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Unified Sparse Subspace Learning via
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Abstract— In order to improve the interpretation of principal
components, many sparse principal component analysis (PCA)
methods have been proposed by in the form of self-contained
regression-type. In this paper, we generalize the steps needed
to move from PCA-like methods to its self-contained regression-
type, and propose a joint sparse pixel weighted PCA method.
More specifically, we generalize a self-contained regression-type
framework of graph embedding. Unlike the regression-type of
graph embedding relying on the regular low-dimensional data,
the self-contained regression-type framework does not rely on the
regular low-dimensional data of graph embedding. The learned
low-dimensional data in the form of self-contained regression
theoretically approximates to the regular low-dimensional data.
Under this self-contained regression-type, sparse regularization
term can be arbitrarily added, and hence, the learned sparse
regression coefficients can interpret the low-dimensional data.
By using the joint sparse �2,1-norm regularizer, a sparse
self-contained regression-type of pixel weighted PCA can be
produced. Experiments on six data sets demonstrate that the
proposed method is both feasible and effective.

Index Terms— Weighted PCA, self-contained regression-type,
sparse subspace learning.

I. INTRODUCTION

SUBSPACE learning theories, which aim to extract
the effective features, can be applied in many fields,
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such as recognition [2]–[7], [10], [11], [44], [60], writer
identification [50], [59], saliency detection [1], [57], and track-
ing [43], [45]–[49], [56], [58]. The classical linear subspace
learning methods include principal component analysis (PCA)
[12], [13], locality preserving projections (LPP) [14],
neighborhood preserving embedding (NPE) [15], and linear
discriminant analysis (LDA) [16]. The classical nonlinear
subspace learning methods include Isomap [17], laplacian
eigenmaps (LE) [18], locally linear embedding (LLE) [19]
and several others. Most of subspace learning methods can
be nicely interpreted by the graph embedding (GE) frame-
work [20], requiring the solution of an eigenvalue eigen-
problem. The main drawback of graph embedding is that it
cannot deal with the newly coming data samples. Linear graph
embedding (LGE) [20] has therefore been widely developed
and adopted in real-life applications in preference.

In the LGE framework, the classical methods are PCA and
LPP, and they play an important role in reconstruction and
classification, respectively. However, two key problems still
exist: the first is that both PCA and LPP are sensitive to
corruption since the former relies on the least squares esti-
mation technique and the latter relies on a graph computation
and the second is that it is difficult to interpret their results
since each principal component is a linear combination of all
the original features. A series of studies have therefore been
carried out to deal with these two problems.

In order to deal with the first problem, principal compo-
nent analysis based on �1-norm maximization (PCAL1) [52]
has been proposed to enhance the robustness to outliers
by using the �1-norm to maximize the transformed data
variance. In addition, weighted PCA methods have been
proposed, which can generally be classified into two types
using weighting of samples and pixels, respectively. An exam-
ple of this is the use of rotational invariant �1-norm prin-
cipal component analysis for robust subspace factorization
(R1-PCA) [21] and optimal mean robust principal compo-
nent analysis (OMRPCA) [22] to enforce the robustness to
sample-specific corruption by weighting each sample to soften
sample-specific corruption. In fact, most of the weighted PCA
methods [23] focus on the weighting of samples while several
methods focus on the weighting of pixels [8], [9]. To the
best of our knowledge, Torre and Black [24], [25] were
the first to avoid the effect of intra-sample corruption by
weighting each pixel of each sample. Robust principal com-
ponent analysis (RPCA) [26] has been proposed to handle the
sample-specific corruption by imposing a low-rank constraint
on all the data samples, which is very effective in repairing
sample-specific corruption. Recently, two-dimensional whiten-
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ing reconstruction (TWR) [27] has been proposed to enhance
the robustness of principal component analysis by reducing the
number of redundant features and maintaining the important
intrinsic features. Moreover, in order to enhance the robust-
ness of LPP, researchers have often introduced the low-rank
representation technique into graph construction [28].

