such as in
(12) and (14);
p 5: Construct the sparse graph such as in (13) and (15);
Ste

For the representation step, our goal is to learn feature spaces
to preserve the characteristics of the intra-manifold graph and
suppress the characteristics of the inter-manifold graph. Intui-
tively, we need to pull together the vertices of the same class and
push away the vertices of different classes.

2.4. Sparse discriminative multi-manifold embedding

In this section, we present a sparse discriminative multi-
manifold embedding (SDMME) approach based on the class-
conditional sparse graph. Previous works, such as SNPE, usually
assume that all data points intrinsically lie on a single low-
dimensional manifold. This assumption, however, is not appro-
priate in the case of limited training samples for the purpose of
discriminative classification for the following reasons:

� As regards face recognition, the person-specific shape and
depth information in a facial image can be quite critical for
recognition. Modeling all the samples as a single manifold may
cause a loss in such information.

� From the perspective of subspace learning, the intrinsic feature
dimensions of different faces will not be the same. Therefore,
the face features with same dimensions from a unified manifold
may not accurately represent the faces.

� For classification tasks, supervised methods are more likely to
achieve better recognition accuracy. Therefore, considering the
discriminative information, modeling the data as N different
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manifolds is more appropriate for precise recognition. There-
fore, we learn N SDMME feature spaces for N classes.

The class-conditional sparse graphs intrinsically model the
similarity relationship between data points. We desire to preserve
the graph structure through the manifold learning. For OSPP pro-
blem, to overcome the shortage of training samples, we partition
each image into t non-overlapping patches. Throughout the mani-
fold learning process, the image patch is considered as the process
unit. In order to learn the low-dimensional representation, we
design two kinds of dictionaries, i.e. intra-manifold dictionary and
inter-manifold dictionary. We then construct the class-conditional
sparse graph, with the technique introduced in Section 2.3. For
samples from class i, we have an inter-manifold graph

Winter
i ¼ ½winter

i1 ;winter
i2 ;…;winter

ij ;…;winter
it � ð16Þ

and an intra-manifold graph

Wintra
i ¼ ½wintra

i1 ;wintra
i2 ;…;wintra

ij ;…;wintra
it � ð17Þ

For simplicity, we omit the commas. For each class i, we aim to
search for a best projection matrix PiARM�Di . Different from SNPE,
N different discriminative subspaces will be learned. We aim to
learn a set of projection matrices P ¼ fP1; P2;…; PNg. The overall
objective function is

RðPÞ ¼min
P

XN
i ¼ 1

RðPiÞ ð18Þ

where

RðPiÞ ¼ R1ðPiÞ�R2ðPiÞ ð19Þ

RðPiÞ ¼min
Pi

XM
j ¼ 1

JPT
i xij�PT

i Xiw
intra
ij J2� JPT

i xij�PT
i Xw

inter
ij J2 ð20Þ

In the learning process, we minimize the objective function to
learn an optimal embedding. The N projection matrices are inde-
pendent of each other and thus the original objective function can
be considered as the sum of N subfunctions RðPiÞ which are
separately optimized. The optimization problem can be solved
with the generalized eigenvalue decomposition approach [39] as

ðMintra
i �Minter

i Þpk ¼ λkpk ð21Þ
0
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Fig. 2. Visualization of distributions of (a) original manifold and (b) low-dimensional ma
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where

Mintra
i ¼

XM
j ¼ 1

ðxij�XiW
intra
ij Þðxij�XiW

intra
ij ÞT ð22Þ

and

Minter
i ¼

XM
j ¼ 1

ðxij�XWinter
ij Þðxij�XWinter

ij ÞT ð23Þ

The deductive process is given in Appendix A. For simplicity,
we omit the class label i and denote the k-th largest eigenvalue as
λk and the corresponding eigenvector pk. Then we rank the
eigenvalues as λ1Zλ2Z⋯ZλDi

Z04λDi þ1Z⋯ZλD. All the
eigenvectors with a positive eigenvalue are selected to form the
embedding matrix Pi ¼ ½p1; p2;…; pDi

�. For a data point x in the
original data manifold, the corresponding low-dimensional feature
in the i-th manifold is yi ¼ PT

i x. In this manner, for an unlabeled
sample, we are able to attain N low-dimensional feature, and
calculate its bias from the manifolds. For the classification task, all
the biases from N manifolds are calculated and the label corre-
sponding to the smallest bias is chosen as the classification result.

