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a b s t r a c t

In image classification, can sparse representation (SR) associate one test image with all training ones from the
correct class, but not associate with any training ones from the incorrect classes? The backward sparse
representation (bSR) which contains complementary information in an opposite direction can remedy the
imperfect associations discovered by the general forward sparse representation (fSR). Unfortunately, this
complementarity between the fSR and the bSR has not been studied in face recognition. There are two key
problems to be solved. One is how to produce additional bases for the bSR. In face recognition, there is no
other bases than the single test face image itself for the bSR, which results in large reconstruction residual
and weak classification capability of the bSR. The other problem is how to deal with the robustness of the
bSR to image corruption. In this paper, we introduce a CoSR model, which combines the fSR and the bSR
together, into robust face recognition, by proposing two alternative methods to these two key problems:
learning bases and unknown faces help to enrich the bases set of the bSR. Thereby, we also propose two
improved algorithms of the CoSR for robust face recognition. Our study shows that our CoSR algorithms
obtain inspiring and competitive recognition rates, compared with other state-of-the-art algorithms. The bSR
with the proposed methods enriching the bases set contributes the most to the robustness of our CoSR
algorithm, and unknown facesworks better than learned bases. Moreover, since our CoSR model is performed
in a subspace with a very low dimensionality, it gains an overwhelming advantage on time consumption over
the traditional RSR algorithm in image pixel space. In addition, our study also reveals that the sparsity plays
an important role in our CoSR algorithm for face recognition.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, sparse representation (SR) based image classification
has undergone a great development [1–7]. Given some training
images with class labels, sparse representation selects several
training images which give the most accurate and compact
representation of one test image according to visual content
similarity, and then classifies the test image by the reconstruction
residual associated with each object class. The sparse representa-
tion classifier can be considered as a generalization of the nearest
neighbor (NN) [8,9] or the nearest subspace (NS) [10]. The NN
classifier approximates the test image with a single training image
which is the most similar, while the NS classifier is based on the
strategy of the best linear representation of the test image with all
lyu.edu.hk (H. Hu),
of the training images in each class. However, the NN can be easily
affected by noise, especially for real applications, while the NS may
not work well when classes are highly correlated to each other [3].
As a tradeoff between the NN and the NS, the sparse representa-
tion (SR) [3,11] can automatically select a small number of training
images and approximate the test image with a weighted sum of
the selected ones. The motivation of finding a sparse solution
rather than a dense one lies in that a dense solution usually results
in a large number of training images selected to approximately
represent the test image, while these training images may come
from various classes. Therefore, this dense solution is not espe-
cially informative for classification [3].

Robustness is an important and open problem in real face
recognition systems since test face images are usually partially cor-
rupted or occluded [12,13]. One of the most successful applications of
sparse representation based image classification is to deal with cor-
ruptions and occlusions in face recognition [3,14]. Face recognition
can be performed in the subspaces such as principal component
analysis (PCA) [15,16], linear discriminant analysis (LDA) [17], and
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Fig. 1. A sketch of the SR bridging between test face and training faces.
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locality preserving projection (LPP) [18] where the dimensionality is
reduced below the number of training faces so that the approxima-
tion problem is underdetermined and simplified. However, Wright
et al. [3] believed that noise on the original pixels cannot be elimi-
nated by the subspace projections, and no bases or features are more
spatially localized than the original image pixels themselves. So they
proposed to perform face recognition with sparse representation in
the original pixel space. In order to do that, besides training images,
the bases set of robust sparse representation (RSR) is enlarged to
reduce the reconstruction residual with the identity matrix which
can linearly reconstruct any noise. We call this algorithm ‘PixelþRSR’
in the following sections. In addition, Wang et al. proposed a sparse
residue method for occluded face image reconstruction, which con-
siders an occluded face image as the summation of a non-occluded
face and a sparse occlusion [14]. Both of the above two methods can
achieve satisfactory recognition accuracy for robust face recognition.

For face recognition, the SR bridges between the test face and the
training faces from the same individual, and avoids associations
between the test face and the training faces from the incorrect
individuals. However, it is NOT definite that the training faces from
the correct individuals can be all selected, while the ones from the
incorrect individuals can be all excluded by the sparsity constraint,
especially when the test image may contain noise. On the contrary,
the case in Fig. 1 usually appears. Comparing to the general SR which
represents each test image with training images and we call the
forward sparse representation (fSR), the backward sparse repre-
sentation (bSR), in an opposite direction, representing each training
image with test images. These two SRs may contain some com-
plementary information for classification. That is to say, the bSR can
remedy the correct associations undiscovered by the fSR, and com-
paratively weaken the incorrect associations by strengthening the
correct associations which are discovered by the fSR. The reason is
that two opposite SRs are conditionally independent due to the
sparsity of the SR and the diversity of images [4]. In [4], we validated
the complementarity between the fSR and bSR, and proposed a
cooperative sparse representation (CoSR) model for scene image
annotation. Recently, Xu et al. [19] cast this idea into linear regression
classification and ℓ2-norm based representation methods.

In this paper, we will introduce the CoSR into robust face
recognition and address two key problems. First, in the CoSR
application in image annotation, all test images to be annotated
can be utilized so that there are enough bases for the bSR to
represent each training image with small residual. However, in
face recognition, there is only one ready-made basis for the bSR,
viz., the test face image itself. So how to construct and expand the
bases set, viz. dictionary, of the bSR to reduce the reconstruction
residual is one problem to be addressed in this paper. Another key
problem is how to deal with the corruption in test images. If the
corruption or noise in any test image is large, the bSR tends to
utilize newly added bases rather than the test image to represent
the training image, even if the training image and the test image
come from the same individual, which will result in smaller
reconstruction error. This will lead to the failure of recognition of
the test image. Imposing the noise similar to that in the test face
on the learned bases of the bSR or using additional unknown faces
with the similar noise as the expanded bases of the bSR can reduce
the correlation between the additional bases and the training
images, so that the test image is more probably selected to
represent the training images from the correct individual. Thereby
the robustness of the bSR is improved. The primary motivation of
this paper is to extend the CoSR model to solve the robust face
recognition problem, namely corrupted and occluded face recog-
nition, and to improve the robustness and performance of the
CoSR for robust face recognition by utilizing this robustness of the
bSR to noise in face images.

