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Abstract—This paper addresses a class of optimization prob-
lems in which either part of the objective function is differentiable
while the rest is nondifferentiable or the objective function is
differentiable in only part of the domain. Accordingly, we pro-
pose a dual-decomposition-based approach that includes both
objective decomposition and domain decomposition. In the for-
mer, the original objective function is decomposed into several
relatively simple subobjectives to isolate the nondifferentiable
part of the objective function, and the problem is consequently
formulated as a multiobjective optimization problem (MOP).
In the latter decomposition, we decompose the domain into
two subdomains, that is, the differentiable and nondifferentiable
domains, to isolate the nondifferentiable domain of the non-
differentiable subobjective. Subsequently, the problem can be
optimized with different schemes in the different subdomains.
We propose a population-based optimization algorithm, called
the simulated water-stream algorithm (SWA), for solving this
MOP. The SWA is inspired by the natural phenomenon of water
streams moving toward a basin, which is analogous to the pro-
cess of searching for the minimal solutions of an optimization
problem. The proposed SWA combines the deterministic search
and heuristic search in a single framework. Experiments show
that the SWA yields promising results compared with its existing
counterparts.

Index Terms—Domain decomposition, hybrid process, objec-
tive decomposition, partial differentiable objective function,
simulated water-stream algorithm (SWA).
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I. INTRODUCTION

OPTIMIZATION problems are quite common in a vari-
ety of scientific areas. Without loss of generality, an

optimization problem can be defined as follows:

min
x∈D

F(x) = (F1(x), . . . , Fk(x))T. (1)

Here, Fi(x) is the ith objective of the optimization problem
and k is the number of objectives. x = (x1, . . . , xn)

T ∈ D
is the decision variable vector, where D = ∏n

i=1 [ai, bi] ⊂
Rn is the domain of the decision variable vector and n is its
dimensionality. T denotes the transpose of a vector, and ai and
bi are the upper and lower bounds, respectively, on the ith
component xi of x. If k = 1, the problem is a single-objective
optimization problem (SOP); otherwise, it is a multiobjective
optimization problem (MOP).

Optimization problems are widely encountered in various
applications. Among them, in a certain class of optimization
problems, the objective function is nondifferentiable as a
whole. Nevertheless, some number of the subobjective func-
tions or part of one subobjective function may be differen-
tiable. Furthermore, a nondifferentiable subobjective function
may be nondifferentiable over the entire domain but differ-
entiable in a subdomain. We call such problems partially
differentiable problems. Instances of such problems in the
literature include variable selection and feature extraction in
machine learning [1], [2]; sparse representation in signal pro-
cessing [3], [4]; and sparse autoencoder neural networks [5],
to name a few.

Over the past decades, researchers have developed a number
of optimization algorithms in the literature. These algorithms
can be divided into two basic categories. The first one con-
sists of differential-based optimization algorithms, such as the
conjugate gradient method [6], the steepest descent method,
and the quasi-Newton method [7]. In general, these algo-
rithms can quickly obtain a globally optimal solution for a
differentiable convex optimization problem [8]. However, they
almost converge to a locally optimal solution when solving the
multimodal optimization problems. Recently, researchers have
developed some global optimization algorithms for multimodal
SOPs, such as the tunneling algorithm [9], [10] and the
filled function method [11]–[13]. Experimental studies have
demonstrated the effectiveness of these algorithms in their
application domains. Nevertheless, these algorithms cannot
guarantee convergence to a globally optimal solution for
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high-dimensional optimization problems, and their computa-
tion is generally laborious. Furthermore, like the previously
mentioned algorithms in this category, they can find only one
solution in a single run and thus are essentially unsuitable
for MOPs, in which a set of Pareto-optimal solutions, rather
than a single solution, is desired. Further, these differential-
based algorithms are not applicable for solving partially
differentiable MOPs.

The other category consists of population-based
heuristic optimization algorithms, e.g., particle swarm
optimization [14], [15]; evolutionary algorithms [16]–[24];
and ant colony optimization [25], [26]. Unlike classical
differential-based optimization algorithms, these heuristic
algorithms have no assumptions regarding the objective
functions, such as modality or differentiability, and can find
a set of optimal solutions in a single run. Hence, they are
much more appropriate for nondifferentiable multimodal
optimization problems and MOPs. These algorithms are good
at exploring and exploiting promising regions of the search
space. However, they suffer from the curse-of-dimensionality
problem, as described in [27], and the convergence speed
and searching efficiency of these algorithms are both lower
than those of classical optimization algorithms. In view of
this, some local search strategies [28] have been introduced
as separate processes for accelerating the search speed of
heuristic algorithms [14], [29]–[31]. Recent studies have
demonstrated that these strategies enable more efficient
convergence to high-quality solutions on many real-world
applications [26], [32], [33]. Nevertheless, these algorithms
treat the problem as a “black” box. Thus, these heuristic
algorithms still do not take full advantage of the problem
properties. Evidently, it is still desirable to improve the search
process of an algorithm by considering the nature of the
problem of interest.

As far as we know, partially differentiable optimization
problems have yet to be well studied in the literature.
Therefore, we address such problems in this paper. We propose
two decomposition schemes, i.e., objective decomposition and
domain decomposition, for solving such problems. In the
objective decomposition scheme, the original objective func-
tion, which may be either a single- or multiobjective function,
is decomposed to obtain an MOP with a greater number of
relatively simple subobjectives. We alternately optimize each
subobjective by using the Tchebycheff approach [34]. In each
procedure, we optimize only one subobjective. Thus, we can
isolate the nondifferentiable part of the objective function. In
the domain decomposition scheme, the domain of the non-
differentiable subobjective is decomposed into a differentiable
subdomain and a nondifferentiable subdomain to isolate the
nondifferentiable domain of the subobjective.

