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Abstract—It is not uncommon that real-world data are dis-
tributed with a long tail. For such data, the learning of deep
neural networks becomes challenging because it is hard to
classify tail classes correctly. In the literature, several existing
methods have addressed this problem by reducing classifier bias,
provided that the features obtained with long-tailed data are
representative enough. However, we find that training directly on
long-tailed data leads to uneven embedding space. That is, the
embedding space of head classes severely compresses that of tail
classes, which is not conducive to subsequent classifier learning.
This article therefore studies the problem of long-tailed visual
recognition from the perspective of feature level. We introduce
feature augmentation to balance the embedding distribution. The
features of different classes are perturbed with varying ampli-
tudes in Gaussian form. Based on these perturbed features, two
novel logit adjustment methods are proposed to improve model
performance at a modest computational overhead. Subsequently,
the distorted embedding spaces of all classes can be calibrated. In
such balanced-distributed embedding spaces, the biased classifier
can be eliminated by simply retraining the classifier with class-
balanced sampling data. Extensive experiments conducted on
benchmark datasets demonstrate the superior performance of
the proposed method over the state-of-the-art ones.

Impact Statement—Long-tailed visual recognition, a burgeon-
ing field within computer vision, holds profound significance
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in academic discourse. It fosters advancements in real-world
applications by addressing challenges posed by imbalanced
datasets, thereby facilitating improved model generalization. In
this article, we propose a simple yet effective logit adjustment
method, applicable across different models. Our work provides
comprehensive discussions of the proposed method for long-
tail learning, considering aspects of optimization and geometric
interpretation. These discussions contribute to a deeper under-
standing of long-tail learning and a novel approach for enhancing
generalization on the test set. In scholarly pursuits, long-tailed
visual recognition underscores the necessity for nuanced and
inclusive methodologies, which are pivotal in advancing the
frontiers of research in computer vision and artificial intelligence.

Index Terms—Gaussian clouded logit (GCL), imbalance learn-
ing, long-tailed classification, logit adjustment.

I. INTRODUCTION

DEEP learning methods have achieved better-than-human
performance on a variety of visual recognition tasks [1],

[2], [3] by virtue of the large-scale annotated datasets. In gen-
eral, the success of deep neural networks (DNNs) relies on
balanced-distributed data and sufficient training samples. That
is, the number of samples in each class is basically the same
and large enough. Unfortunately, from the practical perspec-
tive, data collected from the real world would follow a power-
law distribution [4], [5], which means that a tiny number of
head classes occupy large volumes of instances while the vast
majority of tail classes each have fairly few samples, showing
a “long tail” in the data distribution. In fact, class importance
is independent of the number of training samples. In other
words, few samples cannot imply the unimportance of the tail
classes [6]. Even more, misclassification of tail classes can have
severe consequences, especially in critical applications such
as medical diagnosis [7] or road monitoring [8]. Therefore, it
is important to develop methods that can effectively address
the long-tailed distribution of data and improve the recognition
performance on tail classes particularly.

In the literature, many researchers have addressed the issue of
long-tailed visual recognition by focusing on the classifier level.
It is well-known that DNN can be decoupled into a feature ex-
tractor and a classifier [9], [10]. Recently, Zhou et al. [11] have
conducted empirical studies to demonstrate that the features
(also referred to as embeddings interchangeably hereinafter)
obtained from the original long-tailed dataset are already suf-
ficiently representative. Consequently, they shifted their focus
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Fig. 1. T-SNE visualization of the distorted embedding space.1 The embed-
ding distributions of head and tail classes are shown in shaded areas. We can
see that there are many overlapping regions between each class.

to balancing the classifier through two versions of sampling
data. Also, two-stage decoupling methods [12], [13], [14], [15]
have been proposed to obtain a representation in the first stage
and then retrain the classifier on balanced sampling data in the
second stage. These methods obtain the representation by cross-
entropy (CE) loss, which, however, leads to a severely uneven
distribution of the embedding space, hindering the acquisition
of a better classifier. Furthermore, retraining the classifier can
only alleviate the classifier bias but cannot adjust the distorted
embedding space, which is not conducive to further promoting
the model performance.

For the feature issue, specifically, the embedding spatial span
of tail classes is drastically compressed by head classes because
they have limited training samples that cannot cover the true
distribution in embedding space. For ease of understanding, we
use a simple experiment to demonstrate the distortion of the
embedding space, as illustrated in Fig. 1, where the features are
projected by t-SNE [16]. It can be observed that the tail class
occupies a much smaller spatial span than the head class.

A straightforward way to calibrate the distorted embedding
space is to enlarge the spatial distribution of tail classes. Analo-
gous to human cognition, where a person is capable of inferring
the extension of an entire category from a single instance [17],
we treat one training sample as a set of similar samples. By aug-
menting the features, we can control the spatial span of the em-
bedding. As only the orientation of the class anchors contributes
to the classification, we increase the perturbation amplitude of
the tail classes along the direction of the corresponding class
anchors. This expands the spatial distribution of tail classes and
prevents them from being overly compressed by head classes.
Conversely, these amplitudes for head classes should be small.
Since their samples with enough diversity already cover the
actual spacial span, additional expansion is no need anymore.
Eventually, as shown in Fig. 2, the tail class samples can be

1The embeddings are obtained by CE loss from a subset with four classes
in CIFAR-10-LT. We randomly select 500, 200, 100, and 50 samples for each
class to simulate the data imbalance.

Fig. 2. Overview of the proposed method. The embedding distribution
obtained by CE loss is uneven, leading to difficulty in classifying the tail
class. By assigning larger cloud sizes to the tail class features, the distortion
of the embedding space can be well-calibrated.

pushed further away from the other classes so that the distortion
of the embedding space can be well calibrated. To this end,
we first expand the embedding spatial span with a Gaussian
form of perturbation. Based on this, we propose a novel logit
adjustment method in two forms: normalized Euclidean and
Angular. This method improves model performance with negli-
gible additional computation. Since Gaussian distribution has a
cloud-like shape, we name the perturbation amplitude as cloud
size and the proposed method as Gaussian clouded logit (GCL).
After calibrating the embedding space with GCL, the features
of different classes can be more evenly distributed. It turns out
that the classifier bias can be easily eliminated through class-
balanced sampling data [18], [19] in such a balanced-distributed
space. Extensive comparison experiments implemented on mul-
tiple commonly used long-tailed benchmarks demonstrate the
superiority of the proposed GCL.

Compared with our preliminary work reported in [20], the
primary distinction of this article can be summarized as follows:
First, this article provides a general form of perturbed logit by
perturbing the logit to calibrate the distribution of embedding
space. Accordingly, two specific forms based on different met-
rics are derived from this general form. Second, we present
the analysis and explanation of the rationale of GCL in detail,
based on which more general parameter selection strategies are
provided. After calibrating the embedding space with GCL,
the classifier bias can be mitigated by simply retraining with
the balanced sampling data. Third, more experiments are con-
ducted to demonstrate the effectiveness of the proposed method.
Specifically, we add more classification baselines to show the
efficacy of GCL. Furthermore, we demonstrate that GCL can
enhance the performance of mixture of experts (MoE) model.
Additionally, we provide in-depth theoretical and experimental
analyses of the characteristics of GCL in both its normalized
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Euclidean and angular forms. In summary, the main contribu-
tions of this article are threefold.

