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Objective Extraction for Many-Objective
Optimization Problems: Algorithm

and Test Problems
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Abstract—For many-objective optimization problems
(MaOPs), in which the number of objectives is greater
than three, the performance of most existing evolutionary
multi-objective optimization algorithms generally deteriorates
over the number of objectives. As some MaOPs may have
redundant or correlated objectives, it is desirable to reduce
the number of the objectives in such circumstances. However,
the Pareto solution of the reduced MaOP obtained by most of
the existing objective reduction methods, based on objective
selection, may not be the Pareto solution of the original MaOP.
In this paper, we propose an objective extraction method (OEM)
for MaOPs. It formulates the reduced objective as a linear
combination of the original objectives to maximize the conflict
between the reduced objectives. Subsequently, the Pareto solu-
tion of the reduced MaOP obtained by the proposed algorithm
is that of the original MaOP, and the proposed algorithm can
thus preserve the dominance structure as much as possible.
Moreover, we propose a novel framework that features both
simple and complicated Pareto set shapes for many-objective
test problems with an arbitrary number of essential objectives.
Within this framework, we can control the importance of
essential objectives. As there is no direct performance metric
for the objective reduction algorithms on the benchmarks, we
present a new metric that features simplicity and usability for
the objective reduction algorithms. We compare the proposed
OEM with three objective reduction methods, i.e., REDGA,
L-PCA, and NL-MVU-PCA, on the proposed test problems and
benchmark DTLZ5 with different numbers of objectives and
essential objectives. Our numerical studies show the effectiveness
and robustness of the proposed approach.

Index Terms—Evolutionary algorithm, many-objective opti-
mization, objective reduction, test problem.
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I. INTRODUCTION

EVOLUTIONARY multiobjective optimization (EMO)
algorithms have been successfully applied to multiobjec-

tive optimization problems [1], [2]. However, the performances
of most well-known EMO algorithms, such as the nondom-
inated sorting genetic algorithm II (NSGA-II) [3] and the
improved strength Pareto evolutionary algorithm [4], seriously
deteriorate over the number of objectives in solving many-
objective optimization problems (MaOPs) [5], in which the
number of objectives is greater than three. This deterioration
is due to the poor scalability of most existing EMO algo-
rithms, difficulty visualizing the Pareto front (PF) [6]–[8], and
high computational cost. Currently, the decomposition-based
multiobjective evolutionary algorithm (MOEA/D) [9], [10],
indicator-based HypE [11], and the hypervolume metric selec-
tion EMO algorithm [12] have shown good performance in
their application domains. Nevertheless, MOEA/D needs to
design the weight vectors, which is a nontrivial task, and
indicator-based algorithms suffer from high computational
costs. Undoubtedly, MaOPs are more challenging than two-
or three-objective problems [13].

Recently, a number of efforts have been made to deal with
MaOPs, which can be roughly divided into three categories:
1) approaches that deal with MaOPs without a priori knowl-
edge; 2) preference-based algorithms with a priori knowledge
of the users’ preference; and 3) objective reduction meth-
ods with a priori knowledge of the current nondominated
solutions. In the first category, examples include modify
Pareto dominance algorithms [14]–[16], indicator-based meth-
ods [17], [18], and substitute distance assignments [19]–[22].
Modify Pareto dominance algorithms [23]–[27] aim to
increase the selection pressure toward the PF by decreas-
ing the number of nondominated solutions in the population.
The indicator-based methods [11] order the solutions using
different fitness evaluation mechanisms. The substitute dis-
tance assignments [28]–[30] can be used instead of crowding
distance to create a selection pressure and improve the conver-
gence rate toward the PF. These algorithms cannot overcome
the intrinsic difficulty of MaOPs, i.e., high computational cost
and visualization difficulties. An adaptive divide-and-conquer
methodology is also proposed for MaOPs, in which some
objectives are independent of others [31]. The second cat-
egory, i.e., preference-based algorithms [32], [33], aims for
only a part of the PF and improves convergence by sacrific-
ing diversity. From a practical perspective, it is difficult to
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provide the appropriate users’ preference if there is a lack
of knowledge of the problems, which therefore limits the
applications. In contrast, objective reduction methods [34] aim
to find either a minimum objective set with a threshold of
an indicator measuring the PF preserving (e.g., δ-Minimum
Objective Subset (δ-MOSS) [35], the off-line linear and non-
linear objective reduction algorithm based on PCA, namely,
L-PCA and NL-MVU-PCA, respectively [7]) or an objec-
tive set with a prespecified size via minimizing an indicator
(e.g., the minimum objective subset of size k with minimum
error (k-EMOSS) [35]). In short, it transforms the MaOP
into a problem with fewer objectives, and preserves the PF
of the original problem, i.e., the dominance structure of the
solutions, as much as possible. In particular, in some applica-
tions [36], [37] in which some of the objectives in the original
MaOP would be correlated or redundant, i.e., its PF may not be
spread over a wide range of the objective space, such MaOP
would be reduced to a problem with fewer essential objec-
tives by an objective reduction scheme without any loss in
PF. Moreover, the objective reduction scheme can be utilized
to analyze which objectives are conflicting and which are har-
monious. Hereinafter, our studies will concentrate on the work
within the last category.

