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Abstract—Class imbalance problem has been extensively
studied in the recent years, but imbalanced data clustering in
unsupervised environment, that is, the number of samples among
clusters is imbalanced, has yet to be well studied. This paper,
therefore, studies the imbalanced data clustering problem within
the framework of k-means-type competitive learning. We intro-
duce a new method called self-adaptive multiprototype-based
competitive learning (SMCL) for imbalanced clusters. It uses
multiple subclusters to represent each cluster with an automatic
adjustment of the number of subclusters. Then, the subclusters
are merged into the final clusters based on a novel separation
measure. We also propose a new internal clustering validation
measure to determine the number of final clusters during the
merging process for imbalanced clusters. The advantages of
SMCL are threefold: 1) it inherits the advantages of compet-
itive learning and meanwhile is applicable to the imbalanced
data clustering; 2) the self-adaptive multiprototype mechanism
uses a proper number of subclusters to represent each cluster
with any arbitrary shape; and 3) it automatically determines the
number of clusters for imbalanced clusters. SMCL is compared
with the existing counterparts for imbalanced clustering on the
synthetic and real datasets. The experimental results show the
efficacy of SMCL for imbalanced clusters.

Index Terms—Class imbalance learning, competitive learn-
ing, data clustering, internal validation measure, k-means-type
algorithm, multiprototype clustering.

I. INTRODUCTION

THE IMBALANCED data means that the number of data
points in one class is significantly more than the num-

ber of data points in another class. Thus far, the majority
of studies on imbalanced data learning in the literature are
conducted in the manner of supervised learning, for example,

Manuscript received January 21, 2019; revised March 28, 2019; accepted
May 7, 2019. Date of publication May 29, 2019; date of current ver-
sion February 17, 2021. This work was supported in part by the National
Natural Science Foundation of China under Grant 61672444 and Grant
61272366, in part by the Faculty Research Grant of Hong Kong Baptist
University (HKBU) under Project FRG2/17-18/082, in part by KTO Grant
of HKBU under Project MPCF-004-2017/18, and in part by SZSTI under
Grant JCYJ20160531194006833. This paper was recommended by Associate
Editor N. Zhang. (Corresponding author: Yiu-Ming Cheung.)

Y. Lu and Y.-M. Cheung are with the Department of Computer
Science, Hong Kong Baptist University, Hong Kong (e-mail:
yanglu@comp.hkbu.edu.hk; ymc@comp.hkbu.edu.hk).

Y. Y. Tang is with the Department of Computer and Information Science,
Faculty of Science and Technology, University of Macau, Macau 999078,
China (e-mail: yytang@umac.mo).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2019.2916196

binary classification [1], [2]. However, the label information
is usually unavailable in many real-world applications, for
example, bioinformatics [3], medical imaging [4], marketing
research [5], crime analysis [6], and so on. For example, in
social network analysis [7], user grouping can be utilized for
quick searching of special groups with abnormal behavioral
intention. This task is a clustering problem on imbalanced data
because the labels of abnormal behaviors are difficult to be
previously defined and the size of the special groups are gen-
erally much smaller than the one of the normal groups. For the
imbalanced clustering problem, majority clusters refer to the
clusters that contain much more data points than the minor-
ity clusters. For the problem of classification on imbalanced
data, the label information is known so that the sampling-based
and cost-sensitive methods [1] can be adopted to alleviate
the performance deterioration caused by imbalance. Clustering
on imbalanced data is a totally different and more challeng-
ing problem. Its difficulty is basically on two aspects: 1) the
imbalance status, that is, the number of minority clusters and
the imbalance ratio, is unknown and 2) it is more difficult
to determine the number of clusters for imbalanced data. A
common clustering result on imbalanced clusters is that the
minority cluster is either merged into the majority cluster as
one cluster or treated as noises and outliers. As far as we
know, imbalanced data clustering has yet to be well studied
in the literature.

In terms of clustering, k-means is one of the most well-
known methods in the framework of competitive learning [8].
Thus far, it, as well as its variants, has been widely used in
both academia and industry [9]–[12]. The adaptive version of
k-means is to update the seed points, that is, those data points
learnable toward the center of clusters in the input space, after
each data point comes. That is, at each time step, the winner,
that is, the winning seed point, is selected by choosing the seed
point with the minimum distance to the coming data point and
is updated by moving toward it. However, despite the success
of the adaptive k-means in its application domain, it suffers
from the problem that a seed point has no chance to win if it
is initialized far away from the region of the input data. It is
called the dead-unit problem [13]. Frequency sensitive compet-
itive learning (FSCL), as a k-means-type algorithm, improves
adaptive k-means by adding a frequency weight to the distance
so that the seed point that wins less frequently in the past
will have more chance to win in the future [13]. Rival penal-
ized competitive learning (RPCL) further improves FSCL by
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(a) (b) (c)

Fig. 1. Example of two imbalanced clusters with size clustered [2000, 100].
(a) Ground truth, (b) clustering result of adaptive k-means with two seed
points, and (c) clustering result of adaptive k-means with six seed points.

introducing the heuristic rival penalization mechanism to make
the rival seed point move to the opposite direction along the
data point [14]. Consequently, the seed points sharing the same
cluster will be pushed away until that there is only one seed
point left for each cluster. Thus, the number of clusters can
be determined by eliminating the seed points that are pushed
away. Due to the simplicity and efficiency of RPCL, a num-
ber of improvements and variations of RPCL have been further
proposed [15]–[19]. In particular, paper [20] has presented a
maximum weighted likelihood (MWL) learning framework to
describe such rival penalization mechanism from a theoretical
viewpoint.

Besides these efforts, recent studies have also shown that
k-means tends to produce balanced clustering result [21]. This
preference seriously deteriorates the performance of k-means
when the clusters are imbalanced. The consequence is that the
seed point of the minority cluster will gradually move to ter-
ritory of the majority cluster. Finally, nearly half of the data
points in the majority cluster will be classified into the minor-
ity cluster. This is called uniform effect [21]. As an online
version of original k-means, adaptive k-means also suffers
from uniform effect as shown in Fig. 1(b). Nevertheless, uni-
form effect does not always happen to adaptive k-means when
the data is imbalanced. At each iteration, the only information
that adaptive k-means keeps is the current position of the seed
points and the cluster assignment is not related to the imbal-
ance status of the past data points. Therefore, if the clusters
are well separated, data imbalance will not affect the cluster-
ing performance. By contrast, RPCL, as well as FSCL, records
the past winning frequency which reflects the imbalance status
of the clusters, in addition to the positions of the seed point.
Subsequently, even the clusters are well separated, the seed
point of the minority cluster has more chance to win the data
points in the majority cluster due to its low winning frequency
in the past. Therefore, uniform effect becomes more serious if
frequency weights are used. Besides, when the data is imbal-
anced, RPCL and its variants fail to automatically select the
number of clusters by rival penalization. Instead, either the
majority cluster is shared by several seed points or the minor-
ity cluster is treated as a part of the majority cluster by pushing
away the seed point of the minority cluster.