In this paper, we propose an effective optimization algo-
rithm, called the simulated water-stream algorithm (SWA),
for solving MOPs. A preliminary version of this paper was
presented in [35]. In this paper, we introduce a domain decom-
position strategy for isolating the nondifferentiable domain of
a nondifferentiable subobjective and analyze the convergence
of the SWA. The proposed SWA is inspired by the natural
phenomenon of water streams moving toward a basin. This

process is analogous to the process of finding the minimal
solutions for an optimization problem. Water streams generally
exhibit two forms of movement: downstream and penetration.
Specifically, the process of downstream movement is analo-
gous to a deterministic search, which can make the solution
rapidly converge to a stagnation point. If the objective func-
tion is differentiable in the subdomain, we directly formulate
the deterministic search direction as the gradient of the objec-
tive function; otherwise, we approximate the objective function
with a kernel density estimator and then formulate the search
direction as the gradient of the density estimator. The process
of penetration is characterized by two features: 1) necessity
and 2) contingency. Necessity means that most of the water
streams will penetrate to the lowest location found by their
neighboring streams. This is represented by an adaptive coop-
erative learning heuristic search, in which the search step
is adjusted in accordance with the speed of the downstream
movement. Contingency refers to the fact that a small portion
of the water streams may penetrate laterally or even upward. A
random perturbation heuristic search is introduced to simulate
the contingency of water penetration. As a result, the SWA
combines deterministic and heuristic search approaches in a
single framework. It incorporates the advantages of both the
methods through the two processes described above. Empirical
results fully demonstrate the effectiveness and competitive-
ness of the proposed algorithm in comparison with its existing
counterparts.

The remainder of this paper is organized as follows.
Section II describes the application of the objective and
domain decomposition strategies to optimization problems.
The proposed SWA is elaborated in Section III, and its global
convergence is shown in Section IV. We compare the SWA
with its existing counterparts in Section V. Finally, we draw
the conclusions in Section VI.

II. ALTERNATE OPTIMIZATION OF EACH SUBOBJECTIVE

BASED ON OBJECTIVE AND DOMAIN DECOMPOSITION

A. Objective Decomposition

In many practical applications, the objective of problem (1)
can be formulated as the sum of a differentiable function and
a nondifferentiable function, that is,

Fi(x) = fi,1(x)+ fi,2(x) (2)

where fi,1(x) is a differentiable function and fi,2(x) is a non-
differentiable one. Therefore, Fi(x) is nondifferentiable as a
whole, but part of which is differentiable. An example is the
sparse regularization used in many experimental studies. Such
an objective function can be decomposed into one differen-
tiable function and one nondifferentiable function. Evidently,
when Fi(x) cannot be formulated as a sum of two functions,
fi,1(x) is null if Fi(x) is nondifferentiable; otherwise, fi,2(x) is
null as Fi(x) is differentiable.

We then merge all of the objective functions decomposed
in this way to constitute the following MOP:

min
x∈D

f (x) = (f1(x), . . . , fm(x))T (3)
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where m ≤ 2k is the number of objective functions of the
decomposed problem as expressed in (3). A solution x is said
to Pareto dominate y, denoted by x � y, if and only if fi(x) ≤
fi(y) ∀ i (i = 1, . . . , m) and there exists an i0 such that fi0(x) <

fi0(y). A solution x̄ ∈ D is a Pareto-optimal solution if � x ∈ D
such that x � x̄. The set of all Pareto-optimal solutions, called
the Pareto set (PS), in D is denoted by E(f , D) ⊂ D, and the set
of all Pareto-optimal objective vectors is the Pareto front (PF).
The optimal solution to problem (1) must be a Pareto-optimal
solution to problem (3), as described in Theorem 1.

Theorem 1: ∀ x̄ ∈ E(F, D) for problem (1), we have that
x̄ ∈ E(f , D) for problem (3), i.e., E(F, D) ⊆ E(f , D).

Proof: We shall prove x̄ to be a Pareto-optimal solution to
problem (3) when x̄ ∈ E(F, D). Suppose that x̄ /∈ E(f , D).
According to the definition of a Pareto-optimal solution, there
exists a solution z ∈ D such that fj(z) ≤ fj(x̄) ∀ j (j =
1, . . . , m) and fj0(z) < fj0(x̄) for some j0. We have that

Fi(z) = fi,1(z)+ fi,2(z)

≤ fi,1(x̄)+ fi,2(x̄) = Fi(x̄) (4)

for i = 1, . . . , k. Obviously, there is at least one i0 such that
Fi0(z) < Fi0(x̄), that is, x̄ /∈ E(F, D), which contradicts the
assumption. This implies that the assumption is wrong. Hence,
we know that x̄ is a Pareto-optimal solution to (3) because
x̄ ∈ E(F, D). This means that E(F, D) ⊆ E(f , D).

Therefore, for the partial differentiable optimization prob-
lems, we can first obtain the extended solution set E(f , D)

by solving a relatively simple MOP and then search for the
final solution E(F, D). Furthermore, we have the following
Theorem 2, as presented in [34].

Theorem 2: Let each hi(t) (i = 1, . . . , m) be a monotoni-
cally increasing function. We consider the following MOP:

min
x∈D

h(x) = (h1(f1(x)), . . . , hm(fm(x)))T. (5)

Its Pareto-optimal solution set E(h, D) satisfies E(f , D) =
E(h, D).

Proof: We first prove that E(f , D) ⊆ E(h, D). For any x̄ ∈
E(f , D), suppose that x̄ /∈ E(h, D), there exists a z ∈ D such
that hj(fj(z)) ≤ hj(fj(x̄)) ∀ j (j = 1, . . . , m) and hj0(fj0(z)) <

hj0(fj0(x̄)) for some j0. Since hi(t) is monotonically increasing,
we have fj(z) ≤ fj(x̄) ∀ j (j = 1, . . . , m) and fj0(z) < fj0(x̄)

for some j0, that is, z � x̄, x̄ /∈ E(f , D), which contradicts the
assumption. This means that E(f , D) ⊆ E(h, D). In a similar
way, we can show that E(h, D) ⊆ E(f , D). Thus, problem (5)
has the same Pareto-optimal solutions as problem (3), that is,
E(f , D) = E(h, D).

According to Theorem 1, for nondifferentiable SOPs and
MOPs in which some subobjectives can be formulated as a
sum of a differentiable function and a nondifferentiable func-
tion, such a problem can be decomposed into a differentiable
or partially differentiable MOP with more objective functions.
Then, we can further simplify such a decomposed optimization
problem with monotonically increasing functions, according
to Theorem 2. Hence, we can first solve a relatively sim-
ple MOP to obtain an approximation E(h, D) and then search
for the final Pareto-optimal solution x̄ to problem (1) in this
approximation E(h, D).