As summarized in [7] and [34], a number of objective
reduction schemes for MaOPs have been presented in recent
years. The early seminal work discussing the issue of redun-
dancy in objectives was presented by Gal and Leberling [38].
More extensive studies in this domain have been conducted
in the last decade. For example, Saxena et al. [7] proposed
a correlation-based reduction method [39] in which a set of
nondominated solutions for dimensionality analysis is obtained
by running NSGA-II for a large number of generations.
Subsequently, the correlation matrix R is computed by using
the objective values of the nondominated solutions. The eigen-
values and corresponding eigenvectors are then analyzed to
reduce the objectives. Also, Brockhoff and Zitzler [6], [35]
and Jaimes et al. [40] proposed a dominance structure-based
reduction method that investigates how adding and omitting
an objective affects the problem characteristics. Further, for-
mal definitions of conflict and redundancy among objective
sets have been discussed to find a subset of objectives such
that either the entire or most of the dominance structure is
preserved. Recently, Jaimes et al. [41], [42] developed an
objective reduction scheme based on feature selection, and
denoted the NSGA-II equipped with the reduction method as
REDGA. In their approach, the objective set is first divided
into homogeneous neighborhoods based on the correlation
matrix of the objective values of a set of nondominated solu-
tions obtained by an EMO algorithm. Then, a distance matrix
based on the correlation matrix is defined to measure the
conflict between the objectives. The more conflict there is
between two objectives, the more distance between them in
the objective “conflict” space. Thereafter, the most compact
neighborhood is chosen, in which all objectives except the
center one are dropped because they are the least conflicting.
The above mentioned methods all try to find an objective sub-
set from the original objectives. The numerical results have
shown that these algorithms based on objective selection can

successfully identify the redundant objectives. However, the
Pareto solution of the reduced MaOP obtained by the objec-
tive selection-based reduction methods may not be the Pareto
solution of the original problems. Given that the population
size is very limited for MaOPs, the dominant solutions for the
original problem in the population may greatly degrade the
algorithms’ performance.

Considering the limitations of the selection-based reduction
methods, we propose an objective extraction method (OEM)
for MaOPs. In general, a more negative correlation between
two objectives indicates more conflict among them [41], [43].
That is, the correlation can be used to measure the degree
of conflict among the objectives. This ideal was used
in [41] and [42]. In [44], we preliminarily proposed an online
objective reduction method for MaOPs based on the correla-
tions between the reduced objectives. It works well for MaOPs
with two essential objectives. This paper further proposes a
novel OEM for MaOPs. It formulates the reduced objective
as a linear combination of the original objectives to maximize
the conflict between the reduced objectives, i.e., minimize the
correlation between each pair of reduced objectives. It is a
continuous and piecewise differentiable constrained optimiza-
tion problem and can be solved by the subgradient projection
method [45], [46]. Moreover, it can work for MaOPs with
multiple essential objectives. Compared with the objective
selection-based reduction methods, the proposed algorithm has
the following two advantages.

1) The Pareto solution of the reduced MaOP obtained by
the proposed algorithm must be that of the original
MaOP.

2) It can reduce an MaOP in which the number of objec-
tives is smaller than the number of essential objectives,
in the case that the dimension of the PF is less than the
number of essential objectives minus 1.

Under certain smoothness assumptions, it can be induced from
the Karush–Kuhn–Tucker condition that the minimum number
of objectives required (intrinsic number of conflicting objec-
tives) is m for an (m−1)-dimensional PF [47]. In the example
illustrated in Fig. 2 of Section II-B, the dimensionality of the
PF is 1, i.e., the intrinsic number of the conflicting objectives
should be 2. For this case, the proposed algorithm can ide-
ally obtain the whole PF by solving a reduced two-objective
optimization problem, whereas the objective selection-based
reduction methods cannot.

In addition, performance metrics play an important role in
understanding the strengths and weaknesses of the existing
EMO algorithms. To the best of our knowledge, there is no
direct performance metric for the objective reduction algo-
rithms. Their performance can only be indirectly evaluated
by metrics of the solutions obtained by an EMO algorithm
equipped with the objective reduction method, such as IGD-
metric [9] and H-metric [17]. In fact, many factors beyond the
objective reduction scheme influence the quality of the solu-
tions. It is not suitable to evaluate the performance of off-line
objective reduction methods because the solutions are given.
This paper presents a direct performance metric featuring the
simplicity and usability of the objective reduction algorithms.
However, it is not easily computed on the benchmarks, i.e.,
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DTLZ and WFG [48], and the test problems proposed in [49].
Thus, we propose a framework that features both simple and
complicated PS for many-objective test problems with an arbi-
trary number of essential objectives. Furthermore, one can
control the importance of essential objectives and easily show
the Pareto solutions visually in the decision space. The exper-
imental results show the effectiveness and robustness of the
proposed method in comparison with its existing counter-
parts. In summary, the major contributions of this paper are
as follows.