Algorithm 2. Sparse discriminative multi-manifold embedding.
1
−1

0.8
0.6

0.4

0.2

0

.2

.4

.6

.8

nifold
ut: Training dataset X ¼ ½x1; x2;…; xN �;
ss-conditional sparse graph W i

intra, W i
inter, i¼ 1;2;…;N

tput: Projection matrices Pi, i¼ 1;2;…;N
p 1: Initialize the inter-manifold dictionary Ai

inter and the
intra-manifold dictionary Ai

intra for each class i, i¼ 1;2;…;N;
p 2: Transform the optimization problem (19) to a general-
ized eigenvalue problem (21); calculate intra-manifold
reconstruction matrix M i

intra and inter-manifold recon-
struction matrix M i

inter;
p 3: Solve problem (21) and sort the eigenvalue as
λ1Zλ2Z⋯ZλdZ04λdþ1Z⋯ZλD;
p 4: Select the eigenvectors that correspond to positive
eigenvalues to form the projection matrix.
Fig. 2 visualizes the distribution in the original manifold and
the manifold learned by SDMME. Two kinds of data points are
exhibited. The red stars represent all of the data points (36 points
in this case) of a person, whereas the blue circles represent ran-
domly selected 100 points from other classes. (a) shows the ori-
ginal distribution in the data space. (b) shows the distribution of
0
1

2
3

4
5

6

−3

−2

−1

0

Class 1
Other Classes

learned by SDMME. (For interpretation of the references to color in this figure



Fig. 3. Sample images from subset A–subset F of Yale B face database.
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the data points in the low-dimensional manifold learned by
SDMME. We observe that in (a) the points of different classes
strongly overlap, and in (b) the two kinds of points are clearly
separated. In the learning step, the i-th low-dimensional manifolds
are learned by reducing the intra-class variation of the i-th class
and expanding the separability from the other classes, i.e. by
pulling the points of the i-th class towards each other and pushing
the other points away. In this view, the subspaces learned by
SDMME show the introduction of discriminative information,
which can be rather helpful in terms of recognition.

2.5. Inherent structure-based manifold matching

In this section, we propose a global manifold matching tech-
nique based on the global manifold distance. After discriminative
feature learning, the original recognition problem has been
transformed into a point-manifold matching problem. From the
previous steps, we have learned N SDMME feature spaces. For an
unlabeled sample u, the image is first partitioned into t non-
overlapping patches fu1;u2;…;uj;…;utg in the same way. Then the
patches are projected to the spaces for a low-dimensional repre-
sentation. To compute the distances from sample u to each of the
N classes, we calculate the patch-manifold distances first and sum
these distances as the sample-manifold distance:

dðu;MiÞ ¼
Xt

j ¼ 1

dðuj;MiÞ ð24Þ

We model the patch-manifold distance by means of the
reconstruction capability of the reference manifold. The distance is
computed by solving the minimization problem below:

dðuj;MiÞ ¼ minP
l

πl ¼ 1
JPT

i uj�
XM
l ¼ 1

πlP
T
i mil J2 ð25Þ

where mil is the l-th vector of Mi and πl is a weight factor
corresponding to mil.

With the global manifold metric, we attain the label L by

L¼ arg min
i

dðu;MiÞ; i¼ 1;2;…;N ð26Þ

For this sample-manifold distance, we note three facts:
� The distance dðuj;MiÞ is based on the SDMME feature space of
the i-th class. Thus we need to first project the patches onto the
subspace and then compute the distance. Note that to measure
the bias between uj and another manifold, the distance will be
computed in a different space.

� Rather than the recognition metric used in DMMA, which
exploits only the k-nearest patches to calculate the distance, we
propose here a global distance in which all of the t patches are
involved in the metric. This is because in complex environ-
ments, such as extreme illumination, the data points in the
manifold are distributed with large variance. Therefore, the k-
nearest patches in the manifold cannot truly reflect the real
distribution overall and the local distance is thus not accurate.

� In fact, we minimize the cost function with the sum-to-one
constraint:

P
lπl ¼ 1. This is because the sum-to-one constraint

can effectively enforce the invariance of translation, as the effect
of translation terms in data will be offset by each other.
3. Experiments

In this section, we test the effectiveness of the proposed
SDMME method for the one-sample face identification problem.
Our main concerns are the robustness of our method to partial
occlusion and illumination variance. Two publicly available face
datasets, namely extended Yale B and CMU PIE facial image
database, are used for experiments. We compare the SDMME
method with representative face recognition methods such as
PCA, Block-PCA, 2DPCA, (PC)2A, LPP, SOM, SNPE, and DMMA.

3.1. Datasets

The extended Yale B face dataset [40] consists of 2414 frontal-
face images of 38 different individuals. All of the images are
photographed with light sources from different directions. Con-
sequently, there may be shadows on part of the face, which may
pose difficulties in terms of recognition. In the experiment, all of
the images are cropped and resized to the size of 48�42 pixels.
We use a subset of the Yale B dataset to test the availability of our
method. The images are divided into six subsets according to the



Table 1
Recognition accuracy (percent) on the Yale B database.

