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Towards Efficient Cross-Modal Anomaly Detection
Using Triple-Adaptive Network and Bi-Quintuple
Contrastive Learning

Shu-Juan Peng, Ye Fan, Yiu-ming Cheung
Zhen Cui

Abstract—Cross-modal anomaly detection is a relatively new and
challenging research topic in machine learning field, which aims
at identifying the anomalies whose patterns are disparate across
different modalities. As far as we know, this topic has yet to be
well studied, and existing works often suffer from the incomplete
anomalous data detection and low data utilization problems. To
alleviate these limitations, this paper proposes an efficient deep
cross-modal anomaly detection approach via Triple-adaptive Net-
work and Bi-quintuple Contrastive Learning (TN-BCL), which lies
among the earliest attempt to detect various cross-modal anoma-
lies within the heterogeneous multi-modal data. To be specific, a
triple-adaptive network is explicitly designed to identify various
anomalies, whose patterns are disparate in both single-modal sce-
nario and cross-modal scenario. On the one hand, the top branch
network is utilized to adaptively detect the attribute anomalies
and part of mixed anomalies in multi-modal data samples. On the
other hand, the bottom two-branch network, with shared residual
blocks, is leveraged to learn the discriminative cross-modal em-
beddings. At the same time, an efficient bi-quintuple contrastive
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learning method is designed to enhance the feature correlation
between the same attribute data, while maximally enlarging the
feature difference between different attribute data. Besides that, the
bidirectional learning scheme is employed to significantly improve
the data utilization. Through the joint exploitation of the above,
different kinds of anomalous samples can be well detected across
different modalities. Extensive experiments show that the proposed
framework outperforms the state-of-the-art competing methods,
with a large improvement margin.

Index Terms—Cross-modal anomaly detection, triple-adaptive
network, bi-quintuple contrastive learning, shared residual block.

1. INTRODUCTION

NOMALY detection aims to identify the abnormal sam-

ples that are significantly different from the other normal
instances, which is an important data analysis technique due
to the fact that anomalies often provide significant and critical
information [1]. For instance, anomaly detection in driving
behaviours is of paramount importance to reduce millions of
vehicle accidents occurring in worldwide [2], while anomalous
pattern identification in medical imaging system plays a crit-
ical role in diagnosing a certain disease [3]. Note that, these
anomaly detectors predominately focus on examining the data
from a single source, i.e., single-view data [4]. As shown in
Fig. 1, data samples are practically acquired from different
sources, and the ability to detect anomalies in multi-modal
data is highly desirable in many applications, such as micro-
expression detection [5], purchase behavior analysis [6] and
malicious intruder detection [7]. As such, traditional single view
detectors cannot discover multi-model anomalies, and existing
multi-modal anomaly detectors are mainly designed to identify
possible anomalies in case where the instances in one modalities
are temporarily not available or include noise [8].

In this paper, we focus on a relatively new topic in the anomaly
detection field, i.e., cross-modal anomaly detection. It aims at
identifying the anomalies whose patterns are disparate across
different modalities. That is, some anomalous data instances
from multi-modal data are often not anomalous when they are
viewed separately in each individual modality, but which may
contain inconsistent semantic patterns when these multi-modal
instances are considered jointly. In practice, anomaly detection
across multi-modal data often benefits lots of valuable appli-
cations, such as transaction record detection [9] and mobile
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Fig. 1. Illustration of difference between the multi-view and cross-modal
anomaly detection mechanisms.

robot navigation [10]. For instance, there are increasingly more
people consuming news through social media, and the news
with images, video and text information can provide a better
storytelling and attract more attention from readers. In this case,
if the image profile is not consistent with other sources of the
same news, e.g., the image behaving inconsistently with its
textual description, might cause a fake news to mislead readers
and may therefore bring negative effects to the public events.
From the research perspective, a straightforward approach
for multi-modal anomaly detection is to concatenate all modal-
ities together and convert it to single-view anomaly detection
task [11], [12]. However, this concatenation often neglects the
inconsistent information across multiple modalities, which often
fails to detect the anomalous samples that behave inconsistently
across different modalities. Recently, a number of multi-view
anomaly detection methods have been proposed to detect the
outliers that have abnormal behaviors in each view or have
inconsistent behaviors across different views. Note that, most
existing approaches rely on the assumption that multi-view data
of anormal instance share consistent clustering structures, while
the anomalous samples tend to fall into different clusters or
consistently deviate from all clusters. Nevertheless, if there are
no clusters in data, it is difficult for these approaches to detect the
anomalous samples. Besides, these anomaly detectors mainly
focus on splitting the object feature representation into different
subsets and consider each subset as one particular view of the
data, but very few works pay attention to completely heteroge-
neous multi-modal data acquire from different modalities.
Linking the heterogeneous, not directly comparable sources
of multi-modal data, cross-modal anomaly detection remains
a challenging task. As shown in Fig. 2, there are three types
of outliers possibly existing in multi-modal anomalies. For
terminological convenience, they are 1) Attribute outliers:
these samples have abnormal behaviors in each modality, which
will be considered as outliers in each modality individually. 2)
Cross-modal outliers: this kind of samples may not be identified
as outliers when they are viewed separately, but which will be
identified as anomalies when their mutual behaviors do not be-
have consistently across different modalities. 3) Mixed outliers:
these samples look like an attribute outlier in some modality
and exhibit cross-modal outlier property in another modality.
Note that, the outliers resulted from the missing modality cannot
support the cross-modal anomaly detection task, and this kind
of outlier is not considered. Recently, the work [9] specifies
the concept of cross-modal anomaly detection, but which is

@ Attribute outliers @ Cross-modal outliers A  Mixed outlier D Detected results

] ’n;a;"»pin%

Fig. 2. Illustration of three types of outliers and the process of detection task
across heterogeneous modalities.

only designed to detect the cross-modal outliers. To the best
of our knowledge, there is still a lack of approaches that can
simultaneously detect all kinds of outliers across heterogeneous
modalities. Although multi-modal data instances belonging to
the same category have high semantic relevance, it is still a non-
trivial task to perform efficient cross-modal anomaly detection,
mainly due to the complex integration of heterogeneous data
distributions, modality heterogeneity and semantic gap problem.

In this paper, we propose an efficient deep cross-modal

anomaly detection approach via Triple-adaptive Network and
Bi-quintuple Contrastive Learning (TN-BCL), which lies among
the early attempts to detect various kinds of cross-modal anoma-
lies within the heterogeneous multi-modal data. To be spe-
cific, the proposed framework seamlessly unifies the unimodal
anomaly detection and cross-modal anomaly detection together,
in which the attribute outliers are isolated from the neighborhood
structures of one modality data while cross-modal outliers and
mixed outliers are detected via the inconsistent behaviors across
different modalities. The main contributions are summarized as
follows:

® A triple-adaptive network is designed to explicitly identify
various kinds of anomalies whose patterns are disparate in
both single-modal scenario and cross-modal scenario. To
the best of our knowledge, this work is the first attempt
to detect three types of anomalies simultaneously across
heterogeneous modalities.

® An efficient bi-quintuple contrastive learning method is
proposed to guide the cross-modal embedding learning,
which significantly enhances the feature correlation among
the similar attribute data and maximally enlarges the fea-
ture difference between different attribute data.

e The bidirectional learning scheme is developed to signifi-
cantly improve the data utilization, which can well promote
the outlier detection performance.

e Extensive experiments verify the advantages of the pro-
posed approach under various abnormal scenarios and
show its superiority over state-of-the-arts.

The remaining part of this paper is organized as follows:

Section II makes an overview of the existing multi-view and
cross-modal anomaly detection works, and Section I1I elaborates
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the proposed deep cross-modal anomaly detection framework
in detail. The experimental results are provided in Section I'V.
Finally, we draw a conclusion in Section V.

II. RELATED WORK

Anomaly detection across different modalities is a relatively
new topic, and this section mainly surveys the most relevant
multi-view or multi-modal anomaly detection works.