To deal with class imbalance, the most common approaches
are sampling on the data or assigning different weights to
different classes. However, they are designed for supervised
learning problems only and not applicable to clustering on
imbalanced clusters. In fact, no matter which kinds of methods

are adopted for class imbalance problem, acquiring the label is
prerequisite. In the literature, focusing on the imbalanced data
clustering problem, Liang et al. [22] has proposed a multipro-
totype clustering algorithm for imbalanced data clusters. It is
based on the fuzzy k-means with a multiprototype mechanism
to deal with uniform effect. Given the number of prototypes,
the algorithm can locate the position of prototypes properly to
the imbalanced clusters, such that the majority clusters receive
more prototypes and the minority cluster receives less. After
that the algorithm merges the subclusters represented by the
prototypes to form the final clusters. However, one of the major
drawbacks of this algorithm is that the number of prototypes
is a user-defined parameter. This algorithm fails if the number
of clusters of the imbalanced data is more than the predefined
number of prototypes. Besides, the number of clusters in the
merging process is selected manually.

To solve the aforementioned problems, we, therefore, pro-
pose self-adaptive multiprototype-based competitive learning
(SMCL) to keep the advantages of the competitive learn-
ing methods and avoid problems caused by imbalanced data.
To tackle the uniform effect, SMCL adopts the multiproto-
type clustering mechanism. Each cluster is represented by
one or more subclusters. Thus, the majority cluster contains
more subclusters and the minority cluster contains less sub-
clusters. By applying competitive learning among subclusters,
the number of samples in each subclusters is relatively bal-
anced, and uniform effect does not happen to the subclusters,
as shown in Fig. 1(c). Since a proper number of subclusters
depends on the data structure, in order to produce a proper
number of subclusters, SMCL adopts a self-adaptive way that
incrementally adds new seed points until one seed point is
driven away by the rival penalization mechanism. At that
moment, the clusters are well represented by enough number
of seed points. Then, SMCL utilizes 1-d binary Gaussian mix-
ture probability density function to measure the separability
between each subcluster and gradually merge the subclus-
ters with low separation measure. During the merging stage,
a new internal clustering validation measurement is used to
evaluate the clustering quality and determine the number of
clusters. Experiments on synthetic and real benchmark datasets
have shown that SMCL produces better clustering results for
imbalanced data. The contribution of this paper is summarized
as follows.

1) This paper systematically studies the performance of k-
means-type competitive learning methods on imbalanced
data clustering.

2) A novel k-means-type method SMCL is proposed for
imbalanced data clustering.

3) A new separation measure based on 1-d binary Gaussian
probability density function is proposed for subcluster
merging.

4) An internal clustering validation measure to select the
proper number of clusters is proposed for imbalanced
data.

The remainder of this paper is organized as follows.
Section II presents an overview of the related work and dis-
cusses the problems when clustering on imbalanced data.
The proposed SMCL is described in detail in Section III.
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Section IV shows the experimental results with some discus-
sions. Finally, a conclusion is drawn in Section V.

II. OVERVIEW OF RELATED WORK

This section briefly reviews the k-means-type competitive
learning methods, the imbalance classification methods, the
nonlinear clustering methods, and the imbalance clustering
methods, respectively.

A. k-Means-Type Competitive Learning

Adaptive k-means is the simplest competitive learning
method [8], [23]. Suppose the data point coming at time t is
xt and there are K seed points: m1, m2, . . . , mK to represent
the centroids of K clusters. Accordingly, the values of mj’s
at time t are denoted as: m1(t), . . . , mK(t). For simplicity, we
will hereinafter utilize mj’s and mj(t)’s interchangeably with-
out further distinction. When xt arrives, the winner seed point
is selected by the following indicator function:

Ij,xt =
{

1 if j = c = arg min1≤i≤K

(‖mi − xt‖2
)

0 otherwise
(1)

where the cth seed point, that is, the winner, has the mini-
mum distance to xt. Then, the winner seed point is updated
by moving toward xt controlled by a small learning rate αc

mj(t + 1) =
{

mj(t)+ αc
(
xt −mj(t)

)
if Ij,xt = 1

mj(t) otherwise
(2)

for j = 1, . . . , K. To overcome the dead-unit problem
that some seed points may never win, FSCL [13] uses
the frequency weighted distance to determine the winner
indicator [13]

Ij,xt =
{

1 if j = c = arg min1≤i≤K

(
γi‖mi − xt‖2

)
0 otherwise

(3)

where γi = ni/
∑K

l=1 nl is the frequency weight and ni is the
cumulative number of winning times of mi. The seed point
updating remains the same as (2). By adopting this frequency
weight, the seed point that barely wins in the past gains more
chance to win in the future. Furthermore, RPCL [14] improves
FSCL to make the number of clusters can be determined auto-
matically by utilizing the rival penalization mechanism. In
addition to updating the winner seed point, RPCL updates the
rival seed point toward the opposite direction. The rival seed
point is selected as the second closest one to xt

Ij,xt =
⎧⎨
⎩

1 if j = c = arg min1≤l≤K

(
γl‖ml − xt‖2

)
−1 if j = r = arg min1≤l≤K,l �=c

(
γl‖ml − xt‖2

)
0 otherwise

(4)

and the seed points are updated by

mj(t + 1) =
⎧⎨
⎩

mj(t)+ αc
(
xt −mj(t)

)
if Ij,xt = 1

mj(t)− αr
(
xt −mj(t)

)
if Ij,xt = −1

mj(t) otherwise
(5)

for j = 1, . . . , K. αr is the delearning rate for the rivals, which
is generally smaller than the learning rate αc. By driving the
rival seed point away, each cluster will not be shared by two

or more seed points. Therefore, the number of clusters can
be determined automatically by counting the remaining seed
points [14]. RPCCL [16] further improves RPCL by making
the rival penalization self-adaptable. According to the positions
of the incoming data point, winner seed point, and rival seed
point, RPCCL determines

αr = αc
min(‖mr −mc‖, ‖xt −mc‖)

‖mr −mc‖ . (6)

Thus, RPCCL only needs one parameter, that is, the learn-
ing rate αc. The value of rival penalization is reduced if
xt is closer to mc than mr. It overcomes the drawback of
RPCL that an appropriate value of αr is hard to be chosen.
Further, rival penalized expectation–maximization (RPEM)
makes the clustering components in a density mixture com-
pete with each other, and the rivals intrinsically penalized
with a dynamic control during the learning [20]. Thus, the
number of clustering components, that is, the number of
clusters, can be determined with the redundant densities
gradually faded out automatically from the density mix-
ture. Ma and Wang [17] used a cost-function approach to
solve the convergence problem of RPCL. Based on the
theoretical analysis, they propose distance-sensitive RPCL
(DSRPCL). It aims to minimize a specifically designed cost
function for RPCL to make it theoretically sound. Competitive
repetition-suppression (CoRe) [18] is inspired by biological
phenomenon. It improves RPCL by allowing multiple win-
ners existing in each clustering iteration. It uses a gradient
descent strategy to update the positions of the seed point and
the spread in terms of a Gaussian function. For the datasets
that are not linearly separable, stochastic competitive learn-
ing (SCL) [24] and graph-based multiprototype competitive
learning (GMPCL) [25] utilize kNN to construct the neigh-
borhood graph before carrying on competitive learning. SCL
is a stochastic competitive learning model. The seed points try
to occupy the nodes in the network by random walking and
defending their territory from rival seed points at the same
time. Finally, the dominance of each node is determined by
the visiting frequency of the seed points. GMPCL first selects
a portion of data points as the core points, according to their
connectivity in the graph, to produce coarse clusters. Then, it
applies affinity propagation and competitive learning to refine
the coarse clusters on all data points. Moreover, the competi-
tive learning is integrated with cooperative learning [26], [27].
The winner seed point is assigned a confidence coefficient
based on its past winning frequency. The winner seed point
with high confidence coefficient will cooperate more and
penalize less the nearby seed points. Finally, the seed points
in the same cluster will merge together so that the number of
clusters is selected. Its kernel version can also handle nonlin-
early separable data. However, none of the above-mentioned
methods consider the situation of imbalanced data clustering.

