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Self-Organizing Map-Based Weight Design for
Decomposition-Based Many-Objective

Evolutionary Algorithm
Fangqing Gu and Yiu-Ming Cheung

Abstract—Many-objective optimization problems (MaOPs),
in which the number of objectives is greater than three,
are undoubtedly more challenging compared with the
bi- and tri-objective optimization problems. Currently, the
decomposition-based evolutionary algorithms have shown
promising performance in dealing with MaOPs. Nevertheless,
these algorithms need to design the weight vectors, which has
significant effects on the performance of the algorithms. In par-
ticular, when the Pareto front of problems is incomplete, these
algorithms cannot obtain a set of uniformly distribution solutions
by using the conventional weight design methods. In the litera-
ture, it is well-known that the self-organizing map (SOM) can
preserve the topological properties of the input data by using the
neighborhood function, and its display is more uniform than the
probability density of the input data. This phenomenon is advan-
tageous to generate a set of uniformly distributed weight vectors
based on the distribution of the individuals. Therefore, we will
propose a novel weight design method based on SOM, which can
be integrated with most of the decomposition-based algorithms
for solving MaOPs. In this paper, we choose the existing state-
of-the-art decomposition-based algorithms as examples for such
integration. This integrated algorithms are then compared with
some state-of-the-art algorithms on eleven redundancy problems
and eight nonredundancy problems, respectively. The experimen-
tal results show the effectiveness of the proposed approach.

Index Terms—Evolutionary algorithm, many-objective opti-
mization, self-organizing map (SOM), weight design.

I. INTRODUCTION

W ITHOUT loss of generality, a multiobjective
optimization problem (MOP) can be formulated

as follows:

min
x∈D

F(x) = (f1(x), f2(x), . . . , fM(x))T (1)
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where D ⊂ R
n is the domain, x ∈ D is the decision vari-

able, n is the dimension of the decision variable, and M ≥ 2
is the number of objectives. For many-objective optimization
problems (MaOPs), M is generally greater than three.

MaOPs are quite common in a variety of real applica-
tions [1]–[3]. In the literature, a number of multiobjective
evolutionary algorithms (MOEAs), e.g., Pareto-based meth-
ods NSGA-II [4], SPEA2 [5], indicator-based approaches
HypE [6], SMS-EMOA [7], and decomposition-based
approaches like MOEA/D [8] and M2M [9]–[11], are appli-
cable to solve MaOPs. Specifically, most of the solutions of
MaOPs [12] in the population are nondominated to the Pareto-
based methods. As a result, the Pareto-based methods may fail
to converge to the Pareto front (PF) because the algorithms
lose the selection pressure toward the PF. In view of this,
some modified Pareto dominance algorithms [13]–[17] have
been presented to increase the selection pressure toward the
PF by decreasing the number of the nondominated solutions
(NSs) in the population. Such algorithms can solve the MaOPs
to a certain extent. By contrast, it has been shown that the
indicator-based approaches achieved competitive performance
in terms of the average hypervolume for solving MaOPs [6].
However, the indicator-based algorithms suffer from the high
computational cost. Actually, the complexity of the indicator-
based algorithms grows exponentially with the number of
objectives [18], which seriously limits its applications from a
practical perspective. Recently, the decomposition-based algo-
rithms, in which each subproblem is associated with a search
direction (i.e., weight vector) or target (i.e., reference point),
have already shown its success in solving MOPs. Actually,
such an algorithm also provides a promising way for solv-
ing MaOPs [19] as it can provide sufficient selection pressure
toward the PF. Hereinafter, we will concentrate on study-
ing the MaOPs within the framework of decomposition-based
approaches.

As one of the most well-known decomposition-based
algorithms, MOEA/D [12], [20] aggregates the objectives
into a single objective by utilizing a weight vector and
achieves good performance on most of MaOPs. Furthermore,
Deb and Jain [21], [22] presented a decomposition-based
algorithm, namely NSGA-III, which utilizes a set of uni-
formly distributed reference points to guide the search
process. Empirical studies have shown that it outper-
forms MOEA/D when tackling unconstrained and constrained
MaOPs. Among such algorithms, all need to design the weight
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vectors/reference points. In fact, MOEA/D [8], M2M [9], and
MOEA/DD [23] all employ a set of predefined uniformly dis-
tributed weight vectors, while NSGA-III [21], [22] utilizes a
set of predefined uniformly distributed reference points, anal-
ogous to MOEA/D. The experimental results in [24] and [25]
have demonstrated that the performance of decomposition-
based many-objective algorithms strongly depends on PF
shapes. When the shape of the PF is close to the hyper-plane∑M

i=1 fi = 1 and complete, i.e., the projection of the PF on
normal hyper-plane

∑M
i=1 fi = 1 fills the whole region of the

first octant of the hyper-plane
∑M

i=1 fi = 1, these algorithms
with uniform weight vectors can obtain a set of uniformly dis-
tributed Pareto optimal solutions. However, this condition may
not be satisfied in MaOPs, as well as MOPs. When the PF
is incomplete, there are more than one scalar problem with
different weight vectors leading to the same Pareto optimal
solution as stated in Section III-A, which seriously deteriorates
the algorithms’ performance. Thus, how to design the weight
vectors in a decomposition-based evolutionary algorithm is a
key issue for solving an MaOP with incomplete PF.