Method Subset B Subset C Subset D Subset E Subset F

PCA 99.34 95.39 76.32 32.24 19.08
2DPCA 98.03 92.11 76.97 33.55 25.66
Block PCA 99.34 96.05 76.32 32.89 21.05
(PC)2A 96.05 85.53 85.53 36.18 40.79
E(PC)2A 91.45 86.84 76.32 37.50 23.68
LPP 99.34 98.68 82.24 35.53 33.55
SPNE 97.37 96.05 94.74 47.37 38.16
DMMA 96.71 97.37 98.03 40.79 34.21
SDMMEþ5-NN 93.42 90.13 78.95 11.84 13.16
SDMMEþGlobal Distance 99.34 98.68 98.03 58.55 42.76
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illumination angle. In the experiment, we use the image with
normal illumination for training (subset A), and the other five
subsets are used for testing (subset B to subset F) (Fig. 3).

The CMU Pose, Illumination and Expression (CMU PIE) face
dataset [41] includes over 40,000 facial images of 68 people. The
images are 640�486 color images. Each person is photographed
in 13 different poses, under 43 different illumination conditions
and with 4 different expressions. The database consists of two
partitions, with pose and illumination variation for the first par-
tition, with pose and expression variation for the second one. To
obtain significant illumination variation, the people are photo-
graphed with 21 flashes from different directions. Therefore,
images captured with and without the background lighting give
21� 2þ1¼ 43 different illuminations overall. In the experiment,
the first parts of frontal facial images (1496 images of 68 people,
22 images each person) are used, which are taken in 22 different
illumination conditions. The experimental images are first cropped
and resized to the size of 48�42 pixels. For each person, the
image without flashes is used as the training image (subset A) and
the left 21 images as the testing images. We partition the testing
images into four different subsets (subset B to subset E) depending
on the flash direction (Fig. 4).

3.2. Robustness to illumination variation

In this section, we focus on evaluating the robustness of face
recognition algorithms under variant illumination conditions. Illumi-
nation variation is one of the most critical obstacles in robust face
identification. In the literature, state-of-the-art methods can be
grouped into three categories: illumination modeling, illumination
invariant feature extraction, and face image normalization. Never-
theless, these approaches require prior knowledge of the illumination
model, which is not satisfied in most cases. In the experiment, we use
a subset of the Yale B database for the experiment. For each individual,
the neutral face (subset A) is selected as the only training sample. The
remaining subsets (subset B to subset F) are used for testing. Table 1
exhibits the face recognition accuracy of different methods in Yale B
dataset. To ensure the fairness of the comparison, we have tuned the
parameters of all the methods as appropriate. For block PCA and
DMMA, each image is partitioned into 6�6 patches and the size of
Fig. 4. Sample images from subset A to
the patches is 8�7 pixels, which is the same as in SDMME. For (PC)2A,
the weighting parameter α is set as 0.25. For E(PC)2A, the two
weighting parameters are set as 0.25 and 0.5, respectively. For LPP, the
size of neighborhood k is set as 4 and the heat kernel parameter t is
set as 100. For DMMA, the parameters k1, k2, k and σ are set as 15, 5,
4 and 100, respectively. For SNPE and SDMME, the l1-ls toolbox [42] is
used to solve the l1 minimization problem. The balance factor λ is set
as 0:001λmax.

Table 1 shows that the proposed SDMME method outperforms
all the other methods on the Yale B database. In the light of the
recognition result, we comment as follows:

� Many face recognition methods report excellent recognition
performance with multiple training samples. It still remains a
most challenging problem for one-sample face identification,
however. Some of the most popular face recognition algorithms,
such as PCA-based and LPP-based methods, do not performwell
with such problems.

� For some methods such as LPP and SPNE, a PCA preprocessing
step is added to avoid singularity.

� Compared with the DMMA approach, the recognition accuracy
of the SDMME method outperforms it in all cases. Specifically,
the SDMME achieved a gain of 17.76 and 8.55 percent in subset
E and subset F, which consist of samples with more extreme
illumination conditions. This result shows that the DMMA
subset E of the PIE face database.
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approach is not as nearly robust as the proposed SDMME
method in the case of extreme illumination.

� The original DMMA method adopted a local manifold–manifold
distance to fulfill the classification task. In the experiment, we
test this metric for its robustness in extreme illumination and
compare it with the global manifold distance metric. The
recognition accuracy of these metrics shows that the local
manifold distance is not nearly robust enough under extreme
illumination, whereas the global manifold distance can still
work perfectly in similar cases.

Table 2 shows the recognition accuracy obtained by different
methods in the CMU PIE database. Though the recognition accu-
racy of these methods in the PIE database is generally lower than
in the Yale B database, the proposed SDMME method still out-
performs all the other methods with considerable accuracy gain.
The main reasons for the lower recognition accuracy in the PIE
database may be the harder illumination condition and larger
Table 2
Recognition accuracy (percent) on the PIE database.