B. Nonlinear Clustering

Some advanced k-means-type clustering meth-
ods [22], [25], [28] can produce nonspherical clusters
by merging subclusters. In contrast, the nonlinear cluster-
ing methods can directly generate clusters with arbitrary
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shapes. Kernel-based clustering methods map the data into
a high-dimensional space, that is, the kernel space, where
the projected points can be linearly clustered [29]. Support
vector clustering (SVC) brings the framework of SVM [30].
In the mapped high-dimensional space, SVC looks for the
smallest sphere that encloses the data points for each cluster.
As an improvement to tackle the parameter selection problem
of SVC, position regularized SVC (PSVC) [31] weighs each
data point by its position as a regularizer, based on the
distance between each data point and the mean of all points
in the kernel space. Another family of nonlinear clustering
is the spectral clustering methods [32], which construct a
weighted graph between all data points as their similarity
and then use eigendecomposition to obtain the clustering
result. The graph can also be used for subspace clustering
with low-rank representation [33]–[35]. In addition to these
two categories, density peak clustering (DPC) [36] assumes
that cluster centers with density peaks are surrounded by
neighbors with lower local density and that they are at a
relatively large distance from any points with a higher local
density. DPC is able to efficiently produce nonspherical
clusters and automatically exclude the outliers. Recently,
CHKNN [37] utilizes hybrid k-nearest neighbor graph to
represent the nonlinear data with a new internal validity
index. In CCMS [38], a new metric called attraction degree
is introduced to describe the data density difference. Then,
a rule is designed upon the density difference to move the
data points and construct the clusters. Although nonlinear
clustering methods are well designed to deal with clusters
with an arbitrary shape, they are unaware of the imbalanced
clusters, thus easily grouping the minority cluster into other
clusters or treating it as an outlier.

C. Imbalance Classification

Most of the existing work of imbalanced data learning is
within the framework of supervised learning. They can be basi-
cally categorized into three groups [39]. The first group is on
data level. The methods in this group aim to balance the data
before training. The most well-known methods in this group
are synthetic minority over-sampling technique (SMOTE) [40]
and its variances. SMOTE synthesizes new samples to the
minority class by interpolating the minority class samples with
their neighbors. In addition to oversampling, undersampling
techniques have also been used in data preprocessing. For
example, Batista et al. [41] adopted Tomek links to clean
the overlapping area between classes so that the classification
boundary becomes clear after introducing synthetic samples.
Sampling methods are usually integrated with ensemble meth-
ods to increase the diversity and avoid information loss [42].
The second group is on algorithm level. They modify the exist-
ing learning methods by adapting them to the imbalanced data.
For example, Hong et al. [43] modified the kernel classifiers by
orthogonal forward selection to optimize the model general-
ization for imbalanced datasets. Raskutti and Kowalczyk [44]
have proposed to use one-class SVM that is only trained with
the minority class samples. Therefore, the classification hyper-
plane is not influenced by minimizing the margin error of the

(a) (b) (c) (d)

Fig. 2. Example of two well-separated imbalanced clusters conducted by (a)
adaptive k-means with αc = 0.01, (b) FSCL with αc = 0.01, (c) RPCL with
αc = 0.01 and αr = 0.0001, and (d) RPCCL with αc = 0.0001. The initial
positions of the seed points are set at the true cluster centers.

majority class. The last group is related to the framework of
cost-sensitive learning [45]. They assign different costs to the
samples in difference classes. The idea of cost-sensitive can
also be applied to many existing algorithms to adapt them
to deal with class imbalance, such as decision tree [46] and
SVM [47].

D. Imbalance Clustering

Few papers have studied the clustering problem on imbal-
anced data. In the literature, Xiong et al. [21] have defined the
uniform effect by investigating the performance of k-means on
imbalanced data. They proposed to use the evaluation metric
coefficient of variance (CV) to evaluate the performance of
clustering methods on imbalanced dataset. To make k-means
resist from uniform effect, Liang et al. have proposed an
algorithm with three stages to cluster imbalanced data [22]
based on fuzzy k-means clustering [48]. However, the num-
ber of prototypes is predefined that cannot adapt to the data,
and the selection of the number of clusters needs to inspect
the knee point manually from the plot. An extension of [22]
is [49] which adopts ensemble clustering to tackle the problem
that fuzzy k-means cannot recognize arbitrarily shaped clus-
ters. However, the imbalanced clusters are not considered.
Multiexemplar merging clustering (MEMC) [50] improves
multiexemplar affinity propagation [28] for imbalanced data.
MEMC merges the exemplars in the same cluster by measur-
ing the overlapping degree between each cluster. However, the
number of clusters must be preassigned to stop the merging
process. In [51], the probability models are selected to suit
the imbalanced clusters and the parameters of the models are
estimated by evolutionary computation. Yang and Jiang [52]
transplanted the ensemble algorithms from supervised class
imbalanced problem to imbalanced data clustering. They
combined bagging and boosting to produce consolidated clus-
tering result by a novel consensus function. Furthermore,
Aksoylar et al. [53] adopted spectral clustering on imbalanced
data. They proposed to deal with imbalanced data by minimiz-
ing cut partitions which yield a set of parameter-dependent
cuts according to the different levels of imbalance degree.
In summary, clustering on imbalanced data is a challenging
problem that has been receiving increasing interests in recent
years, but has yet to be well studied, as far as we know.

III. PROPOSED METHOD

When the data is imbalanced, the competitive learning
methods encounter two major problems. The first is that the
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frequency weight makes the uniform effect more serious.
Fig. 2 shows an example when the two clusters are imbalanced
but well separated. Under this situation, adaptive k-means can
avoid uniform effect and produces good clustering result if
the initial seed points are set at the positions of the true clus-
ter centers, as shown in Fig. 2(a). However, the frequency
weight of FSCL and RPCL makes the seed point in the minor-
ity cluster have a larger chance to win the data point with
nearly the same distance to both seed points, as shown in
Fig. 2(b) and (c). As the frequency weight is multiplied to the
distance as shown in (3) and (4), it makes the seed point in the
minority cluster move toward the majority cluster, whose phe-
nomenon is, namely the uniform effect. The second problem is
that the selection of number of clusters by RPCL fails when the
data clusters are imbalanced. In spite of RPCL or RPCCL, the
original design of their model selection mechanism is based
on the assumption that the clusters are balanced. Under this
assumption, the rival penalization between clusters are bal-
anced to keep the correct number of seed points left. For
example, the rival penalization of RPCCL is usually larger
than the one of RPCL because it equals to the learning rate
if ‖mr − mc‖ < ‖xt − mc‖. This strong rival penalization
works well when the clusters are balanced because the rival
penalization counteracts between clusters. However for imbal-
anced clusters, the penalization from the majority cluster is
too strong to keep the seed point staying in the region of the
minority cluster. The result of RPCCL shown in Fig. 2(d) is
even worse. All of the samples are grouped into one cluster
due to the class imbalanced number of samples in the clusters.

To solve the aforementioned problems, the proposed method
SMCL consists of two stages.

