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A Rough-to-Fine Evolutionary Multiobjective
Optimization Algorithm

Fangqing Gu, Hai-Lin Liu , Senior Member, IEEE, Yiu-Ming Cheung , Fellow, IEEE, and Minyi Zheng

Abstract—This article presents a rough-to-fine evolutionary
multiobjective optimization algorithm based on the decomposi-
tion for solving problems in which the solutions are initially far
from the Pareto-optimal set. Subsequently, a tree is constructed
by a modified k-means algorithm on N uniform weight vectors,
and each node of the tree contains a weight vector. Each node is
associated with a subproblem with the help of its weight vector.
Consequently, a subproblem tree can be established. It is easy
to find that the descendant subproblems are refinements of their
ancestor subproblems. The proposed algorithm approaches the
Pareto front (PF) by solving a few subproblems in the first few
levels to obtain a rough PF and gradually refining the PF by
involving the subproblems level-by-level. This strategy is highly
favorable for solving problems in which the solutions are initially
far from the Pareto set. Moreover, the proposed algorithm has
lower time complexity. Theoretical analysis shows the complexity
of dealing with a new candidate solution is O(M log N), where M
is the number of objectives. Empirical studies demonstrate the
efficacy of the proposed algorithm.

Index Terms—Decomposition, evolutionary algorithm, incre-
mental, multiobjective optimization, tree-like weight design.

I. INTRODUCTION

W ITHOUT loss of generality, a multiobjective
optimization problem (MOP) can be formulated
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Fig. 1. Illustration of the challenges for solving the problems, where the
PS concentrated in a small area. A is the expected solution, B is an existing
Pareto-optimal solution, and C is a point in the decision space. (a) PS widely
distributed in the decision space. (b) PS within a small area of the decision
space.

as follows:

min
x∈[li,ui]n

F(x) = (f1(x), f2(x), . . . , fM(x))T (1)

where li and ui are the lower and upper bounds of xi for
i = 1, . . . , n. F : [li, ui]n → R

M consists of M real-value
objective functions and M ≥ 2 is the number of objectives.

Over the past few decades, researchers have proposed a
variety of evolutionary multiobjective optimization (EMO)
algorithms [1]–[6]. The population size of most existing evo-
lutionary algorithms is kept constant for an entire optimization
run [7], and plenty of solutions evolve simultaneously. These
algorithms can work well for the problems, where the Pareto-
optimal set (PS) is widely distributed in the decision space
as shown in Fig. 1(a), because the length of the evolutionary
path from any point C in the decision space to the expected
solution A is comparable to that of the path from an exist-
ing Pareto-optimal B to A. However, the PS may be within a
small region of the decision space as shown in Fig. 1(b). It
makes the solutions initially far from the PS. It is advanta-
geous for approaching the Pareto front (PF) and obtaining a
rough PF with a smaller population size because the length of
the evolutionary path from a current Pareto-optimal B we have
obtained to the expected solution A is fairly short compared to
the path from C to A as shown in Fig. 1(b). Once the popula-
tion gets close to the PF, a larger population will be required
to refine the PF for the problems, where the PS is within a
small region of the decision space. In the literature, only a few
attempts have been made to develop EMO algorithms with a
varied population size [8]–[12]. Nevertheless, how to maintain
the representation and diversity of the population is a crucial
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issue, which is conducive to making the population close to
different parts of the PS.

To this end, a rough-to-fine EMO algorithm, called
REMOA, is presented in this article. In this algorithm, a tree
is constructed on N uniform weight vectors by a modified
k-means algorithm. Each node contains a weight vector and is
associated with a subproblem with the help of its containing
weight vector in this node. The subproblems in the descen-
dants are the refinements of the subproblems of their ancestors.
Namely, the subdomains related to descendants are the further
decompositions of the subdomains related to their ancestors.
In the beginning, nodes in the first L = 2 levels are set to be
active. In the evolution process, only the subproblems in the
active nodes maintain a certain solution to compose the popu-
lation. As the rate of improvement of the population is lower
than a given value, we extend the population by increasing the
value of L to make more nodes become active. This mecha-
nism approaches the PS, obtains a rough PF, and gradually
refines the PF by involving more subproblems level-by-level.
We compare the proposed algorithm with 12 state-of-the-art
EMO algorithms on ZDT test suites [13]. Furthermore, since
the PS shapes of ZDT test suites are simple and the number
of objectives is only two, we, therefore, construct nine MOPs
to investigate the performance of the proposed algorithm. The
main characteristic of these test instances is that their PSs
are within a very small area of the decision space. It makes
the solutions initially far from the PS. The empirical results
demonstrate the efficacy of the proposed algorithm. The main
advantages of the proposed REMOA are as follows.

1) Low Time Complexity: In the proposed algorithm, a can-
didate solution only needs to be compared with the
solutions along the path from the root to a leaf node of
the tree. Thus, the computational complexity of dealing
with a candidate solution is only O(M log N).

2) Efficiency: We present a rough-to-fine subproblem orga-
nization paradigm. Therefore, the proposed algorithm
approaches the PF by solving a few representative sub-
problems and gradually refines the PF. The proposed
algorithm is efficient for solving the MOP whose PS is
within a very small area of the decision space.

The remainder of this article is organized as follows. In
Section II, we make an overview of the popular EMO algo-
rithms and the evolutionary algorithms with varied population
size. Section III gives a detailed description of the proposed
REMOA, including a subproblem organization mechanism
based on a tree structure, the individual updating strategy,
and the mating selection strategy. Section IV conducts empir-
ical studies of the proposed algorithm in comparison with
the existing counterparts. Finally, we draw a conclusion in
Section V.

II. RELATED WORKS

In this section, we present an overview of the popular EMO
algorithms and those evolutionary algorithms with the varied
population sizes.