A weight design method based on the normal-boundary
insertion method [26] has been widely used to generate a
restricted number of weight vectors. The number of weight
vectors is CM−1

H+M−1, where H is the number of divisions along
each objective [27]. The number of its weight vectors dramat-
ically increases over the number of objectives. Undoubtedly,
how to deal with the dilemma between limited computa-
tional resources and the dramatically increasing number of
weight vectors is a challenging problem. To remedy this, some
adaptive weight design approaches have been proposed [28].
Moreover, in [29] and [30], an approximate PF is periodically
estimated based on the distribution of current NSs. Then, the
new weight vectors are uniformly created on the approximate
PF. In [28] and [31], the weights are periodically adjusted
so that the solutions of the subproblems are far away each
other. In addition, another weight adjustment method has been
proposed by sampling the regression curve of objective vectors
of the solutions [32]. To sum up, these weight design meth-
ods are essentially proposed for MOPs only. To the best of
our knowledge, few studies have been conducted on weight
design for MaOPs.

Self-organizing map (SOM) [33], [34] and its vari-
ants [35], [36], which use a neighborhood function to preserve
the topological properties of the data, are one of the most
popular neural networks and have been widely used in many
applications [37], e.g., data clustering [38], [39], data visu-
alization [40], image segmentation [41], and so forth. Thus,
some studies have been conducted for solving MOPs involving
SOM. For example, Zhang et al. [42], [43] proposed self-
organizing MOEA based on decomposition, in which the SOM
approach is employed to discover the population distribution
structure in decision space to guide the search. Also, a strat-
egy based on SOM has been developed for the visualization
of the Pareto optimal solutions in [44]. However, there are
few works about employing the SOM to discover the dis-
tribution of the solution in the objective space for weight
design of decomposition-based MOEAs. As shown in [45],
the point density of the SOM model is usually proportional

to the probability density function of the input data, but not
linearly. It is flatter actually. This means that the display of
SOM is more uniform than it would be if it represented the
exact probability density of the input data. This phenomenon
is advantageous to generate a set of uniformly distributed
weight vectors based on the distribution of the individuals.
Accordingly, this paper will develop a novel weight design
method based on SOM for decomposition-based MOEAs.
We periodically train an SOM network with N neurons by
using the objective vectors of the recent individuals, where
N is the population size. The weights of the neurons are
employed as the weight vectors. The dimension of the weight
of neurons is equal to the dimension of the objective vec-
tors. Evidently, this weight design method can be applied to
the optimization problems involving an arbitrary number of
objectives. Thus, this weight design method can be applied
into most of the decomposition-based MOEAs, e.g., MOEA/D,
M2M, MOEA/DD, NSGA-III, and so forth. In this paper,
we integrate the proposed weight design method into M2M
and MOEA/D, named as MOEA/D-SOM and M2M-SOM,
respectively. We compare them with the original M2M [9] and
MOEA/D [8], and two latest algorithms, i.e., NSGA-III [21]
and MOEA/DD [23], on benchmark DTLZ5 [46] and TOY
problems [47] with redundancy objectives, and eight test
problems proposed in [48] with nonredundancy objectives,
respectively. Experiments have shown the promising results
of the proposed algorithm.

The remainder of this paper is organized as follows. We
give an overview of the Tchebycheff decomposition approach
and the SOM in Section II. Section III presents the SOM-
based weight design method and integrates it into M2M and
MOEA/D, respectively, for solving MaOPs. Section IV pro-
vides the experimental results, as well as some discussions, to
compare the proposed MOEA/D-SOM and M2M-SOM with
the original MOEA/D and M2M, and two latest existing coun-
terparts, i.e., NSGA-III and MOEA/DD, on 11 redundancy
problems and 8 nonredundancy problems, respectively. Finally,
we draw the conclusion in Section V.

II. OVERVIEW OF TCHEBYCHEFF DECOMPOSITION

APPROACH AND SELF-ORGANIZING MAP

A. Tchebycheff Decomposition Approach

Many aggregation objectives methods have been developed
to decompose a multiobjective problem into a number of
scalar optimization problems [49]. Among these decompo-
sition approaches, the Tchebycheff approach is probably the
most important one. Under the Tchebycheff approach, problem
in (1) can be solved by a set of scalar problems with different
weight vectors

min
x∈D

g
(
x|w, z∗

) = min
x∈D

max
1≤i≤M

{
fi(x)− z∗i

wi

}
1 (2)

where w = (w1, w2, . . . , wM)T ∈ R
+
M is a weight vector and

z∗ = (z∗1, z∗2, . . . , z∗M)T is the ideal point, i.e., z∗i = min
x∈D

fi(x)

1Generally, it is formulated as min
x∈D

max
1≤i≤M

{
wi(fi(x)− z∗i )

}
. That is, we

express the weight vector as the reciprocal of the convention weight vector
in this paper.
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Fig. 1. Illustration of a 2-D SOM.

for i = 1, 2, . . . , M. It has been proved in [50] that, for each
Pareto optimal solution x∗ of (1), there exists at least one
weight vector w such that x∗ is the optimal solution of (2)
and each optimal solution of (2) is a weak Pareto optimal
solution of (1).

In general, as claimed in [28] and [29], if the straight line
(f ′1/w1) = (f ′2/w2) = · · · = (f ′M/wM), taking f ′1, f ′2, . . . , f ′M as
variables, intersects with the PF, the intersection point is the
optimal solution of the scalar problem with the weight vector
w = (w1, w2, . . . , wM)T , where f

′
i = fi − z∗i is the normal-

ized function for i = 1, . . . , M. In [29], we first presented
the weight vectors as the coordinate of the points in R+M , i.e.,
w = (f ′1, f ′2, . . . , f ′M)T ∈ R+M , and then systematized them using
the method in [28] for Tchebycheff approach. By this manner,
if the straight line goes through the point (f ′1, f ′2, . . . , f ′M)T and
ideal point z∗ intersects with the PF, the intersection point is
the optimal solution of the scalar problem with w.