The main contributions of this paper are two-fold. (1) There
have been no previous work on the complementarity between the
fSR and the bSR for face recognition, and no previous work to
explore to compensate the general SR for face recognition. This
paper introduces the CoSR model into the field of face recognition,
obtaining very competitive recognition rates and showing high
efficiency for robust face recognition. (2) This paper proposes two
methods, namely ‘learning bases’ and ‘unknown faces help’, to
expand the bases set of the bSR, which are very robust to noise or
corruption in face images, especially when the noise or corruption
is very large. (3) This paper also reveals that the sparse constraint
is very important for the success of our CoSR model on face
recognition.
2. Related work

For robust face recognition, the ‘PixelþRSR’ algorithm which
solves sparse representation in the original pixel space inevi-
tably brings the problem of high time complexity due to large
feature dimensionality and large number of bases. Traditional ℓ1
minimization solution algorithms by linear programming (LP)
[20] have shown their high computational complexity for real-
world applications with large size of face images. Heuristic
greedy algorithms such as orthogonal matching pursuit (OMP)
[21] and least angle regression (LARS) [22], which are faster
than using LP methods, can often fall into local optimum [23],
and these sub-optimal solutions result in poor face recognition
performance, even in the original pixel space. Newly developed
algorithms such as gradient projection (GP) [24], augmented
lagrange multiplier (ALM) [25], homotopy [26], and feature-sign
search sign (FSS) [27] methods, which attempt to improve the
solution efficiency of ℓ1 minimization, however, cannot avoid
the problem of high time complexity when working in the ori-
ginal pixel space. Though the computational complexities of GP
and ALM methods are difficult to estimate exactly, the solutions
all involve the matrix operations w.r.t. the dictionary of sparse
representation which is a huge matrix when in pixel space. And
the computational complexity of the homotopy algorithm is Oð
d2þdnÞ for each iteration [28], where d and n denote the feature
dimensionality and the number of bases, respectively. Com-
paratively, our proposed CoSR algorithm works well in sub-
spaces such as the PCA, LDA, and LPP, which will largely reduce
time consumption.



Z.-Q. Zhao et al. / Pattern Recognition 56 (2016) 77–87 79
In addition, it is worth mentioning that some studies [29,30]
claimed that enforcing sparsity constraints does not help to
improve the performance of object recognition and image classi-
fication. For face recognition, [31–33] also claimed that it is not the
sparsity that improves the face recognition accuracy, and the
simple regularized least square can attain equal or even higher
accuracy while with much less time consumption than the ℓ1-
norm solution. These researches further give rise to the doubt
about the necessity and significance of sparsity for image classi-
fication. However, in this paper, we will propose an efficient
cooperative sparse representation (CoSR) algorithm for robust face
recognition, where it is the ℓ1-norm constraint that plays a vital
role for the success of this model. The key factor which ensures the
CoSR classifier to work well is that the two SRs in opposite
directions are with difference or at least not so tightly correlated.
The fSR associates the test image with a small subset of training
images thanks to the sparse nature, while the bSR associates the
test image with another small subset of training images. Due to the
sparsity of the SRs, these two subsets may differ greatly from each
other, which thereby results in relative independence between
two opposite SRs. On the contrary, a non-sparse solution such as
the ℓ2-norm in [29–32] may make both approximations in two
opposite directions associate the test image with a large number of
or even all training images, which results in overlapping between
two subsets and thereby causes greater dependence between two
opposite approximations. In this paper, we will confirm this
assumption by experimental comparison between ℓ1-norm and
ℓ2-norm.

In the general SR models, the following reconstruction residual
is usually used as the classification criterion [3,11]:

CðyÞ ¼ arg min
i

Jy�XδiðbaÞJ2 ð1Þ

where y denotes the test signal, X the bases set, ba the sparse
vector solution, and δiðbaÞ a new vector whose only nonzero ele-
ments are the ones in ba associated with class i. However, for the
bSR which represents training images with test ones, the recon-
struction residual of sparse representation serves the training
faces instead of the test one, so the above classification criterion
becomes invalid. In addition, the criterion based on the recon-
struction residual is inconvenient for the weighted fusion of the
fSR and the bSR. So in this paper, the proportion of the positive
components in sparse coefficients is used instead, which has also
been verified even slightly better than the reconstruction resi-
dual for the single fSR [4]. Similar to the reconstruction residual
criterion, the new classification criterion is based on the
assumptions that for the fSR, the test image belonging to one
certain class can be thoroughly represented by the training
images from the same class, and that for the bSR, the test image
can only be selected to use for representing the training images
from the same class rather than the other classes. Obviously, a
non-sparse solution such as the ℓ2-norm violates these assump-
tions much more than the ℓ1-norm solution. This is another
evidence for the significance of sparsity for our CoSR algorithm
on face recognition.
3. Extend cooperative sparse representation to robust face
recognition

3.1. Face recognition based on forward sparse representation

Given m bases X ¼ ½x1; x2;…; xm�ARd�m and a new test signal
yARd, sparse representation aims to find a sparse vector aARm so
that y can be linearly represented as [34,35]:

y¼ Xaþe ð2Þ
where the vector eARd is the signal noise in real-world data and
with a small norm value. This approximation problem can be
solved by minimizing the following objective function:

min
a

y�Xa
�� ��2þλ ak k1 ð3Þ

where J � J denotes the ℓ2-norm, and J � J1 denotes the ℓ1-norm;
the first term is to minimize the reconstruction residual, while the
second one is to control the sparsity of the vector a with the tra-
deoff parameter λ. A larger λ usually results in a sparser a solution.