A. EMO Algorithms

Researchers have proposed a wide variety of EMO
algorithms over the past decades [14], [15]. These EMO

algorithms concurrently evolve a population to approximate
the PF in a single run and can be divided into three categories:
1) dominance-based algorithms; 2) decomposition-based algo-
rithms; and 3) indicator-based algorithms [16].

Dominance-based algorithms, such as the nondominated
sorting genetic algorithm II (NSGA-II) [2] and strength
Pareto evolutionary Algorithm 2 (SPEA2) [1], use the Pareto-
based ranking as the primary selection mechanism and the
density-based selection criterion, for example, the crowd-
ing distance, as a secondary selection mechanism. Deb
and Jain introduced a reference-point-based algorithm, called
NSGA-III, in [17] to improve the uniformity of the solu-
tions. In recent years, a number of modified dominance-
based algorithms have been presented for the challenges on
specific problems [18]–[20]. Moreover, nondominated sorting
is computationally intensive, in particular, when the popula-
tion size increases. Some research work has been dedicated
to addressing this problem [21], [22]. A new and efficient
implementation of nondominated sorting, called DDA-NS, was
developed in [23]. It requires O(Mlog(N)) objective func-
tion value comparisons and O(MN) integer comparisons for
dealing with a solution. Unless otherwise specified, the time
complexity of the algorithm is the computational complexity
for dealing with one candidate solution, not that of the entire
algorithm, throughout this article.

Decomposition-based algorithms decompose a MOP into
a series of subproblems with the help of a set of
weight vectors [15], [24], [25]. As one of the most well-
known decomposition-based EMO algorithms, MOEA/D was
proposed in [3]. In this algorithm, each candidate solution is
only compared with its neighborhood. Thus, its time com-
plexity is O(MT), where T is the number of neighborhoods.
We proposed a decomposition-based EMO algorithm, called
M2M, in [16], [26], and [27]. It decomposes a MOP into
a number of simple multiobjective optimization subproblems
and each subproblem owns a subpopulation. Its time complex-
ity is O(M

√
N). Due to the potential for balancing conver-

gence and diversity, some high-performance decomposition-
based EMO algorithms have been developed [28], [29].
Recently, some excellent decomposition-based algorithms
were presented in [30] and [31]. A tree-structure decom-
position method was presented in [32] and [33]. It can
adaptively generate the weight vectors in MOEA/D accord-
ing to the distribution of the population. MaOEA/C [34]
decomposes the population into some clusters and obtains
a promising result on problems with incomplete and irreg-
ular PF. Moreover, some approaches have been developed to
balance the convergence and diversity of the evolutionary pro-
cess by combining dominance-based and decomposition-based
approaches [35]–[38].

Indicator-based EMO algorithms, for example, the
S-metric selection evolutionary multiobjective algorithm
(SMS-EMOA) [4] and HypE [39], directly use the contribu-
tions of individuals in a performance indicator as the selection
criteria to select offspring. Subsequently, the well-converged
and well-distributed solutions can be preserved. Nevertheless,
they suffer from the high computational cost. The runtime
complexity of SMS-EMOA [4] is exponential in the number
of objectives. Currently, some efforts have been done to
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reduce such algorithms’ computational complexity [40]–[42].
These strategies improve the performance of indicator-based
EMO algorithms to some extent.

B. Evolutionary Algorithms With Varied Population Size

The population size of the above-mentioned EMO algo-
rithms is constant. The population size usually has an
enormous effect on the performance of evolutionary algo-
rithms [43], [44]. Generally, a small population size may
result in premature convergence. In contrast, if the popula-
tion size is too large, it will waste considerable resources and
decrease the search efficiency of the algorithm [44]. Thus,
a dynamic/adaptive population size might help in improving
the performance of the algorithms. The existing related stud-
ies [8], [11], [12] mainly focus on adapting the population size.
Unfortunately, there are few studies regarding how to preserve
the representativeness of the solutions in the population with
a small size.

Specifically, many efforts have been devoted to control the
population size for single-objective optimization evolutionary
algorithms [45], [46]. Several theoretical analyses regarding
the choice of the population size are presented in [44] and [47].
These papers discuss the relationship between the population
size and algorithm performance for some problems involv-
ing single-objective evolutionary algorithms. Moreover, some
experimental studies have been presented to investigate the
influence of the population size on algorithm performance.
An adaptive differential evolution (DE) algorithm with a var-
ied population size was proposed in [48] and [49], where the
population size increases or decreases according to the search
status of the current population. A genetic algorithm with a
reducing population size scheme was proposed for solving
single-objective optimization problems in [50] and [51]. For
single-objective evolutionary algorithms, a larger population
size in the primary stage of the evolution process is beneficial
to identify the basin of the globally best solution and preserve
the diversity of the population; whereas, a smaller population
size is sufficient to identify the best solution within this basin.

However, only a few attempts have been made to
extend automatic population growth control to multiobjective
optimization [10]. Tan et al. [8] presented an incrementing
EMO algorithm with a dynamic population size that is com-
puted according to the discovered PF at each generation.
Nag et al. [11] proposed an archive-based steady-state EMO
algorithm. It bounds the archive (population) size between a
minimum and a maximum. Glasmachers et al. [10] proposed
an EMO algorithm, whose population size starts small and
grows large as the generation increases. As claimed in [10],
for EMO algorithms, only a rather limited population size is
sufficient to approach the PF. Once the PF is reached, it needs
a larger population size to well exploit and cover the PF. The
experimental results demonstrate that increasing the popula-
tion size similar to this can save fitness function evaluation
compared to a fixed population size. Brog proposed in [9]
adapted the population size according to the size of the ε−box
dominance archive. Recently, an unbounded population EMO
algorithm has been proposed in [12] and [52], which main-
tains all nondominated solutions (NSs). The algorithm bears

Algorithm 1: General Framework of REMOA
Input:
• A stopping criterion.
• Genetic operators and their associated parameters.
• N: the upper bound of the population size.
• max_gen: the maximum number of generations.