In order to deal with the second problem, a series of sparse
linear graph embedding methods (SLGE) have been proposed
in the literature [29], [51], [54], [55], whose regression
way can be classified as regression-type and self-contained
regression-type. The goal of both regression-type and self-
contained regression-type of graph embedding is to learn
a sparse regression coefficients such that the learned low-
dimensional data approximates to the regular low-dimensional
data. For example, Cai et al. [20] proposed a unified
sparse subspace learning (USSL) framework by writing a
graph embedding formulation [14] into its regression-type.
More specifically, USSL includes two steps: the first is the
computation of the regular low-dimensional data of graph
embedding, and the second is the sparse regression for the
regular low-dimensional data. In a similar way to USSL, joint
feature selection and subspace learning (JFSSL) [30] also
uses a two-step regression method, which aims to regress
the regular low-dimensional data of LPP by adding the
joint sparse �2,1-penalized regularization to the regression
coefficients. Both USSL and JFSSL rely on obtaining the
regular low-dimensional data in advance. Furthermore, Zheng
[31] proposed a sparse locality preserving embedding by
incorporating LPP into its self-contained regression-type. This
can be said to integrate the two steps of USSL into a single
step, which does not rely on the regular low-dimensional
data. This strategy is named as self-contained regression-type.
It is worth noting that the low-dimensional data in PCA-like
methods is called principal components. Accordingly, sparse
principal component analysis (SPCA) [32] is produced by
writing PCA into its sparse self-contained regression-type.
Unlike the regression-type of PCA, the self-contained
regression-type of PCA does not require prior knowledge of
the regular principal components.

It can be observed that the self-contained regression-type
of PCA and LPP have been well constructed. Both of them
use �1-norm in their regression-type and form an elastic net
framework, which is solved by the LARS-EN algorithm [33].
Once the regression-type or self-contained regression-type of
one method is formed, sparse regularization term can be arbi-
trarily added. Recently, the regularized term based joint sparse
�2,1-norm has been popular and has been widely adopted.
For example, methods [30], [34], [35] based on the joint
sparse �2,1-norm can clearly select those effective features
for classification. In this paper, we focus on the unsupervised
dimensionality reduction methods based on PCA, since PCA
has been demonstrated to be a popular technique. Although
numerous PCA versions have been developed, they still lack a
powerful interpretation of principal components, especially in
those methods with regression-type. Inspired by joint sparse
principal component analysis (JSPCA) [36], we propose a joint
sparse pixel weighted PCA version. The proposed method is
the self-contained regression-type of pixel weighted PCA in

practice. Experiments on six datasets demonstrate the both
feasibility and effectiveness of the proposed method. The main
contributions are listed as follows:

1. We generalize a self-contained regression-type framework
of graph embedding.

2. Under the generalized framework, we propose a joint
sparse pixel weighted PCA method.

The remainder of this paper is organized as follows.
In Section II, graph embedding is reviewed and the self-
contained regression-type of graph embedding is generalized.
Section III presents the proposed joint sparse pixel weighted
PCA method with an effective solution. Section IV describes
the experiments results and analysis. Finally, a short conclu-
sion is drawn in Section V.

II. RELATED WORK

In this section, we first clarify the concept of principal com-
ponent and then reveal the essential relationship among PCA,
the regression-type of PCA and the self-contained regression-
type of PCA.

Notations: For a matrix A, we denote the (i, j)-th element
by ai j , the i -th row by ai . In this paper, we denote ‖A‖2

F =∑m
i=1

∑n
j=1 ai j

2, ‖A‖1 = ∑m
i=1

∑n
j=1 |ai j |, ‖A‖2,1 =

∑m
i=1

∥
∥ai

∥
∥

2, where
∥
∥ai

∥
∥

2 means the �2, 1-norm of vector ai

and
∥
∥ai

∥
∥

2 =
√

ai T ai .

A. Graph Embedding Framework
Assume that there are n data samples, i.e., X =

[x1, x2, ...xn] ∈ R
m×n , where n is the number of samples and

m is the dimensionality of a sample. Let a graph G be built
by these n data samples, and a data sample is represented by
each vertex of G. Let W be a symmetric n × n matrix, whose
element Wij means the weight of the edge joining vertices
xi and x j . Therefore, the defined G and W can be used
to characterize the geometric properties of the dataset. The
purpose of graph embedding [20] is to represent each vertex
of G as a low-dimensional vector that preserves similarities
between the vertex pairs [53]. Let y = [y1, y2, ..., yn] ∈ R

n

represent a one-dimensional data, the objective function is
defined as follows:

min
y

∑

i, j

(yi − y j )
2Wij . (1)

Since
∑

i, j (yi − y j )
2Wij = 2yT Ly [20], Eq. (1) becomes,

min
y

yT Ly, (2)

where L = D − W is a Laplacian matrix, D is a diagonal
matrix whose diagonal element is Dii = ∑

j W j i . In order
to avoid the degenerated solution y = 0, the constraint
yT Dy = 1 is added. Therefore, Eq. (2) becomes,

min
y

yT Ly,

s.t . yT Dy = 1, (3)

whose optimization solution can be solved by solving the
minimal eigenvalue of the following generalized eigenvalue
problem,

Ly = γ Dy. (4)
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where γ is an eigenvalue of matrix L relative to matrix D. The
nonzero solution y corresponding to γ is called eigenvector
belonging to γ . Now, we extend the dimensionality of low-
dimensional data to d , and denote Y = [Y1, Y2, ..., Yd ] ∈
R

n×d . Then, we have the following graph embedding formula,

LY = DYϒ. (5)

where ϒ is a diagonal matrix whose diagonal elements are
assembled by eigenvalues, and the columns of Y are assembled
by eigenvectors.