1) We propose a simple but effective GCL adjustment
method derived from the Gaussian perturbed feature. Tail
classes are assigned larger cloud sizes than head classes
along the direction of the corresponding class anchors.
Consequently, it can address the problem of the distorted
embedding space caused by long-tailed data.

2) We provide in-depth discussions into GCL for long-tail
learning from the perspective of optimization and geo-
metric interpretation. They help set the sign and magni-
tude of the perturbation and provide a new idea for better
generalization to the test set.

3) We obtain two specific forms of GCL. Both of them
outperform state-of-the-art counterparts on long-tailed
benchmark datasets without additional computation.
Their advantages and disadvantages in different long-
tailed scenarios are analyzed in detail.

The remainder of this article is organized as follows:
Section II makes an overview of the recent related works.
Section III details the derivation and rational analysis behind
the proposed GCL. Section V presents our experimental results
in comparison with the baseline methods, as well as model
validation and analysis. Finally, Section VI draws a conclusion.

II. RELATED WORKS

Over the past years, a number of methods have been proposed
to address long-tailed visual recognition. This section provides
an overview of the most related four regimes. That is, data
augmentation, two-stage method, Mixture of Experts (MoEs),
and loss modification and logit adjustment (LA).

A. Data Augmentation

Input augmentation increases sample diversity in the data
space. The classical augmentation methods [1] encompass
operations such as flipping, rotating, cropping, padding, etc.
Most recently, Wang et al. [21] proposed rare-class sam-
ple generator (RSG) that augments tail classes by utilizing
encoded variation information obtained from head classes.
Major-to-minor translation (M2m) [22] establishes a well-
balanced dataset through the translation of samples from
head classes to tail classes, facilitated by an auxiliary pre-
trained classifier.

Feature augmentation serves to enhance data diversity within
the feature space. Knowledge transfer is a promising technol-
ogy. For instance, Yin et al. [23] exemplified knowledge transfer
by leveraging the intraclass variance derived from head classes
in an encoder–decoder-based network to augment the features
of tail class samples. Liu et al. [24] employed the transfer
of angular variance, computed from head classes, to enrich
the intraclass diversity within tail classes. Moreover, recent
applications in addressing long-tailed data incorporate the use
of class activation maps (CAM) [25]. Chu et al. [26] utilized
CAM to decompose the features into a class-generic and a class-
specific component. Then, tail classes are augmented by fusing
the class-specific components obtained from the tail classes
with the class-generic components of the head classes. Also,

Zhang et al. [27] exploited CAM to obtain the foreground in
an image and then augment the obtained foreground object by
flipping, rotating, jittering, etc. The augmented foreground is
then covered on the unchanged background to obtain a new
informative image.

Those methods mentioned above require either an increase in
data size or model complexity to solve the issues in long-tailed
distribution, resulting in additional computational costs.

B. Two-Stage Method

Recently, two-stage methods have been proposed and em-
pirically demonstrated their efficacy. For example, Cao et al.
[13] proposed label-distribution-aware marginwith deferred
reweighting (LDAM-DRW), wherein features are learned in the
initial stage, and a DRW strategy is employed to refine the
classifier in the subsequent stage. While it markedly enhances
long-tailed prediction accuracy, the theoretical underpinnings
of the deferred DRW strategy remain unclear. Following this,
Kang et al. [12] precisely identified that the learning process of
representation and classifier can be decoupled into two separate
stages. The first stage performs representation learning on the
original long-tail data. The second stage fixes the parameters
of the backbone network and retrains the classifier using class-
balanced sampling data. Several studies [14], [15], [28] have
further refined this strategy. For example, Zhang et al. [15]
proposed an adaptive calibration function to calibrate the pre-
dicted logits of different classes, aligning them with a balanced
class prior to preparation for the second stage. Zhong et al.
[28] proposed class-based soft labels to address varying degrees
of overconfidence in the predicted logit of each class, which
can improve the classifier learning in the second stage. Another
alternative approach is proposed by Zhou et al. [11], wherein the
network structure is bifurcated into two branches. One branch
focuses on learning the representation of head classes, while
the other is tailored for tail classes. This structure incorporates
feature mixup [29] into a cumulative learning strategy, yielding
state-of-the-art results. Subsequently, Wang et al. [30] intro-
duced contrastive learning into this bilateral-branch structure,
further enhancing the performance of long-tailed classification.

C. Mixture of Experts

More recently, researchers have explored the use of MoEs
methods to enhance performance by integrating multiple mod-
els into the learning framework. The fundamental concept be-
hind these approaches is to introduce diversity to the data or
models, which enables experts to concentrate on different por-
tions of the data or allows experts with different structures to
analyze the data. BBN [11] proposes a two-branched classifier
that learns both the long-tailed and inverse distributions simul-
taneously, with a smooth transition of focus between them.
Balanced group softmax (BAGS) [31], Learning from multiple
experts (LFME) [32], and Ally complementary experts (ACE)
[33] divide the long-tailed data into different subsplits and fit
multiple experts on them. ResLT [34] designs residual struc-
tured classifiers that allow experts to specialize in different parts
of the long-tailed data and complement each other. Routing
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diverse experts (RIDE) [35] and Trustworthy long-tailed clas-
sification (TLC) [36] employ multiple experts, each trained on
different augmented data, to independently learn the long-tailed
distribution. The predictions of all experts are then gradually
integrated to reduce overall model variance or uncertainty. Self-
heterogeneous integration with knowledge excavation (SHIKE)
[37] investigates the impact of feature depth on data of varying
scales in long-tailed visual recognition. The authors proposed
a new architecture, which incorporates features from differ-
ent layers of a neural network to exploit the rich information
present at different depths of a network. Nested collaborative
learning (NCL) [38] adopts multiple complete networks to
learn the long-tailed data individually and uses self-supervised
contrastive strategy [39] to collaboratively transfer knowledge
among each individual expert.

D. Loss Modification and LA

Reweighting the loss function is one of the most intuitive
ways to improve the attention of DNN model on tail classes.
In the literature, sample-wise reweighting [40], [41] introduces
the fine-grained coefficients into the loss function to make the
model pay more attention to the difficult samples. Furthermore,
class-wise reweighting [18], [42], [43] assigns the standard
CE loss with category-specific parameters that are inversely
proportional to the class sizes. These methods can alleviate
the data imbalance to a certain extent. However, when the
imbalance ratio is very high, large weights may cause overfitting
to the tail classes. Besides that, another side effect of assigning
higher weights to difficult samples/tail classes is overly focus-
ing on harmful samples (e.g., abnormal samples or mislabeled
data) [44].