B. Self-Organizing Map

SOM uses a neighborhood function to preserve the topolog-
ical properties of the data. In the following, we will provide
a brief description of SOM. Suppose a network contains N
neurons and each neuron j is associated with a weight vj. Let
V = {v1, v2, . . . , vN} be a set of the weight of the neurons, and
F
′ = {F′1, F′2, . . . , F′N′ } be the input data set, where N′ > N is

size of the input data. It is noteworthy that the dimension of
the neurons’ weight is equal to the dimension of the problem.

Fig. 1 shows an illustration of a 2-D SOM which consists
of nine neurons. At each iteration t, the SOM training consists
of two stages, i.e., the competitive stage and the cooperative
stage, as follows.

1) Competitive Stage: For each F′i ∈ F
′, we determine the

winner neuron which is the neuron with the smallest Euclidean
distance to F′i, that is

c = arg min
j

∥
∥F′i − vj(t)

∥
∥ (3)

where c is the index of the “winner” of F′i. As shown in Fig. 1,
v5 with black is the closest to the input data F′i. This means
that v5 is the winner of F′i.

2) Cooperative Stage: In the training procedure, not only
is the weight of the winning neuron updated, but also those

of its neighboring neurons are. Then, the learning rule can be
expressed as

vj(t + 1) = vj(t)+ αthcj(t)
[
F′i − vj(t)

]
(4)

where t denotes the current learning iteration and 0 < αt < 1
is the “learning rate.” hcj(t) is the neighborhood kernel cen-
tered on the winner. In this paper, we use the “Gaussian”
neighborhood kernel, that is

hcj(t) =
{

exp
(
−d2

cj/2σ 2
t

)
if j ∈ Uc

0 otherwise
(5)

where Uc is the neighbors of the winner c, and the rectangular
topology is used in this paper. Therefore, neurons v2, v4, v6,
and v8 with gray are the neighbors of v5 as shown in Fig. 1. dcj

is the distance between unit c and j, and σt denotes the width
of the neighborhood radius. Both αt and σt are some mono-
tonically decreasing functions of time. As shown in Fig. 1,
the winner and its neighbors move toward the input data, and
the points with hashed outline are the updated winner and its
neighbors.

III. PROPOSED SOM-BASED WEIGHT DESIGN

A. Principles of Weight Design

1) PF Representation: The weight vectors have to present
the shape and distribution of the PF of the problems. Currently,
the decomposition-based MOEAs usually utilize a set of
predefined weight vectors {w1, w2, . . . , wN}, which are gen-
erated by a systematic approach developed in [26], and uni-
formly distributed on the hyper-plane

∑M
i=1 fi = 1. According

to the analysis of decomposition approach, the uniform weight
vectors can lead to a set of uniformly distributed Pareto opti-
mal solutions over the PF when the PF of the problems satisfies
the following two conditions.

1) The shape of the PF is close to the hyper-plane∑M
i=1 fi = 1 as claimed in [28] and [29].

2) The PF is complete, i.e., the projection of the PF on the
hyper-plane

∑M
i=1 fi = 1 fills the whole region of the

first octant of the hyper-plane
∑M

i=1 fi = 1.
However, the above conditions may not be satisfied in many

MOPs, i.e., the PF of an MOP may be incomplete. In other
words, there may exist some straight lines that do not intersect
with the PF. This means that many scalar problems with differ-
ent weight vectors may have the same Pareto optimal solution.
For such problems, the algorithm with the predefined uniform
weight vectors would not obtain a set of uniformly distributed
Pareto optimal solutions. As shown in Fig. 2(a), it plots the
weight vectors which are uniformly distributed on the plane
f1 + f2 + f3 = 1 and the projection of the PF of an MOP as
introduced in [51] and [52], whose objectives are the distances
to three points. That is

⎧
⎨

⎩

f1(x) = ‖x− p1‖2
f2(x) = ‖x− p2‖2
f3(x) = ‖x− p3‖2

(6)

where p1 = (0, 1)T , p2 = (−1/2,
√

3/2)T , and p3 =
(−1/2,−√3/2)T . It is clear that there are many lines joining
the origin and the weight vectors (shown with open circles)
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(b)(a)

Fig. 2. Uniform weight vectors and the weight vectors obtained by SOM algorithm. (a) Plot of a set of uniformly distributed weight vectors and the projection
of the PF of MOP (6) on plane f1 + f2 + f3 = 1. (b) Plot of the neurons’ weights of the SOM on the Pareto optimal solutions of MOP (6).

do not intersect with the PF. The optimal solution of the
scalar optimization problems with the weight vector, which
does not intersect with the PF, locates the boundary of the PF.
Therefore, it cannot obtain a set of uniformly distributed Pareto
optimal solutions. In particular, this problem will become more
prominent if there are some objectives that are correlated
or redundant for an MaOP. Undoubtedly, an efficient weight
design method will become more meaningful for MaOPs.
Thus, far, several adaptive weight design methods have been
presented for bi- and tri-objective optimization problems to
generate a set of representative weight vectors [28], [29], but
few works on weight design have been done for MaOPs.