We extend the formulation of the fSR for two-class image anno-
tation in [4] to multi-class face recognition. A basic problem of face
recognition can be described as follows. Given a set of training face
images XARd�m with their class labels L¼ ½l1; l2;…; lm� and a test face
image yARd, where liAf1;2;…; cg, the face recognition task is to
assign a class label to the test image. The training set can be divided
into c subsets: Xi ¼ ½xi;1; xi;2;…; xi;mi

�, where i¼ 1;2;…; c,
P

imi ¼m,
and all subsets Xi are mutually exclusive to each other, consisting of the
training samples from class i. So Eq. (2) can be written as:

y¼
Xc
i ¼ 1

Xmi

j ¼ 1

αi;jxi;jþe ð4Þ

where αi;j are the elements in the sparse vector a associated with xi;j. If
the test image y belongs to one certain class k, then in an ideal
situation, y can be thoroughly represented by a few training samples
from Xk, while the elements associated with other classes than k
should be all zeros, namely, αi;j ¼ 0 for all iak. However, in most
situations, y is represented by both training samples from class k and
those from other classes to minimize the reconstruction residual when
there is noise or concept correlation in images. Even so, the accumu-
lation value of the elements in a associated with xk;j, namely αk;j for all
j¼ 1;…;mk, should be larger than that of the elements associated
with xi;j for any one iak with all j¼ 1;…;mi. So we can have the
following classification criterion for the fSR:

CðyÞ ¼ arg max
i

P
jαi;jP

i
P

jαi;j
ð5Þ

The value of
P

jαi;j=
P

i
P

jαi;j can also be assigned to y as the score or
degree with which it belongs to class i. Fig. 2 shows an example of the
fSR for face recognition.

Note that the reconstruction residual JeJ2 ¼ Jy�XaJ2, viz. the
value of the first term in Eq. (3), is invariant when simultaneously
multiplying X by a scalar and a by the inverse of the scalar, and the
elements αi;j in a are used as the similarities between the test
sample y and the corresponding training samples. So the ℓ2 norm
of each basis xi;j should be equally normalized (usually as a unit
vector) to ensure scoring by Eq. (5) to be fair in the same level.

3.2. Face recognition based on backward sparse representation

Provided a dictionary consisting of the test image y and a set of
bases D¼ ½d1; d2;…; dn�ARd�n, any training image xi;j, which is the
jth sample from the ith individual, can be linearly represented by
sparse representation as:

xi;j ¼ ½y;D�
βi;j

b̂

" #
þe ð6Þ

where βi;j can be solved by minimizing the following objective
function:

min
βi;j
b̂

� � xi;j�½y;D�
βi;j

b̂

" #�����
�����
2

þλ
βi;j

b̂

" #�����
�����
1

ð7Þ

Considering all training images X ¼ ½x1;1;…; x1;m1 ;…; xc;1;…; xc;mc �,



Fig. 2. An example of the fSR for face recognition. (a) A test face image is sparsely represented by 717 training faces from various individuals, and the elements associated
with the same individual as the test face correspond to the largest values. (b) The histogram of the sparse coefficients associated with the training faces for every class, by
which the classification is performed. The largest histogram indicates the correct class.

Fig. 3. An example of the bSR for face recognition. (a) A training face image belonging to the same individual as the test image is sparsely represented by the dictionary
consisting of the test face and 300 learned bases. (b) A training face image belonging to one individual different from that of the test face is sparsely represented by the
dictionary consisting of the test face and 300 unknown faces. (c) The histogram of the sparse coefficients associated with the test image for every class, by which the
classification is performed. The largest histogram indicates the correct class.
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we obtain the vector

b¼ ½β1;1;…;β1;m1
;…;βc;1;…;βc;mc

� ð8Þ

where βi;j denotes the connectionweight between the test image y and
the training image xi;j. Different from the case of the fSR, if y belongs to
class k, in an ideal situation, y can only be selected to represent the
training images from class k, so βi;j ¼ 0 for all iak. However, there are
exceptions due to noise or concept correlation. Even so, for all iak, the
test image y should correspond to a small value of βi;j if the bases D can
represent any training image by themselves with small reconstruction
residual. Thereby, the accumulation value of the elements in b associated
with xk;j, namely βk;j for all j¼ 1;…;mk, should be larger than that of
the elements associated with xi;j for any one iak with all j¼ 1;…;mi,
and we can have the following classification criterion for the bSR:

CðyÞ ¼ arg max
i

P
jβi;jP

i
P

jβi;j
ð9Þ

The value of
P

jβi;j=
P

i
P

jβi;j can also be assigned to y as the score or
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degree with which it belongs to class i. Fig. 3 shows an example of the
bSR for face recognition.

3.3. Fusion of forward and backward sparse representations

A simple average fusion can be adopted to combine the output
score of the fSR with that of the bSR for robust face recognition.
The weighted-averaging fusion of two output scores is as follows:

γi;j ¼ ð1�wÞ
P

jαi;jP
i
P

jαi;j
þw

P
jβi;jP

i
P

jβi;j
ð10Þ

where w is the fusion weight which can be tuned within the range
½0;1�. Note that we normalize αi;j and βi;j to be in the range of [0,1]
by dividing it by the sum of all elements in the vectors a and b,
respectively, so that they both exactly express the correlations
between the training images and the test image and then are
mixed in the same order of magnitude.

The connection weights γi;j then depict the relevance degrees
between the training faces and the test face. So finally we have the
following classification criterion for the fusion of two SRs:

CðyÞ ¼ arg max
i

P
jγi;jP

i
P

jγi;j
ð11Þ
4. Additional bases for the bSR

In face recognition, there is only one basis, viz., the test face
image itself, available for the bSR, and the performance of the bSR
will affect the effectiveness of the combination of the fSR and the
bSR. So it is necessary to construct additional bases to reduce the
reconstruction residual and to improve the performance of the
bSR. We propose two methods, namely ‘Learning bases’ and
‘Unknown faces help’, to enlarge the bases set of the bSR.