Denote Y = X T Q, Eq. (5) becomes,

L X T Q = DX T Qϒ. (6)

Multiplying X with both sides of Eq. (6), the following linear
graph embedding formula is obtained,

X L X T Q = X DX T Qϒ. (7)

Equivalently, we have,

X DX T Q = X L X T Qϒ−1. (8)

Denote MD = X DX T , ML = X L X T , and ϒ−1 = �, then
we need to solve the maximum eigenvalues of the following
generalized eigenvalue problem,

MD Q = ML Q�. (9)

B. The Self-Contained Regression-Type of
Graph Embedding Framework

If ML is invertible and has a cholesky decomposition ML =
GL GT

L where GL ∈ R
m×m is a lower triangle matrix, LGE

will have the self-contained regression-type.
More specifically, denote the following notations:

MD = FT
D FD, ML = FT

L FL ,

FD = √
DX T , FL = √

L X T . (10)

Note that, both MD and ML are symmetric and positive
semidefinite. Substitute ML = GL GT

L into Eq. (9), we have,

G−1
L MD Q = GT

L Q�, (11)

and

G−1
L FT

D FDG−T
L (GT

L Q) = (G−1
L FT

D )(G−1
L FT

D )T (GT
L Q)

= (GT
L Q)�. (12)

Let C = GT
L Q ∈ R

m×d , similar to the self-contained
regression-type of PCA, we generalize the following self-
contained regression-type framework of graph embedding,

min
B,C

‖ G−1
L FT

D − BCT G−1
L FT

D ‖2
F +λ ‖ C ‖2

F ,

s.t . BT B = I, (13)

where B ∈ R
m×d . Eq. (13) is equivalent to,

min
B,C

n∑

i=1

‖ G−1
L FD,i − BCT G−1

L FD,i ‖2

+ λ

d∑

j=1

(G−T
L C j )

T ML (G−T
L C j ),

s.t . BT B = I, (14)

where FD,i is the transpose of the i -th row of FD .

Let Q = G−T
L C , we have,

min
B,Q

n∑

i=1

‖ G−1
L FD,i − B QT FD,i ‖2 +λ

d∑

j=1

QT
j ML Q j .

s.t . BT B = I, (15)

Eq. (15) is just the self-contained regression-type of
LPP in [31]. Besides, when ML = I and MD =
X X T , Eq. (9) becomes X X T Q = Q�. Correspond-
ingly, Eq. (13) becomes the self-contained regression-type
of PCA.

III. UNIFIED SPARSE SUBSPACE LEARNING VIA

SELF-CONTAINED REGRESSION

A. Joint Sparse Pixel Weighted PCA via
Self-Contained Regression

Inspired by the generalized self-contained regression-type
framework and the previous study [36], we propose the
following optimization formulation:

arg min
Q,P

∥
∥
∥X − P QT X

∥
∥
∥

2,1
+ λ‖Q‖2,1 + β

∥
∥
∥
√

D1
−1

Q
∥
∥
∥

2

F
,

s.t ., PT D1 P = I, (16)

where
√

D1 is a diagonal matrix, whose diagonal ele-
ments are the adaptive weight of each pixel, and D1 is
designed according to the reconstruction case of each pixel as
follows:

D1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

2
∥
∥[X − P QT X]1

∥
∥

2
1

2
∥
∥[X − P QT X]2

∥
∥

2
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(17)

where projection matrix Q ∈ R
m×d is first used to project

the data matrix X onto a low-dimensional subspace and
another projection matrix P ∈ R

m×d is then used to recover
the data matrix X . Here, we relax the orthogonal constraint
of projection matrix Q, introduce another projection matrix
P and add the joint sparse �2,1-norm onto the loss term
X − P QT X and the projection matrix Q, where the �2,1-norm
is defined to encourage the rows of a matrix to be zero. For
example, the penalty term ‖Q‖2,1 penalizes all d elements
in each row and finally obtains m penalizing values. The
obtained penalizing values are usually used to indicate the
significance of the features. That is, when the penalizing value
approximates to 0, the corresponding feature is regarded as

the redundant feature.
∥
∥
∥
√

D1
−1

Q
∥
∥
∥

2

F
aims to obtain the stable

optimal solution. λ ≥ 0 and β ≥ 0, as the regularization
parameters, are used to balance the relation between three
terms.
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Directly solving or interpreting Eq (16) is difficult. Using
some mathematical techniques for Eq. (16), we have,

arg min
Q,P

∥
∥
∥
√

D1(X − P QT X)
∥
∥
∥

2

F
+ λ

∥
∥
∥
√

D2 Q
∥
∥
∥

2

F

+ β
∥
∥
∥
√

D1
−1

Q
∥
∥
∥

2

F
,

s.t ., PT D1 P = I, (18)

where D1 is computed according to Eq. (17), and

D2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

2
∥
∥q1

∥
∥

2
1

2
∥
∥q2

∥
∥

2
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (19)

are two m × m diagonal matrices. Note that [X − P QT X]i

(i=1,2,…,m) means the i -th row of matrix X − P QT X ,
and qi (i=1,2,…,m) means the i -th row of matrix Q. When∥
∥[X − P QT X]i