A. Multi-View Anomaly Detection

Traditional anomaly detection methods mainly focus on de-
tecting the unusual samples from a single view. With the popu-
larity of multi-view learning, a number of multi-view anomaly
detectors have been developed, and the earlier efforts mainly
attempt to find the samples that have inconsistent cross-view
cluster memberships. For instance, Gao et al. [13] present a hor-
izontal anomaly detection (HOAD) approach to identify objects
that exhibit inconsistent characteristics across different views.
This approach constructs a combined similarity graph in mul-
tiple views and calculates the anomalous score of each sample
with the cosine distance. Alvarez et al. [14] propose an affinity
propagation (AP) algorithm to detect multi-view anomalies by
analyzing the affinity vectors of each sample in different views.
Note that, these approaches perform the clustering in different
views, which may fail to detect the possible anomalies when
there are no clusters in data.

In general, a normal sample usually serves as a good con-
tributor in representing the other normal samples while the
outlier fails. Accordingly, Zhao et al. [11], [15] utilize the
dual-regularization and consensus regularization on the latent
representations to achieve multi-view outlier detection. Specif-
ically, these two methods first characterize the outlier by the
latent coefficients or intrinsic cluster assignments, and then
quantify the inconsistency by a well-designed outlier criterion.
Similarly, Li et al. [16] represent the multi-view data by a global
low-rank representation shared by all views and define an outlier
score function for anomalous sample detection. Although these
approaches are able to detect data-anomalies that have incon-
sistent features across multiple views, they still cannot identify
the mixed outliers and often suffer from low data utilization
problem. To detect different outliers, Sheng et al. [17] first build
a nearest neighbor-based anomaly criterion and then exploit
the nearest neighbor based MUIti-View Anomaly Detection
(MUVAD) approach to identify various kinds of outliers. Wang
et al. [18] first build a hierarchical Bayesian model to represent
the multi-view data, and then employ variational inference to
evaluate anomalous scores of multi-view instances. In recent
years, non-linear mapping has been widely employed in repre-
sentation learning for complex data structures. Along this line,
Ji et al. [19] perform multi-view outlier detection in deep intact
space (MODDIS), and define an outlier score to detect different
outliers. Note that, these anomaly detectors mainly focus on
splitting the feature representation into different subsets, and
consider each subset as one particular view of the data. Evidently,
the different feature subsets often share the similar distributions,

which make these detectors unsuitable to handle completely
heterogeneous data acquire from different modalities.

B. Multi-Modal Anomaly Detection

Multi-modal anomaly detectors mainly aim to identify pos-
sible anomalies from completely heterogeneous multi-modal
data. Deep neural networks are capable of learning nonlinear
mappings by extracting high-level abstractions from the input
raw features, which have dramatically improved the multi-
modal representation performance [20]. Along this line, Wang
et al. [21] investigate two-branch neural networks (TBNN) to
learn an explicit shared latent embedding, and predict a sim-
ilarity score between image and text data. Nevertheless, this
approach is incapable of discovering the inherent anomalous
samples across different modalities. Until very recently, Li
et al. [9] specify the concept of cross-modal anomaly detec-
tion (CMAD), which aims to identify the anomalies whose
patterns are disparate across different modalities. This approach
leverages a series of nonlinear mapping functions to map the
heterogeneous information of each modality into a comparable
consensus feature space, whereby the cross-modal anomalies
can be identified by measuring the similarity with a pre-defined
threshold. Noted that, this method is only designed to detect the
abnormal samples with inconsistent behaviors across different
modalities, which cannot identify the attribute or mixed outliers.
To the best of our knowledge, there is still a lack of efficient
models to adaptively detect different kinds of outliers across
different modalities.

III. DEEP CROSS-MODAL ANOMALY DETECTION

Cross-modal anomaly detection across heterogeneous modal-
ities is arelatively new topic in data mining field. Without loss of
generality, this section mainly focuses on cross-modal anomaly
detection with only two modalities, particularly for visual and
textual modalities. Note that, the proposed learning framework
can be easily extended to other different modalities, e.g., visual
and audio data. First, this section clarifies the notations and
formal definitions of multi-modal anomalies. Then, the proposed
triple-adaptive network architecture and bi-quintuple contrastive
learning method are introduced in tandem. Finally, the detection
of anomalous data and its optimization process are explicitly
provided.

A. Notation and Problem Formulation

Suppose that we have training data X = {X4, X} with
two modalities XAeR™*% and XBeR™™ %2 with n being the
numbers of data samples and di,ds (in general d;#ds) the
dimensions of these two modalities, the i-th input multi-modal
data X; = {X#, XP} is regarded as an anomaly, if one of the
following cases is appeared:

Case 1:: If X and XE are both the abnormal samples in
each modality individually, X; is regarded as attribute outlier.

Case 2: Suppose X7 and X? both behave normally in each
modality, X; is regarded as the cross-modal outlier if X! and
X5 have inconsistent behaviors across different modalities.
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Fig. 3. The schematic architecture of the proposed deep cross-modal anomaly detection approach (TN-BCL).

Case 3: Suppose X# (resp. X?) is an abnormal sample in
modality A (resp. B), and XZ (resp. X#) is a normal sample
in modality B (resp. A), X; is regarded as the mixed outlier
if the mutual behaviors between X! and X2 do not behave
consistently across different modalities.

After an in-depth study of these cases, it can be easily found
that if X# is an abnormal sample in modality A, X; can be
regarded as the anomalous data, regardless of whether X7 is an
abnormal sample or not. To be specific, if XZ is an abnormal
sample, X; falls into the first case. If X? is a normal sample,
and the mutual behaviors between X and X7 are abnormal,
X; corresponds to the third case. To find these potential outliers,
we propose an efficient deep cross-modal anomaly detection ap-
proach via triple-adaptive network and bi-quintuple contrastive
learning (TN-BCL), which lies among the early attempts to
detect various kinds of cross-modal anomalies within the het-
erogeneous multi-modal data.

B. Triple-Adaptive Network Architecture

The goal of the proposed framework is to align the high-level
representations of all semantically relevant samples from het-
erogeneous modalities, while enlarging the distance between
semantically irrelevant ones. Multi-modal deep neural networks
have been successfully utilized to learn the compatible features
among different types of data, including text, image and audio
data. For multi-modal data from heterogeneous sources, we
mainly focus on cross-modal anomaly detection with visual and
other modalities, e.g., image and text, face and voice. Without
loss of generality, we select the image and text data to introduce
the proposed learning framework. Let XY = {x?} | represent
the visual image data, X! = {x!} | denote the text data, where
{xY,x!} represents the i-th input image-text data pair with its

semantic label y;, and IV represents the total number of multi-
modal samples. Often, there are three types of outliers possibly
existing in multi-modal anomalies. To tackle this problem, as
shown in Fig. 3, a triple-adaptive network, is explicitly designed
to identify different kinds of anomalies whose patterns are dis-
parate in both single-modal scenario and cross-modal scenario.
On the one hand, the top branch network is utilized to adaptively
detect the attribute anomaly and part of class-attribute anomaly
in multi-modal data samples. On the other hand, the bottom
two-branch network associated with shared residual blocks, is
leveraged to detect the cross-modal outlier and other outliers.

As discussed in Section III-A, if an abnormal sample x;’ (resp.
x!) is appeared in one modality, this multi-modal data {x}, x!}
can be regarded as the anomalous data, regardless of whether
its corresponding data x! (resp. x?) is an abnormal sample or
not. Specifically, if a normal sample x? (resp. x!) is appeared
in one modality, while its corresponding data x! (resp. x?) is
an abnormal sample in another modality, the input data pair
{xY,x!} can be identified via the cross-modal outlier detection
network if x? and x! do not behave consistently across different
modalities. Since the image data is the most popular data in
various applications, we therefore select image data as a typical
example to perform anomaly discriminator in the top branch
network. First, we utilize transformer network to encode the
visual features, and employ the BERT encoder to extract the
text features. Then, these heterogeneous features are fed into
the cross-modal shared residual network (CM-SRN) to learn the
compatible cross-modal representations. At the meantime, the
network outputs are regularized by the bi-quintuple contrastive
loss, which can well enlarge the feature difference between
different attribute data, while enhancing the feature correlation
between the similar attribute data.