Output: The solutions contained in the tree T.X.
1 Generate N uniform unit weight vectors V := {v1, . . . , vN} and

N initial solutions P.
2 Set L := 2, � := 0.1 and vc := ( 1√

M
, 1√

M
, . . . , 1√

M
)T .

3 Initialize �0 := 1, t := 1 and the archive A := P.
4 T := CreateTree(vc, V).
5 Each active node selects the best solution from P according to

(5) to form population T.X.
6 N∗ := |T.X|.
7 while t < max_gen do
8 Q := MatingSelection(T, A, N).
9 Create N offsprings Y based on Q.

10 if �t−1 < � && N∗ < N then
11 P := Y ∪ T.X, L := L+ 1, �t := 1.
12 Each active node selects the best solution from P

according to (5) to form population T.X.
13 N∗ := |T.X|.
14 else
15 [T, A] := UpdateX(T, Y, A).
16 Compute �t by Eq. (6).
17 end
18 t := t + 1.
19 end

the potential to converge to the true PF and obtains a promising
result. Nevertheless, it is always a challenging issue to reduce
the complexity of EMO algorithms with an unbounded/larger
population.

III. PROPOSED EVOLUTIONARY ALGORITHM

A. Framework of the Proposed REMOA

Algorithm 1 describes the framework of the proposed
REMOA. Let V = {v1, . . . , vN} be N uniform unit weight
vectors. Based on these weight vectors, a tree T is constructed
on these weight vectors by using the algorithm illustrated in
Section III-B. Each node of the tree contains a weight vector
and associates with a subproblem with the help of its weight
vector. The nodes in the first L = 2 levels are set to be active
and others without active descendants are recorded as leaf
nodes. In the beginning, N solutions are randomly created
in the decision space. Each subproblem in the active node
selects the best individual from the initial solutions accord-
ing to the value of the aggregation function defined in (5).
These selected solutions form the initial population T.X. The
population size N∗ = |T.X| is the cardinal number of solu-
tion set T.X, that is, the number of active nodes. Its upper
bound is the value of weight vectors N. When the population
size N∗ < 0.5N, an archive A, which stores some better solu-
tions, is introduced to avoid a crucial loss of diversity. The
archive is initialized as the initial solution set and updated
by the solutions that survive when updating the population as
described in Section III-C. In each generation, a solution set Q
is selected by the mating selection strategy, which is illustrated
in Section III-D. Afterward, we apply the genetic operators on
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Q to generate offspring Y. If the rate of improvement of the
population is less than a given value and N∗ < N at the same
time, which means not all nodes are active, then we extend the
population as described in Section III-D. Otherwise, the popu-
lation is updated as illustrated in Section III-B. In the following
paragraphs, the implementation details of each component in
REMOA will be explained step-by-step.

B. Tree Structure Subproblem Organization Paradigm:
Rough-to-Fine

1) Construct Tree on the Weight Vectors: The main idea of
this article is to propose a tree structure subproblem organiza-
tion paradigm. The tree is constructed as follows: each node
of the tree contains a weight vector. Let V = {v1, v2, . . . , vN}
with vi ∈ R

M+ , i = 1, . . . , N be a set of uniform unit weight
vectors. Algorithm 2 illustrates the detailed description on the
creation of the tree, where vc is the center vector and V is
a weight vector set assigned to this node. The center vector
may not be in the weight vector set V. We first find the weight
vector v in V closest to the center vector vc as follows:

v = arg min
vj∈V

dist
(
vc, vj

)
. (2)

This node contains the weight vector v and v is removed from
the weight vector set V. The center vector vc is determined
using different methods for the root, the nodes in the second
level, and the other ones. Specifically, it is given as follows.

1) The center vector of the root is set as vc =
([1/
√

M], (1/
√

M), . . . , [1/
√

M])T .
2) The center vectors of the nodes in the second level are

the extreme points in R
M+ . That is

ei =
(

1√
M − 1

, . . . ,
1√

M − 1︸ ︷︷ ︸
i−1

, 0

1√
M − 1

, . . . ,
1√

M − 1

)T

︸ ︷︷ ︸
M−i

.

Note that the number of nodes in the second level is
equal to the number of objectives. It aims to identify
the extreme solutions in the population for each objec-
tive. For the objective fi, a corner (extreme) solution
that has the minimum value of fi will be obtained by
solving a subproblem with the extreme weight vector
ei. Therefore, these weight vectors are used to guide the
population widespread.

3) For other nodes, the center vectors are computed by a
modified k-means algorithm (see lines 7 to 12) with the
number of clusters k = 2. Specifically, in order to bal-
ance each cluster, each weight vector vj is assigned into
the weighted closest cluster. Its cluster can be calculated
as follows:

Lj ← arg min
i

λidist
(
vc

i , vj
)

(3)

where λi is the percentage of the weight vectors assigned
into the ith cluster (see line 12) and it is initialized to

Algorithm 2: Creating the Tree CreateTree(vc, V)

Input:
• vc: the center vector.
• V: the weight vectors assigned to this node.
• maxIter: maximum iterative number.

Output: The tree T.
1 v := arg minvj∈V dist(vc, vj).
2 T.v := v.
3 V← V \ v.
4 if |V| = N − 1 then
5 vc

i := ei, i = 1, . . . , M.
6 else
7 λ := (0.5, 0.5).
8 Initialize centers vc

1, vc
2.

9 for t = 1 to maxIter do
10 Lj :=arg mini λidist(vc

i , vj) for j = 1,. . . ,|V|.
11 vc

i :=
∑|V|

j=1 I{Lj=i}vj
∑|V|

j=1 I{Lj=i} , i = 1, 2.

12 λi :=
∑|V|

j=1 I{Lj=i}
|V| , i = 1, 2.