1) In the first stage, the subalgorithm prototype number
selection (PNS) automatically selects a proper number
of seed points to represent the data by the multiprototype
clustering mechanism. Each cluster is represented by one
or more subclusters by competitive learning among sub-
clusters. PNS starts from a few seed points and gradually
increases their number in a self-adaptive manner.

2) In the second stage, the subalgorithm subcluster group-
ing with model selection (SGMS) gradually merges the
subclusters produced by PNS and the final number of
clusters is determined during this process. We propose
a new 1-d binary Gaussian mixture probability den-
sity function to measure the global separability between
subclusters.

The details of these two stages are described in the following
sections.

A. Selection of Number of Prototypes

To solve uniform effect, one solution is to use the idea
of multiprototype [22], [54], [55]. Each cluster can be rep-
resented by more than one seed point (also called prototype
interchangeably) and made up by multiple subclusters. For
imbalanced data, the majority cluster tends to have more seed
points and the minority cluster has less. Therefore, the num-
ber of data points in each subcluster is relatively balanced and
the uniform effect does not happen among the subclusters as

(b)(a)

Fig. 3. Example of four imbalanced clusters with size [61, 1212, 606, 121].
The clustering result is generated by adaptive k-means with (a) 6 seed points
and (b) 30 seed points.

shown in Fig. 1(c). However, a key problem related to mul-
tiprototype is that how many prototypes are needed to well
represent the entire dataset. The proper number of subclusters
should depend on the data structure. The existing multiproto-
type methods (see [22], [54], [55]) simply use a predefined
number of prototypes. The problem of this strategy is that
if the given number of prototypes is too small as shown in
Fig. 3(a), uniform effect still happens between the minority
subcluster and the majority subcluster. Conversely, if the given
number of prototypes is too large as shown in Fig. 3(b), the
subclusters may be located in the overlapping area between
clusters, and noises and outliers would be treated as subclus-
ters as well. Moreover, if the number of prototypes is less
than the number of clusters, the clustering result will never be
correct. Therefore, we propose PNS to determine the number
of seed points in a self-adaptive manner. The seed points are
gradually added by the algorithm until one seed point is driven
away by the rival penalization mechanism.

Specifically, given the initial number of seed points K = K0,
a modified RPCCL is carried on. That is, the winner seed point
is selected by

Ij,xt =
{

1 if j = arg min1≤i≤K

(‖mi − xt‖2
)

0 otherwise.
(7)

The frequency term γj is removed here to reduce the uniform
effect. In terms of the dead unit problem, it can be alterna-
tively solved by randomly selecting the data points as the
initial seed points [17]. PNS stops when one seed point is
driven away, which is supposed to be one of the seed points
in the majority cluster. The reason is that if the seed point in
the minority cluster is driven away, another seed point from
the majority cluster will move toward the minority cluster.
That seed point may stay at the position between the major-
ity and minority cluster, that is, uniform effect happens again.
The rival penalization term (6) in RPCCL is not able to dis-
tinguish these cases. Therefore, we propose to utilize the rival
penalization coefficient βj to differentiate the rival penalization
of the within-cluster subclusters and between-cluster subclus-
ters. First, all seed points except the winner are marked as
the rivals. Different rival penalization values are then assigned
based on the position of the winner, the rivals, and xt

mj(t + 1) =
{

mj(t)+ αc
(
xt −mj(t)

)
if Ij,xt = 1

mj(t)− ηβjαc
(
xt −mj(t)

)
otherwise

(8)
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Fig. 4. Example of two imbalanced classes with four seed points. mc is
the winner of xt . mr1 , mr2 , and mr3 are three rivals. The majority cluster
(in blue) is shared by three seed points and the minority cluster (in red) is
represented by one seed point. The thickness of the arrow indicates the value
of βj.

where

βj = exp

(
−‖mj − xt‖2 − ‖mc − xt‖2

‖mc −mj‖2
)

(9)

and mc is the winner seed point. βj makes the rival penaliza-
tion large if xt is close to the middle line between mj and mc

because the points are more dense if they are between two
seed points in the same cluster. The points close to the gap
between two different clusters are less frequently appeared so
that the rival penalization between clusters is smaller. Thus,
the within-cluster rival penalization will be larger than the
between-cluster rival penalization. When there are enough
number of seed points added, the first priority is to drive one
of the seed points in the majority cluster away. As shown in
Fig. 4, mr1 gets larger βj than mr2 and mr3 because xt is close
to the middle line between mr1 and mc. The additional term η

is used to decrease the magnitude of rival penalization. There
are two reasons behind. The first is that the rival penalization
is applied on all seed points except the winner. Each seed point
gets more times of penalization than RPCCL, in which only
the seed point with the second minimum distance to xt get
penalized. Another reason is to make PNS not stop quickly
such that each cluster has yet to be well represented.

If the modified RPCCL converges and there is no seed point
driven away, one new seed point is added. The position of the
new seed point is selected by duplicating one of the existing
seed points. The selection criterion is based on two factors.
The first is the number of winning times nj. The larger sub-
cluster that wins most frequently is split first. The second is the
maximal density gap δj. If a subcluster consists of two or more
density peaks, it is probably made up of data points from two
or more clusters. To calculate δj, we first calculate the local
density ρ

j
i for each cluster member xi in the jth subcluster Cj

by ε-ball graph [36]

ρ
j
i =

∑
i′∈Cj

�d(xi, xi′) < ε� (10)

where �·� is the indicator function which returns 1 if the state-
ment is true and 0 otherwise, and d(·, ·) is the Euclidean
distance between two points. The suggested value of ε is by
making the averaged number of neighbors equal to 2% of the
total number of data points [36]. The density gap of Cj is
calculated by

δj = max
i∈Cj

min
i′∈Cj:ρi′>ρi

d(xi, xi′)

d̄j
. (11)

(b)(a)

Fig. 5. Two subclusters with (a) density gap and (b) no obvious density gap.
The red diamond point is the density peak with the highest local density and
the green circle point is the density peak that it has the largest distance to the
point with higher local density. ρi is the local density.

The minimization taken in (11) calculates the minimum dis-
tance between the member xi and any other member with
higher local density. Thus, if there are more than two density
peaks far from each other in the same subcluster, the peak
with the second highest local density gains large value from
the minimization. δj is selected as the maximum of such mini-
mum distances among all members. d̄j is the averaged pairwise
distance of the all cluster members in the Cj. The pairwise dis-
tance in Cj is divided by its d̄j to make it comparable with other
subclusters. Fig. 5 shows the positions of the density peaks.
The maximal density gap δj is 1.41 for Fig. 5(a) and = 0.72
for Fig. 5(b). Thus, the case in Fig. 5(a) has higher priority to
be selected as the subcluster to add new seed point. In sum-
mary, the new subcluster to be split by the new seed point is
selected by

j∗ = arg max
j=1,...,K

njδj. (12)

As the number of seed points K is increasing, the aver-
aged number of winning times N/K for each seed point is
decreasing. Thus, the moving magnitude of the seed points
is decreasing as more seed points are added. To avoid the
algorithm terminating due to this reason, the learning rate αc

is amplified by the number of seed points. Equation (8) is
updated by

mj(t + 1) =
{

mj(t)+ Kαc
(
xt −mj(t)

)
if Ij,xt = 1

mj(t)− Kηβjαc
(
xt −mj(t)

)
otherwise.

(13)

Thus, the learning rate is proportional to the number of sub-
clusters K to counteract the influence from the decreasing
number of winning times.