Fig. 1. Illustration of the Tchebycheff approach; the coordinates of points
A, B, and C are (h1(xA), h2(xA)), (h1(x0), h2(x0)), and (h1(x1), h2(x1)),
respectively.

B. Alternate Optimization of Each Subobjective Based on
the Tchebycheff Approach

For simplicity, we assume, in this paper, that all of the objec-
tive functions h1, . . . , hm described in (5) are non-negative.
Otherwise, we can replace hi with hi −M, where M is a pos-
itive constant. Therefore, all of the objective vectors and the
PF of (5) are in Rm+.

In the Tchebycheff approach [34], problem (5) can be solved
by solving the following problem:

min
x∈D

g(x|w) = min
x∈D

max
1≤i≤m

{wihi(x)} (6)

where w = (w1, . . . , wm)T is a weight vector and x is the
decision variable vector. For any x̄ ∈ E(h, D) for problem (5),
there exists at least one weight vector w such that x̄ is the
optimal solution to problem (6). Let {w1, . . . , wN} be a set
of uniformly distributed weight vectors; then, we can define
N subproblems based on (6). We can obtain an approxima-
tion of the PF by solving these subproblems. For example,
problem (6) is sketched in Fig. 1 for m = 2. The equation
for the straight line through the origin point with the direction
vector {(1/w1), (1/w2)} is given by w1h1 = w2h2. It intersects
with the PF at point A, whose coordinates in the objective
space are (h1(xA), h2(xA)). Obviously,

min
x∈D

g(x|w) = min
x∈D

max
i=1,2
{wihi(xA)}. (7)

That is, xA is a weak Pareto-optimal solution to problem (5).
The optimization procedure for problem (6) is to search for
a solution close to xA. Moreover, we can draw the follow-
ing conclusion: for points above the straight line, a smaller
objective value h2 indicates a better point; thus, we have
g(x0|w) = w2h2(x0). Otherwise, the smaller h1 is, the better
the point is; thus, g(x1|w) = w1h1(x1).

The function g(x|w), however, is a nonsmooth function.
We can alternately optimize each subobjective. Suppose that
xt is the optimal solution obtained by implementing the tth
optimization procedure. Then, the optimization problem for
the (t + 1)th optimization procedure can be expressed as
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follows:

min
x∈D

gt+1(x|w) = min
x∈D

wI1 hI1(x)

s.t. wI1 hI1(x) ≥ (1− ε)wI2 hI2

(
xt) (8)

where I1 = arg max1≤i≤m wihi(xt), I2 = arg max1≤i≤m,i 
=I1

wihi(xt), and ε is a positive constant. I1 and I2 are the indices
of the weighted objectives with the first and second highest
values, respectively.

The search procedure for a problem with m = 2 is illus-
trated in Fig. 1. Suppose that the objective vector of the initial
solution x0 corresponds to point B; we expect to search for the
optimal point A for the scalar problem, with the weight vec-
tor (w1, w2). From (8), we know that the current optimization
problem is

min
x∈D

g1(x|w) = min
x∈D

w2h2(x)

s.t. w2h2(x) ≥ (1− ε)w1h1(x0). (9)

As shown in Fig. 1, region I represents the search space for
problem (9) in the objective space. We can obtain a new solu-
tion x1 by solving problem (9). Its objective vector corresponds
to point C. Then, we construct a new objective function as
defined by (8) at point C to search for a new optimal solution
in region II.

The advantage of the alternate subobjective optimization
method based on the Tchebycheff approach is that we optimize
only one simple subobjective in each subproblem. If it is
a convex optimization problem, classical optimization algo-
rithms can be used to solve it. Otherwise, heuristic algorithms
can be used. This objective decomposition scheme isolates the
nondifferentiable objective functions.

C. Domain Decomposition

Let us consider a situation in which a subobjective is non-
differentiable over the whole domain but differentiable in a
subdomain. Accordingly, we decompose the domain D of each
subobjective hi(x) (i = 1, . . . , m) into two types of sub-
domains, i.e., the nondifferentiable subdomain Di1 and the
differentiable subdomain Di2. Di1 is defined using the bound
constraints as a smaller region that contains all points at which
hi(x) is nondifferentiable, and Di2 = D − Di1. For example,
for p ≤ 1, the regularization term of (25) is nondifferentiable
at any point with xi = 0 for i = 1, . . . , n. Thus, the nondif-
ferentiable subdomain Di1 is defined as the region with the
bound constraint |xi| < ε for i = 1, . . . , n, where ε is a small
constant.

Subsequently, we need to consider the three cases below.
1) If hi(x) is differentiable, then Di1 = � and Di2 = D.
2) If hi(x) is nondifferentiable over the entire domain or

we cannot determine its differentiable subdomain, then
Di1 = D and Di2 = �.

3) If hi(x) is partially nondifferentiable, i.e., we can conve-
niently determine the nondifferentiable subdomain, then
we decompose the domain D into a nondifferentiable
subdomain Di1 and a differentiable subdomain Di2.

This simple domain decomposition scheme isolates the non-
differentiable subdomain of a nondifferentiable subobjective.
Therefore, we can adopt different optimization methods to

Fig. 2. Solution search procedure of the SWA.

optimize the subobjective in the different subdomains. It is
of great significance to present an algorithm that combines
deterministic search and heuristic search in a single framework
and optimizes different subobjectives with different schemes
according to the objective function properties. To this end, we
propose the SWA.

III. SIMULATED WATER-STREAM ALGORITHM

The SWA is a nature-inspired population-based optimization
algorithm. It contains N water streams with initial loca-
tions of X0 = {x0

1, . . . , x0
N}. Each water stream flows to a

basin via a hybrid process of downstream and penetration.
Correspondingly, let {w1, . . . , wN} be a set of uniformly dis-
tributed weight vectors; then, we can define N subproblems
based on (8) and optimize each subproblem with a water
stream. Because different subproblems have different weight
vectors, different subproblems generally yield different solu-
tions. The process of finding the minimum solution can be
regarded as a hybrid search process consisting of the down-
stream movement and penetration of each water stream, as
shown in Fig. 2. In the following, we describe the downstream
and penetration operators in detail.