13 end
14 end
15 Compute Vi which is the weight vector set assigned to vc

i .
16 CreateTree(vc

i , Vi) for all vc
i .

0.5 for all clusters (see line 7). vc
i is the center of the

ith cluster.
The root has M children and the other nodes have at most

two children. The weight vectors are assigned to the closest
center. Namely, for each weight vector vj ∈ V, its closest
center is calculated as follows:

k∗ = arg min
i

〈
vc

i , vj
〉

(4)

where 〈vc
i , vj〉 is the acute angle between vc

i and vj. The weight
vector set assigned to the ith center vc

i is denoted as Vi. We
can create the tree via the constructed function recursive call
(see line 16).

This article uses the PBI approach [7] to aggregate a MOP
into a scalar optimization problem. Each node with vector vi

is associated with the subproblem defined as follows:

g(x|vi) = d1 + θd2 (5)

where d1 = F(x)Tvi and d2 = ‖F(x) − d1vi‖. We can find
that the weight vectors of descendants are refinements of the
weight vectors of their ancestors. Therefore, the descendant
subproblems are a refinement of their ancestors’ subproblem.
For example, Fig. 2(b) shows the tree constructed via the afore-
mentioned strategy for a 2-D problem. {v0, v1, . . . , v12} is a
uniformly distributed weight vector set as shown in Fig. 2(a).
Taking v3 as an example, the subproblems with the weight
vectors v2 and v4 are refinements of the subproblem with v3.

2) Adaptively Organizing These Subproblems Based on the
Tree Structure: The nodes in the first L = 2 levels are initially
set to be active. As shown in Fig. 2(b), nodes v0, v1, and v12
with the solid circle are active. The population is initialized
as follows: let P = {x1, . . . , xN} be an initial solution set.
Each subproblem in the active nodes selects the best solution
according to the value of (5) from P. The selected solutions
form the initial population. P = {x1, . . . , x5} is, therefore, the
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Fig. 2. Example of constructed tree and the illustration of the updating
procedure. (a) Set of solutions of a simple example and a set of uniform
weight vectors. (b) Constructed tree and the levels of the solutions.

solution set and their objective vectors are shown in Fig. 2(a).
The solutions x3, x4, and x5 with solid triangles are selected
to constitute the initial population. The population size N∗ is
the number of the active nodes.

When N∗ < N and the rate of improvement of the popu-
lation in convergence is less than a given value, we extend
the population to improve the diversity of the population.
Some metrics have been presented to measure the contribu-
tions of subspaces to the population convergence [53]. In this
article, the rate of improvement of population is defined as
the total improvement of individuals in the population. It is
given as follows:

�t =
N∗∑

i=1

max
(

g
(

x(t−1)
i |vi

)
− g

(
x(t)

i |vi

)
, 0

)
(6)

where x(t−1)
i and x(t)

i are solutions of the same subproblem
in the t − 1 and t generations, respectively. If �t < �, we
set L = L + 1 and make the nodes in a new level be active.
The population size increases to the number of active nodes.

Algorithm 3: Updating Population. UpdateX(T, Y, A)

Input:
• The tree T.
• The solutions Y.
• The archive A.

Output: The updated tree T and the archive A.
1 foreach yi ∈ Y do
2 P = T0.
3 while 1 do
4 if g(yi|P.v) < g(P.x|P.v) then // Region I
5 P.x � yi. // Swapping solutions
6 P.s = g(P.x|P.v)P.v.
7 else if P.s ≺ F(yi) then // Region III
8 break.
9 else // Region II

10 if P is a leaf node then
11 yi randomly replaces a solution in A.
12 break.
13 else
14 j∗ = arg minj∈P.Children〈Tj.v, F(yi)〉.
15 P = Tj∗ .
16 end
17 end
18 end
19 end

Fig. 3. Objective space partitioning for a give weight vector and solution.

Each subproblem in the active node reselects the best solution
according to the value of (5) to yield the population.

C. Updating of the Population

A top-down approach based on the tree structure is sug-
gested to update the population. For each subproblem with
weight vector vi, x is the current best solution. s is an equiv-
alent point in the direction of weight vector vi that has the
same value as F(x) for (5). It is given as follows:

s = g(x|vi)vi. (7)

Thereby, the objective space is divided into three subre-
gions I, II, and III by the equivalent point s. A solution y is in
region I if it has a value less than x according to (5), that is,
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g(y|vi) < g(x|vi). It is supposed to be better than x. Region
III denotes the regions in which the solution is dominated by
s. The solutions in this region are considered to be definitely
worse than x. Otherwise, the solution will be in region II. It
is worse than x according to the subproblem with vi, but it is
still a promising one. For instance, Fig. 3 shows the objective
space partitioning for the subproblem with weight vector vi

and solution x.
Consequently, Algorithm 3 contains the pseudocode of the

updating procedure. In this algorithm, Tj is the jth node and
P is a node cursor. P is initialized with the root. P.v and P.x
denote the weight vector and solution related with node P and
P.s = g(P.x|P.v)P.v. A node without active children is a leaf
node. For each candidate solution yi in a solution set Y, we
compare it with the solution related to the node cursor. There
are three cases of comparison.

1) Case I: If yi is in region I, that is, g(yi|P.v) <

g(P.x|P.v), P.x is swapped with yi and the equivalent
point is updated by P.s = g(P.x|P.v)P.v (see line 5).

2) Case II: If yi is in region III, that is, P.s ≺ F(yi), no
operation is required (see line 8).

3) Case III: yi is otherwise in region II. If P is a leaf
node, yi randomly replaces a solution in the archive A.
Otherwise, yi is transmitted to the closest child, which
is calculated as follows:

j∗ = arg min
j∈P.Children

〈
Tj.v, F(yi)

〉
(8)

where 〈Tj.v, F(yi)〉 is the angle between vectors Tj.v
and F(yi). The node cursor P is moved into the child
node Tj∗ .