2) Uniformity: A set of uniformly distributed weight vec-
tors generally lead to a set of uniform solutions by using
the decomposition-based MOEAs. Thus, the weight vectors
should be as uniform as possible. To this end, there are sev-
eral machine learning methods, such as k-means and SOM,
can be used to discover the distribution of the input data with
an arbitrary dimension. Nevertheless, the k-means algorithm
tends to approximate the density of the input data, while the
display of SOM is more uniform than the probability density
of the input data [45]. Hence, SOM is a promising tool for
designing the weight vectors. Accordingly, we will present a
novel weight design method based on SOM for decomposition-
based many-objective evolutionary algorithms in the following
section.

B. Proposed Weight Design Method Based on SOM

To avoid overfitting the input data, the size of the input
data N′ must be greater than N. Thus, an extra matrix F =
[F1, F2, . . . , FN′ ] is introduced to save the objective vectors of
some individuals for training the SOM network. Also, the nor-
malized objective vectors F′ = [F′1, F′2, . . . , F′N′ ] are treated as
the SOM’s input data, where F′i = Fi−z∗ for i = 1, 2, . . . , N′.
Then, we can obtain N weight {v1, v2, . . . , vN} of the neurons
by training the SOM network.

For clarity, Fig. 2(b) plots the weights of the neurons
obtained by SOM algorithm for MOP (6), in which we

uniformly sample 1000 points on the PF of problem (6) and
then use them to train the SOM network. From this figure, we
can see that the weights of the neurons can well preserve the
distribution and shape of the PF. Furthermore, we can find that
the region covered by the neurons’ weights is slightly smaller
than the PF. If we directly utilize the neurons’ weights as the
weight vectors in (2), it is unfavorable for obtaining the Pareto
solution on the boundary of PF. Therefore, we set the weight
vector as

wi = vi − v∗ (7)

for i = 1, 2, . . . , N, where v∗ = (v∗1, v∗2, . . . , v∗M)T with v∗j =
min

1≤i≤N
vij and vij is the jth element of vi for j = 1, 2, . . . , M.

It is worth noting that such weight design method can be
applied for the problems with an arbitrary number of objectives
and without any adjustable parameters. Moreover, it is easy to
be integrated into most of the decomposition-based MOEAs.
In the following, we will integrate it into M2M and MOEA/D,
respectively, as two examples for implementation.

C. M2M With SOM-Based Weight Vectors

We have proposed a decomposition-based multiobjective
evolutionary (M2M) [9], which decomposes problem (1)
into a set of simple multiobjective optimization subprob-
lems and then solves them simultaneously. It achieves a good
performance for solving MOPs. In this paper, we will pro-
pose an improved M2M with SOM-based weight design, i.e.,
M2M-SOM, for solving MaOPs.

Suppose the objective space is divided into K subre-
gions, and K direction vectors {u1, u2, . . . , uK} are randomly
and distinctly selected from {w1, w2, . . . , wN}. uk is served
as the center of the kth subregion, where k = 1, . . . , K.
Then, R

+
M is divided into K disjoint subregions, denoted as

�1,�2, . . . , �k, . . . , �K , with

�k =
{
y ∈ R+M|〈y, uk〉 ≥ 〈y, uj〉 for any j = 1, . . . , K

}
(8)

where 〈y, uk〉 = (yTuk/‖y‖‖uk‖) is the cosine of the acute
angle between y and uk. Based on this division, problem (1)



GU AND CHEUNG: SOM-BASED WEIGHT DESIGN FOR DECOMPOSITION-BASED MANY-OBJECTIVE EVOLUTIONARY ALGORITHM 215

Algorithm 1: Procedure of the Proposed M2M-SOM
input :
• A stopping criterion;
• N: the size of the population;
• K: the number of the subpopulations.

output: The nondominated solutions in Pt.
1 Step 1 Initialization
2 P0 ← Randomly initialize 5N initial individuals;
3 F← P0.F; /*P0.F: objective vectors of P0*/
4 z∗ ← SetIdealPoint();
5 {w1, . . . , wN} ← SOM(F, z∗);
6 {u1, . . . , uK} ← SetCenter();
7 Ik ← SetSubpopulation(P0, uk), k = 1, . . . , K;
8 P0 ← ∪K

k=1Ik; /*Reset population*/
9 F← P0.F;

10 t← 0.
11 Step 2 Update:
12 Qt ← CreateOffspringPopulation(Pt);
13 z∗ ← UpdateIdealPoint()
14 /*Update the subpopulations*/
15 Rt ← Pt ∪Qt;
16 Ik ← SetSubpopulation(Rt, uk), k = 1, . . . , K;
17 Pt+1 ← ∪K

k=1Ik;
18 F← F ∪ (Pt+1 ∩Qt).F;
19 t← t + 1.
20 Step 3 Weight vectors update
21 if |F| > 5N then
22 {w1, . . . , wN} ← SOM(F, z∗);
23 {u1, . . . , uK} ← SetCenter();
24 F← Pt.F;
25 end
26 Step 4 Stopping Criteria
27 If the stopping criteria is satisfied, then stop and find all

the nondominated solutions in Pt and output them.
Otherwise, goto Step 2.

can be decomposed into K subproblems, where subproblem k
is expressed as

min
x∈D

F(x) = (f1(x), . . . , fM(x))T

F(x) ∈ �k. (9)

For each subproblem k, it owns a subpopulation Ik as
described in [9], which is used to record the best individuals
for subproblem k. The subpopulations are initialized as fol-
lows. First, the algorithm evenly and randomly generates 5N
individuals in the domain. N weight vectors {w1, w2, . . . , wN}
are learned by SOM algorithm according to the objective
vectors of these individuals, and set the direction vectors
{u1, u2, . . . , uK}. We assign these weight vectors to each sub-
population by (8), where y = w. The size nk of subpopulation
Ik is the number of the weight vectors assigned to subproblem
k. Then, we initialize Ik as the individuals in the initial indi-
viduals whose objective values are in �k. When the number of
individuals in Ik is less than nk, we randomly select nk − |Ik|
from the initial individuals and add to Ik, where |Ik| is the
size of Ik. Otherwise, when the number of individuals in Ik is