Loss function can also be modified by adjusting the logit.
Menon et al. [45] proposed LA, which is consistent in mini-
mizing the balanced error. The logit shifting in LA of differ-
ent classes is based on label frequencies of training data. By
contrast, label distribution disentangling (LADE) [46] postpro-
cesses the model prediction by disentangling the training set
distribution from the prediction. This method does not require
the test set to be a uniform distribution. Also, DisAlign [15]
adjusts the logit by calibrating the distribution of model pre-
diction to a balanced one by minimizing the expected KL di-
vergence. Overall speaking, these three methods can well adjust
the classifier but do not take into account the distorted embed-
ding space. Alternatively, remargining methods [13], [47], [48]
address long-tailed data by leaving large relative margins for tail
classes during training. For example, LDAM loss [13] utilizes
Rademacher complexity to theoretically prove that the margin
should be inversely proportional to a quarter power of class
sizes. The hard margin on target logit helps make the samples
within a class more compact but the strict margin constraints
increase the risk of overfitting and cannot actually expand the
tail class coverage area in embedding space.

III. PROPOSED METHOD

The basic idea of our proposed method is to perturb the
features with varying magnitudes in the directions of different
class anchors, thereby automatically balancing the spatial span

of head and tail classes. The details of the proposed approach
are presented as follows.

A. Basic Notations

This section defines the notation used throughout this article.
1) For Dataset: Suppose {x, y} ∈ T represents a sample

{x, y} from the training set T , where T has C classes and N
training samples in total, x represents the image that needs to
be classified and y ∈ {1, . . . , C} is the ground truth label. The
number of training samples of class j, (j = {1, 2, · · · , C}) is
nj and

∑C
j=1 nj =N .

2) For Backbone: The feature vector f ∈ R
D is derived

from the embedding layer, with a dimensionality of D. W =
{w1,w2, · · · ,wC} ∈ R

D×C represents the weight matrix of
the classifier, where wj represents the anchor vector of class
j in the classifier. The predicted logit of class j is represented
by zj , thus, zj =wT

j f . The subscript y indicates the target class.
That is, zy denotes the target logit and zj , j �= y is the non-
target logit.

B. Embedding Space Calibration

Suppose a feature point and a small area around it belong to
the same type. It is reasonable that the adjacent points around
a feature can be regarded as similar to it, and can naturally be
considered as the same class.

1) General Form via Perturbing the Embedding Repre-
sentation: We sample a set of points by adding perturbations
following a specific distribution to a given feature. Then, a
perturbed feature f ptb of the input is represented as

f ptb � f + δE (1)

where E represents the perturbation and δ > 0 is the amplitude
of it. To avoid misleading the final classification, the perturba-
tion amplitude cannot be too large, thus δ should be a small
number. This perturbed feature is the input of the classifier.
Then, the corresponding perturbed logit zptb

j of class j is cal-
culated as

zptb
j =wT

j f
ptb + bj

=wT
j f + bj +wT

j (δE)

= zj + δ(wT
j E) (2)

where zptb
j is the original logit zj augmented by a perturbing a

perturbing item δ(wT
j E).

2) Normalized Euclidean Form: It should be noted that
the perturbing item has different degrees of influence on the
final predicted results based on different predicted logits. The
impact on zptb

j is relatively minor when the original logit zj is
large. Conversely, it becomes more pronounced for zptb

j when
zj is small. Consequently, it is imperative to normalize the
effects induced by varying predicted logits while preserving
the consistency of the perturbing item’s influence. We achieve
this by employing cosine distance through the normalization
of the perturbed logits. Here, se and sa represent the norms
of the embedding and the class anchor, respectively, that is
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se = ‖f‖ and sa = ‖wj‖. The normalized perturbed logit z̃ptb
j

is expressed as

z̃ptb
j =

saw
T
j · sef ptb

‖wT
j ‖‖f ptb‖

= s̃ ·
(

wT
j f

‖wT
j ‖‖f + δE‖ + δ

wT
j E

‖wT
j ‖‖f + δE‖

)

(3)

where s̃= sa · se. ‖f + δE‖ is approximate to ‖f‖ because δ
is a small number. For the second term, we use Ij to represent
the unit vector that has the same direction as wT

j , namely Ij =
(wT

j /‖wT
j ‖). Equation (3) is simplified as

z̃ptb
j ≈ s̃ ·

(
wT

j f

‖wT
j ‖‖f‖

+ δIj
E

se

)

= s̃ ·
(

cos θj +
δ

se
IjE

)

(4)

where θj is the angle between f and wj . Inspired by [49], the
predictions can be made solely based on the angle between the
feature and the class anchor. Therefore, following [2], [50], we
can utilize a fixed norm of individual class anchor to substitute
sa. Without loss of generality, we employ sa = 1. Additionally,
following [49], [51], [52], the norm of the embedding feature
can also be replaced with a constant s, that is, set se = s.
Consequently, the logit is calculated using features distributed
on a hypersphere of radius s. As for the perturbation, we set
it to Gaussian distribution, i.e. E∼N (M,Σ) where M ∈ R

D

and Σ ∈ R
D×D. The rationale behind this choice lies in the

widespread adoption of additive Gaussian noise in machine
learning [53] attributed to the simplicity and universality [54],
[55] of Gaussian distribution. Moreover, we specifically set
Σ= σI where I ∈ R

D×D is the identity matrix. Then IjE is
the projection of the perturbation on the direction of the anchor
vector of class j. We directly use εj to represent this value,
which can be interpreted as the amplitude of the projection.
By substituting the aforementioned norms and perturbation into
Equation (4) and uniformly shifting the class-related variable
to the predefined perturbation amplitude δ for simplicity, we
derive a more concise expression for z̃ptb

j

z̃ptb
j = s ·

(

cos θj +
δ

s
εj

)

⇔ s · ( cos θj + δjε). (5)

Since ε is also distributed in Gaussian form, it has a cloud-like
shape. δj is the class-based perturbation amplitude that depends
on label frequencies. We name δj cloud size because it controls
the amplitude of ε. To broaden the embedding space for the tail
classes, the cloud size for tail classes is required to be larger than
that of the head classes. Therefore, δj is negatively correlated
with nj . In addition, given that cos θj ∈ [−1, 1], the consistency
of the influence of the perturbing item can be maintained.

As ε makes the logit has a cloud-like shape, we name the
perturbed logit as GCL. We delve into Equation (5). If ε > 0,
z̃ptb
j corresponds to the points that are closer to the anchor

vector of class j. The correct classification of proximal points

does not guarantee the accurate classification of distant points
within the same class. Therefore, ε > 0 will not be helpful for
classification. On the contrary, a reduced logit corresponds to
the points that are relatively far from the class anchor. If the
relatively distant points can be predicted correctly, the closer
one will definitely be able to assign the right label. The points
in the same class that are relatively far from the class anchor
should be focused on. ε therefore should always be negative. We
name this logit as GCL in normalized Euclidean form (GCL-
E for short) because it is derived from normalized Euclidean
distance metric. We modify the perturbed logit and use z̃GCL-E

j

to represent it, which is expressed as

z̃GCL-E
j = s ·

(
cos θj − δEj ‖ε‖

)
(6)

where δEj is the cloud size for GCL-E.
3) Angular Form: The final logit of GCL in normalized

Euclidean form is equivalent to adding a class-based perturba-
tion on cosine logit. From another perspective, namely metric
learning, Equation (6) corresponds to adding a Gaussian form
margin with class-based variance to the cosine logit (Section
IV-B provides a detailed analysis). Inspired by Deng et al.
[49], this Gaussian form margin can also be introduced into
the angular distance metric. For the sake of distinguishing from
GCL-E, this version of GCL is named GCL in Angular form
(GCL-A for short). Using z̃GCL-A

j to represent. These two forms
can be unified into a single expression

z�j = s ·
[

cos
(
θj + νAδAj ‖ε‖

)
− νEδEj ‖ε‖

]
, (7)

where νA ∈ {0, 1} and νE ∈ {0, 1} are the switch parameters.
1) When νA = 1 and νE = 0, we obtain the Angular form,

expressed as follows:

z̃GCL-A
j = s · cos (θj + δAj ‖ε‖). (8)

2) When νA = 0 and νE = 1, we obtain the normalized
Euclidean form, denoted as z̃GCL-E

j , as expressed in
Equation (6).