The algorithm PNS is summarized in Algorithm 1. The win-
ner seed point selection and updating is shown in line 7. The
rival seed point updating is shown in line 8. After a single
epoch that iterates all N data points, lines 11–27 show how to
add new seed points. The convergence condition is shown in
line 11. Traditionally, the sum of the distance between the new
and old position of all seed points are calculated. However, if
the number of seed points is increasing, this sum will be larger
as K increases. Therefore, we take the maximal to determine
if the seed points are converging. In lines 13–17, if the win-
ner frequency of a seed point is less than θ , it is treated as
the one that is driven away by rival penalization. Those seed
points are deleted and the algorithm terminates as shown in
lines 19–21. If no seed point is driven away, a new seed point
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Algorithm 1 PNS
Input: D = {x1, . . . , xN}, αc, η, K0, E, θ , ξ .

1: Initialize the seed point set M by randomly selecting K0
data points from D;

2: Initialize termination flag:
flag← 0;

3: mold
j ← 0, j = 1, . . . , K0;

4: K = K0;
5: for e← 1 to E do
6: nj ← 0, j = 1, . . . , K;
7: for t← 1 to N do
8: Update the winner seed point:

c← arg minj(‖mj − xt‖2);
mc ← mc + Kαc(xt −mc);
nc ← nc + 1;

9: Update each rival seed point:
mj ← mj − Kηβjαc(xt −mj), ∀j �= c;

10: end for
11: if maxj(‖mj −mold

j ‖2) < ξ then
12: for j← 1 to K do
13: if nj < θ then
14: Delete mj, nj;
15: K ← K − 1;
16: flag← 1;
17: end if
18: end for
19: if flag = 1 then
20: Return M;
21: else
22: Select the subcluster to add new seed point:

j∗ ← arg maxj=1,...,K njδj;
23: K ← K + 1;
24: mK ← mj∗ ;
25: end if
26: mold

j ← mj, j = 1, . . . , K;
27: end if
28: end for
29: K̂ = K;
Output: K̂, seed point set M = {m1, . . . , mK̂}

is added to the seed point set M as shown in lines 22–24.
Finally, the old position of seed points are recorded by mold

j .
When the algorithm finishes, the final number of seed points
K̂ and the seed point set M are produced. The computational
cost of PNS algorithm is O(E∗K̂N + N2/K̂), where E∗ is the
number of epochs used before termination.

B. Subcluster Grouping With Model Selection

Once PNS terminates when at least one seed points are
driven away, the number of remaining seed points K̂ is used to
represent the data, namely, K̂ subclusters. We propose the sec-
ond subalgorithm SGMS to merge the subclusters and select
the number of clusters at the same time. The objective of
SGMS is to merge the subclusters in the same cluster first.
At each iteration, SGMS merge one subcluster with another

subcluster to form a new subcluster. The merging process pro-
duces K̂−1 intermediate clustering results. The best clustering
result is then selected from them by a new internal validation
clustering measure.

The subclusters with low separation measure should be
merged first because they are probably in the same cluster.
There are some existing methods to measure the separation
between subclusters. In [54], the data points are projected and
represented by histogram and bins. The measure is then cal-
culated by checking the number of samples in the bins. One
of the drawbacks of using this method is that the number of
used bins influences the measure result. In [22], the separa-
tion measure is calculated by the overlapping degree between
two subclusters. However, it fails if the low density region
between two subclusters is not close to the middle line of two
centers. Therefore, to overcome the problems, we propose to
use 1-d binary Gaussian mixture probability density function
to calculate the separation measure. Denote sij as the separa-
tion measure between Ci and Cj. Their cluster members x’s are
first projected into the line between μi and μj [54]

x′ =
(
x− μ0

)T(
μi − μj

)
‖μi − μj‖2

(14)

where μi and μj are the centers of Ci and Cj, and μ0 = (μi+
μj)/2 is the middle point between two centers. The projected
members are 1-D points. The centers μi and μi are projected
to the position −0.5 and 0.5, respectively. Thus, we can obtain
two sets of 1-D points by projecting the cluster members from
Ci and Cj. The mean and variance of the projected points, μi,
μj, σ 2

i , and σ 2
j can then be calculated. Therefore, the binary

Gaussian mixture probability density function is written as

f (u) = |Ci|
|Ci| + |Cj|p

(
ui|0.5, σ 2

i

)

+ |Ci|
|Ci| + |Cj|p

(
uj| − 0.5, σ 2

j

)
(15)

where |Ci| is the size of Ci. Then, we use an interval with step
0.01 from −0.5 to 0.5 A = {−0.5,−0.49, . . . , 0.49, 0.5} to
calculate the discrete probability densities f (A). The separa-
tion sij is then calculated by

sij = 1

min f (A)
. (16)

If two subclusters are well-separated, min f (A) is close to 0
and sij is large as shown in Fig. 6(a). If two subclusters are
close to each other, the probability density of the overlapping
area is high and sij is low as shown in Fig. 6(b). Thus, higher
value of sij indicates higher separability of Ci and Cj. As shown
in Fig. 6, sij for Fig. 6(a) is 13.37 and sij for Fig. 6(b) is 2.86.
By using the 1-d binary Gaussian mixture probability density
function, the problem of bin size in [54] is avoided. In addition,
the low density region between two subclusters can be any
position between the subcluster centers because SGMS locates
the region by the minimum position in the mixture probability
density function.

After obtaining the separation measure of each pair of sub-
clusters, we merge them according to the value of sij. We adopt
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Algorithm 2 SGMS

Input: D = {x1, . . . , xN}, M, K̂, κ .
1: Assign cluster membership of data points in D to subclus-

ters {C1, . . . , CK̂} by minimum distance with seed points
in M.

2: for i← 1 to K̂ do
3: for j← i+ 1 to K̂ do
4: Calculate pairwise separation sij by (16);
5: end for
6: end for
7: for K ← 1 to K̂ do
8: GK ← {CK}
9: end for

10: GK̂ ← {G1, . . . , GK̂};
11: for K ← K̂ to 2 do
12: Select Gi, Gj and calculate comK−1 by (17);
13: GK−1 ← GK\{Gi, Gj} ∪ {Gi ∪ Gj}.
14: Calculate sepK−1 by (19);
15: end for
16: Select the best number of clusters:

K∗ ← arg min1≤K≤K̂−1(sepK + comK);
Output: Group set GK∗ .

the grouping algorithm used in [22]. We denote the subclus-
ters {C1, . . . , CK̂} and the initial group set GK̂ = {G1, . . . , GK̂}.
Initially, each group contains only one subcluster GK = {CK}
for K = 1, . . . , K̂. Then, the groups Gi and Gj are selected by

comK−1 = min
1≤i<j≤K̂

min
Ci′ ∈Gi,Cj′ ∈Gj

si′j′ . (17)

The groups Gi and Gj are selected as the closest groups
because the minimum separation measure is from their group
members. The group set GK−1 for K = 2, . . . , K̂ is sequen-
tially obtained by

GK−1 = GK\{Gi, Gj
} ∪ {Gi ∪ Gj

}
. (18)