Visual Transformer and Anomaly Discriminator: Given an
image, it is well accepted that not all information is equally
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important for image representation. By considering this nature
of the visual data representation problem, transformer is a new
kind of neural architecture which can encode the input data
into discriminative features via the attention mechanism. For
the input visual data, we utilize transformer network to encode
the visual feature. Formally, the transformer utilizes the linear
projections to compute a set of queries (K), keys (Q) and values
(V), and calculates the scaled dot products to obtain the attention
weights, followed by the value aggregation for each query:

QK"

att(Q,K,V) = softmax ( NG ) AY (1)
where dj, is the dimension of K. The transformer applies the
attention mechanism multiple times throughout the architecture
and results in a multi-head self-attention model. Accordingly,
image transformer allows the model to jointly attend to informa-
tion from different representations at different positions, which
has h parallel attention ‘heads’ to generate several Q, K and
V values, and their values are concatenated to aggregate the
attended representations:

head; = Att(QW2, KWX vWY) (2)

.,head;, )W
3)

where W, WK, WY and W are the projection matrices.
Accordingly, each image is divided into several image patches,
and the position of each patch is encoded by the transformer
representation. Specifically, the number of transformer block is
varied for different datasets, which is generally set at a small
value if the dataset is simple, and set at a large value if the
dataset is complex. The head number is fixed at 6 and MLP
layer is set at 4. Finally, the transformer utilizes the non-linear
transformation to calculate the output features. Remarkably,
ReLU is a non-linear function that will output the input directly
if it is positive, otherwise, it will output zero. In practice, ReLU
is favored for its simple computation, fast implementation and
efficiency, and it can also avoid vanishing gradient problem in
the network learning process. Besides, training a deep network
with ReLU tends to converge much more quickly and reliably
than training a deep network with sigmoid activation. Therefore,
we utilize the ReLU as the nonlinear transformations to train the
learning model, and the high-level image semantic feature vector
is obtained by:

Multiatt(Q,K,V) = Concat(heady,..

v{! = ReLU(TNT(x?)) 4)

where vf’l represents the high-level image feature vector de-
rived from the top network branch. Within the visual data, the
distribution of normal data points is relatively dense, while the
distribution of outliers is relatively scattered. Accordingly, the
distance of each data point with its local neighborhood can reflect
the states that the data point is normal or abnormal.
Specifically, if the distance between one data point and its
local neighborhood is small, it means that the neighbors of the
data point are distributed around it. In contrast to this, if the
distance between the data point and its local neighborhood is
large, it means that the neighbors of the data point are distributed

far away from the data point. Alternatively, the k-NN model is
a classic data-driven method which is relatively effective yet
simple to exploit neighborhood relationship among the data.
Inspired by this distribution property, we utilize ball-tree based
k-NN to search the local geometric structures in the dataset:

c,1 k . c,1 c,1
{v ’ } = Ranllf {mlnd(v vy 5)

Br r=1 1,.. @ J )77&7’)7€[17N]}

where vf’i represents the r-th nearest neighbor for the i-th in-
stance, d(vf’1 , V;’ 1) denotes the Euler distance between feature

vectors vf’l and V;’l. Then, we compute the averaged distance
between each point and its k-nearest neighbor data, and search
the results recursively. More specifically, we first utilize all the
normal data in the verification set to construct the ball-tree, and
set the contamination at a small value (e.g., 0.001) to calculate
the threshold. If the distance is less than the threshold, the
neighboring data points around the current data point are densely
distributed, and this data is not anomalous. On the contrary, if the
distance is greater than the threshold, the data distribution around
the data point is sparser and this data is anomalous. Under such
circumstances, the proposed learning framework shall perform
the subsequent cross-modal anomaly detection.

Cross-modal Network Encoder: Cross-modal anomalies often
present inconsistent behaviors across different modalities. If the
multi-modal instances are learned separately, such inconsistent
behaviors cannot be well detected. In order to explore the
semantic associations between different modalities, we utilize
the cross-modal shared residual network (CM-SRN) with four
layers to learn the compatible cross-modal representations. In
particular, a series of nonlinear mapping functions are employed
to map the data points of different modalities into a consensus
feature space, in which the instance pairs with consistent pat-
terns are pulled together while the data pairs with inconsistent
cross-modal patterns are pushed away.

For the text data, we utilize the BERT encoder to extract the
textual features t; = BERT(x!), and then feed this feature into
the CR-SRN module. Note that, the networks with the shared
weight parameters can well reduce the semantic gap between the
heterogeneous modalities, while enhancing their the semantic
associations:

vit=o (FC (vf’1 + CM-SRN (vf’l)» (©6)

t5? = o (FC (t; + CM-SRN (t;))) (7)
where v 2 and tf’Z are respectively the feature output of image
and text data, o is the non-linear action function such as ReLU or
Tanh, and FC is a fully connected layer. Note that, the nonlinear
mapping functions could help to fully capture the nonlinear
correlations among different modalities, and we utilize ReLU
to train the network model.

C. Bi-Quintuple Contrastive Learning

The purpose of cross-modal anomaly detection is to find
the anomalous instances whose patterns are inconsistent across
different modalities. Towards this end, an efficient cross-modal
embedding learning method should pull together the instances
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Fig. 4. Tllustration of the proposed bi-quintuple contrastive learning.

with consistent pattern, while pushing away the instances with
inconsistent patterns. It has been theoretically and practically
validated that the contrastive learning can be well utilized
for better cross-modal representation learning, which allows
the model to flexibly define powerful losses by contrasting
the positive pairs from sets of negative samples. Nevertheless,
most previous cross-modal contrastive learning methods mainly
map the features of heterogeneous modalities into a common
embedding space, but which do not simultaneously consider
the intra-modal similarity and inter-modal similarity to learn
efficient embeddings. To tackle this problem, as shown in Fig. 4,
we design an efficient bi-quintuple contrastive learning method
to maximally enlarge the feature distance between different at-
tribute data, while enhancing the feature correlation between the
similar attribute data. More specifically, the proposed learning
method consists of multiple triple losses, which yield a flexible
principle: pull an anchor and a positive sample in the embedding
space together, and push apart the anchor from many negative
samples. Let o represent an anchor sample, p denotes a positive
sample that belongs to the same attribute with o, n represents
a negative sample that belong to different attributes from o, the
formal definition of the triple loss is formulated as follows:

L= Y (0=S(0,p)) +max (0,S(0,n)—)  (®)

o,p,n

where S(-, ) measures the similarity between a pair of obser-
vations, o and ~ are the regularization parameters. Evidently,
the sample o is orthogonal to the negative sample n in case
where S(o,n) = 0. In practice, v is utilized to accelerate the
convergence. For each triplet < o, p,n >, the optimization of
the triplet loss is to make S(o, p) as large as possible, and force
S(o,n) as small as possible.