A. Downstream Operator

Suppose that the locations of the water streams after the
tth fluxion are Xt = {xt

1, . . . , xt
N}. For the ith water stream,

the search direction of the downstream operator is the descent
direction of the function g(x|wi) at location xt

i. If g(x|wi) is
differentiable at location xt

i, then the search direction of the
downstream operator is given by the gradient of g(x|wi) at xt

i.
Otherwise, we approximate the function g(x|wi) with a kernel
density estimator and formulate the search direction as the
gradient of the density estimator.

1) Direct Gradient: If the function g(x|wi) is differentiable
at location xt

i, then the search direction of the downstream
operator is directly given by the gradient of g(x|wi). Then,
the displacement pt

i of the water stream can be formulated as
follows:

pt
i = −αt

i∇g
(
xt

i|wi) = −αt
iwI1∇hI1

(
xt

i

)
(10)

where I1 is defined as in (8) and ∇hI1(x
t
i) is the gradient

of hI1(x) at location xt
i. The positive scalar αt

i is called the
step length, which can be computed as follows. Since a linear
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approximation of g(x|wi) at location xt
i is

g
(
x|wi) ≈ ∇g

(
xt

i|wi)Tx+ b (11)

we have

g
(
xt

i + pt
i|wi) ≈ ∇g

(
xt

i|wi)T(xt
i + pt

i

)+ b

= ∇g
(
xt

i|wi)Txt
i + b− αt

i∇g
(
xt

i|wi)T∇g
(
xt

i|wi)

= g
(
xt

i|wi)− αt
i∇g

(
xt

i|wi)T∇g
(
xt

i|wi).

Since g(x|wi) = g(xt
i + pt

i|wi) ≥ (1 − ε)wI2 hI2(x
t
i), by

substituting g(xt
i + pt

i|wi) into this inequality, we find that
αt

i ≤ ([wI1 hI1(x
t
i)−(1−ε)wI2 hI2(x

t
i)]/[∇g(xt

i|wi)T∇g(xt
i|wi)]).

Therefore, αt
i can be computed as follows:

αt
i =

wI1 hI1

(
xt

i

)− (1− ε)wI2 hI2

(
xt

i

)

∇g
(
xt

i|wi
)T∇g

(
xt

i|wi
)+ C

(12)

where C = 0.1 is a constant that makes the denominator
greater than 0.

2) Approximative Gradient: If the function g(x|wi) is non-
differentiable at location xt

i, then an approximative gradient
can be obtained via nondifferentiable direct search algorithms
(e.g., the Hooke–Jeeves algorithm [36] or the Powell algo-
rithm [37]). The displacement pt

i of the downstream operator
is the approximative gradient. In this paper, we apply a kernel
density estimator to approximate the function g(x|wi) and for-
mulate the search direction of the downstream operator as the
gradient of the kernel density estimator.

Specifically, we uniformly generate M trial points YM =
{y1, y2, . . . , yM} in a hypercube centered on the location xt

i.
Since we generally wish to find the maximum value of the
density estimator, we define the function

max G(x) = (� − g
(
x|wi)) (13)

where � = max1≤j≤M g(yj|wi). Then, the function G(x) at
point x can be estimated by the following kernel density
estimator [38]:

ĜY(x) = 1

C

M∑

j=1

G
(
yj
)
K

(
x− yj

h

)

(14)

where C is a normalization constant, K(x) is a kernel function,
and h > 0 is the bandwidth parameter. Then, we obtain the
following result.

Proposition 1: When a normal kernel is employed in (14),
i.e., K(x) = (2π)−n/2 exp(−[1/2]‖x‖2), the search direction

pt
i =

∑M
j=1 G

(
yj
)

exp

(

− 1
2

∥
∥
∥

xt
i−yj
h

∥
∥
∥

2
)

yj

∑M
j=1 G

(
yj
)

exp

(

− 1
2

∥
∥
∥

xt
i−yj
h

∥
∥
∥

2
) − xt

i (15)

is the descent direction of Ĝ(x) at point xt
i, and it is also the

descent direction of G(x) with probability one.
The proof of this proposition is given in [39]. For each

trial point yj, we compute the value of only one subobjec-
tive. Hence, the computational complexity does not increase
with the number of objectives. Moreover, the displacement
of the water stream occurs in the descent direction of the

Algorithm 1: Downstream Operation on Water Stream i

Input :
• The location of the water stream xt

i;
• The objective function vector h(xt

i);
• The weight vector wi;
• The nondifferentiable subdomain Di1 and the

differentiable subdomain Di2 of each subobjective,
i = 1, 2, · · · , m.

Output: The displacement pt
i.

1 Compute the indices I1 and I2 defined in Eq. (8).
2 if xt

i ∈ DI11 then
3 Calculate the step length αt

i from Eq. (12);
4 pt

i ←−αt
iwI1∇hI1(x

t
i)

5 else
6 Generate M trial points {y1, y2, · · · , yM} and

calculate the values of G(yj), j = 1, · · · , M;

7 pt
i ←

∑M
j=1 G(yj) exp

(

− 1
2

∥
∥
∥
∥

xt
i−yj

h

∥
∥
∥
∥

2
)

yj

∑M
j=1 G(yj) exp

(

− 1
2

∥
∥
∥
∥

xt
i−yj

h

∥
∥
∥
∥

2
) − xt

i

8 end

objective function because Ĝ(xt
i + pt

i) > Ĝ(xt
i). The details

of the procedure for computing the displacement pt
i are given

in Algorithm 1.
The displacement pt

i of water stream i obtained via the
downstream operator is represented by the arrow with the solid
line in Fig. 2. Thus, the new location xD

i of the ith water stream
can be given as follows:

xD
i = xt

i + pt
i, i = 1, . . . , N. (16)

B. Penetration Operator

Water stream penetration has the qualities of both neces-
sity and contingency. In general, most water streams penetrate
toward a nearby basin, and the permeability is affected by the
downstream movement. The stream flows with higher flow
rates will have reduced permeability. Accordingly, a cooper-
ative learning heuristic search approach is used to simulate
necessity, in which the search step is self-adjusted according
to the downstream speed. In addition, a few water streams
may run in any direction, even upward. Thus, a random per-
turbation is introduced to simulate the contingency of water
penetration. The direction of water penetration is indicated by
the arrow with the dotted line in Fig. 2. In the following, we
describe the cooperative learning heuristic search process and
the random perturbation search process in detail.