4.1. Learning bases for the bSR

Obviously, an enough number of random bases are qualified as
long as they are overcomplete. However, studies have shown that
given a set of training samples X, alternatively optimizing the
bases D and the sparse coefficients S can reduce the objective
value and improve the classification performance of sparse
representation [36,37,27]. In this paper, the objective function can
be defined as follows:

min
D;S

Xm
i ¼ 1

Jxi�½y;D�si J2þλJsi J1

subject toJdi J2r1; 8 i¼ 1;…;n ð12Þ
where D¼ ½d1;…; dn�. Though the optimization problem in (12) is
not convex when simultaneously optimizing D and S, it is convex
when alternatively optimizing one of them with the other fixed.
Assuming ŝ0 is a vector whose elements are the coefficients cor-
responding to the test sample y for all training samples X, the
bases D can be learned with the fixed sparse coefficients by the
following minimization function:

min
D

X�½y;D� ŝ0
S

" #�����
�����
2

subject toJdi J2r1; 8 i¼ 1;…;n ð13Þ
This least squares problem with quadratic constraints can be
solved with gradient descent algorithm [38]. However, it is an
iterative projection and we need to compute the bases repeatedly
with varying sparse coefficient values to optimize it. So in this
paper, we use the Lagrange dual algorithm [27] instead to optimize
the bases, which is much more efficient. Considering the Lagran-
gian:

LðD; λ!Þ¼ trace X�½y;D� ŝ0
S

" # !T

X�½y;D� ŝ0
S

" # !0@ 1A
þ
Xk
i ¼ 1

λi Jdi J2�1
� �

ð14Þ

where λi is dual variables, and λ
!

¼ ½λ1;…; λk�. We can obtain the
following Lagrange dual by minimizing over D analytically:

Dð λ
!

Þ¼min
D

LðD; λ!Þ¼ trace X�yŝ0
� �T X�yŝ0

� ��
� X�yŝ0
� �

ST SST þΛ
� ��1

X�yŝ0
� �

ST
� �T

�Λ
	

ð15Þ

where Λ¼ diagð λ
!

Þ. Then we compute the partial gradient and

Hessian of Dð λ
!

Þ over λi as follows.

∂Dð λ!Þ
∂λi

¼ J ðX�yŝ0ÞST ðSST þΛÞ�1Ii J2�1 ð16Þ

∂2Dð λ
!

Þ
∂λi∂λj

¼ �2 SST þΛ
� ��1

X�yŝ0
� �

ST
� �T

X�yŝ0
� �

ST SST þΛ
� ��1


 	
i;j

� SST þΛ
� ��1

 	

i;j
ð17Þ

where IiARn�1 is the i-th unit vector. Then we optimize the
Lagrange dual (15) using the conjugate gradient method. After

maximizing Dð λ
!

Þ, we obtain the optimal dictionary D as follows:

DT ¼ ðSST þΛÞ�1SXT �ðSST þΛÞ�1SŝT0y
T ð18Þ

This dual algorithm is more efficient because it deals with
much fewer optimization variables than the original. Moreover, in
order to save the test time consumption, we only need to compute
ðSST þΛÞ�1SXT and ðSST þΛÞ�1S once for all test samples.

In addition, when dealing with robust face recognition problem
where the noise in test image is large, the bSR may tend to utilize
the newly added bases rather than the test image itself to repre-
sent any training image, if the expanded bases are learned well
based on the reconstruction residual minimization strategy,
whether the training image and the test image belong to the same
individual or not. The reason lies in the tendency to small recon-
struction residual of sparse representation. This phenomenon will
result in the failure of the bSR classification. Adding similar noise bn
into the learned bases may be one solution to this problem. The
similar noise can be approximated as follows:bn ¼ y�x ð19Þ
where bn is the approximation of the noise, x is the average of all
training images and x ¼ 1

m

Pm
i ¼ 1 xi. Then the additional bases are

assigned as:

D’Dþξbn1 ð20Þ
where 1AR1�n is an all one vector, and ξ is a tradeoff parameter
whose value is between 0 and 1.

4.2. Unknown faces help the bSR

Besides learned bases, there is another easier way for real face
recognition system to expand the bases of the bSR. Generally, in
real applications, additional face images without class labels can
be easily collected from volunteers. We call these face images
unknown faces in the following parts of this paper. Serving as the
additional bases of the bSR, viz. D, unknown faces hold the
advantage over learned bases that their collection surroundings are



Fig. 4. Comparison between identity bases and random bases for sparse representation on a noise signal of 50 by 40. The toy test shows that identity bases (a) result in a
much denser representation with a much larger residual than random bases (b).
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more similar to those of training faces including illumination,
pose, and so on, even when they are from different individuals, so
that the bSR can be solved more easily with small reconstruction
residual. Another advantage of unknown faces may lie in that they
naturally contain characteristics, including the noise, of the test
image which may largely vary with the change of collection sur-
roundings and devices so that the expanded bases D, viz. unknown
faces, are selected and utilized by the bSR together with the test
image at a fair level and thereby the bSR is robust to the noise.
1 Actually, uniform distribution also works, and produces the similar perfor-
mance to that of normal distribution according to our experiments.
5. Improvements of the CoSR for robust face recognition

5.1. Expanding the dictionary of the fSR

In this subsection, we consider improving our CoSR model by
enhancing the fSR for robust face recognition. In order to deal with
the robustness in face recognition, Wright et al. [3] proposed to
expand the bases set with an identity matrix which can linearly
reconstruct any corruption or occlusion in face images. However,
since each identity vector has only one non-zero element and
thereby each dimension of signal needs one independent identity
vector for reconstruction, sparse representation with the identity
matrix cannot efficiently reconstruct any noise signal with small
residual, especially when the feature dimension is large. In an
extreme case, almost all unit vectors in the identity matrix are
needed to reconstruct the noise signal with small residual. Com-
paratively, a set of random bases with normal distribution may
contain ones which are similar to the test noise signal, which will
facilitate the sparse representation with small residual. Fig. 4
shows an example of the comparison between identity bases and
random bases for sparse representation on a test noise signal of 50
by 40, which indicates that the identity bases result in a non-
sparse solution in spite of the sparse constraint, while the random
bases with normal distribution result in a much sparser repre-
sentation and a much smaller residual. This phenomenon may be a
good explanation to the classification performance of ℓ1-norm
which is similar to that of the ℓ2-norm as reported in [32] or even
worse in [31].
Thereby, we have the following formulation of the linear
reconstruction for the test image y:

y¼ XaþRbaþe ð21Þ
where R denotes a set of random bases with normal distribution,1ba is the sparse vector for constructing the occlusion in face image.
The approximation problem can then be solved by minimizing the
following objective function:

min
a

y�½X R� aba
� ����� ����2þλ

aba
� ����� ����

1
ð22Þ

5.2. Block partitioning

In many real applications, the occlusion on image pixels is
unknown but the occluded pixels are known to be connected.
Some work [3,39] has shown that partitioning the image into
blocks and processing each block independently can improve face
recognition since the redundant information from occluded blocks
can be discarded by aggregating all blocks with voting [40]. In this
paper, however, the voting strategy is not suitable for combining
the soft outputs from the blocks as shown in Eq. (10). Therefore,
for the convenience of the fusion of the fSR and bSR, we utilize the
average fusion method instead of voting to combine all results of
blocks, and modify Eq. (10) as follows:

γi;j ¼
1�w
K

XK
k ¼ 1

P
jα

k
i;jP

i;jαk
i;j

 !
þw
K

XK
k ¼ 1

P
jβ

k
i;jP

i;jβ
k
i;j

0@ 1A ð23Þ

where K is the block number.
6. Experimental results and discussions

In this section, several experiments on two face recognition
databases and some discussions are presented to demonstrate the
effectiveness of our proposed CoSR model and to validate our
claims in the previous sections. We evaluated the performance of



Table 1
Comparison of the recognition rates of the bSR between the clean learned dictionary and the noisy learned dictionary on Extended Yale B face database.

Corruption percentage 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Clean Lrd. Dict. 0.883 0.905 0.912 0.861 0.759 0.541 0.344 0.201 0.097 0.046
Noisy Lrd. Dict. 0.545 0.543 0.552 0.552 0.550 0.556 0.570 0.594 0.671 0.450
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our CoSR algorithm with the bSR dictionary consisting of learned
bases or unknown faces. We compared the CoSR with the ‘Pix-
elþRSR’ algorithm proposed in [3], the ‘PCAþRSR’ algorithm
which performs the RSR in the PCA subspace, and other existing
algorithms such as ‘PCAþNN’, ‘PCAþNS’, and ‘PCAþLinear SVM’

[41,42] which are also used for comparison in [3]. Moreover, we
also explored the important role of the sparsity in the CoSR model
by comparing it with the fusion of two non-sparse solutions with
the ℓ2-norm constraint in forward and backward directions using
the same dictionaries as those in the CoSR algorithm, which are
denoted by the ‘PCAþf-ℓ2’ and ‘PCAþb-ℓ2’, respectively. We also
compared our CoSR with the ‘Pixelþℓ2’ algorithm proposed in
[31], and for comparison fairness, we expanded the dictionary
with the same number of noise bases as the fSR of our CoSR, viz.
100 box images (8 large ones and 92 small ones).

We evaluated our algorithm on the Extended Yale B dataset for
robust face recognition with random pixel corruption, and on the
AR database for disguise or block corruption. The Extended Yale B
dataset totally contains 2414 face images from 38 individuals
under various controlled lighting conditions [43], from which the
cropped face images with the size of 192 by 168 were captured
[44]. The AR face database contains over 4000 face images from
126 individuals, and for each individual, 26 face images were
collected in two separate sessions with many facial variations
including illumination change, expressions and facial disguise [45].
Following [3], we chose a subset of the dataset consisting of 1399
face images from 50 male individuals and 50 female ones (14 from
each individual, except for a corrupted image w-027-14.bmp).

6.1. Learning bases of bSR

This subsection will show that constructing the bases of the
bSR leads to an improvement of the CoSR. For both face databases,
the dictionary size of the bSR is set to be 301, where 300 ones are
learned bases and the rest one is the test image. The fusion weight
w is set to be 0.8, and the parameter ξ in Eq. (20) is set to be 0.1,
tuned by 5-fold cross-validation on the training set. The sparse
representations are all solved with the FSS and the DALM tool-
boxes [46] implemented by the MATLAB 7.1.0.183 (R14) Service
Pack 3 running on a computer with 16 Quad-Core AMD Opteron
Processors 8382, 64 GB memory, and the OS of Debian GNU/Linux
5.0. The sparse tradeoff parameter λ is set to be 0.05. The PCA
projects face images into a 500-dimension subspace.

6.1.1. Dictionary learning for bSR
We evaluate the effectiveness of the learned bases for the bSR

by performing a comparative experiment between random bases
and learned bases with the simple Lagrange dual algorithm on the
Extended YaleB dataset. For each one of 38 individuals, half of the
images, viz. about 32 images per subject, are randomly selected for
training, and the remaining for test. As a result, the bSR with
random dictionary achieves a recognition rate of 0.193, while the
bSR with learned dictionary by our method achieves 0.938. This
result implies that learning bases greatly improves the bSR.

6.1.2. Noisy bases for robust face recognition
As we discussed before, for robust face recognition, adding

noise to the learned bases may avoid the failure of the bSR due to
corruption in the test image. To confirm this claim, we compare
the bSR recognition rates between the learned dictionaries with-
out and with noise on the Extended Yale B face database. Fol-
lowing the literature [3], we choose Subset 1 and Subset 2 (717
images, normal-to-moderate lighting conditions) for training and
Subset 3 (453, more extreme lighting conditions) for test. Then we
replace the values of a percentage (0–90%) of pixels randomly
selected from each test image with uniform random values. The
values and the locations of the selected pixels are unknown to the
algorithms. The dictionary is learned for five iterations by the
alternative optimization method described in Section 4.1. Then the
noise bn, which is added to the learned dictionary as in Eq. (20), is
approximately computed by Eq. (19). Finally, the comparative
results are shown in Table 1, from which we can see that the
recognition rates of the bSR with the clean learned dictionary vary
between a very large range: from 0.883 to 0.046 with the change
of the corruption percentage, while the recognition rates of the
bSR with the noisy learned dictionary vary between a much
smaller range. The bSR with the noisy learned dictionary is much
more robust to the corruption, and performs better than that with
the clean learned dictionary when the corruption percentage
becomes large. Also we can find that the recognition rates of the
bSR with the noisy learned dictionary are lower than those with
the clean learned dictionary when the corruption percentage is
relatively small, but the powerful recognition capability of the fSR
can compensate it. We will confirm this in the following
experiments.