By taking the GCL into the original softmax, we obtain the
final loss function of GCL

L∗
GCL =− 1

N

∑

i

log
ez̃

GCL
yi

∑
j e

z̃GCL
j

(9)

where z̃GCL
j can be the logit of GCL-E (z̃GCL-E

j ) or GCL-A
(z̃GCL-A

j ). LGCL-E is utilized to represent the loss function of
GCL-E and LGCL-A denotes that of GCL-A.

C. Classifier Rebalance

Although both GCL-E and GCL-A calibrate the distorted em-
bedding space well, the problem of classifier bias still remains
to be addressed.

In the following, we analyze the reasons for the biased clas-
sifier. Equation (13) implies that the sample of the target class
y punishes the classifier weights wj of nontarget class j, j �= y
w.r.t. pj . In general, the number of training instances in head
classes is enormously greater than in tail classes. Therefore, the
classifier weights of tail classes receive much more penalty than



LI et al.: ADJUSTING LOGIT IN GAUSSIAN FORM FOR LONG-TAILED VISUAL RECOGNITION 5031

positive signals during training. Consequently, the classifier
will be biased toward the head classes and the predicted logits
of the tail classes will be seriously suppressed, resulting in
low classification accuracy of the tail classes [43], [56], [57].
We call this problem of the CE loss function in long-tailed
learning negative gradient over-suppression. A straightforward
approach to cope with it is to make the sample numbers of each
class equal [58] to balance the negative gradients. To achieve
this goal, we can make the tail classes over-sampling and then
retrain the classifier. The sampling rate of each class is (1/C).
Then, the class-balanced sampling rate qcbj of each sample x
from class j is calculated as

qcbj =
1

C · nj
. (10)

This strategy is called classifier retraining (cRT) [12]. It can also
be combined with the effective number [18]. We can replace the
actual sample number nj of class j with the so-called effective
number nen

j , the effective sampling rate qenj of each sample
from class j is given as

qenj =
1

C · nen
j

(11)

where nen
j is calculated as

nen
j =

1 − βnj

1 − β
N (12)

with hyperparameter β ∈ [0, 1). Algorithm 1 summarizes the
overall training procedure of the proposed method.

IV. RATIONALE ANALYSIS

This section provides a detailed rationale analysis of how
Equations (7) and (8) balance the embedding space from two
perspectives, considering both model optimization and metric
learning perspectives, following with a time-complexity analy-
sis.

A. The Perspective of Model Optimization

In backward propagation, the gradients on logit zi are calcu-
lated as

∂L
∂zi

=

{
pi − 1, i= y
pi, i �= y

(13)

where pi = (ezi/
∑C

j=1 e
zj ). We take the binary case to illus-

trate without loss of generality. Suppose the input image is from
class 1. The gradient on z1 is calculated as

∂L
∂z1

=− 1
1 + ez1−z2

. (14)

It indicates that the gradient of the target class rapidly ap-
proaches zero with the increase of the target logit. This phe-
nomenon is called softmax saturation [59], [60]. This inoppor-
tune early gradient vanishing weakens the validity of training
samples and impedes model training. Therefore, softmax can
only slightly separate various classes, and lacks the impetus
to evenly distribute each class in the embedded space. We
can also observe that there are many overlapping areas among
each class in Fig. 2. Especially under the circumstances of

Algorithm 1: GCL with cRT

Input: Training dataset T ;
Output: Predicted labels;

1 Initialize the model parameters ω of the backbone
network φ((x, y);ω) randomly ;

2 for iteration= 1 to I0 do
3 Sample a batch of data B from the original

long-tailed dataset T with a batch size of b;
4 Calculate the logit cloud size δj by Equation (16)

(or Equation (17)):
δj ← nmax · n−k

j (or δj ← lognmax − lognj);
5 Calculate the loss by Equation (19):

L((x, y);ω) = 1
b

∑
(x,y)∈B L∗

GCL(x, y);
6 Update model parameters:

ω = ω − α∇ωL((x, y);ω).
7 end
8 for iteration= I0 + 1 to I0 + I1 do
9 Calculate sampling rate by Equation (10) (or

Equation (11)):
qj ← nj/

∑
nj (or qj ← nen

j /
∑

nen
j );

10 Sample a batch of data B′ with the sampling rate qj
and the batch size b;

11 Calculate the loss using Equation (9):
L((x, y);ω) = 1

b

∑
(x,y)∈B′ LGCL(x, y);

12 Update the classifier parameters ωcls while keeping
the representation parameters frozen:
ωcls = ωcls − α∇ωcls

L((x, y);ωcls).
13 end

long-tailed classification, the tail class features are insufficient
to cover the ground truth distribution in embedding space. The
early gradient vanish caused by soft saturation exacerbates the
squeezing of the embedding distribution in tail class.

Different from the original softmax loss function, the logit
difference (Δy−j) obtained by GCL of Equation (6) between
the target and nontarget classes is calculated as

Δy−j = z̃GCL-E
y − z̃GCL-E

j

= s ·
(

cos θy − cos θj − (δEy − δEj )‖ε‖
)
. (15)

In case the target class is a tail class, δy − δj > 0, which de-
creases the softmax saturation and thereby helps increase the
validity of tail class samples. Equation (8) has the same effect.
Thus, Equations (6) and (8) can automatically balance the sam-
ple validity of different classes and provide incentives for the
model to make each class more separable. They achieve the aim
of calibrating the distorted embedding space.

B. The Perspective of Metric Learning

Compared with the prior work that enlarges the interclass
separability via the “hard margin”, e.g., see [13], [49], [60],
Equations (6) and (8) are equivalent to adding a “soft” margin.
That is, the farther away from the class anchor, the lower the
probability that the point belongs to this class. Fig. 3 schemat-
ically shows the comparison of the prior hard margin and the
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Fig. 3. Schematic comparison of hard margin and soft margin. The blue dots
and pink triangles represent the head and tail classes, respectively. (Color for
the best view.) (a) Hard margin strictly restricts samples from appearing in the
corresponding region. (b) Soft margin allows outliers to appear in the region
with a lower probability, which increases generalization.

proposed soft margin. Hard margins will cause the samples to
shrink toward the class anchor if the margin is too large. In ad-
dition to this, hard margins can lead to overfitting because they
prohibit outliers, which can impair the robustness ability of the
model. The proposed soft margin provides a smooth transition
area, allowing the outliers to appear near the target class with
a lower probability. This is both intuitively and theoretically
more reasonable.