Algorithm 2: Procedure of the Proposed MOEA/D-SOM
input :
• A stopping criterion;
• N: the size of the population;
• T: the number of neighbors for each subproblem.

output: The nondominated solutions in Pt.
1 Step 1 Initialization
2 P0 ← Randomly initialize 5N initial individuals;
3 F← P0.F; /*P0.F: objective vectors of P0*/
4 z∗ ← SetIdealPoint();
5 {w1, . . . , wN} ← SOM(F, z∗);
6 B(i)← SetNeighbor();
7 P0 ← Selection() /*Reset population*/
8 F← P0.F;
9 t← 0.

10 Step 2 Update:
11 Qt ← ∅
12 foreach xi ∈ Pt do
13 y← OffspringCreate(xi, B(i));
14 z∗ ← UpdateIdealPoint();
15 /* Update of solutions*/
16 foreach j ∈ B(i) do
17 if g(y|wj, z∗) < g(xj|wj, z∗) then
18 xj ← y
19 end
20 end
21 Qt ← Qt ∪ y
22 end
23 F← F ∪ (Pt+1 ∩Qt).F;
24 t← t + 1.
25 Step 3 Weight vectors update
26 if |F| > 5N then
27 {w1, . . . , wN} ← SOM(F, z∗);
28 B(i)← SetNeighbor();
29 F← Pt.F;
30 end
31 Step 4 Stopping Criteria
32 If the stopping criteria is satisfied, then stop and find all

the nondominated solutions in Pt and output them.
Otherwise, goto Step 2.

greater than nk, for each w assigned in this subproblem, we
select the best individual from Ik by (2). All the selected indi-
viduals constitute the new subpopulation Ik. In generation t, N
new individuals are generated by the crossover and mutation
operators. The new individuals and all the individuals in the
subpopulations are used to update the subpopulations.

The objective vectors of the surviving offsprings are used to
train the SOM. The detailed procedure of M2M-SOM is given
in Algorithm 1. During the search, for each subpopulation k,
k = 1, . . . , K, the M2M-SOM maintains the following.

1) Ik: The kth subpopulation.
2) uk: The direction vector.
3) F: The objective vectors for training SOM.

In line 5 of Algorithm 1, the maximum iteration of SOM algo-
rithm is set at 100 for the initiation of the weight vectors.
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Furthermore, for each individual in a subpopulation in line 12,
an individual is randomly selected from the same subpopula-
tion to generate a new offspring, where (Pt+1 ∩Qt). F is the
objective vectors of the surviving offsprings. In line 27, we
only slightly tune the weight of neurons while updating the
weight vectors. Therefore, we set the maximum iteration at 10
in this paper.

D. MOEA/D With SOM-Based Weight Vectors

MOEA/D [8] is one of the most well-known EMO algo-
rithms. It aggregates the objectives into a single objective by
a weight vector. Then, it decomposes the MOP into a num-
ber of scalar problems and simultaneously optimizes them, in
which, for each wi, a neighborhood is defined as a set of T
closest weight vectors in {w1, w2, . . . , wN}, where T is the
number of the neighbors. The neighborhood B(i) of subprob-
lem i is composed of the subproblems with the weight vectors
from the neighborhood of wi. In this paper, we integrate the
SOM-based weight design into MOEA/D, whereby obtaining
MOEA/D-SOM, whose details are described in Algorithm 2.
Please note that, in line 7 of Algorithm 2, Selection() returns
a solution set which is selected from the initial individuals by
(2) with each weight vector wi for i = 1, . . . , N. In line 13,
for each solution xi, an individual is randomly selected from
its neighbors B(i) to generate a new solution y.

IV. EXPERIMENTS

This section will conduct the experiments to investigate the
performance of the proposed M2M-SOM and MOEA/D-SOM
in comparison with the existing counterparts, namely,
the original M2M and MOEA/D, MOEA/D-AWD [53],
NSGA-III [21], and MOEA/DD [23]. In MOEA/D-AWD, it
adaptively adjusts the weight vector according to the solution
assigned to this weight vector. In the following sections, we
first provide the test problems used in our empirical studies.
Then, we introduce the performance metrics, followed by the
parameter settings used in the experiments. Finally, we show
the experimental results with some discussions.

A. Test Problems

Two classes of test problems with incomplete PF, i.e., redun-
dancy problems and nonredundancy problems, are considered
in this paper.

1) Redundancy Problem With Incomplete PF: Benchmark
DTLZ5(m, M) [46] chosen as the redundancy problem with
incomplete PF is formulated as follows.