6.1.3. Experimental results of our CoSR on two face datasets
We evaluate our CoSR algorithm, which adopts the bSR with

noisy learned dictionary on two face datasets: Extended Yale B and
AR face.

On the Extended Yale B dataset, we evaluate the performance
of our CoSR algorithm for the corrupted face images with random
noise of a uniform distribution. First, we learn a dictionary of the
bSR using the method in Section 4.1; then, we compute the
additional bases of the bSR as in Eq. (20); finally, the fSR and bSR
are performed respectively and combined together to produce the
final classification decision. Table 2 shows the experimental results
of our algorithm, comparing with other algorithms.

On the AR face dataset, we evaluate the performance of our
CoSR algorithm for the corrupted face images with unknown
noise. For AR face database, following [3], we use 799 images
(about 8 from each) without disguise for training, and the
remaining 600 ones with disguise (wearing sunglasses or scarves)
for test. First, we learn the dictionary of the bSR using the method
in Section 4.1; then, we compute the additional bases of the bSR as
in Eq. (20), in which the noise is approximately computed by Eq.
(19); finally, the fSR and bSR are performed respectively and
combined together to produce the final classification decision.
Table 4 shows the recognition rates of our algorithm, comparing
with other algorithms.

From the above results, we have the following observations.

(1) Our CoSR algorithm obtains relatively good recognition per-
formance. The fSR and the bSR are complementary to each
other, and for most cases, the fusion of them can improve the
recognition rates. Especially for the case of large corruption



Table 2
Recognition rates of PCAþCoSR (bSR with noisy learned dictionary) and ‘pixelþRSR’ algorithms on Extended Yale B face database.

Corruption percentage 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

PixelþRSR (FSS) – – – – – – – – – –

PixelþRSR (DALM) 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.892 0.391 0.071
Pixelþℓ2 [31] 1.000 1.000 1.000 0.998 0.996 0.923 0.753 0.483 0.219 0.091
PCAþRSR (FSS) 1.000 0.998 0.998 0.998 0.982 0.899 0.613 0.218 0.086 0.038
PCAþRSR (DALM) 1.000 0.998 0.998 0.998 0.989 0.894 0.609 0.215 0.083 0.041
PCAþf-ℓ2 1.000 1.000 1.000 0.993 0.980 0.907 0.739 0.501 0.232 0.095
PCAþb-ℓ2 0.949 0.947 0.940 0.921 0.938 0.927 0.896 0.832 0.691 0.316
Fusion 0.989 0.982 0.978 0.971 0.958 0.929 0.899 0.766 0.589 0.190
PCAþfSR (FSS) 1.000 1.000 1.000 0.993 0.980 0.901 0.724 0.457 0.210 0.080
PCAþbSR (FSS) 0.536 0.534 0.541 0.534 0.528 0.536 0.545 0.556 0.680 0.461
Fusion (PCAþCoSR) 1.000 1.000 1.000 1.000 0.991 0.960 0.903 0.753 0.687 0.453
PCAþfSR (DALM) 1.000 1.000 1.000 0.993 0.980 0.901 0.724 0.457 0.212 0.080
PCAþbSR (DALM) 0.543 0.534 0.545 0.554 0.559 0.552 0.578 0.614 0.713 0.536
Fusion (PCAþCoSR) 1.000 1.000 1.000 1.000 0.992 0.960 0.910 0.768 0.704 0.528

Table 3
Time consumptions (s) of our CoSR model (BSR with learned dictionary þ noise)
and the ‘pixelþRSR’ algorithm for recognizing each test face.

Algorithms Extended Yale B AR Database

PixelþRSR (FSS) 42000 1988.3
PixelþRSR (DALM) 1108.8 582.2
Pixelþℓ2 [31] 1.8 0.3
PCAþRSR (FSS) 26.8 97.5
PCAþRSR (DALM) 3.1 4.5
PCAþCoSR (FSS) 1.5 3.8
PCAþCoSR (DALM) 243.6 550.6

Table 4
The recognition rates of our CoSR model (bSR with noisy learned dictionary) and
other algorithms on the AR face dataset.

Algorithms Sunglasses Scarves Average

PixelþRSR (FSS) 0.827 0.563 0.695
PixelþRSR (DALM) 0.827 0.560 0.694
Pixelþℓ2 [31] 0.677 0.810 0.744
PCAþRSR (FSS) 0.653 0.320 0.487
PCAþRSR (DALM) 0.647 0.320 0.483
PCAþ f-ℓ2 0.543 0.773 0.658
PCAþb-ℓ2 0.157 0.200 0.179
Fusion 0.533 0.773 0.653
PCAþ fSR (FSS) 0.620 0.820 0.720
PCAþbSR (FSS) 0.533 0.400 0.467
Fusion (PCAþCoSR, FSS) 0.743 0.840 0.792
PCAþ fSR (DALM) 0.620 0.820 0.720
PCAþbSR (DALM) 0.483 0.420 0.452
Fusion (PCAþCoSR, DALM) 0.740 0.833 0.787
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percentage (the Yale B dataset with corruption percentage
larger than 80% and the AR dataset), our CoSR model obtains
the best results.

(2) From Table 2, we can see that the performance of the bSR is
relatively stable with the varying percentage of noise, and it
performs better than the fSR when the corruption percentage
is relatively large. This indicates that the bSR contributes the
most to the robustness of our CoSR model when the corrup-
tion percentage is large.