The cloud size δ∗j may also take different expression forms,
where the superscript ∗ indicates the adopted specific form.
Cao et al. [13] obtained the optimal tradeoff of the hard margin
(mi) and the class size via Rademacher complexity. They have
proved that mi ∝ n

−1/4
i . The exponent should be −1/3 derived

from Wei and Ma [61]. Inspired by these works, we can set the
cloud size in power function form as follows:

δpow
j = nmax · n−k

j (16)

where nmax is the sample number of the most frequent class.
k can be 1/3 or 1/4. Menon et al. [45] used the Fisher con-
sistency with respect to the balanced error and obtained that
mi ∝ log (1/nj). Therefore, we can also set the cloud size in
logarithmic form as follows:

δlog
j = lognmax − lognj . (17)

We also experimentally demonstrate the effectiveness of the
cloud size in different expression forms in Section V-D.

In short, GCL in the form of either normalized Euclidean
distance or angular distance can achieve the following three
advantages: 1) reduce the softmax saturation and thereby in-
crease the sample validity of tail classes; 2) avoid overfitting
and improve robustness through randomly sampling the values
in Gaussian distribution; and 3) enlarge the margin of class
boundary for tail classes and thus calibrate the distortion of
the embedding space. The slight disparity between the two
forms lies in the procedural approach: GCL-E incorporates
class-based perturbance onto features prior to logit calculation,
whereas GCL-A is equivalent to sampling disturbed feature
points subsequent to determining their distance from the class
anchor. In addition, we systematically illustrate two versions of

Fig. 4. Geometric illustration of class margins of various loss functions.
(Color for the best view.) (a) CE; (b) LDAM; (c) GCL-E; and (d) GCL-A.

GCL and their distinctions from previous methods, exemplified
by CE and LDAM [13], as shown in Fig. 4.

C. Time-Complexity Analysis

The softmax has a time complexity of O(C), which is linear
with the dimension of logit. It is the same as CE loss LCE and
LGCL in both forms. The main difference in time complexity
comes from the calculation of logit. For the original normalized
logit (which is denoted as z̃j = s · cos θj), its main computa-
tional cost is vector multiplication. It contains D · C multiplica-
tions and (D − 1) · C additions. Thus, the time complexity of
computing z̃j is O(DC). Equation (6) shows that GCL-E only
adds C scalar additions to z̃j . As a result, computing z̃GCL-E

j has
O(DC) time-complexity. For GCL-A, we first expand Equation
(8) to z̃GCL-A

j = s · ( cos θj cos δj‖ε‖ − sin θj sin δj‖ε‖). The
sine value can be obtained from the corresponding cosine value.
Compared with z̃j , GCL-A adds an additional 2C multiplica-
tions and C subtractions. Computing z̃GCL-A

j also has O(DC)
time-complexity. It is obvious that GCL in both forms imposes
a negligible additional burden on the training process.

V. EXPERIMENTS

This section first introduces five long-tailed datasets used
in our experiments in Section V-A. Then, the detailed im-
plementation settings of the experiments are presented in
Section V-B. To demonstrate the effectiveness of GCL, we
compare the proposed two forms of GCL with state-of-the-art
methods based on a single model structure. The classification
accuracy is compared in Section V-C. Moreover, Section V-E
validates that GCL can also enhance the performance of MoE
model. Finally, the model validation experiments and ablation
studies are conducted to show the properties of our proposed
method in Section V-E.

A. Benchmark Datasets

We use five benchmarks: CIFAR-10-LT and CIFAR-100-LT,
ImageNet-LT, iNaturalist 2018, and Places-LT.

1) CIFAR-10/100-LT: The original versions of CIFAR-10
and CIFAR-100 [62] are uniformly distributed datasets, which
consist of 10 and 100 classes, respectively. They both contain
60K images with a size of 32 × 32. The training set contains
50 000 samples and the test set has 10 000 samples. Following
the experimental settings in [18] and [13], we down-sampling
training images per class with the exponential function ni =
no
i × λi, where i is the class index (0-indexed), no

i is the label
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frequency in the original balanced version and λ ∈ (0, 1). The
test sets are kept unchanged. The imbalance ratio r is defined
as the ratio of the maximum and minimum label frequencies,
i.e., r = max (ni)/min (ni), i= 1, 2, ..., C. In the comparative
experiments, we employ the three most widely used imbalance
ratios, namely r = 50, 100, and 200.

2) ImageNet-LT and Places-LT: The original versions of
ImageNet [63] and Places [64] are artificially balanced, large-
scale real-world datasets for classification and localization. Fol-
lowing Liu et al.’s [65], we construct long-tailed versions of
these datasets by truncating a subset using the Pareto distribu-
tion with a power value α= 6 from the balanced versions. The
original validation sets are employed for testing. In summary,
ImageNet-LT comprises 115.8K training images from 1K cat-
egories with r = 1280/5. Places-LT consists of 62.5K training
images spanning 365 categories with r = 4980/5.

3) iNaturalist 2018: iNaturalist 2018 [66] is a real-world
fine-grained dataset for classification and detection, exhibiting
a naturally long-tailed distribution. It contains different species
of plants and animals collected from the real world in a wide
variety of situations. This dataset contains over 437.5K training
samples and more than 24.4K validation images from 8142
categories. The official validation set is utilized for testing in
the experiments. The imbalance ratio of iNaturalist 2018 is
r = 1000/2.

B. Basic Setting

The parameters that need to be preset are the Gaussian dis-
tribution parameters (μ, σ2). For GCL-E, the maximum cloud
size cannot exceed 1 because cos θi ∈ [−1, 1]. Gaussian distri-
bution has a probability of 99.7% falling in [μ− 3σ, μ+ 3σ],
we therefore set μ= 0 and σ = (1/3). We further clamp ε to
[−1, 1] to prevent the cloud size from exceeding 1. For GCL-A,
we first constrain the range of ε to [−1, 1] in the same way as the
cosine form GCL. Then, we multiply εwith a constant π

2 to limit
the cloud size in angular form to [−(π/2), (π/2)] based on the
lemma2 proposed by Ranjan et al. [51]. Moreover, we normalize
δi by δi � δi/max (δi), i= 1, 2, ..., C to ensure that maximum
value of δi does not exceed 1. For data augmentation techniques,
we follow Zhong et al. [28], except for basic augmentation such
as image flip, rotation, and random crop, only mixup [67] is
adopted in all experiments to ensure fair comparisons.

PyTorch [68] is utilized to implement the backbone network
training. We adopt the SGD optimizer with a momentum of
0.9, coupled with a multistep learning rate schedule. All mod-
els are trained from scratch, except for ResNet-152, which
is pretrained on the original balanced version of ImageNet-
1K. For the first stage, we select ResNet-32 as the backbone
network and follow the experimental settings in Cao et al.
[13] for CIFAR-10/100-LT. For the experiments conducted on
large-scale datasets, namely, ImageNet-LT, iNatralist 2018, and
Places-LT, we mainly follow Kang et al.’s settings [12] except

2Lemma: The classes can be distributed on a hyper-sphere of dimension
D such that any two class centers (namely, class anchors in this paper) are
at least π/2 apart if the number of classes C is less than twice the feature
dimension D.

for the learning rate schedule. For the second stage, i.e., rebal-
ancing the classifier, we follow Kang et al.’s setting [12] for
all datasets.