1) DTLZ5(m, M)
⎧
⎨

⎩

f1(x) = (1+ g)�M−1
i=1 cos(θi)

fl=2:M−1(x) = (1+ g)�M−l
i=1 cos(θi) sin(θM−l+1)

fM(x) = (1+ g) sin(θ1)

(10)

with g =∑M+k−1
i=M (xi − 0.5)2 and

θi =
{ π

2 xi i = 1, . . . , m− 1
π

4(1+g)
(1+ 2gxi) i = m, . . . , M − 1

subject to
∑m−2

j=0 f 2
M−j + 2pi f 2

i ≥ 1 for i = 1, . . . , M −
m+ 1, where

pi =
{

M − m i = 1
(M − m+ 2)− i i = 2 : M − m+ 1

and 0 ≤ xi ≤ 1 for i = 1, . . . , n, k = n − M + 1
is the number of variables which are used to design
the function g. As suggested in [54], k = 10 is used
in the experiments. The PF occurs for the minimum
of g function, i.e., at xi = 0.5 for i = M, . . . , n
and satisfies

∑M
i=1 f 2

i = 1. There are m essential objec-
tives { fi, fM−m+2, . . . fM}, i ∈ {1, . . . , M − m + 1}
and M − m redundancy objectives. Obviously, the PF
of DTLZ5(m, M) is incomplete as m < M. In this
paper, four test instances with different numbers of
essential objectives and objectives, i.e., DTLZ5(2, 5),
DTLZ5(3, 5), DTLZ5(2, 10), and DTLZ5(3, 10) are
considered.
Toy problem [55] is also chosen as the other redundancy
problem. It is formulated as follows.

2) TOY problem
⎧
⎨

⎩

f1(x) = |A− x1|
f2(x) = |B− x1|
fi(x) = |C − xi−1|, i = 3, . . . , M

(11)

where A = 4, B = 6 and C = 5, and 0 ≤ xi ≤ 10 for
i = 1, . . . , M − 1, and the dimension of the decision
variable n = M− 1. Its Pareto-optimal set is x1 ∈ [A, B]
and xi = C for all i = 2, . . . , n. The corresponding PF
can be described as

f1 ∈ |A− B|
f2 ∈ |A− B|
f1 + f2 = |A− B|fj = 0 ∀j = 3, . . . , M

where the objectives fj, j = 3, . . . , M are redundant.
To solve the problem, one way is to optimize these
objectives simultaneously, which, however, makes the
problem more difficult because the amount of dominat-
ing solutions in the neighborhood of the current popula-
tion gets smaller [55]. Seven test instances TOY1–TOY7
with the number of objectives from four to ten are used
in our empirical studies.

2) Nonredundancy Problem With Incomplete PF: A frame-
work for MaOPs has been presented in [48], which is a variant
of the P∗ problems introduced in [52] tailored to our needs.
It is formulated as follows.

1) MaOP
⎧
⎪⎪⎨

⎪⎪⎩

f1(x) = ‖xI − p1‖2 + β(xII − γ (xI))

f2(x) = ‖xI − p2‖2 + β(xII − γ (xI))

. . . . . .

fM(x) = ‖xI − pM‖2 + β(xII − γ (xI))

(12)

where:
xI = (x1, x2) and xII = (x3, . . . , xn) are two subvectors
of x = (xI, xII), −2 ≤ xj ≤ 2 for j = 1, 2, . . . , n;



GU AND CHEUNG: SOM-BASED WEIGHT DESIGN FOR DECOMPOSITION-BASED MANY-OBJECTIVE EVOLUTIONARY ALGORITHM 217

Fig. 3. Plot of the final NSs in the subspace x1 versus x2 of the decision space with the minimum IGD-metric value found by M2M-SOM (the first column),
MOEA/D-SOM (the second column), MOEA/D-AWD (the third column), and MOEA/D (the fourth column) for TOY1–TOY7.

pi = (sin φi, cos φi) for i = 1, . . . , M and φi ∈ [0, 2π ];
‖xI − pi‖2 is defined as the Euclidean distance from xI

to pi, i = 1, 2, . . . , M;
β(xII − γ (xI)) =∑n

j=3 xj − 2x2 sin(2πx1 + (jπ/n)).

As shown in [48], the PF occurs at xj = 2x2 sin(2πx1 +
(jπ/n)) for j = 3, . . . , n and xI in the convex hull
spanned with {p1, p2, . . . , pM}. As M = 3 and φi =
0, (2π/3), (4π/3), the PF of the problem is shown as
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Fig. 4. Plot of the final NSs in the 3-D subspace f1, f2, and f3 with the minimum IGD-metric value found by M2M-SOM (the first column), MOEA/D-SOM
(the second column), MOEA/D-AWD (the third column), and MOEA/D (the fourth column) for TOY1–TOY7.

in Fig. 2(b). The PF of such problem is nondegener-
ate, i.e., there is no redundant objectives. However, the
PF is incomplete as shown in Fig. 2(b). When φi is

equally spaced over [0, 2π ], the objectives of problem (12)
have the same importance and value ranges. Otherwise, its
objectives have different importance. Eight test instances
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Fig. 5. Plot of the final NSs in a 3-D subspace of the objective space with the minimum IGD-metric value found by M2M-SOM (the first column),
MOEA/D-SOM (the second column), MOEA/D-AWD (the third column), and MOEA/D (the fourth column) for DTLZ5(2, 5), DTLZ5(3, 5), DTLZ5(2, 10),
and DTLZ5(3, 10).

TABLE I
PARAMETERS OF MAOP1–MAOP8

MAOP1–MAOP8 with different numbers of objectives are
used in our empirical studies. Table I lists the number
of objectives and φi for the test instances. The objectives
of the odd-numbered test instances have the same impor-
tance, while the even-numbered test instances have different
importance.