(3) For the Extended Yale B face dataset, the single ‘PCAþf-l2’
obtains better results than the single ‘PCAþ fSR’, and the single
‘PCAþb-l2’ obtains better results than the single ‘PCAþbSR’. And
for the AR face dataset, the situation is reversed. But for both
databases, the fusion of non-sparse solutions in the forward and
backward directions, viz. ‘PCAþf-l2’ and ‘PCAþb-l2’, cannot
improve the recognition rates, and underperforms the fusion of
‘PCAþfSR’ and ‘PCAþbSR’, which indicates that the sparsity
plays an important role in our CoSR algorithm. Though the
‘PCAþb-ℓ2’ shows more robustness than the ‘PCAþbSR’ when
the corruption percentage is relatively small, its complementar-
ity to the ‘PCAþf-ℓ2’ is weaker than that of the ‘PCAþbSR’ to the
‘PCAþfSR’, according to the comparison of the fusion perfor-
mance. For the case of large corruption percentage (the Yale B
dataset with corruption percentage larger than 80% and the AR
dataset), the ‘PCAþb-ℓ2’ shows less robustness than the
‘PCAþbSR’, which results in lower fusion performance. More-
over, our CoSR algorithm outperforms the ‘Pixelþℓ2’ algorithm
in [31] on recognition rates.

6.1.4. Time complexity
In order to validate the efficiency of our CoSR algorithm, we

also compared our CoSR algorithm on time consumption with the
classical ‘PixelþRSR’ algorithm, the ‘PCAþRSR’ algorithm, and the
‘Pixelþℓ2’ algorithm, as shown in Table 3. From the table we can
see that our CoSR algorithm consumes much less recognition time
than the classical ‘PixelþRSR’ algorithm. The reason lies in that
our CoSR algorithm is performed in a subspace with a much lower
dimensionality, and our model adopts a dictionary with much
fewer bases. The time consumption comparison between our CoSR
model and the ‘PCAþRSR’ algorithm is also given, which shows
that our CoSR algorithm consumes less time than the ‘PCAþRSR’
algorithm when the FSS solution is adopted, but in reverse when
the DALM solution is adopted. The ‘Pixelþℓ2’ algorithm takes the
least time on the AR face dataset. Overall, however, our CoSR
algorithm with the FSS solution consumes relatively little recog-
nition time (several seconds per test face), and is therefore suitable
for real face recognition systems.

For the FSS algorithm, the time complexity to solve one single
sparse optimization problem is Oðnðd2þdÞÞ. And since the bSR is
solved by performing sparse optimization problem n times with n
input vectors (training images), respectively, the time complexity
of our CoSR algorithm is Oðn2ðd2þdÞÞ. Even so, since our CoSR
algorithm, which solves the robustness problem by the bSR, is not
necessary to be performed in the original pixel space, the vector
dimensionality d and the dictionary size n are both largely
reduced. Thereby, the time consumption of our algorithm can be
much less than that of the traditional ‘PixelþRSR’ algorithm,
especially for high resolution images. The above analysis is also
applicable to other sparse solution algorithms such as the DALM,
GP, and homotopy.

6.2. Unknown faces help the bSR

This subsection shows the experimental evaluation of our CoSR
model adopting unknown faces as the additional bases of the bSR. In
these experiments, the PCA projects face images into a 300-dimension



Table 5
The recognition rates of our CoSR model (unknown faces help) on the YaleB face database with random pixel corruption.

Num. of classes unknown/known 3/35 6/32 9/29 12/26

10% fSR 0.99970.001 1.00070 1.00070 0.99970.001
bSR 0.88370.006 0.96570.009 0.97170.028 0.98870.007
Fusion 0.99570.003 0.99870.004 0.99770.004 0.99970.001

30% fSR 0.99570.001 0.990 70.001 0.99170.006 0.99270.003
bSR 0.87670.012 0.96870.007 0.96970.030 0.98670.003
Fusion 0.97570.005 0.99270.003 0.99370.010 0.99970.001

50% fSR 0.88770.017 0.85570.008 0.86670.024 0.85470.029
bSR 0.87070.004 0.94770.014 0.95770.023 0.98370.005
Fusion 0.93970.015 0.97670.006 0.97770.017 0.99670.001

70% fSR 0.41170.032 0.35070.026 0.38570.098 0.32370.120
bSR 0.83370.022 0.91070.007 0.93570.026 0.94670.012
Fusion 0.85170.016 0.90570.020 0.93370.030 0.93270.005

90% fSR 0.08570.029 0.09670.022 0.07670.029 0.07370.049
bSR 0.56370.022 0.54970.018 0.55070.010 0.55070.022
Fusion 0.50970.023 0.49570.035 0.42470.030 0.32970.055

Table 6
The recognition rates of our CoSR model (unknown faces help) on the AR face dataset.

Number of classes unknown/known 5/95 10/90 15/85 20/80 25/75

Sunglasses fSR 0.60670.017 0.60270.028 0.60670.025 0.618 70.027 0.63470.031
bSR 0.81370.058 0.86770.042 0.90170.031 0.91770.022 0.93070.021
Fusion 0.89570.032 0.91470.026 0.92770.013 0.9387 0.016 0.94270.019

Scarves fSR 0.76270.022 0.76770.022 0.77170.017 0.77170.029 0.77370.026
bSR 0.70870.047 0.80370.042 0.84570.032 0.87570.023 0.89370.031
Fusion 0.83670.024 0.879 70.023 0.90070.019 0.91570.023 0.92870.021

2 There can be no strictly fair comparison since additional unknown faces are
used in this model.
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subspace, which is smaller than that in the previous experiments
since the number of training images is reduced. The sparse repre-
sentations are solved with the FSS algorithm which has been proved
faster in the previous subsection. The fusion weight w is set to be 0.2,
tuned by 5-fold cross-validation on the training set.