∥
∥

2 = 0, we let Dii
1 = 1

2‖[X−P QT X ]i‖2+ζ

(ζ is a very small constant). Similarly, when
∥
∥qi

∥
∥

2 = 0,
we let Dii

2 = 1
2‖qi‖2+ζ

. In this way, the smaller Dii
2 is,

the more important the i -th feature is. Moreover, we can see
that if

∥
∥[X − P QT X]i

∥
∥

2 and
∥
∥qi

∥
∥

2 are small, D1 and D2 are

large and thus the minimization of 2tr((X − P QT X)
T

D1(X−
P QT X))+2λtr(QT D2 Q) (i.e.,

∥
∥X − P QT X

∥
∥

2,1 +λ‖Q‖2,1)
tends to force

∥
∥[X − P QT X]i

∥
∥

2 and
∥
∥qi

∥
∥

2 to be a very small
value. After several iterations, some

∥
∥[X − P QT X]i

∥
∥

2 and∥
∥qi

∥
∥

2, (i = 1, 2, . . . , m) may be close to zero, and thus we
obtain a row-sparse Q and a row-sparse X − P QT X .

Next, let
√

D1 P = P̄ ∈ R
m×d , and

√
D1

−1
Q = Q̄ ∈

R
m×d . Then, the formulation in Eq. (18) can be rewritten as

the following self-contained regression-type of weighted PCA,

arg min
Q̄, P̄

∥
∥
∥
√

D1 X − P̄ Q̄T
√

D1 X
∥
∥
∥

2

F
+ λ

∥
∥
∥
√

D2

√
D1 Q̄

∥
∥
∥

2

F

+ β
∥
∥Q̄

∥
∥2

F ,

s.t ., P̄T P̄ = I. (20)

More specifically, Eq. (20) is the self-contained regression-
type of weighted PCA (see Eq. (22)) in terms of weighted
data

√
D1 X . From Eq. (26), we can see that the principal

component of our method is X T √
D1 P̄ , Q̄ is row-sparse

and Q̄ can be used to indicate those redundant features not
participating in the principal component X T √

D1 P̄ . Since
Eq. (20) is fully equivalent to Eq. (16), the proposed method
is therefore named as joint sparse pixel weighted PCA. Once
the optimal solution P̄ and Q̄ of Eq. (20) are obtained,
the optimization solution P and Q of Eq. (16) are obtained.

Connection to the Self-Contained Regression-Type of
Graph Embedding Framework: When ML = I and MD =√

D1 X(
√

D1 X)T , according to the general self-contained
regression-type framework (see Eq. (13)), we have,

arg min
Q̄, P̄

∥
∥
∥
√

D1 X − P̄ Q̄T
√

D1 X
∥
∥
∥

2

F
+ β

∥
∥Q̄

∥
∥2

F ,

s.t ., P̄T P̄ = I, (21)

which is just the self-contained regression-type of pixel
weighted PCA.

Eq. (20) is the proposed joint sparse pixel weighted PCA
version. Assume that

√
D1 is fixed, when P̄ = Q̄, λ → 0 and

β → 0, Eq. (20) becomes the weighted PCA as follows,

arg min
Q̄

∥
∥
∥
√

D1 X − Q̄ Q̄T
√

D1 X
∥
∥
∥

2

F
,

s.t ., Q̄T Q̄ = I, (22)

whose generalized eigenequation is listed as follows,
√

D1 X (
√

D1 X)T Q̄ = αQ̄. (23)

Given the SVD of
√

D1 X (
√

D1 X)T = E
ET , we have√
D1 X (

√
D1 X)T E = E
. Therefore, the first d columns of

E span the subspace �.
Similar to the self-contained regression-type of PCA,

we argue that Eq. (21) is the self-contained regression-type
of Eq. (22). Obviously, when λ → 0, the obtained opti-
mal subspace spanned by Q̄ = E(β I + 
)−1
U T is same
with �. Once the self-contained regression-type is formed,
arbitrary sparse terms can be added. When the sparse term
λ

∥
∥
√

D2
√

D1 Q̄
∥
∥2

F is added, Eq. (20) is produced.