For contrastive learning across heterogeneous modalities, we
design multiple triples to discriminatively regularize the cross-
modal representations. Without loss of generality, taking any
image data v¢2, as an anchor point in visual modality, we con-

anc

struct image-to-text similarity triple (v§2., t52, t52,), where

text data tg’oi shares the consistent semantic with the image

example v§7., and tZ, behaves inconsistent behavior with
c,2

anc*

consistent behaviors, their labels are expressed as y§- = Yone

A\ To be specific, when the attributes v&2 and t;’Q exhibit

anc

On the contrary, if the attributes p%;2. and t§’2 do not behave
consistently across different modalities, their semantic labels

are expressed as y' # yu,,.. Accordingly, t5% and tg;2, can be

derived by:
2 2 e2
62 = argmax S (Vi t%) ey ©)
Vi=Yine
- : -2
t;’gg = argmin S (vgﬁc,t; ) lien,ny  (10)
Yi#EYne
VC’2 . tC.,Q
S (vez t57) = —5 (11)
[IVanell - [1577]|

Accordingly, the image-to-text contrastive loss is defined as:
ﬁvt(vc’2 tc,2 tc,2 ) _ (’YO*S (Vﬁfm t}c},{i))

anc’ Vpos’ neg
2 )2
+max (0, S(vire, trey)—7) - (12)
Similarly, we also construct the text-to-image similarity triple
(t52., Vi, vir2,) to perform corresponding constraint, and its
corresponding contrastive loss is defined as follows:

2
v;fs = argmax S (t;ﬁc,vj ) |je[1,N]
Yi=Yine
(13)
. 2
Vf{gg = argmin S (tZﬁmV;‘ ) e, n
ViEY e
(14)
t62 .62
2
S (t52.v57) = —r—Lam (1s)
|[€anel| - [V
2 2 2N 2 2
‘CtV (tg,anw V;om VfLeg) - (’YO_S (tgnm V;(n:os))
+max (07 S(tgﬁc, vf;fg)—’y) .
(16)

Accordingly, the inter-modal contrastive loss across different
modalities can be expressed as:

1 N
_ c,2 c,2 tc¢,2
»Cinler = N § Evt (Vanmtposv tneg)

anc=1

N
1 c ¢ c
Y ). o)

anc=1

Recent studies have demonstrated that the intrinsic manifold
structure residing in individual modalities is also able to pro-
mote the cross-modal learning. Therefore, the proposed learning
framework also exploit the intra-modal contrastive learning to
promote the representation learning. Given any text data tgfmc
as an anchor sample, we construct text-to-text similarity triple
(t52., tw:2, t:2 ), where t2:2 and t12;2 respectively denote the
positive sample and negative sample within the text data. If the
attributes of t:2 and t‘;-’z are the similar, it is expressed as

anc

Y5 = ¥ine On the contrary, if the attributes of t};,;% and t;’Q

anc

are different, it is expressed as y’#y,,.. Accordingly, t<;

Pos
and t;2 can be obtained by:

tw? = argmax S (

L —
Yi=Yanc

c,2 c,2
ta7nc7 tj

)ienm  (8)
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. 2
tﬁéf] = argmin S (tgﬁc,t§ ) lien,ny (19)
Y FYbne
£62 L 462

s () - s @)

[[tanel[ - [1£5]]

Accordingly, the text-to-text contrastive loss is defined as:
‘Ctt(tgﬁmt;ﬁ;gvt%}éi) = (VO_S(tZﬁmt;U(ﬁ))

tmax (0,8 (b2 thig) =) . (21)

Similarly, we also construct the image-to-image similarity

triple (v§2., vis2,vi:2) to perform intra-modal constraint on

1 w,2 w,2 . .
image data, where v, ¢ and vy ¢ respectively denote the positive

sample and negative sample within the image data:

2 2 2
Vpos = argmax S (mec,V§ ) lien,ny (22
Y =Yane
2 . .2 2
Vyeg = argmin S (V;’Tw,v; ) ljen,ny (23)
Y #EY e
2
vc,2 3 ch’
c,2 c,2\ anc 7
§ (vitovi®) = @4
[[vaiell - ||Vl

Similarly, the image-to-image contrastive loss is defined as:

Lyv (VZ"fc» V;;gg’ Vge’f;) = (’YO - S(V;ﬁcv V;gg))

-2 2
+max (0, Sver., v;fég)—’y) .
(25)

Consequently, the intra-modal contrastive learning and cross-
modal contrastive learning not only increases the data us-
age, but also enhances discrimination power of the entire
learning framework. Further, we seamlessly combine these
intra-modal triples and inter-modal triples to form a quin-
tuple representation. Let (V2. vie? vie2 to2 t52 ) and

(52, tin2 tw:2 ve2 ve?2 ), respectively, denote the quintuple
combination for each image and text sample, their quintuple

contrastive loss formulations are defined as:

c,2 w,2 w,2 4c,2 c,2 \ __ c,2 c,2 c,2
‘CV (vanca Vpos ’ Vnega tposﬂ tneg) - ‘CVt (Vancﬂ t:pos? tneg)

c,2 w,2 w,2
+»va (Vanc7 Vpos ) Vneg) :
(26)

c,2 w,2 w,2 c,2 c,2 0\ __ c,2 c,2 c,2
‘Ct (ta7nc’ tpo75’ tneg7 vp7os7 vn’eg) - EtV (tajnc’ Vp7057 Vneg)

+£tt (tc,2 tw,2 tw,2) .

anc’ Vpos’ “neg

27)

By integrating the (26) and (27), the entire bi-quintuple con-
trastive loss is defined as follows:

1 N
_ c,2 w,2 ,w,2 gc¢,2 c,2
[fquimuple - N E Ev (Vahcv Vpo’s,Vneg,tpos, ty{gg)
anc=1
1 N
c,2 w,2 gw,2 c,2 c,2
+ ﬁ E L (tanm tpo’s ) tnegv Vp’osv Vn$eg) .
anc=1

(28)

Through the joint exploitation of the bi-quintuple loss, the pro-
posed TN-BCL framework can well push the representations of
normal instance pairs closer while pulling those representations
of abnormal instance pairs away.

D. Optimization and Anomaly Detection

The objective of the proposed TN-BCL framework is to mini-
mize (28). Similar to work [9], the proposed model is optimized
by Adam optimizer [22], which is an adaptive stochastic gradient
descent method and its optimization process can be iteratively
solved until the convergence is reached. The whole network is
trained in an end-to-end manner and network parameters are
updated by the backpropagation. On the one hand, the instances
with consistent patterns will be pulled together within a small
distance, and their cross-modal similarity in the transformed
feature space should be very high. On the other hand, the
instances with inconsistent patterns will be pushed away from
each other, and their cross-modal similarity in the transformed
feature space should be very small. Since the Youden index [23]
provides the best tradeoff between sensitivity and specificity, we
utilize the validation set to obtain the ROC curve, and select
the Youden index [23] to optimize the threshold value. For
the testing, we calculate the similarity between heterogeneous
data pairs, and utilize the derived threshold to detect various
cross-modal anomalies.

IV. EXPERIMENT

This section conducts a series of quantitative experiments to
investigate the effectiveness and robustness of the proposed deep
cross-modal anomaly detection method. The experiments and
analysis will be detailed in the following subsections.

A. Datasets and Implementations

The popular MNIST, FashionMNIST, CIFARI10 [24] and
Voxceleb [25] datasets are selected for evaluation. The main
description of each dataset is briefly described as follows:

1) MNIST dataset: It consists of 70,000 original digital images
to represent 10 different numbers of pixels. The entire MNIST
dataset is divided into a training set of 60,000 images and a test
set of 10,000 instances. We randomly selects 5000 pieces of data
from the training set as the validation set.

2) FashionMNIST dataset: This dataset replaces the MNIST
handwritten digit set with fashion products derived from 10
categories, which covers a total of 70,000 product images. The
size of the training set, testing set and validation set are set as
the same as the MNIST dataset.

3) CIFARIO dataset: 1t is a computer vision dataset that
contains 60,000 RGB color images from 10 categories. The
entire dataset is divided into a training set of 50,000 images and
a test set of 10,000 instances. We also randomly selects 5000
pieces of data from the training set as the validation set.

4) Voxceleb dataset: Itis a popular face-voice dataset collected
from 1251 celebrities. We utilize MTCNN [26] to crop RGB
faces with a size of 224 x 224 x 3 from the video frames, and
employ the voice activity detector [27] to eliminate the voice
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segment with 64-dimensional log melspectrograms. We select
901 celebrities as the training set, 100 people as the validation
set, and 250 people as the test set. The identities between these
splits are fully disjoint.