1) Adaptive Cooperative Learning Heuristic Search: This
search process is used to simulate the phenomenon that most
water streams penetrate toward the nearby basin. For each
water stream i = 1, . . . , N, its neighborhoods are the first K
water streams whose weight vectors are closest to wi, where
K is the number of neighbors. The set of indices of the neigh-
borhoods of water stream i is denoted by B(i). Suppose that
this search is performed on water stream i; the water stream
penetrates toward the lowest nearby location found by one of
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its neighbors. Thus, the new location of water stream i after
penetration is given as follows:

xt+1
i = xD

i + λt
i

(
xL

r − xD
i

)
(17)

where λt
i is the speed of penetration and r is randomly selected

from B(i). The search is adaptively adjusted according to the
downstream speed of the water displacement pt

i, that is

λt
i = 0.1r1 · e−‖pt

i‖ (18)

where r1 is a uniform random number in [0, 1] and ‖pt
i‖ is

the norm of pt
i. Equation (18) implies that the closer to an

extreme point xt
i is, the higher the speed of penetration is.

Thus, the penetration process will dominate the search for
points near extreme points. This facilitates escape when a solu-
tion is close to a local minimum and avoids the premature
convergence of the algorithm. For example, the penetration of
P2 is small because it is close to a local minimum, as shown
in Fig. 2. However, when xt

i is far away from the extreme
points, (18) leads to a relatively low speed of penetration.
Thus, the deterministic search dominates the search procedure.
Positions P1 and P3 in Fig. 2 are consistent with the situation
described above. Obviously, this situation is beneficial for the
convergence of the algorithm.

2) Random Perturbation Heuristic Search: A random per-
turbation heuristic search process is introduced to simulate the
contingency of water penetration. This search process is per-
formed on only a small portion of the water streams. Suppose
that this random perturbation process is performed on the ith
water stream. Every component of xD

i is perturbed with a given
probability p. If xD

i,l, the lth component of xD
i , is selected to

be perturbed, it reassigned a uniform random value in [al, bl].
Hence, its new location is computed as follows:

xt+1
i,l =

{
al + r2(bl − al) if r < p
xD

i,l otherwise
(19)

with l = 1, . . . , n, where r, like r1 in (18), is a uniform random
number in [0, 1]. This random perturbation process is benefi-
cial for maintaining the diversity of the solutions and avoiding
premature convergence. The overall flow of the SWA is sum-
marized in Algorithm 2, where the following are maintained
at each fluxion t.

1) The current locations Xt = {xt
1, . . . , xt

N} and the low-
est locations XL = {xL

1, . . . , xL
N}, where xt

i and xL
i are

the current and lowest locations, respectively, of the ith
water stream.

2) The objective values f (xL
i ), i = 1, . . . , N.

3) An external population (EP), which is used to store
optimal solutions to the original problem found during
the search.

IV. ANALYSIS OF THE GLOBAL

CONVERGENCE OF THE SWA

The MOP in (3) can be transformed into a number of SOPs
with the form of (6) by using the Tchebycheff approach with
different weight vectors. Therefore, we show only that the
SWA is a global search algorithm for SOPs.

Algorithm 2: SWA
Input :
• N: the water stream size;
• K: the neighborhood size;
• p: the perturbation probability;
• MF: the maximum number of fluxions;
• The original problem (1);
• The decomposed problem (5).

Output: EP.
1 {Initialization:}
2 Uniformly generate N weight vectors {w1, w2, . . . , wN}.

Construct B(i) as the set of indices of the K closest
weight vectors to wi, and initialize EP= ∅. Randomly
sample N initial locations X0 = {x0

1, · · · , x0
N} from the

decision space, and set XL = X0.
3 for t← 1 to MF do
4 for i← 1 to N do
5 {Downstream Operator:}
6 Apply the downstream operator to xt

i to produce
the displacement pt

i via Algorithm 1 and obtain
the new location xD

i from Eq.(16).
7 {Penetration Operator:}
8 Let r3 be a random number from rand.
9 if r3 > 0.1 then

10 Generate the new solution xt+1
i via Eq.(17).

11 else
12 Generate the new solution xt+1

i via Eq.(19).
13 end
14 {Update the lowest location:}
15 foreach j ∈ B(i) do
16 if g(xt+1

i |wj) < g(xL
j |wj) then

17 xL
j = xt+1

i and h(xL
j ) = h(xt+1

i ).
18 end
19 end
20 end
21 {Update of EP:}
22 Remove from EP all individuals dominated by F(xL

j );
23 Add F(xL

j ) to EP if no vectors in EP dominate F(xL
j );

24 t = t + 1.
25 end

A. Overview of the Theoretical Results

Suppose that the global minimizer of the problem in (6) is
not isolated, that is, its sublevel set

Dβ = {x ∈ D | g(x|w) ≤ β} (20)

for β > minx∈D g(x|w) is a nonempty and compact set.
In [40] and [41], Solis and Wets have provided a criterion for
determining whether an algorithm is a global search algorithm
based on two assumptions and one theorem, as follows.

A1: g(H(z, ξ)|w) ≤ g(z|w) and if ξ ∈ D, then
g(H(z, ξ)|w) ≤ g(ξ |w), where H is a function that constructs
a solution to the problem. This assumption guarantees that
the newly constructed solution will be no worse than the
current one.



CHEUNG et al.: OBJECTIVE-DOMAIN DUAL DECOMPOSITION 929

A2: For any subset A of D with v(A) > 0, we have
∞∏

k=0

(1− μk(A)) = 0 (21)

where v(A) is the n-dimensional volume of the set A, μk(A) is
the probability of A being generated by μk, and μk is a prob-
ability measure. This assumption implies that for any subset
A of D with a positive v, the probability of repeatedly missing
the set A must be zero.

Theorem 3: Suppose that g is a measurable function and
that D is a measurable subset of Rn. If an algorithm satisfies
A1 and A2, then it converges to a globally optimal solution
with probability one.