B. The Optimization Solution

The solution of Eq. (20) is divided into the below two steps.
Step 1: Given P̄ , there exists a column-orthogonal matrix

P̄⊥ such that [P̄, P̄⊥] is m × m orthogonal matrix. Then,
optimization problem in Eq. (20) becomes,

arg min
Q̄

∥
∥
∥
√

D1 X − P̄ Q̄T
√

D1 X
∥
∥
∥

2

F
+ λ

∥
∥
∥
√

D2
√

D1 Q̄
∥
∥
∥

2

F

+β
∥
∥Q̄

∥
∥2

F . (24)

The first part of Eq. (24) can be rewritten as,
∥
∥
∥
√

D1 X − P̄ Q̄T
√

D1 X
∥
∥
∥

2

F

=
∥
∥
∥X T

√
D1 − X T

√
D1 Q̄ P̄T

∥
∥
∥

2

F

=
∥
∥
∥X T

√
D1[P̄, P̄⊥] − X T

√
D1 Q̄ P̄T [P̄, P̄⊥]

∥
∥
∥

2

F

=
∥
∥
∥X T

√
D1 P̄ − X T

√
D1 Q̄ P̄T P̄

∥
∥
∥

2

F

+
∥
∥
∥X T

√
D1 P̄⊥ − X T

√
D1 Q̄ P̄T P̄⊥

∥
∥
∥

2

F

=
∥
∥
∥X T

√
D1 P̄ − X T

√
D1 Q̄

∥
∥
∥

2

F
+

∥
∥
∥X T

√
D1 P̄⊥

∥
∥
∥

2

F
. (25)

Since P̄ is fixed, and
∥
∥X T √

D1 P̄⊥
∥
∥2

F is a constant, optimiza-
tion problem in Eq(24) becomes the following optimization
problem,

arg min
Q̄

∥
∥
∥X T

√
D1 P̄ − X T

√
D1 Q̄

∥
∥
∥

2

F
+ λ

∥
∥
∥
√

D2
√

D1 Q̄
∥
∥
∥

2

F

+β
∥
∥Q̄

∥
∥2

F . (26)

By the derivative of Eq. (26) with respect to Q̄ to be 0, we get,

Q̄ =(λ
√

D1 D2
√

D1+β I +√
D1 X X T

√
D1)

−1√
D1 X X T

√
D1 P̄ .

(27)
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Hence,

Q = (λD2 + β D−1
1 + X X T )

−1
X X T

√
D1 P̄ . (28)

When λ → 0, Eq. (27) becomes as follows,

Q̄ = (β I + √
D1 X X T

√
D1)

−1√
D1 X X T

√
D1 P̄. (29)

Step 2: Given Q̄ to compute P̄ , optimization problem in
Eq. (20) becomes,

arg min
P̄

∥
∥
∥
√

D1 X − P̄ Q̄T
√

D1 X
∥
∥
∥

2

F
, s.t .P̄T P̄ = I. (30)

The first part of Eq(30) can be rewritten as,
∥
∥
∥
√

D1 X − P̄ Q̄T
√

D1 X
∥
∥
∥

2

F

= tr((
√

D1 X − P̄ Q̄T
√

D1 X)
T
(
√

D1 X − P̄ Q̄T
√

D1 X))

= tr((X T
√

D1 − X T
√

D1 Q̄ P̄T )(
√

D1 X − P̄ Q̄T
√

D1 X))

= tr(X T D1 X − X T
√

D1 P̄ Q̄T
√

D1 X

− X T
√

D1 Q̄ P̄T
√

D1 X + X T
√

D1 Q̄ P̄T P̄ Q̄T
√

D1 X)

= tr(X T D1 X + X T
√

D1 Q̄ Q̄T
√

D1 X)

− 2tr(Q̄T
√

D1 X X T
√

D1 P̄). (31)

Since Q̄ is given, Eq. (30) becomes,

arg max
P̄

tr(Q̄T
√

D1 X X T
√

D1 P̄), s.t .P̄T P̄ = I. (32)

Substituting Eq. (29) into Eq. (32), we have,

arg max
P̄

tr(P̄T
√

D1 X X T
√

D1(β I + √
D1 X X T

√
D1)

−T

√
D1 X X T

√
D1 P̄),

s.t . P̄T P̄ = I. (33)

Given the SVD of
√

D1 X X T √
D1 = E
ET . We can

conclude that the columns of E are the eigenvectors of matrix√
D1 X X T √

D1(β I + √
D1 X X T √

D1)
−T √

D1 X X T √
D1.