Fig. 2 shows an example of the updating procedure. A new
solution set {y1, . . . , y5}, whose objective vectors are shown
in Fig. 2(a), is used to update the population one by one. Let
us take y1 as an example. The node cursor P initially refers
to the root. We first compare y1 with solution x3 contained in
P. Since y1 has been in the region II of the subproblem with
weight vector v0 and x3, y1 is assigned into the child with
weight vector v1 by (8) and the node cursor P redirects to the
node with weight vector v1. y1 is compared with x5 contained
in the node cursor. y1 is in the region I of the subproblem
with v1 and x5. Therefore, P.x is swapped with y1, and the
equivalent point is updated by P.s = g(P.x|P.v1)P.v1. Since
the node cursor refers to a leaf node, the updating procedure
of y1 is finished. x5 is not dominated by the equivalent point.
Hence, x5 randomly replaces a solution in the archive. In this
manner, we can obtain the population {y5, y1, x4} after the
update.

D. Mating Selection Based on the Lifetime
and the Acute Angle

In general, if the straight line (f1/v1) = (f2/v2) = · · · =
(fM/vM), taking f1, f2, . . . , fM as variables, intersects with the
PF, the coordinate of the intersection point is the objective
vector of the optimal solution of the scalar problem (5) with
weight vector v = (v1, . . . , vM)T [54]. This means that the
angle between the weight vector v and the objective vector of
the Pareto-optimal solution of its corresponding scalar problem

will be 0. Therefore, the solution has a greater acute angle
between the weight vector and objective vector. It generally is
further away from the optimal solution of the scalar problem.
Hence, we assume that the solution has more capacity for
improvement. However, if the line does not intersect with the
PF, this assumption will be invalid. A lifetime of the solution
is introduced to fix this flaw. The longer the lifetime of a
solution is, the lower the probability of it being selected.

Accordingly, we present a mating selection strategy based
on the lifetime and the acute angle between its objective vec-
tor and its corresponding weight vector. Specifically, for each
solution xi in the population, we record the number of gen-
erations from producing to present as agei and compute the
acute angle between its objective vector and its correspond-
ing weight vector as anglei. N solutions are selected from
the population to form parent1 = {xp1

1 , xp1
2 , . . . , xp1

N } by using
tournament selection. Solutions with smaller age and greater
angle are preferred in the tournament selection. For two solu-
tions, we compare the parameter age first. The solution whose
value for age is less will be selected. If these two solutions
have the same value for age, the solution with the larger value
of angle will be selected.

For each parent xp1
i ∈ parent1, the other parent xp2

i corre-
sponding to xp1

i is selected by different methods according to
the population size.

1) In the primary stage of the algorithm, when the pop-
ulation size N∗ ≤ N/2, if only the individuals in the
population are involved in recombination, the algorithm
may suffer from loss of diversity and premature conver-
gence. Therefore, an archive is introduced to promote
diversity, and xp2

i is randomly selected from the archive
A to favor exploration.

2) In the late stage of the algorithm, when the population
size N∗ > N/2, the recombination of two similar solu-
tions is beneficial for exploitation. Thus, xp2

i is randomly
selected from the neighbors of xp1

i , which are defined on
the tree. For each active node Ti, its neighbors are the
active nodes Tj with the length of the edge from Ti to
Tj that is less than a given value. This value is set to
2 in this article. The regions of these neighbors are dif-
ferent for different weight vectors. The neighbors of the
root are distributed in the entire first octant because its
neighbors include the extreme weight vectors. Whereas
the neighbors of a leaf will focus on a smaller area.
This can provide a balance between exploration and
exploitation. As shown in Fig. 2(a), we can see that the
neighbors of v1 are the nodes containing weight vectors
{v0, v12, v3, v2, v4, v5, v6} as all nodes are active.

The simulated binary crossover (SBX) and polynomial muta-
tion [7] operators are performed on each pair of parents
xp1

i ∈ parent1 and xp2
i for generating offspring.

E. Discussion

1) Computational Complexity Analysis: From the frame-
work of the proposed algorithm, we can see that the difference
in the computational complexity is due to the population
updating. Given a MOP with M objectives and a tree with
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size N, the maximum number of levels is �log N�+1 because
the constructed tree is comparatively balanced. Here, �log N�
is the largest integer less than or equal to log N. The time
complexity of updating one candidate solution of REMOA
is as follows: let L ≤ �log N� + 1 be the number of
levels of active nodes. We need to compare the candidate
solutions with the solutions along the path from the root
to a leaf node in the worst case according to the domi-
nance relationship. The time complexity of computing the
dominance relationship of two solutions is O(M). Thus, it
requires a computationally O(ML) comparison. Furthermore,
we need to assign the candidate solution to the child node
by computing the inner product of objective vectors and
weight vectors. It also requires O(ML) multiplication. Thus,
the time complexity of updating one candidate solution is
O(M log N) because L ≤ �log N� + 1. Compared to state-of-
the-art algorithms, for example, NSGA-II [2] requires O(MN)

and MOEA/D [3] requires O(MT) for updating one candi-
date solution, the proposed algorithm has lower computational
complexity. Especially, in the primary stage of the algorithm,
there are only a few nodes are active. The level L of active
nodes is much less than log N. The computational complexity
of the proposed REMOA is very low.

2) Proposed REMOA Has Higher Convergence Rate: In
the primary stage of the evolution process, solutions in the
population are generally far away from the Pareto-optimal
solutions. The proposed REMOA decomposes the search
domain of the MOP into a few subdomains related to the sub-
problems in the active nodes at the beginning. The proposed
REMOA concentrates the computational resources (evaluation
function) to solve these few subproblems. The count of eval-
uation functions, spent in the standard EMO algorithms with
constant population size evolving the population for one gen-
eration, is equivalent to optimizing these few subproblems
many times. Hence, the population of the proposed algorithm
can quickly approach the PF by optimizing these few scalar
subproblems. Nevertheless, this makes the diversity and rep-
resentativeness of the population even more important. The
algorithm with a small population size is easy to run into
prematurity.