B. SWA: Global Search Algorithm

In this section, we utilize the results of the paper [40] to
study the convergence characteristics of the SWA. The SWA
simulates the downstream movement and penetration of water
streams. More precisely, it proceeds through the following
processes:

XL
Down(Xt)−−−−−−−−> XD Penetrate−−−−−−−> Xt+1

Update−−−−−−> X
′L

where X
′L represents the new lowest locations of the water

streams.
Lemma 1: The SWA satisfies A1.
Proof: From the solution update in the SWA, we know that

the function H (as introduced in A1) is defined as follows:

H
(
δ
(
xt

i

)
, xt

i

) =
{

xt
i if g

(
δ
(
xt

i

)) ≥ g
(
xt

i

)

δ
(
xt

i

)
otherwise

(22)

where δ denotes the functions corresponding to the opera-
tors applied in the SWA as defined in (16), (17), and (19).
The above definition of H clearly complies with A1. From
Lemma 1, we know that the lowest locations of the water
streams are monotonically decreasing and bounded. Thus, the
algorithm is convergent.

Lemma 2: The SWA satisfies A2.
Proof: The penetration process of the SWA is a heuristic

search process. To satisfy A2, the union of the sample spaces
of the solutions must cover D, such that

D ⊆
N⋃

i=1

Mt
i (23)

where Mt
i is the support of the sample space of xD

i . There are
two different definitions for Mt

i .
1) For the solutions updated with (17), whose index set is

denoted by �1, the shape of Mt
i is defined as follows:

Mt
i = xD

i + λt
i ·�t

i (24)

where �t
i = xL

i − xD
i . Mt

i is a hyper-rectangle param-
eterized by λt

i, with one corner specified by λt
i = 0

and the other by λt
i = 0.1e−‖pt

i‖. For 0.1e−‖pt
i‖ · �t

i <

0.5diam(D), it is clear that v(Mt
i ∩ D) < v(D), where

diam(D) denotes the length of D. Since the SWA is con-
vergent, the length of Mt

i will tend toward 0 as t tends
toward infinity. Thus, v(∪i∈�1 Mt

i ∩ D) < v(D), i.e., Mt
i

cannot cover D for i ∈ �1.
2) For the solutions updated with (19), whose index set is

denoted by �2, it is clear that Mt
i = D for i ∈ �2.

In summary, we have D ⊆ ∪i∈�2 Mt
i ⊆ ∪N

i=1Mt
i , which

implies that the SWA satisfies A2.
Theorem 4: The SWA converges to a globally optimal

solution with probability one.
Proof: The SWA satisfies A1 and A2 by Lemmas 1 and 2.

According to Theorem 3, the SWA converges to a globally
optimal solution with probability one.

V. EXPERIMENTAL SIMULATIONS

A. Experimental Design

We conducted the following three experiments to evaluate
the performance of the proposed SWA.

1) Practical Application Problems: We compared the
proposed algorithm with two classical iterative algo-
rithms, i.e., the Lasso algorithm [42] and Xu’s algo-
rithm [43], on sparse regularization with the 
1-norm
and the 
(1/2)-norm, separately. The Lasso algorithm
proposed by R. Tibshirani has been widely used for reg-
ularization with the 
1-norm. An iterative algorithm for
regularization with the 
(1/2)-norm was proposed in [43].

2) SOPs: We applied the SWA to SOPs to evaluate its con-
vergence speed and precision. We compared the SWA
with the PSwarm1 [44] and EA [20] approaches on
several SOPs.

3) MOPs: Currently, various evolutionary multiobjective
algorithms have been presented for solving MOPs. We
chose MOEA/D and NSGA-II as baselines for our exper-
iments because MOEA/D is one of the most popular
decomposition-based EMO algorithms, while NSGA-II
is one of the most popular dominance-based EMO algo-
rithms. We compared the proposed SWA with MOEA/D
and NSGA-II and effectively verified the performance of
the SWA for solving MOPs.

B. Experiment 1

Sparse regularization is often used in practical applications
for variable selection and feature extraction. Given A ∈ Rl×n

and Y ∈ Rl as the vector of observations, the regularization
task can be formulated as follows:

min
x

F(x) = ‖Y − Ax‖22 + λ‖x‖p (25)

where λ > 0 is the regularization coefficient and x ∈ Rn is
a vector of unknowns. The regularization output is the sum
of the regression error ‖Y − Ax‖22 and the regularization term
‖x‖p. ‖x‖p is the 
p-norm of x, where p ≥ 0. When p ≤ 1,
regularization is known to produce sparse coefficients and may
identify irrelevant features. The regularization term is a non-
differentiable nonconvex function when p ≤ 1. Therefore, the
sparse regularization problem cannot be directly solved by
using differential-based optimization algorithms. Problem (25)
has an objective function that is a sum of two functions and
can be decomposed into the following MOP:

{
f1(x) = ‖Y − Ax‖22
f2(x) = ‖x‖p. (26)

This MOP can then solved by using the proposed SWA.
According to Theorem 1, the optimal solution to the original

1http://www.norg.uminho.pt.
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Fig. 3. Final population in the objective space of problem (26) with p = 0.5
obtained by the SWA on the first dataset.

problem given in (25) must be a Pareto-optimal solution to
the decomposed problem given in (26). We note that we need
not consider the regularization coefficient λ in the decomposed
problem.

We present the performance evaluations conducted using
variable selection as our example application [1], [42]. In this
paper, 100 datasets are considered. Each dataset consists of
100 observations sampled from the following linear model:

Y = Aβ + σε

where A = (a1, . . . , a8), β = (3, 1.5, 0, 0, 2, 0, 0, 0)T, σ = 3,
and ε is a random error drawn from the standard normal
distribution plus 30% outliers from the standard Cauchy dis-
tribution. ai (i = 1, . . . , 8) obeys a normal distribution, and
the correlation between ai and aj is ρ|i−j|, with ρ = 0.5. We
assume that −1 ≤ xi ≤ 5 for i = 1, . . . , 8 because x is an
estimate of β.

For Experiment 1, the parameters of the proposed SWA
were set as follows.