On the other hand, optimization problem in Eq. (30) is equal
to,

arg min
P̄

∥
∥
∥X T

√
D1 − X T

√
D1 Q̄ P̄T

∥
∥
∥

2

F
, s.t .P̄T P̄ = I. (34)

The update of P̄ of minimizing Eq. (27) with the constraint
of P̄T P̄ = I ∈ R

d×d means that P̄ is column-orthogonal.
In order to compute P̄ , we introduce the following [32,
Lemma 1].

Lemma 1: Let Zn×m and V n×d be two matrices. Consider
the constrained minimization problem,

arg min
P

∥
∥
∥Z − V MT

∥
∥
∥

2
, s.t . MT M = I. (35)

Suppose the SVD of Z T V is E DU T , then the optimization
solution is M = EU T ∈ R

m×d .
According to Lemma 1, we have Z T V = √

D1
X X T √

D1 Q̄. Let the SVD of
√

D1 X X T √
D1 Q̄ = E DU T ,

then the optimal P̄ can also be directly obtained from SVD
of

√
D1 X X T √

D1 Q̄ = E DU T , i.e.,

P̄ = EU T . (36)

Thus,

P = √
D1

−1
EU T . (37)

Substituting P̄ = EU T into Eq. (29), we have,

Q̄ = (β I + √
D1 X X T

√
D1)

−1√
D1 X X T

√
D1 EU T

= (β I + E
ET )
−1

E
ET EU T

= (β I + E
ET )
−1

E
U T

= E(β I + 
)−1
U T . (38)

Algorithm 1 The Proposed Algorithm
Input:Training sample set X , parameter λ, dimensionality
d .

1: Initialize D1, D2 as I ∈ R
m×m and random P̄ ∈ R

m×d .
2: while not converge do

2.1: Compute Q̄ according to Eq. (27)
2.2: Compute Q according to Eq. (28)
2.3: Compute P̄ according to Eq. (36)
2.4: Compute P according to Eq. (37)
2.5: Compute D1 according to Eq. (17)
2.6: Compute D2 according to Eq. (19)

end while
Output: Projection matrix Q.

C. Computational Complexity Analysis

The main computational complexity of joint sparse pixel
weighted PCA has two steps in each iteration: the first step
is to compute Q = (λD2 + X X T )

−1
X X T √

D1 P̄ with a com-
putational complexity O(m3); the second step is to compute
SVD of

√
D1 X X T √

D1 Q̄ = E DU T , whose computational
complexity is also O(m3) at most. Therefore, the computa-
tional complexity of one iteration does not exceed O(m3).
If this algorithm needs t iterations, the total computational
complexity is O(tm3).

IV. EXPERIMENTS

To evaluate the proposed method, we compare it with
PCA [37], PCAL1 [52], OMRPCA [22], and SPCA [32]; these
are selected as PCA plays an important role in reconstruction,
PCAL1 maximizes the L1 dispersion (i.e., using L1-norm in
the feature space) to improve the robustness of PCA to outliers.
R1PCA and OMRPCA are two weighted PCA versions by
using weighting of the data samples, and SPCA is the first
method to propose the self-contained regression-type of PCA.
It is shown here that the proposed method not only achieves a
good reconstruction result but also offers a better interpretation
of the principal components.

The codes of all the comparison methods are downloaded
from the author’s Web sites. All the methods have a com-
mon parameter d , i.e., the reduced dimensionality. In all the
methods, d is of the same value. Besides, the other parameters
are searched from their papers or coded by us. All codes are
implemented using MATLAB on a computer with a 3.30-GHz
duo core CPU and 8-GB memory.
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Fig. 1. Visualization of the comparison of reconstruction results in terms of PCA and the proposed method on the ORL and COIL20 datasets. This
figure includes four groups and each group includes three columns, which corresponds to the original image, reconstruction image and the error image,
respectively. The first two groups are implemented on the ORL dataset, and while the last two groups are implemented on the COIL20 dataset.

A. Datasets

Two Facial Datasets: The ORL face dataset [38] contains
40 individuals, and each of which has 10 face images. Here,
every image is resized to 56 × 46 pixels. The FERET face
dataset [39] contains 1400 images from 200 individuals,
each of which has seven images. Every image is resized to
40 × 40 pixels.

Two Object Datasets: The COIL20 image dataset [40]
contains 20 subjects. Each subject contains 72 images, and

each image is taken at pose intervals of 5o. Here, each image
is converted to a gray-scale image of size 36 × 37 pixels. The
COIL100 image dataset [41] contains 100 subjects, where each
subject contains 72 images and each image is taken at pose
intervals of 5o. Here, each image is converted into a gray-scale
image of size 32 × 32 pixels.