For MNIST, FashionMNIST and CIFAR10 datasets, the text
tag is added to each image example by GloVe word embed-
ding [28], and the BERT encoder [29] is utilized to map the
tag information into a 100-dimensional vector. Accordingly,
the image-text dataset can be synthetically generated for multi-
modal data analysis. Note that, the paired instances derived
from these datasets exactly share the same semantic information
between each other, which can be well utilized to detect the
anomalous samples that behave inconsistently across different
modalities. Specifically, some other multi-label multi-modal
datasets may not have exactly the same semantic information
for the paired instances, which are therefore unsuitable for
evaluating the cross-modal anomaly detection tasks. Since there
is no ground truth of anomalies in these datasets, we refer to
work [19] and select the popular injection method to create a
number of inconsistent multi-modal data pairs. For the image-
text data, we modify a certain proportion of one modality data
and randomly inject other data to generate attribute anomalies
and mixed anomalies. Meanwhile, we randomly scramble a
certain proportion of image-text pairs to generate cross-modal
anomalies, in which the scrambled image-text pairs do not match
semantically. For the Voxceleb datasets, we replace a certain
proportion of faces with different celebrities and randomly gen-
erate the disguised voice sequence of the same dimensionality to
generate attribute anomaly and mixed anomaly data. Meanwhile,
we shuffle a certain proportion of face-voice pairs to generate
cross-modal anomaly data. In the experiments, the number of
transformer blocks is set at 3 for MNIST and FashionMNIST
datasets, set at 5 for CIFAR 10 dataset, and set at 7 for Voxceleb
dataset.

B. Baseline Methods and Evaluation Metrics

To the best of our knowledge, there exist limited cross-modal
anomaly detection methods, except for CMAD [9]. For mean-
ingful comparison, we select three multi-view outlier detection
algorithms that can be utilized for cross-modal anomaly detec-
tion, i.e., MUVAD [17], MODDIS [19] and TBNN [21]. Besides,
cross-modality metric learning (CMML) [30] is also selected
to learn the relative distance between the positive and negative
pairs, which can be utilized to detect the cross-modal outliers.
To be concept, MUVAD exploits the nearest neighbor based
multi-view anomaly detection to identify multi-view outliers,
while MODDIS utilizes the neural networks to integrate multi-
view data into a latent intact space and defines an outlier score
measurement to detect different outliers. For these two methods,
we consider each modality as one particular view of data to
process the multi-modal data, and attempt to detect various
anomalous samples in the datasets. TBNN [21] constructs two
network structures to learn the shared latent embedding space
and measures the similarity between image and text. CMML [30]
applies the bi-directional triplet variants to optimize the relative
distance between the cross-modal positive and negative pairs.

TABLE I
THE AUC, FPR, TPR AND ACCURACY RESULTS EVALUATED ON
MNIST DATASET
Method AUC FPR TPR Accuracy
MUVAD [17] 0.7592 0.3689 0.8872 0.7577
MODDIS [19] 0.8567 0.0386 0.7519 0.8723
TBNN [21] 0.9574 0.0258 0.9407 0.9592
CMAD [9] 0.9871 0.0072 0.9814 0.9869
CMML [30] 0.9761 0.0195 0.9705 0.9725
Ours(Linter) 0.9974 0.0051 0.9934 0.9942
Ours(Lquintuple) 0.9971 0.0062 0.9922 0.9932
TABLE II

THE AUC, FPR, TPR AND ACCURACY RESULTS EVALUATED ON
FASHIONMNIST DATASET

Method AUC FPR TPR Accuracy
MUVAD [17] 0.8077 0.1109 0.7263 0.8067
MODDIS [19] 0.8367 0.1477 0.8211 0.8448
TBNN [21] 0.8879 0.1439 0.9196 0.8837

CMAD [9] 0.9025 0.0362 0.8412 0.9069
CMML [30] 0.9315 0.0651 0.9227 0.9232
Ours(Linter) 0.9859 0.0435 0.9617 0.9591
Ours(Lquintuple) 0.9878 0.0369 0.9611 0.9621

For these methods, we utilize the propposed threshold optimiza-
tion scheme to detect the possible anomalous samples across
different modalities.

In the experiment, the hyperparameter ~ is set at 0.4 for
MNIST, FashionMNIST, and CIFAR10 dataset, and set at 0.2
for Voxceleb dataset. The quantitative performance is evaluated
by the popular true positive rate (TPR) and false positive rate
(FPR):

TP FP
TPR=——— FPR= ————
TP + FN TN + FP

where TP, FN, TN, and FP, respectively, represent the number of
true positives, false negatives, true negatives, and false positives.
In general, the larger TPR values generally indicate the better
detection performance, while the smaller FPR values show
the better detection results. Consequently, the accuracy is also
utilized to evaluate the detection performances:
TP + TN
TP + TN + FP + FN

In addition, we also utilize the ROC curves and AUC values
to evaluate the detection performances [31]. Specifically, AUC
is the area of the ROC curve, with larger values indicating the
better outlier detection performance.

(29)

Accuracy = 30)

C. Performance Comparison and Analysis

1) Results of Detection Performances: The anomaly detection
results tested on different datasets are shown in Tables I, II,
III, and IV, respectively. It can be found that the competing
multi-view anomaly detection methods have delivered relatively
lower AUC, TPR and Accuracy values, while generating a large
bit FPR values. Specifically, MUVAD [17] exploits an anomaly
measurement criterion to estimate the set of normal instances,
while MODDIS [19] construct a multi-view latent intact space to
encode outlier information. For the FashionMNIST dataset, the
AUC score and accuracy value obtained by MUVAD approach
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TABLE III
THE AUC, FPR, TPR AND ACCURACY RESULTS EVALUATED ON CIFAR10
DATASET
Method | AUC | FPR | TPR | Accuracy
MODDIS [19] 0.6681 0.2199 0.5561 0.6783
TBNN [21] 0.7432 0.2467 0.7331 0.7428
CMAD [9] 0.7621 0.1579 0.6821 0.7651
CMML [30] 0.8267 0.1826 0.7782 0.7941
Ours(Linger) 0.8803 0.2014 0.8595 0.8268
Ours(Lguinwple) 0.8845 0.1698 0.8476 0.8389
TABLE IV
THE AUC, FPR, TPR AND ACCURACY RESULTS EVALUATED ON VOXCELEB
DATASET
Method | AUC | FPR | TPR | Accuracy
TBNN [21] 0.7471 0.4129 0.8229 0.7273
CMAD [9] 0.7106 0.4776 0.8207 0.6991
CMML [30] 0.7597 0.3940 0.8095 0.7317
Ours(Linger) 0.7543 0.3793 0.818 0.7378
Ours(Lguintple) 0.7737 0.3718 0.8261 0.7459

are respectively equal to 0.8077 and 0.8067, while the AUC
score and accuracy value obtained by MODDIS method are
respectively equal to 0.8367 and 0.8448. These two multi-view
outlier detection methods are able to detect some easy-to-
identify outliers, but which often fail to detect some inconsistent
semantic patterns. As a result, their detection performances are
uncompetitive when processing the heterogeneous modalities.

Specifically, TBNN [21] encodes both bidirectional ranking
constraints and neighborhood-preserving constraints to regu-
larize the correspondence between different modalities, which
can learn their semantic similarity to differentiate the possible
anomalous samples. Accordingly, the accuracy scores obtained
by this approach are only equal to 0.8837 and 0.7428, respec-
tively, tested on FashionMNIST and CIFAR10 datasets. Note
that, this approach ignores the intra-modal structure embedded
in real-world data and therefore results in a lower detection
performance. CMAD [9] exploits a deep structured framework
to characterize the feature representations between heteroge-
neous data samples, which can identify the anomalies whose
patterns are disparate across different modalities. It can be found
that CMAD has yielded the better anomalous sample detec-
tion performance than the results obtained by the competitive
multi-view outlier detection methods. Nevertheless, CMAD has
delivered very poor detection performance on the inconsistent
behavior matching across face and voice modalities, and the
detection accuracy is only equal to 0.6991. The main reason lies
that CMAD is only designed to detect the cross-modal outliers,
which cannot differentiate the attribute outliers. Besides, CMAD
just utilizes the cross-modal negative samples to penalize the
instance pairs with inconsistent patterns, whereby some con-
fused outliers cannot be well detected. CMML [30] applies the
bi-directional triplet variants to optimize the relative distance
between the cross-modal positive and negative pairs, which can
promote the outlier detection performances. Nevertheless, this
approach ignores the intra-modal negative samples to enlarge
the feature distance between different attribute data, and its
detection performances need further improvement.