Method Subset B Subset C Subset D Subset E

PCA 95.88 39.79 2.95 7.35
2DPCA 99.41 82.74 34.32 26.07
Block PCA 98.24 48.63 4.06 7.72
(PC)2A 99.41 92.63 72.69 42.28
E(PC)2A 94.12 44.21 6.64 9.93
LPP 99.12 72.84 21.03 26.10
SPNE 99.12 94.53 73.43 58.09
DMMA 99.12 91.16 72.32 56.99
SDMMEþ5-NN 90.59 46.11 11.07 13.60
SDMMEþGlobal distance 100 97.26 73.80 59.19

Fig. 5. Images with different occlusion size (block): (a) 5�5 pixels, (b) 10�
database size. Especially in subset D and subset E, we observe a
recognition rate below 50% for many recognition methods. The
proposed SDMME method, however, can still achieve a 73.80% and
59.19% recognition rate in subset D and subset E, respectively.

We have several observations from the experiment result:

� The recognition accuracy of the PCA-based methods drops
dramatically in the subsets with extreme illumination. There
are two reasons for this phenomenon. First, in PCA-based
algorithms, the illumination and corruption are not concerned
and appropriately modeled. Second, its disfunction in dealing
with the small sample problem is one of the intrinsic drawbacks
of the PCA-based algorithm. In the experiment, we train the
projection matrix with only one training sample per person,
whereas the feature dimension is large. The curse of dimension
affects the performance here and results in poor recognition
accuracy.

� Compared with DMMA, the proposed SDMME method still
achieves a gain in recognition accuracy of 6.1, 1.46 and 2.2 per-
cent, respectively, in subset B, subset C and subset D. This result
demonstrates that the proposed SDMME method is more robust
to illumination variation than DMMA.
3.3. Robustness to random block occlusion

In this section, we test various scenarios of block occlusion by
replacing a randomly located block with a black block and an
unrelated image in the test images. We test the effectiveness of
our approach on subset B of the PIE database. Blocks with a side
length of 5, 10, 15, 20, and 25 pixels occlude the image at random
locations. Fig. 5 shows several examples of faces occluded by a
black block. We run the experiment 10 times in each case to
10 pixels, (c) 15�15 pixels, (d) 20�20 pixels, and (e) 25�25 pixels.
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eliminate the randomness. Fig. 6 displays the recognition accura-
cies of five different methods.

Fig. 6 shows the comparison of the five methods with random
block occlusion. The proposed SDMME method outperforms the
others in all cases. Note that the recognition accuracies decrease
with greater block occlusion. This result is intuitively predictable
as the facial features are severely affected by the size of occlusion
(Fig. 7). We also note that even with 20�20 block occlusion, the
proposed SDMME approach could still achieve a recognition rate
of more than 90%, while none of the other methods could achieve
an accuracy of more than 70%. Moreover, the relatively small
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Fig. 6. Recognition accuracy with different occlusion sizes (block).

Fig. 7. Images with different occlusion size (gorilla): (a) 5�5 pixels, (b) 10
variance of the recognition rate shows that the proposed SDMME
approach is less affected by the location of the block.

We also simulate the scenario of contiguous occlusion with an
unrelated image of gorilla face. Again, the location of the occlusion
is randomly chosen for each image and is unknown to the com-
puter. Fig. 8 demonstrates the comparison of the five methods in
this case. The result shows that the proposed method consistently
outperforms all the other methods.
�10 pixels, (c) 15�15 pixels, (d) 20�20 pixels, and (e) 25�25 pixels.
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Fig. 8. Recognition accuracy with different occlusion size (gorilla).
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4. Conclusion

We propose a novel approach for the problem of one-sample
face identification. To overcome the limitation of inadequate
training samples, the images are partitioned into non-overlapping
patches of the same size and each point is considered as a data
point in the manifold. We construct class-conditional sparse
graphs based on two structure dictionaries. Rather than modeling
all data points as one uniform manifold, we argue that the points
of each class intrinsically lie in separate manifolds. We learn the
subspaces by concentrating data points within classes and separ-
ating data points of one class from all the others. A global manifold
distance is introduced for the classification task in the learned
feature space. Experiments on several facial image databases
demonstrate the effectiveness of the proposed approach.
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where
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i ¼
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The optimization of the cost function

min
Pi

RðPiÞ ¼min
Pi

tr PT
i ðMintra

i �Minter
i ÞPi

h i
ð30Þ

can be transformed into the eigenvalue problem

ðMintra
i �Minter

i Þpk ¼ λkpk

where λk denote the k-th largest eigenvalue and pk denote the
corresponding eigenvector.
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