3) Proposed Algorithm Can Preserve the Diversity and
Uniformity of the Population: In the proposed REMOA, an
archive is introduced to store some better solutions that are
not dominated by the solutions in the population. It can effec-
tively use the promising solution and enhance the diversity of
the solutions involved in recombination. Moreover, the weight
vectors are used to guide the search process. A set of uniform
weight vectors leads to a set of uniform NSs [55]. Therefore,
we only need to analyze the uniformity of the weight vectors
of the active nodes. To facilitate the description, we denote the
weight vectors with level Li as V̄i when it causes no confusion.
Since the counts of weight vectors in the clusters obtained by
the modified k-means algorithm are close, the constructed tree
is comparatively balanced. This is an excellent characteristic.
It makes the proposed algorithm have lower computational
complexity. Moreover, for any i that is less than the maximum
level, the constructed tree has two following properties.

1) The weight vectors in any V̄i are relatively uniform.

2) Unions of the weight vectors
⋃i

k=1 V̄k are also relatively
uniform.

This means that solutions in any of the same levels are fairly
uniform. Moreover, solutions from the first level to any level
are also fairly uniform.

IV. EXPERIMENTAL STUDY

In this section, we will focus on experimental studies
to investigate the performance of the proposed algorithm.
First, we give a brief introduction om the test problems and
the compared algorithms used in this article. Second, we
present performance metrics used in numerical experiments
and parameter settings of the compared algorithms. Finally,
we provide the experimental results and analyses.

A. Test Problems

We compared the proposed algorithm with other algorithms
on the benchmarks ZDT1–ZDT4, ZDT6 [13] and nine test
problems, MF1–MF9, constructed in this article. The PSs of
ZDT test instances are concentrated in a line segment defined
by 0 ≤ x1 ≤ 1 and x2 = · · · = xn = 0. The parameter settings
of the ZDT test instances are used as described in [3]. In view
of the PS shapes being simple and the number of objectives
being only two, we construct nine MOPs: MF1–MF7, with
complicated PS shapes, and MF8 and MF9, with three objec-
tives. MF1–MF7 are modified from the test instances presented
in [56], while MF8 and MF9 are modified from DTLZ1 and
DTLZ3 [13]. A detailed description of these test problems can
be found in the supplementary materials of this article.

B. Compared Algorithms

We compared the proposed REMOA with the following 12
representative EMO algorithms: Pareto-based NSGA-II [2],
indicator-based SMS-EMOA [4], indicator-based evolutionary
algorithm (IBEA) [57], SRA2 [58], and SMS-EMOAc [10]
which has an increasing population size, decomposition-
based MOEA/D [3], M2M [27], RVEA [59], MaOEA/C [34],
and MOEA/D-CMA [60], and hybrid EMO algorithms
Two_Arch2 [61] and multistage evolutionary algorithm frame-
work (MSEA) [38] which integrates multiple selection strate-
gies in a framework. Here, we introduce the main idea of these
algorithms.

1) NSGA-II: This method [2] is one of the most popular
EMO algorithms for solving MOPs. It uses the Pareto-based
ranking as the primary selection mechanism and the density-
based selection criterion, for example, the crowding distance,
as a secondary selection mechanism.

2) SMS-EMOA: SMS-EMOA [4] uses the contributions of
individuals in hypervolume measure as a selection criterion to
select offsprings. It aims to maximize the dominated hyper-
volume of the obtained solution set within the optimization
process. It well preserves the convergence and diversity of the
candidate solution set as much as possible.

3) SMS-EMOAc: A version of SMS-EMOA with adapta-
tion population size, denoted as SMS-EMOAc, was proposed
in [10]. The results obtained in this article showed that an
increasing population size during an EMO algorithm run

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on November 19,2022 at 11:38:02 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: ROUGH-TO-FINE EMO ALGORITHM 13479

Fig. 4. Final NS with the median of the IGD value found by REMOA (the first column), NSGA-II (the second column), MOEA/D (the third column), and
SMS-EMOA (the fourth column) for ZDT1–ZDT4 and ZDT6.

saves fitness function evaluations compared to a fixed pop-
ulation size.

4) IBEA: Zitzler and Künzli [57] first proposed a gen-
eral indicator-based EMO algorithm framework called the
IBEA. IBEA uses indicators to compare solutions and choose
the next-generation population, which requires no addi-
tional diversity-preserving mechanism. The binary additive
ε−indicator Iε+ is used in the simulation study in this article.

5) SRA2: The stochastic ranking-based multiindicator
algorithm (SRA) adopts the stochastic ranking technique to
balance the search biases of different indicators [58]. It further
improves the performance of the algorithm by incorporating a
direction-based archive to store well-converged solutions and
maintain diversity.

6) MOEA/D: As one of the most well-known
decomposition-based EMO algorithms, it decomposes
the MOP into a number of scalar subproblems by a set of
weight vectors and simultaneously optimizes them [3]. Since
each subproblem is associated with a search direction, it can
provide sufficient selection pressure toward the PF.

7) M2M: This approach decomposes a MOP into a num-
ber of simple multiobjective optimization subproblems and
solves these subproblems in a collaborative manner [27]. It
gives priority to diversity. Therefore, it is good at maintaining
the population diversity and achieving good performance at
solving the imbalanced MOPs.

8) RVEA: This method decomposes a MOP into a num-
ber of single-objective subproblems using a set of reference
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vectors [59]. The angle-penalized distance is designed to
dynamically balance convergence and diversity according to
the number of objectives and the number of generations. Using
this approach, we can measure the convergence by the distance
between solutions and ideal points, and the diversity by the
angles between solutions and reference vectors.