Comparatively speaking, the proposed TN-BCL method al-
ways yields the better cross-modal outlier detection performance
than the competing multi-view outlier detection methods. To
be specific, the proposed TN-BCL approach with Lqyinwpie 10ss
always delivers the better AUC scores in most tested datasets,
and yields the highest accuracies in most cases. For instance,
the AUC values obtained by TN-BCL (Lquinwpie) reach up to
0.9878 and 0.8845, respectively, evaluated on the FashionM-
NIST and CIFARIO datasets. Comparing with the Fashion-
MNIST dataset, CIFAR10 dataset has more complex visual
appearances, and such complexity makes it difficult to identify
the anomalies whose patterns are disparate across different
modalities. Noted that, the CMAD and TN-BCL methods are
both designed to identify the abnormal samples across different
modalities. It can be found that the AUC, TPR and accuracy
values obtained by the proposed TN-BCL approach are all higher
than that produced by the CMAD method, which indicates
that the proposed TN-BCL approach is able to identify more
complex abnormal samples across heterogeneous modalities.
As shown in Fig. 5, the similar detection performance can
be also evaluated using the ROC curve, which graphically
demonstrates the changes of true positive rate with respect to
the changes of false positive rate in the detection. It can be
observed that the proposed approach has achieved the best
detection performances and improved the state-of-the-art re-
sults significantly. That is, the cross-modal embedding derived
from the proposed TN-BCL framework are more discrimina-
tive and semantically meaningful, which can well guarantee
the semantic consistency between the similar heterogeneous
samples and inconsistency between dissimilar heterogeneous
samples.

2) Results of Different Anomaly Ratios: We also sample
different ratio of anomaly samples in the dataset to evaluate
the effectiveness of the proposed TN-BCL framework. For
simplicity, the ratio is defined as the sample proportion be-
tween normal instance and abnormal instance in the dataset.
As shown in Table V, it can be observed that the accuracy value
changes under different anomaly ratios. Remarkably, the CMAD
method [9] is specifically designed to identify cross-modal
anomalies whose patterns are disparate across different modal-
ities, which can achieve very competitive performances than
the competing multi-view outlier detection methods, i.e., MU-
VAD and MODDIS, especially when there exist large anomaly
examples. For instance, the accuracies obtained by MUVAD
and MODDIS, are respectively equal to 0.5969 and 0.7322,
when tested on Cifar10 dataset with 1:4 ratio. The main reason
lies that multi-view anomaly detectors mainly consider each
feature subset as one particular view of the data, but which often
degrade their performance on completely heterogeneous data
acquired from different modalities. TBNN [21] constructs two
network structures to measure the similarity between different
modalities, which can well differentiate the anomaly samples
within the multi-modal datasets. Nevertheless, this approach
is very sensitive to the anomaly ratio values, and the detec-
tion accuracies vary significantly under different ratio values.
Although CMAD approach [9] and CMML [30] are able to
identify the cross-modal anomalies, such approach ignores the
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Fig. 5.

The ROC curves obtained by different approaches and tested on four datasets.

TABLE V
ANOMALY DETECTION ACCURACIES OBTAINED BY DIFFERENT APPROACHES AND DIVERSE ABNORMAL RATIOS

Different Anomaly Ratios (Normal/Abnormal)

Dataset Method 191 91 Z1 31 21 B 2 3 T4
MUVAD [17] 0.6543 0.6815 0.692 0.7112 0.7433 0.7515 0.838 0.8651 0.8821
MODDIS [19] 0.9320 0.9287 0.9188 0.9072 0.8896 0.8585 0.8201 0.8029 0.7936
TBNN [21] 0.9730 0.9716 0.967 0.9656 0.9618 0.9536 0.948 0.9466 0.9458
MNIST CMAD [9] 0.9922 0.9920 0.9915 0.9908 0.9883 0.9865 0.9821 0.9802 0.9790
CMML [30] 0.9703 0.9719 0.9723 0.9729 0.9738 0.9755 0.9758 0.9762 0.9771
TN-BCL (Linter) 0.9935 0.9941 0.9937 0.9938 0.9939 0.9942 0.9941 0.9945 0.9946
TN-BCL (Lguintuple) 0.9923 0.9924 0.9926 0.9929 0.9928 0.9931 0.9933 0.9931 0.9935
MUVAD [17] 0.8784 0.8692 0.855 0.8395 0.8183 0.7865 0.7543 0.7393 0.7194
MODDIS [19] 0.8568 0.8626 0.8516 0.84383 0.8446 0.8460 0.8331 0.8317 0.8284
TBNN [21] 0.8597 0.8626 0.8704 0.8722 0.8768 0.8980 0.8987 0.9051 0.9095
FashionMNIST CMAD [9] 0.9335 0.9301 0.9254 0.9188 0.9127 0.9083 0.8877 0.8763 0.8696
CMML [30] 0.9233 0.9236 0.9245 0.9252 0.9266 0.9279 0.9308 0.9318 0.9320
TN-BCL (Linter) 0.9614 0.9612 0.9608 0.9606 0.9601 0.9591 0.9582 0.9571 0.9575
TN-BCL (Lguintuple) 0.9612 0.9613 0.9615 0.9616 0.9614 0.9621 0.9625 0.9626 0.9625
MODDIS [19] 0.7404 0.7307 0.7113 0.7016 0.6954 0.6731 0.6408 0.6146 0.5969
TBNN [21] 0.7520 0.7507 0.7481 0.7467 0.7445 0.7411 0.7358 0.7335 0.7322
Cifarl0 CMAD [9] 0.8581 0.8461 0.8331 0.8133 0.7971 0.7346 0.6821 0.6659 0.6561
CMML [30] 0.7801 0.7821 0.7849 0.7880 0.7902 0.7978 0.8013 0.8056 0.8075
TN-BCL (Linter) 0.8565 0.8534 0.8473 0.8457 0.8392 0.8291 0.8189 0.8136 0.8108
TN-BCL (Lguintuple) 0.8467 0.8459 0.8445 0.8434 0.8419 0.8387 0.8358 0.8346 0.8338
TBNN [21] 0.8111 0.7993 0.7757 0.7636 0.7443 0.7052 0.6657 0.6463 0.6341
CMAD [9] 0.8058 0.7854 0.7614 0.7461 0.7213 0.6716 0.6218 0.5970 0.5821
Voxceleb CMML [30] 0.7993 0.7891 0.7697 0.7586 0.7436 0.7125 0.6738 0.6588 0.6436
TN-BCL (Linter) 0.8081 0.7981 0.7783 0.7687 0.7523 0.7183 0.6865 0.6697 0.6601
TN-BCL (L guinwple) 0.8162 0.8063 0.7865 0.7766 0.7611 0.7273 0.6938 0.6781 0.6675

intra-modal negative samples to enlarge the feature distance
between different attribute data and therefore may result missing
outlier detections.

In contrast to this, the proposed TN-BCL approach always de-
livers the better detection performances under different anomaly
ratios, which again demonstrates the effectiveness of the pro-
posed model. For the MNIST dataset, the proposed TN-BCL
approach with L;, loss delivers the best detection performance
with different anomaly ratios. For the Voxceleb dataset, the
proposed TN-BCL approach with Lquinwple 10ss yields the best
detection accuracy under different anomaly ratios. Further, we
also sample different types of anomaly instances separately.
Specifically, we utilize the learnt representations of CMAD as-
sociated with optimized threshold to detect the attribute outliers
and mixed outliers. The similar results tested on FashionMNIST
and CIFAR10 datasets can be also found in Fig. 6, it can be found
that MODDIS, TBNN and CMAD approaches have induced an
obvious fluctuations on the detection accuracies. For instance,
if the anomaly ratios are different, CMAD has resulted different
accuracies when detecting the cross-modal outliers and mixed

outliers. Comparatively speaking, our proposed TN-BCL ap-
proach has achieved very stable anomaly detection performance
and the detection accuracies are always higher than the results
obtained by the competing baselines. That is, our proposed
TN-BCL approach not only can identify different kinds of
anomalous samples, but also could produce relatively stable
detection performance on different anomaly detection tasks.