TABLE II
POPULATION SIZE AND THE VALUE OF H (N1(H)) IN M2M, MOEA/D,

MOEA/DD, NSGA-III, AND MOEA/D-AWD, (N2) IN M2M-SOM
AND MOEA/D-SOM, AND THE MAXIMUM NUMBER OF FES FOR

DIFFERENT NUMBERS OF THE OBJECTIVE

B. Performance Metrics

The IGD-metric [56] and H-metric [47] are used to
evaluate the performance of the compared algorithms. In
the following, we give a brief introduction of these two
metrics.
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Fig. 6. Plot of the final population in the subspace of x1 versus x2 with the median IGD-metric value found by M2M-SOM (the first column), MOEA/D-SOM
(the second column), NSGA-III (the third column), and MOEA/D-AWD (the fourth column) on MAOP1–MAOP4.

1) IGD-Metric: Let Q∗ be a set of points which are uni-
formly distributed along the PF in the objective space, and
Q be an estimate of Q∗. The distance between Q∗ and Q is
defined as

IGD
(
Q|Q∗) =

∑

v∈Q∗
d(v, Q)

|Q∗|
where d(v, Q) is the minimum Euclidean distance from the
point v to Q. Obviously, the smaller value of IGD is, the
better the algorithm performs. The PFs of DTLZ5 and TOY
problem are precisely known and normative. We generate 1000
points for DTLZ5(2, 5), DTLZ5(2, 10), and TOY1–TOY7,
and 1891 points for DTLZ5(3, 5) and DTLZ5(3, 10) to con-
stitute Q∗ by the method introduced in [23]. For the test

instances MAOP1–MAOP8, we utilize the objective values of
1000 points which are uniformly sampled in the convex hull
spanned with {p1, p2, . . . , pM} as described in [48] to form Q∗.

2) H-Metric: Let zr = (zr
1, . . . , zr

M) be a point in the objec-
tive space which is dominated by any Pareto optimal objective
vectors. Let Q be the obtained approximation to the PF in the
objective space. Then, H(Q|zr) is the value of Q (with regard
to zr) is the volume of the region which is dominated by Q
and dominates zr. That is

H
(
Q|zr) = Vol

⎛

⎝
⋃

x∈Q

[
f1(x), zr

1

]× · · · × [
fM(x), zr

M

]
⎞

⎠

where Vol(.) indicates the Lebesgue measure. The larger the
H-metric is, the better the approximation is. The algorithm
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Fig. 7. Plot of the final population in the subspace of x1 versus x2 with the median IGD-metric value found by M2M-SOM (the first column), MOEA/D-SOM
(the second column), NSGA-III (the third column), and MOEA/D-AWD (the fourth column) on MAOP5–MAOP8.

proposed in [6] is adopted to calculate the value of H-metric.
In our experiments, the point zr is set at the maximum value
of each objective of the points used in IGD-metric. Since the
PFs of DTLZ5 and TOY problem are degenerated, the value of
H-metric of Q∗ is a small number for DTLZ5 and 0 for TOY
problem. Thus, we only use it to evaluate the performance
of the compared algorithms on the test instances: MAOP1–
MAOP8.

C. Parameter Settings

The simulated binary crossover (SBX) and polynomial
mutation are used in all the algorithms for generating off-
spring. The control parameters in these two operators are the
same in all algorithms. The crossover rate is set at 1 and the

mutation rate is 1/n, where n is the dimension of the variables.
The distribution index of crossover and mutation operators are
ηc = 20 and ηm = 20, respectively.

The uniform weight vectors {w1, w2, . . . , wN} used in
M2M, MOEA/D, NSGA-III, and MOEA/DD and the initial
weight vectors of MOEA/D-AWD are generated by a system-
atic approach proposed in [26]. Each weight takes a value
from

{
0

H
,

1

H
, . . . ,

H

H

}

.

Therefore, the number of weight vectors is CM−1
H+M−1. Table II

lists the population size and the value of the parameter H,
denoted as N1(H), in M2M, MOEA/D, MOEA/DD, NSGA-
III, and MOEA/D-AWD for different numbers of objectives.
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TABLE III
MINIMUM (BEST) AND MEAN OF IGD-METRIC VALUES OF THE FINAL SOLUTIONS OBTAINED BY SEVEN ALGORITHMS

OVER 20 INDEPENDENT RUNS ON TOY TEST PROBLEMS AND DTLZ5

Moreover, Table II also lists the population size in M2M-
SOM and MOEA/D-SOM (N2). Each algorithm is run 20
times independently for each test instance. The compared algo-
rithms stop when the number of function evaluations reaches
the maximum number. Table II lists the maximum num-
ber of function evaluations (FES) for different numbers of
objectives.

The specific parameter setting in each algorithm is given as
follows. In MOEA/D, MOEA/D-SOM and MOEA/D-AWD,
the number of the neighbors of each subproblem is set at T =
�0.1 ∗ N� as suggested in [8]. The number of subpopulations
is set at K = �√N� in M2M and M2M-SOM as suggested
in [9].

D. Experimental Results and Analysis

Tables III and IV list the minimum (best) and mean values
of IGD-metric of the final solutions obtained by the com-
pared algorithms in the 20 independent runs for all the test
instances. The values of IGD-metric for each test instance
are sorted in an ascending order. The numbers in the brack-
ets of these tables are their ranks. The total rank and the
final rank are listed in the last two row in the tables. Since
MOEA/DD is designed for unconstrained optimization prob-
lems, and DTLZ5 test problems are constrained optimization
problems, we did not provide the results of MOEA/DD for
DTLZ5 test problems. Table IV lists the maximum (best)
and mean values of H-metric of the final solutions obtained
by the seven algorithms for MAOP1–MAOP8. The values of
H-metric for each test instance are sorted in a descending
order. The numbers in the brackets of the table are their ranks.
Also the total rank and final rank are listed in the table.