For Extended Yale B database, we also choose Subsets 1, 2 and
3 for evaluation. Firstly, we randomly select a small number of
individuals (3, 6, 9, 12) from 38, and use the face images from these
individuals in three subsets as ‘unknown faces’. Second, we choose
the remaining of Subsets 1 and 2 for training and the remaining of
Subset 3 for test. Finally, we replace the values of a percentage (10%,
30%, 50%, 70%, 90%) of pixels randomly selected from each test image
with uniform random values, and to obtain the unknown faces with
the collection surroundings and devices similar to the test faces, we
also randomly corrupt a random percentage of pixels in each
unknown face with uniform random values. Table 5 shows the
recognition rates of our CoSR algorithm, which are the average of ten
runs on different random dataset splits for unknown faces.

For AR face database, we choose a subset consisting of 1399
face images from 50 male individuals and 50 female ones for
evaluation. Firstly, we randomly select a small number of indivi-
duals (5, 10, 15, 20, 25) from 100, and use the face images (with
and without disguise) from these individuals in the subset as the
unknown faces. Secondly, we choose the face images without dis-
guise from the remaining for training, and those with disguise for
test. Finally, we obtain the recognition rates of our CoSR algorithm
shown in Table 6, which are the average of ten runs on different
random dataset splits described as above.

From the above results, we have the following observations.

(1) The fSR and the bSR are complementary to each other. The
performance of the bSR is relatively stable with the varying
noise percentage, which indicates that it contributes the most
to the robustness of our CoSR model. The results also indicate
that our CoSR model works well and greatly outperforms over
the general sparse representation which we call the ‘fSR’when
the percentage of corruption is large.

(2) By a rough2 comparison between the CoSR adopting the
learned bases and that adopting the least unknown faces, we
can see that, for the cases of intense noise or large block
disguise, the latter performs better than the former. This
observation confirms our speculation in Subsection 4.2 that
unknown faces are more similar to input faces than learned
bases and naturally contain similar noise to that in test images.
Another factor is that additional faces provide more comple-
mentary information for the fusion.
6.3. Improvements of our CoSR algorithm

On the YaleB face dataset, we evaluate our CoSR algorithm
improved by expanding the dictionary of the fSR with random
vectors as described in Section 5.1, for both strategies of expanding
the dictionary of the bSR with learned bases and unknown faces. For
the unknown faces strategy, to compare with other state-of-the-art
algorithms as most fair as possible (see footnote 1), we adopt a
very small subset, viz. 3 of 38 individuals to expand the bases set
of the bSR. We use a dictionary consisting of all training images X
together with an expanded noise bases set R containing 100 vec-
tors with normally distributed random numbers for the fSR.
Table 7 shows the recognition rates of our improved CoSR



Table 8
The recognition rates of various algorithms with image block partition on the AR
face dataset.

Algorithms Sunglasses Scarves Average

PCAþNN 0.693 0.123 0.408
PCAþNS 0.697 0.147 0.422
PCAþSVM 0.523 0.277 0.400
PixelþSSR [47] 0.930 0.927 0.929
PixelþRSR (Impr.) [3] 0.975 0.935 0.955
PCAþCoSR (LD, Impr.) 0.977 0.947 0.962
PCAþCoSR (UF, Impr.) 0.98370.004 0.96870.007 0.97670.005

Table 9
Time consumptions (seconds) of our improved CoSR algorithm to recognize a single
test face.

Algorithms Extended Yale B AR database

PCAþCoSR (UF, Impr.) 2.6 5.8
PCAþCoSR (LD, Impr.) 1.7 5.2

Table 7
Recognition rates of our improved CoSR algorithm on Extended Yale B face
database.

Corruption
percentage

0–60% 70% 80% 90%

PCAþCoSR
(LD, Impr.)

1.000 0.996 0.985 0.740

PCAþCoSR
(UF, Impr.)

1.00070.000 0.99970.001 0.98070.008 0.76070.018
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Fig. 5. The recognition rates of various algorithms on the YaleB face dataset.
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algorithm, and Fig. 5 plots the comparison between our algorithm
and other state-of-the-art algorithms.

On the AR face dataset, we evaluate our CoSR algorithm
improved by partitioning face images into eight (4�2, namely
K¼8) blocks of 41�60 pixels as described in Section 5.2, for both
strategies of expanding the dictionary of the bSR with learned
bases and unknown faces. For the CoSR with unknown faces
expanding the bases set of the bSR, to compare with other state-
of-the-art algorithms as most fair as possible (see footnote 2), we
adopt a very small subset, viz. 5 of 100 individuals to expand the
bases set of the bSR. Table 8 shows the recognition rates of our
algorithm, comparing with other state-of-the-art algorithms.

From the experimental results, we can see that our CoSR
algorithm outperforms the other state-of-the-art algorithms, and
obtains the highest recognition rates on these two face datasets in
all cases we have tried so far.

In addition, the time consumption of our CoSR algorithm to
recognize a single test face is shown in Table 9, which indicates
that our algorithm is much more efficient and can be more easily
taken by real face recognition systems, comparing with the clas-
sical ‘PixelþRSR’ algorithm.
7. Conclusion

This work has extended the CoSR algorithm to solve the robust
face recognition problem by expanding the bases set of the bSR
with learned bases or unknown faces. Compared with the other
state-of-the-art algorithms, our CoSR algorithm obtains inspiring
and competitive recognition rates, especially when the noise
percentage in test faces is large. Moreover, since our CoSR algo-
rithm is performed in a subspace with a small dimensionality, it
has an overwhelming advantage on time consumption over the
traditional ‘PixelþRSR’ algorithm which works in image pixel
space. Further, our study has also shown that the bSR contributes
the most to the robustness of our CoSR model for robust face
recognition, and unknown faces do better than learned bases for the
expanded bSR dictionary. When additional faces are available in
real applications, preference will be given to the former. But when
it is uneasy to obtain additional faces, the latter can be a proper
alternative method.

In addition, this paper also reveals that the sparsity plays a very
important role in our CoSR algorithm for face recognition.
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