3) Analysis on Training Time: Further, we record the execu-
tion times on each training epoch and 1000 testing examples
to show the time complexity of the different framework. The
proposed model and the competing baselines are trained on
GPU NVIDIA RTX 2080Ti. Since the proposed model aggre-
gates more modules to discriminatively learn the cross-modal
representations, the execution time of training time or testing
time could be much higher than that obtained by the competing
methods. Fortunately, as illustrated in Table VI, the proposed
TN-BCL framework does not significantly increase the training
time and testing time to a large extent, while achieving the best
outlier detection performances. From a practical viewpoint, the
proposed TN-BCL method achieves a good balance between the
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Fig. 6. Anomaly detection results obtained by different approaches and tested on diverse anomaly types.
TABLE V1 the text modality, the proposed TN-BCL framework is able to
EVALUATION OF EXECUTION TIMES ON FASHIONMNIST DATASET . . . . .
identify the semantically irrelevant examples (i.e., cross-modal
— - outliers) that show inconsistent meanings in the visual modality,
Method Training (epoch/h) Testing (1000/s) Acc (%) . s . N .

e.g., ‘camel” and ‘cattle’. It indicates that the proposed network
¥§££IS 8' 12 ég g'ggg structure exhibits high discriminability to learn the semantically
CMAD 0.18 39 0.9069 differentiable embeddings, which can well push representations
CMML 0.20 32 0.9232 of the semantically relevant examples closer while pulling those
TN-BCL (Linter) 0.28 6.6 0.9591 : : . .

of semantically irrelevant instances away. The experiments con-
TN-BCL (£Lquintuple) 0.29 6.6 0.9621 y Y P

time cost and outlier detection performance, which is suitable
for identifying the anomalies whose patterns are disparate across
different modalities.

4) Visualization and Analysis: To visually verify the supe-
riority of the proposed TN-BCL model, we show some rep-
resentative cross-modal anomaly detection examples obtained
by the proposed TN-BCL framework. As shown in Fig. 7,
the right parts show the visual detection results specified by
text or voice query. On the one hand, it can be found that the
proposed TN-BCL approach is able to identify the semantically
similar examples from one modality to another modalities. For
instance, given a ‘ship’ query in the text modality, the proposed
TN-BCL method is able to match the relevant visual examples.
This indicates that the proposed framework aggregates more
semantic relationships within semantically relevant multi-modal
data, which can explicitly learn the semantic correspondence
to correlate heterogeneous data samples. On the other hand,
the proposed TN-BCL framework is capable of detecting the
abnormal examples that exhibit inconsistent behaviors across
different modalities. For instance, given an ‘Horse’ query in

stantly show its outstanding performance.

D. Further Discussion

Cross-modal anomaly detection across heterogeneous modal-
ities is a very challenging topic in the anomaly detection field.
The extensive experiments show that the proposed TN-BCL
framework is able to detect all kinds of outliers from the hetero-
geneous multi-modal data. The main advantages contributed to
these very competitive performances are three-fold: 1) The de-
signed triple-adaptive network is able to identify different kinds
of anomalies whose patterns are disparate in both single-modal
scenario and cross-modal scenario. Accordingly, the proposed
network structure can well promote the outlier detection per-
formance. 2) The proposed bi-quintuple contrastive learning is
capable of enhancing the feature correlation between the same
attribute data, while maximally enlarging the feature distance
between different attribute data. As a result, the instance pairs
with consistent patterns across different modalities are pulled
together, while the data pairs with inconsistent cross-modal
patterns are pushed away. 3) The designed bidirectional learning
scheme is able to significantly improve the data utilization,
which can well benefit the network to learn the discriminative
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Fig. 7.
samples are marked with red rectangle.

cross-modal embeddings and therefore promote the outlier de-
tection performance. The experimental results consistently val-
idate the advantage and effectiveness of the proposed TN-BCL
framework in detecting different kinds of anomaly examples.

V. CONCLUSION

In this paper, we have proposed an efficient deep cross-modal
anomaly detection approach via triple-adaptive network and
bi-quintuple contrastive learning. Within the proposed frame-
work, a triple-adaptive network is explicitly designed to identify
different kinds of anomalies whose patterns are disparate in both
single-modal scenario and cross-modal scenario. Meanwhile, an
efficient bi-quintuple contrastive learning method is discrimina-
tively designed to guide the cross-modal embedding learning
process, which can maximally enlarge the feature distance be-
tween different attribute data and enhance the feature correlation
between the same attribute data. As a result, the multi-modal
data pairs with consistent patterns are pulled together, while
the data pairs with inconsistent patterns are pushed away. In
addition, the bidirectional learning scheme is able to improve the
data utilization significantly and therefore benefit the abnormal
sample detection in a more interpretable and plausible way. Ex-
tensive experiments conducted on various kinds of cross-modal
anomaly detection tasks have shown its promising performance.

Along the line of the present work, several open problems
also deserve our further research. For example, the missing
modality problem is another challenging topic in cross-modal
outlier detection field, and the adaptive cross-modal anomaly
detection method should also consider this practical problem.
Also, the current learning framework aggregates multiple mod-
ules to promote the outlier detection performance. If the training

Visualization of representative cross-modal anomaly detection examples on different datasets. For each text query or voice query, the detected anomalous

dataset is very large, the updating of model parameters will need
more computational load. Besides, if the multi-modal datasets
have more than three modalities or incorporate the imbalanced
multi-modal data collections, the current work will need more
designs to tackle these problems. These investigations will be
studied in our future works.

REFERENCES

[1] P. Jain, S. Jain, O. R. Zaiane, and A. Srivastava, “Anomaly detection
in resource constrained environments with streaming data,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 6, no. 3, pp. 649-659, Jun. 2022.

[2] C. Ryan, F. Murphy, and M. Mullins, “End-to-end autonomous driving
risk analysis: A behavioural anomaly detection approach,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 3, pp. 1650-1662, Mar. 2021.

[3] H. D. P. d. Santos, A. H. D. P. S. Ulbrich, V. Woloszyn, and R. Vieira,

“DDC-outlier: Preventing medication errors using unsupervised learn-

ing,” IEEE J. Biomed. Health Informat., vol. 23, no. 2, pp. 874-881,

Mar. 2019.

W. Lin, J. Gao, Q. Wang, and X. Li, “Learning to detect anomaly

events in crowd scenes from synthetic data,” Neurocomputing, vol. 436,

pp. 248-259, 2021.

Y. Zong, W. Zheng, X. Huang, J. Shi, Z. Cui, and G. Zhao, “Domain re-

generation for cross-database micro-expression recognition,” IEEE Trans.

Image Process., vol. 27, no. 5, pp. 2484-2498, May 2018.

[6] Q. Li, M. Gu, K. Zhou, and X. Sun, “Multi-classes feature engineering

with sliding window for purchase prediction in mobile commerce,” in

Proc. IEEE Int. Conf. Data Mining Workshop, 2015, pp. 1048-1054.

N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to

network intrusion detection,” IEEE Trans. Emerg. Topics Comput. Intell.,

vol. 2, no. 1, pp. 41-50, Feb. 2018.

[8] A.-U.Rehman, H. S. Ullah, H. Farooq, M. S. Khan, T. Mahmood, and H.
O. A. Khan, “Multi-modal anomaly detection by using audio and visual
cues,” IEEE Access, vol. 9, pp. 30587-30603, 2021.

[9] Y. Li, N. Liu, J. Li, M. Du, and X. Hu, “Deep structured cross-modal
anomaly detection,” in Proc. IEEE Int. Joint Conf. Neural Netw., 2019,
pp. 1-8.

[10] J. Simanek, V. Kubelka, and M. Reinstein, “Improving multi-modal data

fusion by anomaly detection,” Auton. Robots, vol. 39, no. 2, pp. 139-154,
2015.

[4

—

[5

—_

[7

—

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on April 09,2024 at 03:59:02 UTC from IEEE Xplore. Restrictions apply.