C. Main Comparison Results

1) Competing Methods: The competing methods can be
categorized into the following two groups:

a) Baseline methods: Vanilla training with CE loss serves
as one of our baseline methods. Previous studies in visual recog-
nition [13], [73], [74], [75] have demonstrated the effectiveness
of cosine similarity in mitigating the impact of imbalanced
feature bias within imbalanced data distributions. Therefore,
we also include CosFace [50] and ArcFace [49] as additional
baseline methods.

b) State-of-the-art methods: We compare with the most
recently proposed state-of-the-art methods, including targeted
supervised contrastive learning (TSC) [70], memory-based Jit-
ter (MBJ) [71], feature-balanced loss (FBL) [72], and two-
stage methods including LDAM-DRW [13] and MisLAS [28].
These methods have demonstrated notable classification ac-
curacy across the aforementioned long-tailed datasets. For a
fair comparison, we implement the experiment of the two-
stage strategy, i.e., adding mixup [67] to decoupling [12] on
all datasets. For CIFAR-10/100-LT datasets, we make a com-
parison with the LA method (deconfound-TDE [69]). BBN [11]
and contrastive learning [30] are also included in the competing
methods. For large-scale datasets, the representation learning
method (open long-tailed recognition [OLTR] [65]), and LA
method (LA [45]) are included. The two-stage methods includ-
ing decoupling [12], and DisAlign [15] are also compared.

2) Comparison Results: Extensive comparative experiments
are conducted to illustrate the efficacy of our proposed GCL
in two forms (GCL-E and GCL-A). The evaluation metric for
assessing performance is top-1 accuracy on the test/validation
sets. For comparison methods that have not released official
code or relevant hyperparameters, we quote the results directly
from the original papers

a) Results on CIFAR-10/100-LT: The proposed GCL-E
and GCL-A both outperform the previous methods by notable
margins with all imbalanced ratios. Especially for the largest
r, i.e., 200, the proposed approach has obvious improvement.
For example, GCL-E gets 79.03% and 44.84% in top-1 clas-
sification accuracy for CIFAR-10-LT and CIFAR-100-LT with
r = 200, which surpasses the second-best method, i.e., FBL
[72] (on CIFAR-10-LT) and MisLAS [28] (on CIFAR-100-LT)
by a significant margin of 0.93% and 2.51%, respectively. GCL-
A further improves the performance compared with cosine form
except on CIFAR-10-LT with r = 100 (82.72% top-1 accuracy,
which is still higher than the existing methods). For example,
it increases the top-1 accuracy from 44.84% to 46.53% for
CIFAR-100-LT with r = 200 compared with the cosine form.
The margin is more than 3% compared with MisLAS. Inter-
estingly, we can observe that CosFace [50] and ArcFace [49]
perform well compared with CE loss, illustrating the efficacy
of angular distance metric in long-tail learning. In comparison
to LDAM-DRW [13] which is also based on angular distance
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TABLE I
COMPARISON RESULTS ON CIFAR-10/100-LT W.R.T. TOP-1 ACCURACY (IN PERCENT)

Dataset CIFAR-10-LT CIFAR-100-LT

Imbalance ratio 200 100 50 200 100 50
CE loss 65.68 70.70 74.81 34.84 38.43 43.9
CosFace [50] 66.22 72.08 77.40 35.36 39.21 43.11
ArcFace [49] 66.50 73.76 78.19 36.64 39.06 43.40
LDAM-DRW [13] 73.52 77.03 81.03 38.91 42.04 47.62
De-confound-TDE�[69] - 80.60 83.60 - 44.15 50.31
Decoupling [12] 73.06 79.15 84.21 41.73 45.12 50.86
BBN [11] 73.47 79.82 81.18 37.21 42.56 47.02
Contrastive learning [30] - 81.40 85.36 - 46.72 51.87
MisLAS [28] 77.31 82.06 85.16 42.33 47.50 52.62
TSC�[70] - 79.70 82.90 - 43.80 47.40
MBJ [71] 77.06 81.10 85.45 41.92 46.05 52.43
FBL [72] 78.10 82.46 84.30 40.67 45.22 50.65
GCL-E (ours) 79.03 82.73 85.43 44.84 48.69 53.51
GCL-A (ours) 79.31 82.72 85.58 46.53 49.97 54.75

Note: �denotes that the results are quoted from the corresponding papers. Other results are obtained by reimplementing with
the official codes. The best and the second-best results are shown in italic and bold, respectively.

TABLE II
COMPARISON RESULTS ON IMAGENET-LT, INATURALIST 2018,

AND PLACES-LT W.R.T. TOP-1 ACCURACY (IN PERCENT)

Dataset img-LT iNat Pla-LT

Backbone ResNet-50 ResNet-50 ResNet-152
CE loss 44.51 63.80 27.13
CosFace [50] 44.95 72.08 27.19
ArcFace [49] 44.54 66.72 27.63
LDAM-DRW [13] 49.96 68.15 37.73
OLTR� [65] - - 35.90
Decoupling [12] 51.68 70.16 38.51
LA�[45] 51.11 66.36 -
DisAlign�[15] 52.91 70.06 39.30
MisLAS [28] 52.71 71.57 40.36
TSC�[70] 52.40 69.70 -
MBJ�[71] 52.10 70.00 38.10
FBL [72] 50.70 69.90 38.66
GCL-E (Ours) 54.84 72.01 40.62
GCL-A (Ours) 55.12 71.14 39.22

Note: img-LT, iNat and Pla-LT short for ImageNet-LT, iNaturalist
2018 and Places-LT, respectively. Others are the same as Table I.

metric, our proposed solution is still the clear winner. The per-
formance gain is obtained by the smooth margin that can avoid
overfitting and improve robustness. The clear performance gain
compared with decoupling [12] demonstrates that calibrating
the feature space via GCL is beneficial to the subsequent clas-
sifier learning. The results on CIFAR-10/100-LT datasets are
summarized in Table I.

b) Results on large-scale datasets: The results on large-
scale long-tailed datasets including ImageNet-LT, iNaturalist
2018, and Places-LT are reported in Table II. We observe that
GCL-E is superior to the prior arts on all datasets. On ImageNet-
LT, it achieves 54.84% top-1 accuracy, surpassing DisAlign
[15] by a notable margin of 1.97% and MisLAS [28] by 2.77%.
For iNaturalist 2018, the proposed GCL-E achieves a top-1
accuracy of 72.01%, outperforming the second-best method by
0.44%. On Place-LT, our proposed method achieves 40.62%
top-1 classification accuracy. Although the performance gain
compared with MisLAS on iNaturalist 2018 and Place-LT is

TABLE III
ABLATION EXPERIMENT OF DIFFERENT EXPRESSION FORMS

OF CLOUD SIZE (δ∗j ) ON CIFAR-10-LT WITH r = 100

δ∗j Exp. Expression Acc (in Percent)

cos. - cos (nj/nmax · π/2) 79.21

power 1/3 nmax · n−1/3
j 80.80

power 1/4 nmax · n−1/4
j 82.31

log. - lognmax − lognj 82.73

Note: Bold indicates the best results.

not as high as other datasets, our method does not require
hyperparameters searching for different datasets and thus is
relatively easy to implement. GCL-A largely improves the
performance on ImageNet-LT from 54.84% to 55.12%, but it
slightly decreases the accuracy on iNaturalist 2018 and Places-
LT. GCL-A achieves 71.14% top-1 classification accuracy on
iNaturalist 2018, which is lower than MisLAS but still outper-
forms the other baseline methods by notable margins, showing
the effectiveness of angular perturbation to balance the embed-
ding space distribution. On Places-LT, it has a lower accuracy
than MisLAS and DisAlign.