A Digital Dataset: The USPS dataset [42] contains
9298 digit images in total from 0 to 9, each of which
is of size 16 × 16 pixels, with 256 gray levels per
pixel.
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TABLE I

RECONSTRUCTION ERROR COMPARISONS OF SIX PCA METHODS ON SIX DATASETS USING

DIFFERENT DIMENSIONS, WHERE D MEANS THE DIMENSION

A Gene Dataset: The LUNG dataset [34] contains 203 gene
samples in total with five classes, which contain 139, 21, 20, 6,
17 samples, respectively. Every gene sample has 3312 genes.

Note that all the above datasets are centered and normalized
in our experiments.

B. Experimental Results

1) Reconstruction: For these six datasets, the reconstruction
errors of PCA, PCAL1, R1PCA, OMRPCA, SPCA and the
proposed method are carried out, and the experimental results
are listed in Table 1.

From Table 1, it can be seen that PCA, PCAL1, R1PCA
and OMRPCA often perform favorably against SPCA and the
proposed method. This is due to the addition of the sparse
regularization term, which means that SPCA and the proposed
method inevitably suffer from some loss of information, while
PCA, PCAL1, R1PCA and OMRPCA do not suffer from this
drawback. Furthermore, the proposed method often performs
favorably against SPCA. This may because the reconstruction
error of the proposed method arises from �2,1-norm, while the
reconstruction error of the SPCA method arises from �2-norm.

Recall Table 1, the reconstruction error is computed accord-
ing to the original images before corruption and the recon-
struction images of corrupted images. However, the original
images itself often include some inevitable corruption such
as glasses or illumination and several other noise. At this
moment, it is invalid using the criteria of the reconstruction
error for evaluating reconstruction methods. This is also the
reason why the proposed method does not achieve better
results in Table 1. To this end, we visualize some reconstruc-
tion images for both ORL and COIL20 datasets in Fig. 1. It can
be seen from Fig. 1 that although the proposed method has
the worst result from Table 1, it obtains the reconstruction
results similar to those of PCA. Furthermore, we compare
different methods on toy dataset (see Fig. 2). The toy dataset
contains 180 data points (colored in black) near a straight line
and 20 data points (colored in orange) far away this straight
line (i.e., the outliers). Every data point has two features, and
the first feature (i.e., x feature) is significantly important while
the second feature (i.e., y feature) is redundant. It can be

Fig. 2. The principal component axis learned by PCA, PCAL1, OMRPCA,
SPCA and the proposed method.

seen from Fig. 2 that the proposed method, OMRPCA, and
SPCA perform better than PCA and PCAL1. As we known,
PCA (in an L2 sense) is sensitive to outliers. PCAL1 (in an
L1 sense) performs better than PCA but is still sensitive to
outliers. OMRPCA and SPCA have similar results with the
proposed method on the toy dataset. This is because OMR-
PCA is robust to outliers and SPCA can achieve a balance
between the data representation and the sparsity. So when the
data variation mainly lies in one dimension, SPCA and the
proposed method are able to achieve the best performance.
Moreover, we compute the reconstruction error of different
methods on the toy data. The reconstruction errors of PCA,
PCAL1, OMRPCA, SPCA, and the proposed method are
2735.8, 20122.0, 720.2, 551.8, and 551.8, respectively. This
shows that the reconstruction error of the proposed method is
the smallest, and hence the proposed method is effective.

Besides, we applied the proposed method into background-
foreground separation experiments. The used dataset, gathered
from a static camera over one day, contains 502 images
and each image is of size 30 × 40 pixels. The experimental
results are shown in Fig. 3. The first row of Fig. 3 shows
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Fig. 3. Visualization of background-foreground separation experiments, where the first row is the original images, the second row is the backgrounds and
the third row is the foregrounds.

Fig. 4. Visualization of the projection matrix Q. They are obtained by different methods on the LUNG dataset. The first row shows the projection matrix
obtained by PCA, SPCA and OMRPCA. The second row shows the projection matrix Q, Q̄ and the automatic weight obtained by the proposed method.

the original images with illumination changes of the static
background and peoples in various locations. While the peo-
ples often pass through the view of the camera quickly, they
sometimes remain relatively still over multiple frames. Here,
the peoples (i.e., foreground) can be regarded as outliers and
the view of the static camera with illumination changes (i.e.,
background) can be reconstructed. The second row of Fig. 3
shows the reconstruction result of the proposed method. The

outliers (i.e., the peoples) can be clearly seen from the third
row of Fig. 3.

2) Interpretation: In general, both PCA and OMRPCA
lack a clear interpretation for principal components since
the principal components obtained by PCA and OMR-
PCA are a linear combination of all the original features.
SPCA has been therefore developed to interpret the prin-
cipal components. However, it still can not consistently
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Fig. 5. Basis images of the proposed method on five datasets.

identify features participating in the computation of principal
components.