PENG et al.: TOWARDS EFFICIENT CROSS-MODAL ANOMALY DETECTION USING TRIPLE-ADAPTIVE NETWORK 709

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

H. Zhao and Y. Fu, “Dual-regularized multi-view outlier detection,” in
Proc. 24th Int. Joint Conf. Artif. Intell., 2015, pp. 4077-4083.

X. Li, H. Zhang, R. Wang, and F. Nie, “Multiview clustering: A scalable
and parameter-free bipartite graph fusion method,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 1, pp. 330-344, Jan. 2022.

J. Gao, W. Fan, D. Turaga, S. Parthasarathy, and J. Han, “A spectral frame-
work for detecting inconsistency across multi-source object relationships,”
in Proc. IEEE 11th Int. Conf. Data Mining, 2011, pp. 1050-1055.

A. M. Alvarez, M. Yamada, A. Kimura, and T. Iwata, “Clustering-based
anomaly detection in multi-view data,” in Proc. ACM Int. Conf. Inf. Knowl.
Manage., 2013, pp. 1545-1548.

H. Zhao, H. Liu, Z. Ding, and Y. Fu, “Consensus regularized multi-view
outlier detection,” IEEE Trans. Image Process.,vol.27,no. 1, pp. 236-248,
Jan. 2018.

K. Li, S. Li, Z. Ding, W. Zhang, and Y. Fu, “Latent discriminant subspace
representations for multi-view outlier detection,” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 3522-3529.

X. R. Sheng, D.-C. Zhan, S. Lu, and Y. Jiang, “Multi-view anomaly
detection: Neighborhood in locality matters,” in Proc. AAAI Conf. Artif.
Intell., 2019, pp. 4894-4901.

W. Zhen and L. Chao, “Towards a hierarchical Bayesian model of multi-
view anomaly detection,” in Proc. Int. Joint Conf. Artif. Intell., 2020,
pp. 2420-2426.

Y. X. Ji et al., “Multi-view outlier detection in deep intact space,” in Proc.
IEEE Int. Conf. Data Mining, 2019, pp. 1132-1137.

X. Liu, Y.-m. Cheung, Z. Hu, Y. He, and B. Zhong, “Adversarial tri-fusion
hashing network for imbalanced cross-modal retrieval,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 5, no. 4, pp. 607-619, Aug. 2021.

L. Wang, Y. Li, J. Huang, and S. Lazebnik, “Learning two-branch neural
networks for image-text matching tasks,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 2, pp. 394-407, Feb. 2019.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, pp. 1-15.

J. Yin and L. Tian, “Joint inference about sensitivity and specificity at
the optimal cut-off point associated with Youden index,” Comput. Statist.
Data Anal., vol. 77, pp. 1-13, 2014.

E. F. Carvalho and P. M. Engel, “Convolutional sparse feature descriptor
for object recognition in CIFAR-10,” in Proc. IEEE Braz. Conf. Intell.
Syst., 2013, pp. 131-135.

A.Nagrani,J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb: Large-scale
speaker verification in the wild,” Comput. Speech Lang., vol. 60, 2020,
Art. no. 101027.

K.Zhang,Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment
using multitask cascaded convolutional networks,” IEEE Signal Process.
Lett., vol. 23, no. 10, pp. 1499-1503, Oct. 2016.

X. L. Zhang and J. Wu, “Deep belief networks based voice activity
detection,” IEEE Trans. Audio Speech Lang. Process., vol. 21, no. 4,
pp. 697-710, Apr. 2013.

J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for
word representation,” in Proc. Int. Conf. Empirical Methods Natural Lang.
Process., 2014, pp. 1532-1543.

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,”
in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, 2019,
pp. 4171-4186.

M. Ye, W.Ruan, B. Du, and M. Z. Shou, “Channel augmented joint learning
for visible-infrared recognition,” in Proc. IEEE Int. Conf. Comput. Vis.,
2021, pp. 13547-13556.

X. Liu, Z. Hu, H. Ling, and Y.-M. Cheung, “MTFH: A matrix tri-
factorization hashing framework for efficient cross-modal retrieval,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 3, pp. 964-981, Mar. 2021.

Shu-Juan Peng received the Ph.D. degree in com-
puter science from Wuhan University, Wuhan, China,
in 2009. She is currently an Associate Professor with
the Department of Artificial Intelligence, Huaqiao
University, Xiamen, China, and also a Research Fel-
low with the Key Laboratory of Pattern Recognition
and Computer Vision, Xiamen, and also a Research
Fellow with the Key Laboratory of Computer Vision
and Machine Learning (Huaqiao University), Fujian
Province University, Xiamen. Her research interests
include multimedia data analysis, pattern recognition,

and computer animation.

Ye Fan received the M.S. degree in computer science
from Huagiao University, Xiamen, China, in 2023. He
is currently a Research Fellow with the Xiamen Key
Laboratory of Computer Vision and Pattern Recog-
nition, Xiamen, and also a Research Fellow with
the Fujian Key Laboratory of Big Data Intelligence
and Security, Xiamen. His research interests include
multimedia content analysis, pattern recognition, and
deep learning.

Yiu-ming Cheung (Fellow, IEEE) received the Ph.D.
degree from the Department of Computer Science and
Engineering, the Chinese University of Hong Kong,
Hong Kong. He is currently a Chair Professor (Arti-
ficial Intelligence) with the Department of Computer
Science, Hong Kong Baptist University, Hong Kong.
His research interests include machine learning, pat-
tern recognition and visual computing. He is the
Editor-in-Chief (since 2023) of IEEE Transactions
on Emerging Topics in Computational Intelligence,
and is an Associate Editor for IEEE TRANSACTIONS
ON CYBERNETICS, IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL
SYSTEMS, Pattern Recognition, Knowledge and Information Systems, to name
a few. He is an IET Fellow, AAAS Fellow and BCS Fellow. For details, please
visit: https://www.comp.hkbu.edu.hk/ymc.

Xin Liu (Senior Member, IEEE) received the Ph.D.
degree in computer science from Hong Kong Baptist
University, Hong Kong, in 2013. He was a Visiting
Scholar with Computer & Information Sciences De-
partment, Temple University, Philadelphia, PA, USA,
from 2017 to 2018. Currently, he is a Professor with
the Department of Computer Science and Technol-
ogy, Huagiao University, Xiamen, China, and also
a Research Fellow with Department of Computer
Science, Hong Kong Baptist University, Hong Kong
SAR, China. His present research interests include
multimedia data analysis, anomaly detection, pattern recognition and deep
learning based data mining. He is a senior member of the IEEE.

Zhen Cui (Member, IEEE) received the B.S. degree
from Shandong Normal University, Jinan, China, in
2004, the M.S. degree from Sun Yat-sen University,
Guangzhou, China, in 2006, and the Ph.D. degree
from the Institute of Computing Technology (ICT),
Chinese Academy of Sciences, Beijing, China, in
2014. He also spent half a year as a Research Assistant
on Nanyang Technological University (NTU), Singa-
pore, from June 2012 to December 2012. He was a
Research Fellow with the Department of Electrical
and Computer Engineering, National University of
Singapore (NUS), Singapore, from 2014 to 2015. He is currently a Professor with
the Nanjing University of Science and Technology, Nanjing, China. His research
interests include deep learning, computer vision, and pattern recognition.

Taihao Li received the Ph.D. degree in information
science and systems engineering from National Uni-
versity of Tokushima, Tokushima, Japan, in 2006.
He was a Researcher with Harvard University, Cam-
bridge, MA, USA, from 2006 to 2011. He was a
Principle Scientist with Flatley Discovery Lab from
2011 to 2019. He is currently the Deputy Direc-
tor of Cross-Media Intelligence Research Center in,
Zhejiang Lab, Hangzhou, China. He has published
authored or coauthored more than 30 related papers
in well-known journals and conferences around topics
like affective computing, image processing, and multi-modal information fusion,
etc. He also hosted or participated in 18 projects in the United States, Japan and
China and has applied more than 30 patents for multi-modal emotion recognition.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on April 09,2024 at 03:59:02 UTC from IEEE Xplore. Restrictions apply.


https://www.comp.hkbu.edu.hk/ymc


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