D. Ablation Study

1) Expression of Cloud Size: We explore several different
cloud size adjustment strategies, including power form with
different exponents (1/3 and 1/4), and logarithmic form. For
a fair comparison, we use GCL-E, and the sampler and re-
training strategy are selected as class-balanced sampling and
cRT, respectively. The results are presented in Table III. The
logarithmic form has the best performance and the power form
with the exponent of 1/4 is also competitive.

2) Strategies for Class Rebalancing: We implement dif-
ferent strategies of data resampling and classifier retrain-
ing (RT) technique to better analyze our proposed method.
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TABLE IV
ABLATION EXPERIMENT OF DIFFERENT

RESAMPLING AND RETRAINING STRATEGIES

ON CIFAR-10-LT WITH r = 100

Sampler RT Tech. Acc. (in Percent)

IBS cRT 80.52
SRS cRT 81.74
ENS cRT 82.45

- w.o. RT 80.55
CBS LWS 82.25
CBS τ -NC 82.16
CBS cRT 82.73

Note: Bold indicates the best results.

Table IV shows the results. The resampling strategy (sam-
pler) includes instance-balanced sampler (IBS) [12], square-
root sampler (SRS) [76], effective number sampler (ENS) [18]
and class balanced-sampler (CBS) [12]. The form of GCL is
GCL-E and the RT techniques for all samplers are cRT. IBS
decreases the performance slightly (from 80.55% to 80.52%),
which indicates that training the classifier with IBS leads to
classifier overfitting. SRS improves the model performance be-
cause it increases the sampling probability of tail classes. ENS
and CBS have better performance because they can address the
problem of negative gradient over suppression by balancing the
amount of data in each class. We use CBS in the comparison
experiments because it achieves the best results among these
samplers. For the selection of RT technique, we first train the
backbone without any RT technology using GCL-E. Then we
froze the representation and rebalance the classifier with learn-
able weight scaling (LWS), τ -normalized classifier (τ -NC),
and cRT, respectively. We can observe that even without any
RT technique, our approach (the top-1 classification accuracy
is 80.55%) can still beat most state-of-the-art including two-
stage methods (for example, LDAM-DRW and BBN achieve
77.03% and 79.82%, respectively). All RT techniques signif-
icantly improve model performance, which demonstrates that
good representation can improve classification accuracy by sim-
ply rebalancing the classifier. cRT outperforms best among the
classifier retraining techniques, which improves the accuracy
by 2.18% compared with no RT. Thus, we use cRT in the
comparison experiments.

E. Further Analysis

We conduct a series of experiments to further analyze the
proposed method.

1) Effectiveness on MoE Model: We select RIDE [35] as
a representative of MoE Models. The reproduction of RIDE
in our experiment follows the original settings, which utilize
LDAM loss and DRW strategy. We employed three experts in
our MoE model and adopted the mixup technique to ensure
a fair comparison. MoE models have been shown to outper-
form single models, albeit at the expense of increasing model
size. For instance, RIDE with GCL-E achieved an accuracy
of 81.32% on CIFAR-10-LT with an imbalance ratio of 200,
which is an obvious improvement from the 79.03% achieved
by a single ResNet-32 model with GCL-E. However, the model
size of RIDE is 5.38 Mb, whereas the single model had a size of

only 1.84 Mb. Tables V and VI demonstrate the improvement in
performance achieved by GCL on RIDE. Both versions of GCL
can be observed to improve RIDE’s performance significantly
on all datasets. The improvement of GCL-A ranges from 0.90%
to 2.62%, while that of GCL-E ranges from 0.82% to 2.64%.

2) GCL-E Versus GCL-A: Combining Tables I and II, it
can be observed that GCL-A does not always have inferior
performance compared with GCL-E, and vice versa. The reason
is that iNaturalist 2018 and Places-LT have much large im-
balance ratios (r = 500 and 996, respectively) than the other
datasets (ImageNet-LT has the largest r which is 256 among
these datasets). We draw the logit curve of different forms
of GCL, which is shown in Fig. 5. In our setting, the large
class has a small δ. The smaller the class size, the larger its
corresponding δ. As the distance θ increases, the logit of GCL-
A decreases faster than GCL-E. It is more noticeable for the
larger δ, as shown in Fig. 5(b). A small distance will have
a more obvious logit difference for GCL-A compared with
GCL-E. Therefore, in the case of high imbalance ratio, GCL-E
can make the separability of minority classes stronger so that
the logit difference is more significant.

Another rationale arises from the discrepancy in logits re-
strictions caused by varying imbalance ratios. Excessively strict
logit constraints may lead the model astray. Without loss of
generality, we use the most frequent class (denoted by sub-
script “head”) and the least frequent class (denoted by sub-
script “tail”) to analyze. For an input image that is tail class,
GCL-A necessitates

cos
(
θtail + δ · π

2
· ‖ε‖

)
> cos θhead ⇒

θtail < θhead − δ · π
2
· ‖ε‖. (18)

Considering δ = 0.5 as an example, when θhead < (π/2), θtail

being negative satisfies the requirements of the loss function,
which could mislead the model training. The requirement that
the angle between nontarget classes and the target weight be
greater than (π/2) is overly stringent. For highly imbalanced
datasets, namely iNaturalist 2018 and Places-LT, the discrep-
ancies in perturbations between tail and head classes are more
pronounced, which contributes to this phenomenon. In datasets
with a smaller imbalance ratio, the disparities in perturbations
are comparatively smaller, making this restriction relatively
weaker. The majority of classes can adhere to their respective
soft margin restrictions. However, opting for a smaller δ might
result in the added perturbation being less conspicuous, thereby
leading to less differentiation between classes. For GCL-E,
an input image belonging to the tail class should satisfy the
following inequality:

cos θtail − δ · ‖ε‖> cos θhead ⇒
cos θtail > cos θhead + δ · ‖ε‖. (19)

When δ = 0.5, θhead > (π/3) will cause θtail to be negative.
In contrast, the constraints imposed by GCL-E are more
lenient, resulting in a slight decrease in performance on
datasets characterized by a low imbalance ratio compared with
GCL-A. Nonetheless, this relaxation does not predispose the
model to erroneous interpretations stemming from excessively
stringent restrictions.
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TABLE V
VALIDATION OF THE EFFECT ON MOE MODEL ON CIFAR-10/100-LT

Dataset CIFAR-10-LT CIFAR-100-LT

Backbone ResNet-32
Imbalance ratio 200 100 50 200 100 50
RIDE [35] 80.42 83.39 85.34 47.80 50.91 54.87
RIDE w. GCL-E 81.32 (↑ 0.90) 84.32 (↑ 0.93) 87.03 (↑ 1.69) 48.96 (↑ 1.16) 52.57 (↑ 1.66) 57.49 (↑ 2.62)
RIDE w. GCL-A 82.08 (↑ 1.66) 84.73 (↑ 1.34) 86.95 (↑ 1.61) 48.62 (↑ 0.82) 52.38 (↑ 1.47) 57.51 (↑ 2.64)