1) The water stream size is N = 50.
2) The neighborhood size for each water stream is K = 5.
3) The perturbation probability is p = 0.1.
4) MF = 50 and MF = 30 for regularization with the


1-norm and the 
(1/2)-norm, respectively.
When the absolute value of an element of x is smaller than

0.001, we consider it to be zero. We measure the sparsity of x
by the number of zero elements of x, denoted by Deg(x). Fig. 3
shows the distribution of the final solutions found by the SWA
for the optimization problem given in (26) with the 
(1/2)-norm
on the first dataset. It can be observed that the PF is piecewise
concave. The left part of the PF, with Deg(x) = 3, offers a high
reconstruction accuracy. The middle part, with Deg(x) = 2,
provides a balance between the accuracy and sparsity. The
Pareto-optimal solution corresponding to the right part, with
Deg(x) = 1, is sparse for the problem. Fig. 4 plots the final
solution found by the SWA for the optimization problem given
in (26) with the 
1-norm on the first dataset. There is no obvi-
ous border between Pareto-optimal solutions with different
sparsities.

The average accuracy, which is defined as the average num-
ber of correctly identified zero elements (CAN) over the 100
tests, is used to measure the performance. If all zero elements

Fig. 4. Final population in the objective space of problem (26) with p = 1
obtained by the SWA on the first dataset.

TABLE I
RESULTS OBTAINED BY XU’S ALGORITHM AND THE SWA

FOR 
(1/2)-NORM REGULARIZATION

TABLE II
RESULTS OBTAINED BY THE LASSO ALGORITHM AND

THE SWA FOR 
1-NORM REGULARIZATION

are correctly identified, the CAN value is 5 in this experi-
ment. That is, the maximum CAN value is 5. In addition, a
set of solutions is obtained by the SWA in a single run. Table I
lists the proportions of the solutions with different sparsities in
the population, except for minority solutions with Deg(x) > 3.
Table I also shows the CAN values achieved by Xu’s algorithm
and the SWA for regularization with the 
(1/2)-norm. It can
be observed that the CAN values for the majority of the solu-
tions obtained by the SWA are higher than the CAN for Xu’s
algorithm. This means that the SWA has a higher accuracy
than Xu’s algorithm. Table II shows the results obtained by
the Lasso algorithm and the SWA for regularization with the

1-norm. As shown in this table, the CAN values for the solu-
tions with Deg(x) = 2 and 3 obtained by the SWA are greater
than the CAN for the Lasso algorithm. These results show that
the SWA can more accurately identify the zero elements.

C. Experiment 2

Rastrigin’s function and Ackley’s function [20], each of
which is formulated as a sum of two functions, are two widely
used single-objective optimization test benchmarks. Therefore,
the following four test instances, that is, Rastrigin’s func-
tion (SF1), Ackley’s function (SF2), the rotated Rastrigin’s
function (SF3), and the rotated Ackley’s function (SF4), were
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TABLE III
BEST AND MEAN OBJECTIVE FUNCTION VALUES FOR THE BEST-SO-FAR SOLUTIONS OBTAINED BY THE SWA, EA,

AND PSWARM METHODS OVER 20 INDEPENDENT RUNS

used as the benchmarks in this experiment to evaluate the
performance of the proposed SWA.

SF1 (Rastrigin’s Function):

F(x) =
n∑

i=1

x2
i +

n∑

i=1

[10− 10 cos(2πxi)]

where −5.12 ≤ xi ≤ 5.12, i = 1, . . . , n. Its global minimum
value is 0 at x = (0, . . . , 0). It is a multimodal function and
has 10n local minima.

SF2 (Ackley’s Function):

F(x) = −20 exp

⎛

⎝−
√
√
√
√1

n

n∑

i=1

x2
i

⎞

⎠

− exp

(
1

n

n∑

i=1

cos(2πxi)

)

+ 20+ e

where −32 ≤ xi ≤ 32, i = 1, . . . , n. It has 64n locally optimal
solutions in the decision space. Its global minimum value is
also 0 at x = (0, . . . , 0).

In SF1 and SF2, the decision variables are separable and
can be solved for with n searches. Two rotated multimodal
problems, i.e., the rotated Rastrigin’s function and the rotated
Ackley’s function, are used to test the ability of the proposed
algorithm to solve problems with variable coupling.

SF3 (Rotated Rastrigin’s Function):

F(x) =
n∑

i=1

y2
i +

n∑

i=1

[
3− 3 cos(2πyi)

]
.

SF4 (Rotated Ackley’s Function):

F(x) = −20 exp

⎛

⎝−
√
√
√
√1

n

n∑

i=1

y2
i

⎞

⎠

− exp

(
1

n

n∑

i=1

cos(2πyi)

)

+ 20+ e.

where, yi = ∑n
j=1 mijxj, i = 1, . . . , n, and M = (mij)n×n is

an orthogonal matrix. The rotated functions cannot be solved
with only n searches because all dimensions of y will be
affected when one dimension of x is changed. The optimal

solutions to these functions are not affected by the orthogonal
rotation matrix. Thus, we have the other two corresponding
test instances.

These SOPs can be transformed into the following MOPs
via the proposed objective decomposition strategy:

SF1’:
{

f1(x) =∑n
i=1 x2

i
f2(x) =∑n

i=1 10− 10 cos(2πxi)

SF2’:
{

f1(x) = 1
n

∑n
i=1 x2

i
f2(x) =∑n

i=1 1− cos(2πxi)

SF3’:
{

f1(x) =∑n
i=1 y2

i
f2(x) =∑n

i=1 3− 3 cos(2πyi)

where yi =∑n
j=1 mijxj, i = 1, . . . , n.

SF4’:
{

f1(x) = 1
n

∑n
i=1 y2

i
f2(x) =∑n

i=1 1− cos(2πyi)

where yi =∑n
j=1 mijxj, i = 1, . . . , n.

Note that the optimal solutions to SF1–SF4 must be Pareto-
optimal solutions to the corresponding decomposed MOPs
SF1’–SF4’ according to Theorems 1 and 2. After this trans-
formation, the objectives are simplified; in particular, the
objectives of SF2 and SF4 are nondifferentiable, but each
objective of SF2’ and SF4’ is differentiable. The SWA was
independently executed 20 times on each transformed MOP.
The parameters of the SWA were the same as those used in
Experiment 1 except that the maximum number of fluxions
was set to MF = num_fun/N, where num_fun is the number
of function evaluations listed in Table III.