9) Two_Arch2: An improved two-archive EMO algorithm,
called Two_Arch2, was proposed in [61]. In Two_Arch2,
two archives (convergence archive and diversity archive)
are maintained during the evolutionary search and two
different selection principles (indicator-based and Pareto-
based) are assigned to the two archives: these can play
a balanced role in terms of convergence, diversity, and
complexity.

10) MaOEA/C: MaOEA/C [34] decomposes the popula-
tion into some clusters by a hierarchical clustering method,
such that the population’s distribution can be well portrayed.
It obtains promising results on problems with incomplete and
irregular PF.

11) MOEA/D-CMA: A decomposition-based EMO algo-
rithm, which uses both DE and covariance matrix adaptation
has been proposed in [60]. The experimental studies show that
it is suitable for dealing with problems with biases.

12) MSEA: An MSEA proposed in [38] divided the
optimization process into three stages and used different selec-
tion strategies in these stages. It can overcome the limitations
of those selection criteria.

C. Performance Metrics

To evaluate the performance of the compared algorithms,
two widely used metrics: 1) the inverted generational distance
(IGD) [62] and 2) hypervolume indicator (HV) [63], are used
in this article. A brief introduction of these two metrics is
given below.

1) IGD: Let Q be an approximation of the PF obtained
by an algorithm and Q∗ be a set of reference points that are
uniformly distributed along the PF. The IGD metric is defined
as follows:

IGD
(
Q|Q∗) =

∑
v∈Q∗ d(v, Q)

|Q∗| (9)

where d(v, Q) is the minimum Euclidean distance from the
point v to Q and |Q∗| is the size of Q∗. Since the exact PF of
the test problems is known a priori, 10 000 reference points
are sampled on the PF, as described in [35] and [61], to form
Q∗ in this article. These points are the intersecting points of
a set of uniform weight vectors and the PF. Since the num-
ber of objectives of the test problems is two or three, 10 000
points can cover the true PF very well. The IGD metric can
provide a good measure of both the convergence and diver-
sity of a solution set. The smaller the IGD, the better the
approximation.

2) HV: Let Q be the objective vectors of solutions obtained
by an algorithm and zr = (zr

1, . . . , zr
M) be a reference point

dominated by any Pareto-optimal objective vector. HV(Q|zr) is
the volume of the region that is dominated by Q and dominates

zr; it is given as follows:

HV
(
Q

∣∣zr) = Vol

⎛

⎝
⋃

x∈Q

[
f1(x), zr

1

]× · · · × [
fM(x), zr

M

]
⎞

⎠

where Vol(.) indicates the Lebesgue measure. The greater the
HV, the better the approximation. In this work, we set the
reference point to 1.1 times of the upper bounds of the true
PFs. That is, zr = (1.1, 1.1) for the two-objective test instances
and zr = (1.1, 1.1, 1.1) for the three-objective test instances,
MF8 and MF9.

D. Parameter Settings

The experiments are conducted on PlatEMO1 [64], which
is a MATLAB-based framework for multiobjective and many-
objective optimization. All of the compared algorithms were
conducted 30 times independently for all test instances. Their
parameters are as follows.

1) The population size N of the compared algorithms is set
to be 100 for two-objective test instances and 210 for
three-objective test instances MF8 and MF9. The upper
bound of the population size in the proposed REMOA,
that is, the size of the tree, is the same as the population
size of compared algorithms.

2) All algorithms stop when the number of generations
reaches the maximum number. Specifically, the maxi-
mum number is set to be 100 for ZDT test instances,
500 for MF1-MF7, and 200 for MF8 and MF9.

3) The weight vectors used in SRA2, MOEA/D, M2M,
RVEA, MOEA/D-CMA, and the proposed REMOA are
generated via a systematic approach proposed in [35].
The number of weight vectors is set to be 100 and 210
for the problems with 2 and 3 objectives, separately.

4) The neighborhood size of each subproblem in MOEA/D
and SRA2 [58] is set to 20, and the maximum replace-
ment number is set to 2.

E. Experimental Results and Analysis

Table I reports the average values of the IGD metric
obtained by the algorithms in 30 independent runs for each
test instance. Table II lists the average value of the HV met-
ric obtained by the algorithms in 30 independent runs for
each test instance. The results in bold are the best of those
obtained by these algorithms in each test instance, and † indi-
cates the corresponding EMO algorithm is worse than the
proposed REMOA according to Wilcoxon’s rank-sum test. In
addition, due to space limitations, we only plotted the NSs
with the median IGD value obtained by the proposed REMOA
and Pareto-based NSGA-II, decomposition-based MOEA/D,
and indicator-based SMS-EMOA in 30 independent runs. The
number of solutions obtained by the proposed REMOA is less
than that of the compared algorithms when there are some
nodes that are not active in the tree. The NSs obtained by
other algorithms are plotted in the supplementary material.

1PlatEMO can be downloaded at http://bimk.ahu.edu.cn/index.php?s=/Index
/Software/index.html.
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TABLE I
PERFORMANCE COMPARISON OF REMOA WITH 12 STATE-OF-THE-ART ALGORITHMS IN TERM OF THE AVERAGE IGD VALUES

ON ZDT TEST SUITES AND MF1–MF9. † INDICATES THAT THE CORRESPONDING EMO ALGORITHM IS WORSE THAN

THE PROPOSED REMOA ACCORDING TO WILCOXON’S RANK SUM TEST

TABLE II
PERFORMANCE COMPARISON OF REMOA WITH 12 STATE-OF-THE-ART ALGORITHMS IN TERMS OF THE AVERAGE HV VALUES

ON ZDT TEST SUITES AND MF1–MF9. † INDICATES THAT THE CORRESPONDING EMO ALGORITHM IS WORSE THAN

THE PROPOSED REMOA ACCORDING TO WILCOXON’S RANK SUM TEST

The results in Tables I and II indicate that the performance
of the proposed REMOA is much better than that of the com-
pared algorithms in ZDT test instances in terms of IGD and
HV metric. As shown in Fig. 4, the approximate PFs obtained
by the proposed REMOA almost converge to the true PF of
the ZDT test instances except for ZDT4. The approximate
PF obtained by the proposed REMOA still shows promising
convergence and good distribution in ZDT4. In contrast, the
other compared algorithms cannot converge to the true PF
with a smaller number of generations. This means that the
proposed algorithm has a faster convergence speed. Once the
population with few solutions approaches the PS, it is easy to

extend the population and cover well the PF because of the
simple PS of ZDT.