TABLE VI
VALIDATION OF THE EFFECT ON MOE MODEL ON LARGE-SCALE DATASET

Dataset ImageNet-LT iNaturalist 2018 Places-LT

Backbone ResNet-50 ResNet-50 ResNet-152
RIDE [35] 55.55 72.17 39.91
RIDE w. GCL-E 57.01 (↑ 1.46) 74.27 (↑ 2.10) 41.06 (↑ 1.15)
RIDE w. GCL-A 57.25 (↑ 1.70) 73.56 (↑ 1.39) 41.50 (↑ 1.59)

Fig. 5. Logit curve of GCL in different forms. For ease of visualization,
the scale parameter s is omitted. (a) δ = 0.1 and (b) δ = 0.5.3

Moreover, from another perspective, the selection of the per-
turbation magnitude δ holds a pivotal role for GCL-A. Addition-
ally, cloud size selection should extend beyond mere class size
considerations, with each variant of GCL potentially requiring
its optimal strategy for cloud size selection. It is conceivable
that the logarithmic form of cloud size utilized for GCL-A
does not constitute the optimal choice. We leave these as our
future study.

3) The Effect of Gaussian Cloud: To obtain additional
insight, we visualize the embedding distribution using t-SNE
projection. Since CE loss is selected as the loss function for
several methods [11], [12], [65], especially MisLAS performs
the second-best in most cases, we visualize the embedding
distribution obtained by CE loss for comparison. LDAM [13]
is an angular distance metric-based method but utilizes the
hard margin, we also show its embedding distribution. The
embeddings are calculated from the samples in CIFAR-10-LT
with r = 100. Fig. 6 shows the results. From Fig. 6(a), it can
be seen that the embeddings of each class obtained via CE loss
are clustered together and are relatively difficult to separate.
The obscure region of CE loss embedding is larger than that
of other approaches. LDAM and GCL in both forms are all
angular distance metric based methods, thus their embeddings
are basically radial. Fig. 6(b) shows that the LDAM embedding
of each class is more slender. This is caused by the hard margin

3Specifically, the logit curves show z̃GCL−E = cos (θ)− δ · ‖ε‖, and
z̃GCL−A = cos (θ + δ · (π/2) · ‖ε‖), namely s= 1.

that strictly restricts the class region, resulting in overfitting the
training set. Thus, LDAM does not generalize well on the test
set compared with our proposed GCL. In Fig. 6(c) and 6(d), on
training set, the embeddings for each class obtained via GCL
in both forms have more obvious margins compared with CE
and also are more scattered compared with LDAM. The results
of the test set verify the efficacy of our proposed approach.
GCL-E and GCL-A have better generalization performance,
and it can be found that the misclassified classes are mainly
in the edge regions of each class. For better illustration, we
additionally compare the embedding distribution of the most
(class 0) and least (class 9) frequent classes, along with their
respective decision boundaries derived from various loss func-
tions in Fig. 7. Concerning the acquired features, within the
training set, the overlap between the features of the head and
tail classes by LDAM and GCL is reduced compared with those
obtained by CE loss, with a pronounced disparity observed in
GCL-A. In addition, it presents more clearly that compared with
our proposed GCL, the LDAM embeddings appear to perform
better on the training set, but cannot be well generalized to
the unseen test samples. In Fig. 7(b), there are more points
of class 9 appearing inside the class 0 area on the test set.
By contrast, as shown in Fig. 7(c) and 7(d), the misclassified
points of class 9 are mainly in the edge area of class 0 on test
set. Regarding the decision boundary, CE loss exhibits a ten-
dency to predominantly ensure accurate classification of head
classes while often disregarding tail classes. In contrast, due to
the presence of margins or perturbations beneficial to the tail
class, both LDAM and GCL adopt a holistic approach to class
performance. However, this approach comes at the expense of
head class performance to some extent. The decision boundary
delineates specific head class samples into the tail class.

4) Performance on Classes With Different Scales: To in-
vestigate the impact of GCL, we report the accuracy of various
scale classes on ImageNet-LT. The results are presented in Ta-
ble VII. The classification accuracy of baseline methods drops
a lot in the middle and tail classes. LDAM-DRW increases
the accuracy of middle and tail classes but decreases that of
head classes a lot. GCL-E outperforms the other state-of-the-
art methods on middle and tail classes with large margins.
Meanwhile, the accuracy of the head class decreases the least.
By contrast, GCL-A has more improvement in middle and tail
classes, but the damage to head classes is slightly higher than
GCL-E and decoupling. In general, GCL-E performs well in
all class scales. GCL-A has the highest overall classification
accuracy. Significantly improving the accuracy of tail classes
while preventing that of the head classes from diminishing
illustrates the superiority of our approach.
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Fig. 6. Visualization of the embedding distribution obtained by different methods. t-SNE projection is utilized. The dataset is CIFAR-10-LT with r = 100.
ResNet-32 is used as the backbone. (Color for the best view.) (a) CE loss; (b) LDAM loss; (c) GCL-E; and (d) GCL-A.

Fig. 7. T-SNE visualization of decision boundary (dashed line) between
head (class 0) and tail (class 9) classes. The dataset is CIFAR-10-LT with
r = 100 and the backbone network is ResNet-32. (Color for the best view.)
(a) CE loss; (b) LDAM loss; (c) GCL-E; and (d) GCL-A.

TABLE VII
TOP-1 CLASSIFICATION ACCURACY (in Percent) OF THE THREE SPLITS

ON IMAGENET-LT

Method Head Middle Tail Overall

Class size nj > 100 20 < nj ≤ 100 nj ≤ 20 -
CE 64.91 38.10 11.28 44.51
CosFace 64.48 39.26 11.55 44.95
ArcFace 64.86 38.07 11.75 44.54
LDAM-DRW 58.63 48.95 30.37 49.96
OLTR 61.93 44.68 19.98 47.72
Decoupling 63.71 43.01 20.55 47.70
MisLAS 62.43 49.31 33.89 52.11
GCL-E 63.78 52.62 38.70 54.84
GCL-A 62.72 53.26 40.95 55.12

VI. CONCLUSION

In this article, we have proposed to use Gaussian form
perturbance to augment the features for long-tailed classifi-
cation. Eventually, we have derived two GCL forms, which

are simple but effective. Both of these two forms make tail
classes have larger perturbance amplitudes on their correspond-
ing class anchors, which can expand the spatial distribution
of tail class embeddings. Furthermore, we have analyzed the
rationale of the proposed method from different perspectives,
which provides insights into how to obtain a representative and
balanced-distributed embedding. After obtaining a balanced
distributed embedding space, the classifier bias can be effec-
tively addressed by simply retraining it with class-balanced
sampling. Comprehensive experiments on various benchmark
datasets have demonstrated that the proposed GCL in both
forms achieves significant performance gains compared with
the state-of-the-art methods. In addition, we have also validated
the properties of the proposed GCL by t-SNE visualization and
the performance on different scales of classes.
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