We compared the proposed SWA with two popular heuristic
algorithms, i.e., the EA proposed in [20] and PSwarm [44].
Both the EA and PSwarm were independently run 20 times
on each of the original SOPs SF1–SF4. Each of them was
stopped when a maximum number of function evaluations,
also listed in Table I, was reached in each run. For the EA,
the population size was set to 100, and the other control
parameters for the crossover and mutation operators were
the same as those used in [20]. For PSwarm, the particle
swarm size was set to 40, and the other parameters were set
to their default values. We used the code downloaded from
the website: http://www.norg.uminho.pt, to solve these test
instances.
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TABLE IV
MINIMUM (best) AND AVERAGE (mean) VALUES OF THE IGD METRIC ACHIEVED BY THE SWA, NSGA-II

AND MOEA/D IN 20 INDEPENDENT RUNS FOR EACH TEST INSTANCE

Fig. 5. Objective function values of the best-so-far solutions obtained by the
SWA, EA, and PSwarm methods versus num_fun for SF1 with n = 10.

The results are compared in Table III in terms of the best
and mean objective function values for the best-so-far solu-
tions over 20 independent runs. The results obtained by the
SWA are reported as the objective function values for the best-
so-far solutions according to the original objective function.
It can be seen from Table III that the SWA performs better
than the EA and PSwarm for all test instances considered thus
far. The SWA can find the optimal solution with fewer func-
tion evaluations. By contrast, the EA can find close-to-optimal
solutions with more generations, and PSwarm may converge
to a locally optimal solution.

Figs. 5–7 plot the objective values of the best-so-far solu-
tions obtained for SF1 by the three methods versus num_fun
with n = 10, 50, and 100, respectively. From these figures,
we can see that the convergence speed of the SWA is faster
than those of the EA and PSwarm.

D. Experiment 3

In Experiment 3, we compared the SWA with NSGA-II [45]
and MOEA/D [17] on multimodal MOPs. In NSGA-II and
MOEA/D, crossover and mutation operators with the same
control parameters as the ones used in [17] were used to gen-
erate new solutions. The other control parameters in MOEA/D,
i.e., T = 20 and δ = 0.9, were also the same as those used
in [17]. In both experiments, the neighborhood size in the

Fig. 6. Objective function values of the best-so-far solutions obtained by the
SWA, EA, and PSwarm methods versus num_fun for SF1 with n = 50.

Fig. 7. Objective function values of the best-so-far solutions obtained by the
SWA, EA, and PSwarm methods versus num_fun for SF1 with n = 100.

SWA was set to 5, while the perturbation probability was set
to 0.1.

In this experiment, five differentiable multiobjective test
instances, denoted by MF1–MF5, were constructed based on
DTLZ [17]

MF1 :

{
f1(x) = g(x)+ 1− x1
f2(x) = g(x)+ x1
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where g(x) = ∑n
i=2(x

2
i − 3 cos(10πxi) + 3) and x ∈ [0, 1] ×

[−1, 1]n−1

MF2 :

{
f1(x) = g(x)+ cos(0.5πx1)

f2(x) = g(x)+ sin(0.5πx1)

where g(x) and the decision space are the same as in MF1

MF3 :

{
f1(x) = g(x)+ 1− cos x1
f2(x) = g(x)+ 1− sin x1

where

g(x) = −20 exp

⎛

⎝−
√
√
√
√1+ 1

n

n∑

i=2

10x2
i

⎞

⎠

− exp

(
1

n

n∑

i=2

cos(20πxi)

)

+ 20e−1 + e

and x ∈ [0, 1]× [−1, 1]n−1

MF4 :

⎧
⎨

⎩

f1(x) = g(x)+ cos(0.5πx1) cos(0.5πx2)

f2(x) = g(x)+ cos(0.5πx1) sin(0.5πx2)

f3(x) = g(x)+ sin(0.5πx1)

where g(x) =∑n
i=3(x

2
i − 3 cos(10πxi)+ 3) and x ∈ [0, 1]2 ×

[−1, 1]n−2

MF5 :

⎧
⎨

⎩

f1(x) = g(x)+ (1− cos(0.5πx1))(1− cos(0.5πx2))

f2(x) = g(x)+ (1− cos(0.5πx1))(1− sin(0.5πx2))

f3(x) = g(x)+ (1− sin(0.5πx1))

where

g(x) = −20 exp

⎛

⎝−
√
√
√
√1+ 1

n

n∑

i=3

10x2
i

⎞

⎠

− exp

(
1

n

n∑

i=3

cos(20πxi)

)

+ 20e−1 + e

and x ∈ [0, 1]2 × [−1, 1]n−2. For MF1–MF3, the population
size N was set to 100, while N = 300 for MF4–MF5.

The IGD metric is used to evaluate the performance of the
algorithms in this paper. Let Q∗ be a set of points uniformly
distributed along the PF, and let Q be an approximation to the
PF obtained via a given algorithm. The IGD metric is defined
as the distance between Q∗ and Q

IGD
(
Q∗, Q

) =
∑

v∈Q∗ d(v, Q)

|Q∗|
where d(v, Q) is the minimum Euclidean distance from point
v to Q. Obviously, a smaller IGD value indicates better algo-
rithm performance. We uniformly selected 500 points for the
2-objective test instances and 1000 points for the 3-objective
test instances to construct the set Q∗ along the PF.

For all algorithms, 20 independent runs were executed for
each test instance. Table IV presents the best and mean IGD
values of the final solutions obtained by each algorithm for
each test instance. It can be seen that the SWA outperforms
the other algorithms on all test instances considered thus far.

VI. CONCLUSION

This paper has addressed the optimization problems with
partially differentiable objective functions. We have proposed

two decomposition schemes: 1) objective decomposition and
2) domain decomposition. In the former, the original objec-
tive function is decomposed into several relatively simple
subobjectives to isolate the differentiable part of the objec-
tive function, thereby formulating the original problem as an
MOP. In the latter scheme, the domain is decomposed into
two subdomains, i.e., the differentiable and nondifferentiable
domains, to isolate the nondifferentiable domain of a nondif-
ferentiable subobjective. Subsequently, we have proposed the
novel SWA, which combines deterministic search and heuristic
search in a single paradigm, resulting in fast convergence while
converging to a globally optimal solution with probability
one. Numerical simulations have shown that the SWA yields
promising results in comparison with its existing counterparts.
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