In order to test the ability to interpret the principal com-
ponents of the proposed method, the first 20 features of the
LUNG dataset are used to test PCA, SPCA, OMRPCA and
the proposed method. The experimental results are shown
in Fig. 4, where it can be seen that the proposed method
indicates that it consistently uses all the features except for
the first, ninth, tenth and twentieth features to participate in
the computation of the principal components, while the other
methods do not have this function. Therefore, by comparing
the projection matrix Q of the proposed method with the other
methods, the proposed method can find the redundant features
that contribute less to the principal components while the other
methods can not. Moreover, from Fig. 4(f), it can be seen
that the redundant features are assigned a larger weight while
the remaining feature are assigned a smaller weight. This is
because the redundant features have a good reconstruction and
the weight D1 is automatically decided by the reconstruction
case. From Fig. 4(d) and Fig. 4(e), we can see that the obtained
Q̄ is more row-sparse than Q if Q is row-sparse.

Furthermore, the bases images used in our method are
shown in Fig. 5, where the bright area indicated the selected
principal features. From the ORL and FERET facial datasets
in Fig. 5, it can be seen that the bright area is mainly focused
on the principal features, such as the eyes, nose, mouth, and
contour of each face. From the COIL20, COIL100 and USPS

datasets in Fig. 5, it can be seen that the bright area mainly
focuses on the contours of an object or digit.

3) Parameter Settings and Convergence Analyses: There are
two parameters in our objective function, λ and β. To demon-
strate the effects of these two parameters in experiments, dif-
ferent combinations of these values, selected from a reasonable
discrete set {1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1e0, 1e1},
are evaluated on each dataset, where each parameter com-
bination corresponds to a reconstruction error. When the
reconstruction error is minimized, the optimal parameters are
obtained. In order to find the smallest reconstruction error
easily, we take opposite of the obtained reconstruction error.
The reconstruction error of each parameter combination is
shown in Fig. 6, from where it can be seen that the recon-
struction performance is almost same over a wide range of
parameters. This shows that the reconstruction performance
of the proposed method is very robust to the parameters.
The selection of a suitable parameter combination is therefore
straightforward. In this paper, we use λ = 10−4 and β = 10−2

for the ORL dataset, λ = 10−3 and β = 10−2 for the FERET
dataset, λ = 10−3 and β = 10−2 for the COIL20 dataset,
λ = 10−3 and β = 10−6 for the COIL100 dataset, λ = 100

and β = 10−2 for the USPS dataset, and λ = 10−4 and
β = 10−2 for the LUNG dataset.

The convergence curves of the proposed method are visu-
alized in Fig. 7. As can be observed, the proposed method
achieves a fast convergence (within five iterations) for every
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Fig. 6. Parameter settings of the proposed method on the ORL, FERET, COIL20, COIL100, USPS, and LUNG datasets.

dataset. Such a fast convergence is mainly attributed to the
process of solving the optimization variable Q. During solv-
ing Q, some rows of Q are forced to approximate to zero and
hence only some features, but not all, are selected to participate
in the reconstruction of data. As a result, the obtained Q is
able to effectively select some useful features to make the

reconstruction error as small as possible. Thus, P and Q
can fast approximate to their optimal solutions. Furthermore,
we compare the proposed method with R1PCA, OMRPCA,
and SPCA on the ORL dataset. All of them are under the
same termination condition, i.e., |err (t)−err (t−1)| < ε, where
err = ∥

∥X − QQT X
∥
∥

F , err (t) is the reconstruction error of
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Fig. 7. Convergence curves of the proposed method on the ORL, FERET, COIL20, COIL100, USPS, and LUNG datasets. On each dataset, Convergence
curves under six different subspace dimensions are shown.

the t-th iteration and ε = 10−6. These convergence curves are
shown in Fig. 8.

It is worth noting that on some datasets, such as the LUNG
dataset, the objective function value shows a strong vibration.
This phenomenon can be interpreted as the consequence of
the inexact solution of Eq. (28), that is, the exact solution

is permutated a little in our method by adding the Tikhonov
regularization ηI to the inverse of the matrix λD2 + β D−1

1 +
X X T . In this paper, η = 0.001 is used. In fact, the larger
η is, the stronger the oscillation is. However, we eventually
observe that the objective function value decreases steadily as
the number of iterations continues to increase.
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Fig. 8. Convergence curves of four methods on the ORL dataset.

V. CONCLUSION

In this paper, we propose a simple but effective PCA
version. Unlike PCA, the proposed method can clearly identify
the redundant features that do not participate in reconstruction,
although the proposed method only achieves the reconstruction
result similar to those of the other PCA methods. Moreover,
this paper mainly provides some theoretical analysis in order
to give a thoroughly understanding of the essence of principal
components and self-contained regression-type.
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