The original groups Gi and Gj are removed from G and
the new group Gi ∪ Gj is added to G. K is decreased
by 1 and the grouping algorithm stops at K = 1. The
minimum value of com in (17) is recorded as the global com-
pactness of GK . It is the maximum within-group separation
measure in the current group set. The lower value of com
indicates better clustering result because each cluster is com-
pact. Therefore, comK is increasing from K = K̂ − 1 to 1.
When two groups in different clusters are merged, the sepa-
ration measure between them is supposed to be much higher
than the one when merging the groups in the same cluster.
That results in large value of com after merging. In addi-
tion to the global compactness, we modify global separability
defined in [56]

sepK = max
G∈GK

∑
i∈G

(qi/κ) (19)

where κ is the predefined number of nearest neighbors and
qi is the number of points that are not in G from κ nearest
neighbors. The original separability in [56] is divided by the

Fig. 6. Example of calculating separation measure by using 1-d Gaussian
mixture probability density function. (a) Two subclusters belong to differ-
ent clusters. sij = 13.37. (b) Two subclusters belong to the same cluster.
sij = 2.86.

number of members |Gi| in each group. However, for imbal-
anced clusters, if one group only contains a minority cluster, it
will dominate in the maximization because qi/κ is multiplied
with 1/|Gi|. Finally, we select the minimum value from the
sum of global separability and global compactness

K∗ = arg min
1≤K≤K̂−1

(
sepK

maxK′
{
sepK′

} + comK

maxK′ {comK′ }

)
. (20)

The global compactness and global separability are normalized
by dividing their maximal value to scale into the same range.

The summary of SGMS is shown in Algorithm 2. The
data points are first assigned to subclusters according to the
distance to the seed points shown in line 1. The pairwise
separation measure between subclusters is then calculated as
shown in lines 2–6. The grouping and the clustering valida-
tion measure to determine the number of clusters are shown
in lines 7–16. The computational cost of SGMS algorithm is
O(K̂N + K̂2 log K̂ + N2/K̂).

In summary, the overall computational cost of SMCL,
including PNS and SGMS, i s O(E∗K̂N + K̂2 log K̂ + N2/K̂).
The first term E∗K̂N refers to the updating of winner and
rival seed points in PNS, and the second term K̂2 log K̂ refers
to the calculation of global compactness and separation. The
last term N2/K̂ refers to the calculations of density gap (11)
in PNS and global separability (19) in SGMS. Both of them
use the pairwise distance of the original data points, which
can be computed in advance to save the computational cost.

IV. EXPERIMENTAL RESULTS

A. Datasets and Compared Methods

To evaluate the performance of the proposed method,
we compare SMCL with nine clustering algorithms on four
synthetic and eight real datasets. For synthetic datasets, two
of them are generated from a mixture of bivariate Gaussian
density functions

∑
i αif (x|μi,�i). Dataset gaussian has 2000

data points with two majority clusters and two minority clus-
ters, whose centers are located in the corner of a square
with edge length 4. The proportion of these four classes are
1:2:10:20. The two majority clusters have identity covariance
and the minority clusters have 0.25 times the identity covari-
ance. Dataset ids2 has 3200 data points with one majority
cluster and four minority clusters. The parameters are set as
same as in [22]. Datasets banana and lithuanian are gener-
ated by PRTools [57] with the thickness parameter 0.4. There
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TABLE I
INFORMATION OF FOUR SYNTHETIC DATASETS AND

EIGHT UCI REAL DATASETS

are one minority cluster with 400 data points and one major-
ity cluster with 2000 data points. The clusters in banana and
lithuanian are nonspherical. In addition, eight real datasets
from UCI data repository [58] are used in the experiment. The
information of the datasets is listed in Table I. The features of
all datasets are normalized to [0, 1].

The compared methods are adaptive k-means [8],
RPCL [14], RPCCL [16], DSRPCL [17], CPCL [27],
GMPCL [25], MC [22], RMD [53], and CHKNN [37]. Among
these methods, adaptive k-means RPCL, RPCCL, CPCL,
DSRPCL, and GMPCL are competitive learning-based meth-
ods. MC and RMD are especially designed for imbalanced
clustering problem. CHKNN is the state-of-the-art nonlinear
clustering method. Except adaptive k-means and RMD, all
methods are able to automatically determine the number of
clusters. Therefore, we use the real number of clusters as the
number of seed points for adaptive k-means and RMD. For
other competitive learning-based methods with automatically
determination of the number of clusters, the initial number of
seed points for RPCL, RPCCL, DSRPCL, and CPCL are set
at double of the real number of clusters. Given a relative large
number of seed points, the rival penalization mechanism is
capable of driving the redundant seed points away and keep-
ing a few seed points only to represent the clusters. For MC,
the number of prototypes kmax is also set at double of the real
number of clusters. For learning rate and delearning rate, we
set αc = 0.01 for adaptive k-means; αc = 0.01 and αr = 0.001
for RPCL; αc = 0.001 for RPCCL; αc = 0.01 for DSRPCL;
and αc = 0.0001 for CPCL. For other parameters of DSRPCL,
GMPCL, and MC, we use the suggested value in the papers.
For GMPCL and MC, their own methods are used to select
the number of clusters. The epoch number of all compared
competitive learning methods are set at 100.

For the parameters of SMCL, we set K0 = 2 as the ini-
tial number of seed points because the number of seed points
can be adaptively increased by SMCL until a proper size is
achieved. The learning rate αc is set at 0.01 and η is set at 0.01,
in order to make sure that PNS does not terminate too soon.
The frequency threshold is set at θ = 0.01N, which means if
the winning times of a seed points is less than 1/100 of the
total number of data points in an epoch, it will be driven off.

(b)(a) (c)

Fig. 7. Dataset gaussian. (a) Ten subclusters generated by PNS. (b) Global
separability, global compactness, and their sum. (c) Clustering result by
SMCL.

(a) (b) (c)

Fig. 8. Dataset ids2. (a) Ten subclusters generated by PNS. (b) Global
separability, global compactness, and their sum. (c) Clustering result by
SMCL.

The convergence termination threshold is set at ξ = 0.0001.
When we calculate the global separability, we use κ = 5 for
kNN search.

B. Evaluation Metrics

For numerical comparison, we adopt four measurements
to evaluate the clustering results: 1) accuracy; 2) F-measure;
3) normalized mutual information (NMI); and 4) difference of
CV (DCV) [21]. Among these four measurements, accuracy,
F-measure, and NMI are commonly used to evaluate the clus-
tering result. DCV is specifically designed for clustering on
imbalanced datasets [21]. It measures the difference of ratios
of the standard deviation to the mean between the number of
data points in ground truth clusters and predicted clusters

DCV = |CVg − CVp| (21)

where CVg = ([
√∑k

i=1(ni − n̄)]/[(k − 1)n̄]), CVp =
([
√∑k′

j=1(n
′
j − n̄′)]/[(k′ − 1)n̄′]), n̄ = (1/k)

∑k
i=1 ni, and n̄′ =

(1/k′)
∑k′

j=1 nj are the mean number of data points in each
cluster for ground truth clusters and predicted clusters, respec-
tively. If the data is imbalanced, CVg will be high because the
standard deviation of the number of data points in each cluster
is high. If the cluster size of predicted clustering result tends
to be balanced, CVp will be low, so that the difference DCV
is high. DCV is used as a necessary criterion to evaluate the
clustering results [22]. Small DCV does not necessarily mean
good clustering result, but large DCV indicates poor clustering
result. The estimated number of clusters K is also shown to
evaluate if the methods can correctly determine the number of
clusters for real imbalanced datasets. The results are averaged
by ten runs with different random initialization of the seed
points.
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(a) (b) (c)

Fig. 9. Dataset banana. (a) Ten subclusters generated by PNS. (b) Global
separability, global compactness, and their sum. (c) Clustering result by
SMCL.