The results in Tables I and II also indicate that REMOA
achieves the best performance on MF1-MF7 with complex
PS except for MF6 in terms of the IGD value. M2M and
NSGA-II are slightly outperformed by REMOA on MF6 in
terms of IGD. Fig. 5 plots the NSs with the median IGD value
obtained by REMOA, NSGA-II, MOEA/D, and SMS-EMOA
on MF1-MF3, MF8, and MF9. The results of the other test
instances are plotted in the supplementary material. As can
be observed from Tables I and II and Fig. 5, the proposed
REMOA exhibits the most competitive performance on the
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Fig. 5. Final NSs with the median of the IGD value found by REMOA (the first column), NSGA-II (the second column), MOEA/D (the third column), and
SMS-EMOA (the fourth column) for MF1–MF3, MF8, and MF9.

test instance with complex PS. Nonetheless, it is not as supe-
rior as on ZDT test instances with simple PSs. The reason is
that it is more difficult to extend the population to cover well
the PF for the problems with complex PS shapes than for the
problems with simple PS shapes. Namely, the computational
resources for extending the population to cover well the PF
are greater. The proposed REMOA is also superior to SMS-
EMOAc with increasing population size. SMS-EMOAc is even
worse than SMS-EMOA with constant population size on sev-
eral test problems. The reason is that SMS-EMOAc with a
smaller population size cannot maintain the diversity and rep-
resentativeness of the population. MF8 and MF9 are highly
multimodal problems. It is also observed that the approximate
PF obtained by the proposed REMOA converges to the true

PF, while the other compared algorithms fail to reach the true
PFs of these problems.

F. Sensitivity to the Parameter �

To study how the parameter � influences the performance
of the proposed algorithm, we have considered three values
for � = 0.05, 0.1, 0.2, respectively. In our experiments, all
parameters are kept the same as the aforementioned experi-
ments except the setting of �. Considering the page limit, we
only present the plot of the average values of the IGD metric
found in 30 independent runs for each � on ZDT1, MF1, and
MF8 in Fig. 6. It can be seen that the best parameter value of
� is associated with the number of objectives. Nevertheless,
the performance of REMOA is relatively stable on parameter
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Fig. 6. Parameter sensitivity studies of � on ZDT1, MF1, and MF8.

�. For simplicity, it is set to the same value � = 0.1 for all
test problems in this article.

G. Further Investigations of the Proposed Algorithm on
Many-Objective Optimization Problems

We compared the proposed algorithm with nine EMO
algorithms on well-known benchmark problem sets, the
DTLZ and WFG test suites, and the inverted DTLZ1 and
DTLZ2 [65], denoted IDTLZ1 and IDTLZ2. The prob-
lems DTLZ1–DTLZ4, IDTLZ1, IDTLZ2, and WFG1–WFG9
with 5, 10, and 15 objectives were used for empirical stud-
ies. Due to space limitations, we provide the results in the
supplementary file. These results indicate that the proposed
algorithm can obtain a competitive result for solving many-
objective optimization problems. The performance of REMOA
on these test problems is not as outstanding as that for ZDT
and MF problems because the PSs of the former problems are
not within a small area in the decision space. Another possi-
ble cause might be the length of the evolutionary path from a
current Pareto-optimal B we have got to the expected solution
A is generally large due to the curse of dimensionality. This
does not highlight the advantages and necessities of approach-
ing the PF with a smaller population size. The performance of
REMOA is not the best one of the problems with irregular PF,
for example, IDTLZ1 and IDTLZ2, because the weight vectors
used in the proposed algorithm are in a triangular shape.

H. Further Investigations of the Proposed Algorithm on
Practical Problem: Crash Worthiness Problem

To investigate the performance of the proposed algorithm
in a practical problem, crash worthiness problem [66] is con-
sidered in this article. This problem aims to minimize three
objectives: 1) the mass of the vehicle; 2) the deceleration dur-
ing the full-frontal crash; and 3) the toe board intrusion in
the offset-frontal crash. The true PF of this practical problem
is unknown. As suggested in [17], we obtained an NS set
by using NSGA-III with a population size of 7381. It is
run for 1000 generations. We choose 1000 points from these
NSs, which have the greatest distance from each other to
approximate the true PF. The parameters of the proposed

algorithm for this problem are the same as used in prob-
lems MF8 and MF9. The average IGD value obtained by
the proposed algorithm on this problem is 0.1203. This result
demonstrates the proposed algorithm can find a representative
solution set in the considered practical problem.

V. CONCLUSION

In this article, we have presented a rough-to-fine EMO algo-
rithm. A relatively balanced tree has been constructed by using
a modified k-means algorithm on a set of uniform weight vec-
tors. The search domain is decomposed into some subdomains
with the help of the weight vectors, and the subdomains related
to descendants are the further decompositions of the subdo-
mains related to ancestors. The proposed REMOA approaches
the PF by a population with a smaller size and refines the PF
by a population with a larger size. Moreover, the proposed
REMOA has a low complexity because we only need to com-
pare each candidate solution with the solutions along the path
from the root to a leaf. We have compared the proposed algo-
rithm with 12 state-of-the-art EMO algorithms on ZDT test
instances and nine test problems constructed in this article. The
experimental results demonstrated the efficacy of the proposed
approach.
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