Additionally, due to the limitation of space, we only plot-
ted the results obtained by the first four best algorithms
in terms of final rank on IGD-metric. Figs. 3 and 4 show

the NSs obtained by the first four algorithms, i.e., M2M-
SOM, MOEA/D-SOM, MOEA/D-AWD, and MOEA/D with
the minimum IGD-metric in the 20 independent runs for test
instances TOY1–TOY7 in the decision subspace, i.e., x1 ver-
sus x2, and in the objective subspace constituted by f1, f2,
and f3. Fig. 5 plots the NSs obtained by the first four best
algorithms, i.e., M2M-SOM, MOEA/D-SOM, NSGA-III, and
MOEA/D-AWD with the minimum IGD-metric in the 20 inde-
pendent runs for DTLZ5(2, 5), DTLZ5(3, 5), DTLZ5(2, 10),
and DTLZ5(3, 10). Figs. 6 and 7 plot the final population
obtained by the first four best algorithms on MaOP test
problems, i.e., M2M-SOM, MOEA/D-SOM, NSGA-III, and
MOEA/D-AWD with the minimum IGD-metric in the 20
independent runs in the subspace of x1 versus x2 for MAOP1–
MAOP8. As discussed in [48], the Pareto solutions must be
within the convex hull spanned with points {p1, . . . , pM}.

E. TOY Problem

The results on TOY problem in Table III, and Figs. 3 and 4
indicate that the algorithms with the SOM-based weight
vectors outperform the other algorithms. Specifically, the
proposed M2M-SOM is the best optimizer, which is able
to achieve a good approximation of the PF. The reason that
M2M-SOM is slightly better than MOEA/D-SOM is because
the newly generated solution, which may be far away from
its neighbors especially in MaOPs, updates its neighbors only
in MOEA/D-SOM. In the literature, an improvement strategy,
namely MOEA/D-GR, has been proposed in [57] to deal with
such an issue. MOEA/D-GR first assigns the newly gener-
ated solution to the closest weight vector and then updates
its neighbor. Furthermore, it can be seen that MOEA/D is
slightly better than M2M. A plausible reason is that there are
no Pareto-optimal solutions to some subpopulation for M2M.
The performance of the algorithms with the proposed weight
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TABLE IV
MINIMUM (BEST) AND MEAN OF IGD-METRIC VALUES OF THE FINAL SOLUTIONS OBTAINED BY THE SEVEN

ALGORITHMS OVER 20 INDEPENDENT RUNS ON TEST PROBLEMS MAOP1–MAOP8

TABLE V
MAXIMUM (BEST) AND MEAN OF H-METRIC VALUES OF THE FINAL SOLUTIONS OBTAINED BY THE SEVEN

ALGORITHMS OVER 20 INDEPENDENT RUNS ON TEST PROBLEMS MAOP1–MAOP8

vector design method is better than that of MOEA/D-AWD
because the weight vectors in MOEA/D-AWD are adjusted
according to only one solution which is assigned to this weight
vector. It may make the weight vectors over-fit the current
solutions. Moreover, a special note goes to the performance of
NSGA-III, since it sorts the solutions according to the domina-
tion relationship of the solutions and the amount of dominating
solutions in the neighborhood of the current population is very
smaller for TOY problem, it is difficult to find a dominating
solution by using Pareto-dominance. This is consistent with
the results found in [55].

F. DTLZ5

From Table III, we can see that the results obtained by
the algorithms with the proposed SOM-based weight are
much superior than that of its counterparts in term of IGD-
metric. Fig. 5 reveals that M2M-SOM and MOEA/D-SOM
can achieve a good approximation of the PF. Specifically, the
performance of M2M and MOEA/D are not very promising
because the PF of the test instances is incomplete and there are

numerous scalar problems obtaining the same Pareto optimal
solutions. NSGA-III can obtain a promising result as the non-
dominated sorting can provide a sufficient selection pressure
toward to the PF. It is because it permits a reference point
mapped to multiple solutions and no solution is mapped to
some reference points. It is good at maintaining the diversity
of the population.

G. MAOP

In Table IV, the performance of the algorithms with the
proposed SOM-based weight is better than that of its coun-
terparts in term of IGD-metric for MAOP1–MAOP8. From
Table V, it can be seen that M2M-SOM and MOEA/D-SOM
are the best optimizer, which achieve the greater H-metric val-
ues in almost all of MAOP test instances. Further, Figs. 6 and 7
both indicate that almost all solutions obtained by M2M-SOM
and MOEA/D-SOM are within the convex hull, which reveals
the quality and distribution of the NSs obtained by an algo-
rithm. This implies that the solutions from M2M-SOM and
MOEA/D-SOM converge well to the PF. In contrast, there
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are few solutions obtained by NSGA-III and MOEA/D-AWD
converge to the PF.

V. CONCLUSION

In this paper, we have proposed a weight design method
based on SOM, which can be integrated with most of
the decomposition-based evolutionary algorithms for solving
MaOP. In implementation, we have integrated this weight
design method into M2M and MOEA/D, respectively, i.e.,
M2M-SOM and MOEA/D-SOM, as two examples. In the
proposed algorithms, we update the weight vectors by
the weight of the neurons of SOM network which is trained by
the objective vectors of the surviving offsprings. Such weight
can be adjusted based on the distribution of the individuals. We
have investigated the performance of the proposed algorithms
on eleven redundancy test problems and eight nonredundancy
test problems, respectively. The empirical results have demon-
strated the superiority of M2M-SOM and MOEA/D-SOM for
solving MaOPs with incomplete PF in comparison with the
existing five counterparts.
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