(a) (b) (c)

Fig. 10. Dataset lithuanian. (a) Ten subclusters generated by PNS. (b) Global
separability, global compactness, and their sum. (c) Clustering result by
SMCL.

C. Results and Discussion

The visual clustering results of SMCL on synthetic datasets
are shown in Figs. 7–10. The black stars show the final posi-
tions of the seed points after PNS terminates. For dataset
gaussian, ten subclusters are generated when PNS terminates.
It can be observed that two majority clusters are well repre-
sented by five and three seed points, respectively. The seed
points in the minority clusters are not influenced by the uni-
form effect and they are located close to the centers of the
clusters. In Fig. 7(b), the global compactness drops signifi-
cantly from k = 3 to k = 4. The reason is that, at k = 3, one
minority cluster and one majority cluster are grouped together
and the gap between them makes global compactness large.
The global separation increases from k = 4 to k = 5 while it
keeps stable from k = 2 to k = 4. A plausible reason is that at
k = 5, one majority cluster is split and the number of nearest
neighbors in different groups increases by (19). Thus, the best
number of clusters obtained at k = 4 shows the correct number
of clusters. Due to space limitation, we only show the moving
trajectory of the seed points by SMCL on dataset gaussian
in Fig. 11. The squares are the starting positions and the stars
are the final positions. The number beside the square indicates
the order of appearance of the seed point. It can be observed
that all new seed points are generated in the majority cluster.
Finally, the seed point marked as “4” is driven away from one
of the majority clusters when the number of the seed points
in that cluster increases to 6.

For dataset ids2, ten subclusters are generated when PNS
terminates. The majority cluster is represented by six seed
points and each minority cluster is represented by one. As
shown in Fig. 8(b), the global separation increases signifi-
cantly from k = 5 to k = 6 when the majority cluster is
split. The global compactness decreases to nearly 0 at k = 5.
Therefore, the number of clusters is chosen to be 5. For dataset
banana, ten subclusters are generated when PNS terminates.
The majority cluster and the minority cluster have seven and

Fig. 11. Moving trajectory of seed points by SMCL on dataset gaussian. The
square is the starting position and the star is the final position. The number
indicates the appearing order of seed points.

three seed points, respectively. As shown in Fig. 9(b), the
global compactness drops significantly from k = 1 to k = 2
and, therefore, the minimum value of the internal validation
measure is at k = 2. There are only four data points in the
majority clusters are misclassified into the minority cluster due
to the shape of the subclusters. Nevertheless, each cluster is
well represented by multiple seed points. For dataset lithua-
nian, ten subclusters are generated when PNS terminates. As
shown in Fig. 10(b), the global compactness drops signifi-
cantly from k = 1 to k = 2 and the correct number of clusters
are determined. The global separation is close to 0 at k = 1
and k = 2 because none of the neighbors are in different
groups. All the data points are correctly clustered by SMCL.

The numerical results of synthetic datasets are shown in
Table II. The best and second best results are shown in
bold face and underline, respectively. For dataset gaussian,
GMPCL achieves best results on accuracy, F-measure, and
NMI; while SMCL, RMD, MC, and DSRPCL achieve com-
parable results on these measurements. However, DCV of
DSRPCL is larger, which indicates that DSRPCL tends to
produce more balanced clustering results on this dataset than
other four methods. RPCL and CPCL fail to drive the rival
seed points away and, therefore, all eight initial seed points
are left. It can be observed that all multiprototype meth-
ods, that is, GMPCL, MC, and SMCL, correctly estimate
the number of clusters. However, GMPCL achieves the best
performance on accuracy, F-measure, NMI, and DCV among
them. It indicates that the different number and position of
the seed points may lead to different clustering results. The
same phenomenon also appears on dataset ids2, while both
SMCL and GMPCL correctly estimate K but SMCL performs
better. For dataset ids2, SMCL achieves the best results on
accuracy and F-measure, and the second best results on NMI
and DCV. RMD also achieves good performance on all mea-
surements probably because of the input of real number of
clusters. GMPCL, MC, and SMCL correctly determine the
number of clusters, although their performance on other mea-
surements is slightly lower than SMCL. Besides, DSRPCL
also achieves good performance. However, RPCL, CPCL, and
RPCCL remain a relative large number of seed points and
thus achieve poor clustering performance. For dataset banana
and lithuanian, the shape of the clusters are nonspherical.
No single seed point can represent the cluster. Therefore, the
single prototype methods, that is, Adaptive k-means, RPCL,
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TABLE II
RESULTS OF THE SYNTHETIC DATASETS. THE BEST AND SECOND BEST RESULTS ARE SHOWN IN BOLD FACE AND UNDERLINE, RESPECTIVELY

RPCCL, DSRPCL, and CPCL, generate poor results on them.
For dataset banana, SMCL achieves the best performance on
accuracy, F-measure, NMI, and DCV. It outperforms the sec-
ond best performance 0.2373, 0.2291, and 0.1763 on accuracy,
NMI, and F-measure, respectively. MC estimates the correct
number of clusters but the performance is poor. The reason
is that the number of prototypes of MC, which is predefined,
does not well represent the clusters. For dataset lithuanian,
both GMPCL and SMCL correctly cluster all the data points.
MC suffers the same problem as in dataset banana.

The numerical results of real datasets are shown in Table III.
The best and second best results are shown in bold face and
underline, respectively. For dataset breast cancer, adaptive
k-means and RMD achieve the best performance on accu-
racy and F-measure. However, the real number of clusters
are given to adaptive k-means and RMD. SMCL, RPCCL,
and GMPCL all correctly estimate the number of clusters,
meanwhile SMCL achieves the best accuracy, F-measure,
and DCV among them. The performance of SMCL is very
close to RMD, while the number of clusters is automatically
determined by SMCL. RPCL, DSRPCL, CPCL, and CHKNN
produce inaccurate clustering results due to wrong estima-
tion of K. For dataset ecoli, MC achieves the best accuracy.
However, its F-measure, NMI, and DCV are poor due to wrong
estimation of K. SMCL achieves the best F-measure and the
second best NMI. Although no method correctly estimates the
number of clusters is 5, the estimated K of SMCL is the clos-
est to the real number of clusters. Besides, DCV of SMCL is
the lowest, which indicates that the variance of the sizes of the
predicted clusters is close to the variance of the ground truth.
GMPCL, MC, and CHKNN underestimate the number of clus-
ters and, therefore, receive low F-measure and NMI, although
they get high accuracy. Other competitive learning methods
generally overestimate the number of clusters on this dataset.
For dataset haberman, CHKNN achieves the best accuracy
and F-measure followed by SMCL. NMI for all methods on
this dataset is low and the best 0.0538 is produced by MC. A
possible reason of the low NMI is that the clusters of dataset
haberman are highly overlapped. DCV of MC is the best but
its accuracy and F-measure is poor. Except CHKNN, which

correctly estimates the number of clusters, the method with
estimated K closest to the real number of cluster is SMCL.
For dataset car, SMCL achieves the best accuracy, F-measure,
and DCV. However, it only estimates two clusters and the real
number of clusters of dataset car is 5. GMPCL and CHKNN
overestimate the number of clusters and their F-measure is
comparable with SMCL. But their performance on accuracy
and NMI is not good. DCV of SMCL is the lowest. A possi-
ble explanation is that SMCL merges two majority cluster and
two minority cluster in dataset car and, therefore, it has high
accuracy and F-measure, and low DCV. For dataset pageblock,
SMCL achieves the best NMI and DCV, and estimates the
correct K. CHKNN achieves the best F-measure and the sec-
ond best NMI. RPCCL and RMD also achieve high accuracy
and F-measure. However, their NMI is low. GMPCL and MC
correctly estimate K with comparable results on other mea-
surements. For dataset wpbc, SMCL achieves the best accuracy
and correctly estimates K. GMPCL has the best F-measure
and second best accuracy. However, its DCV is relatively large
which means that the clustering results are relatively balanced.
Among three methods that correctly estimates K, MC and
SMCL have generally low DCV, and high accuracy and F-
measure. For dataset avila, RMD achieves the best accuracy
followed by SMCL. However, the NMI and DCV of RMD is
worse than SMCL. DSRPCL and CHKNN achieve compara-
ble F-measure with SMCL, but their accuracy and NMI are
lower than the ones of SMCL. SMCL has the estimated K
that is closest to the real number of clusters. For comparison,
RPCCL overestimates K although it has the lowest DCV. For
dataset shuttle, RMD and SMCL generally achieves the best
result, while RMD has the best results on accuracy and NMI,
and SMCL has the best results on F-measure and DCV. MC is
the only method that correctly estimates K, while the second
closest method is SMCL whose estimated K is 5.8. To sum
up, MC, RMD, and SMCL all achieve the comparable results
on dataset shuttle.

D. Parameter Sensitivity

The key parameters of SMCL are αc and η, where αc is
the learning rate and η is to control the magnitude of rival
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TABLE III
RESULTS OF THE REAL DATASETS. THE BEST AND SECOND BEST RESULTS ARE SHOWN IN BOLD FACE AND UNDERLINE, RESPECTIVELY

penalization. We first give a guidance of how to select these
two parameters. The learning rate αc is related to convergence.
If the seed points cannot converge to satisfy the condition in
line 11 of Algorithm 1, αc should be decreased. On the other
hand, if αc is set too small, the degree of updating the seed
points will be too tiny such that the convergence is detected
but the seed points are not in their destinations. η is related
to the termination of PNS. If η is set too large, PNS will ter-
minate very soon with few seed points remaining, which is
inefficient to represent the clusters as shown in Fig. 3(a). On
the other hand, if η is too small, PNS will run until the last
epoch with no seed points driven away. That will lead to the
result as shown in Fig. 3(b). As a rule of thumb, αc and η

should be adjusted to make sure that PNS successfully con-
verges for every few epochs after adding a new seed point and
finally stops when one seed point is driven away. To show the
sensitivity of these two parameters, we test their performance
with the values in [0.0001, 0.001, 0.01, 0.1] on the eight real
datasets with three metrics. We fix one at 0.01 as used in the
above experiments and test another. Fig. 12 shows the results
on accuracy. It can be observed that αc is stable for datasets
ecoli, pageblock, and shuttle. For datasets car and wpbc, the
accuracy drops at αc is 0.1. Except datasets haberman and
shuttle, all other datasets show relative stable performance with
parameter η. Fig. 13 shows the results on F-measure. Both αc

and η are not very sensitive in terms of F-measure, except

a significant drop of dataset breast cancer at eta = 0.0001.
Fig. 14 shows the results on NMI. The datasets car, wpbc, and
haberman are not sensitive to the parameter selection because
they have very low NMI values. For dataset breast cancer,
ecoli, and shuttle, it can be observed that αc and η generally
perform well between the value of 0.001 and 0.01. Fig. 15
shows the results on DCV. It can be observed that when αc

and η are set at 0.001, the DCVs for most of the cases are
less than 0.4 and when they are set at 0.01, the DCVs for
most of the cases are less than 0.2. Overall speaking, the
parameters αc and η are not very sensitive in terms of the
performance for most of the cases when their values range
from 0.001 to 0.01.

In addition, there is another parameter, that is, the num-
ber of nearest neighbors κ , to calculate the global separability
in Algorithm 2. Our empirical studies have found that the
selection of κ does not influence on determining the num-
ber of clusters of SGMS too much. In general, a value
between 5 and 10 is a good choice for κ and the clustering
result is not very sensitive to this choice. A plausible reason
is that the value of κ will not affect the ratio qi/κ too much
in (19) because qi increases over κ . Besides, the calculated
global separability is further normalized by dividing its maxi-
mum value as shown in (20) so that if a large κ is used, sepK
for all K will be increased and the normalized sepK will not be
influenced too much. However, if κ is set too large and even
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TABLE IV
RUNNING TIME (IN SECOND) OF SMCL AND THE COMPARED METHODS

Fig. 12. Parameter sensitivity of SMCL on accuracy.

Fig. 13. Parameter sensitivity of SMCL on F-measure.

Fig. 14. Parameter sensitivity of SMCL on NMI.

more than the number of points in the subcluster, the calcu-
lated global separability will not provide informative leap to
show the change of separability when subclusters are merg-
ing. On the other hand, if κ is set too small, the calculation
of global separability will not be accurate as expected.

E. Running Time Analysis

The codes are written by MATLAB 2017b and all experi-
ments run on a Window 10 PC with i7 3.60 GHz and 64-GB
RAM. The running time in second is shown in Table IV.
Among the competitive learning-based methods, DSRPCL and
CPCL have the lowest computational cost due to their high
convergence speed. However, they do not perform well as
shown in Tables II and III. GMPCL also has low cost on
low-dimensional datasets. The running time of SMCL is com-
parable with adaptive k-means and lower than RPCL and
RPCCL. The reason is that the number of seed points of
SMCL is initialized as 2 and increases incrementally. Thus,
less distance calculation between the data points and the

Fig. 15. Parameter sensitivity of SMCL on DCV.

seed points are needed at the early learning stages of the
algorithm. Besides, many components based on pairwise dis-
tance between the original data points can be precomputed in
Algorithms 1 and 2. As a conclusion, the computational cost
of SMCL is in the same level of k-means, which is consistent
with the computational cost analysis in Section III.

V. CONCLUSION

In this paper, we have studied the competitive learning
methods on imbalanced datasets and proposed a novel method
SMCL, which uses the multiprototype strategy with automat-
ically choosing the number of seed points in a self-adaptive
way. It incrementally generates new seed points to the data so
that each cluster can be well represented by a proper number
of seed points. Then, we have also presented a new separation
measure to merge the subclusters and find the best number of
clusters during the process by a new internal clustering valida-
tion measure. Experiments on synthetic and real imbalanced
datasets show that SMCL outperforms the other competitive
learning methods and multiprototype clustering methods in
terms of accuracy, F-measure, and DCV. In particular, it cor-
rectly determines an appropriate number of clusters in most
of the cases we have tried so far.

Along this paper, future work has at least three directions.
One direction is how to extend the proposed SMCL or related
clustering methods to multiview clustering, where multiple
sets of features and information for one individual subject are
integrated. Multiview features might enhance and improve the
clustering results of the minority clusters. The second direction
is to explore a robust clustering method against the imbalanced
data and outliers. The key challenge of this direction is to dis-
tinguish the minority clusters and the outliers. The last one
is to apply index technologies to improve the efficiency of
SMCL or propose a new efficient clustering algorithm so that
it could be scalable to large-scale datasets with imbalanced
clusters.
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