1) Develop an OEM for MaOPs, which formulates a
reduced objective as a combination of the original objec-
tives to minimize the correlation between each pair of
reduced objectives.

2) Present a framework for many-objective test problems
with an arbitrary number of the essential objectives.

3) Propose a usable and intuitive performance metric for
evaluating the performance of the objective reduction
algorithms.

4) Empirically compare the proposed OEM with three well-
known objective reduction algorithms, i.e., REDGA,
L-PCA, and NL-MVU-PCA.

The remainder of this paper is organized as follows.
Section II briefly introduces the basic concepts and the objec-
tive reduction problem for MaOPs. Section III gives a detailed
description of the proposed objective reduction method and
its characteristics, integrating the proposed objective reduction
method into NSGA-II. We propose a framework for many-
objective test problems in Section IV. In Section V, we briefly
introduce the existing objective reduction counterparts, and the
test suite constructed by the proposed framework in Section IV
for the subsequent comparative studies. In Section VI, we com-
pare the proposed OEM with three existing counterparts on
ten test problems and benchmark DTLZ5 with the different
numbers of objectives and essential objectives. Moreover, we
compare the algorithm with the size of reduced objectives less
than the number of essential objectives on two test problems.
The experimental results show the effectiveness and robust-
ness of the proposed method. Finally, we draw the conclusion
in Section VII.

II. BACKGROUND

A. Basic Concepts and Notations

Without loss of generality, a multiobjective optimization
problem can be formulated as follows:

min f (x) = ( f1(x), f2(x), . . . , fM(x))T

s.t. x ∈ � (1)

where � ⊂ R
n is the decision space and n is the dimension of

the decision variable x = (x1, x2, . . . , xn)
T . f : � → R

M con-
sists of M real-value objective functions, and T is the transpose
of a matrix. When M ≥ 4, (1) is considered as an MaOP. The
optimality of a multiobjective optimization problem is defined
by the concept of dominance [50]. That is, a solution x1 is
said to dominate a solution x2 with respect to objective set
f ′ ⊆ f [denoted as f ′(x1) ≺ f ′(x2)] if for any fi ∈ f ′, we have
fi(x1) ≤ fi(x2), and there exists fi ∈ f ′ such that fi(x1) < fi(x2).

x∗ is called a Pareto optimal solution if there is no solution
x ∈ � such that f (x) ≺ f (x∗). The set of all Pareto optimal
solutions in � is called PS and denoted as E( f ,�). Moreover,
the set of Pareto optimal solutions in the objective space is
called PF and denoted as �( f ,�). For a given solution set X ,
a solution x∗ ∈ X is called the nondominated solution if it is
not dominated by any member of the set X . The set of all
the nondominated solutions in X with respect to f is called
nondominated set and is denoted as E( f ,X ).

The essential objective set is defined as the smallest subset
f ′ of objectives with f ′ ⊆ f that can generate the same PS,
i.e., E( f ,�) = E( f ′,�). A redundant objective set (denoted
as f \ f ′) refers to the set of objectives that can be eliminated
without affecting the PS. The dimension of the problem refers
to the number of essential objectives. Under the regularity
condition, for the (m−1)-dimensional PF, the number of intrin-
sic conflicting objectives is m. The intrinsic dimension of the
problem refers to the number of intrinsic conflicting objec-
tives. Generally, the intrinsic dimension of the problem is less
than or equal to its dimension.

Let P = {p1, p2, . . . , pm} with pi ∈ R
M for i = 1, 2, . . . , m

be a given point set. The set

C(P) =
{

m∑
i=1

θipi

∣∣∣θi ≥ 0, i = 1, . . . , m,

m∑
i=1

θi = 1

}
(2)

is called the convex hull spanned by {p1, p2, . . . , pm}.
Obviously, it is a convex bound set. We denote the volume
of the convex hull C(P) as V(P). Accordingly, for each
point pi, if C(P\pi) = C(P), it is called an interior point
of C(P). Otherwise, it is called the vertex of C(P), where
P\pi = {p1, . . . , pi−1, pi+1, . . . , pm}. If pi is the interior point
of C(P), pi can be regarded as a combination of P\pi, i.e.,
pi = ∑m

j=1,j �=i θjpj.
In the case in which all objectives are differentiable,

the following theorem [51] states a necessary condition for
Pareto optimality for unconstrained multiobjective optimiza-
tion problems.

Theorem 1: Let x∗ be a Pareto solution of (1). There exists
a vector θ = (θ1, . . . , θM) ∈ R

M with 0 ≺ θ and ‖θ‖1 = 1
such that

M∑
i=1

θi∇fi
(
x∗) = 0 (3)

where ∇fi(x∗) is the gradient of fi(x) at point x∗.

B. Objective Reduction for Many-Objective
Optimization Problems

As the size m of the essential objectives may be close to
the number M of the original objectives, to achieve a more
substantial reduction of the objective sets, there are two per-
spectives, in general, for objective reduction. First, given a
bound of the indicator, e.g., the error δ [35] and correlation
threshold Tcor [7], which measures the change level of the
PF, the objective reduction is to find a minimum objective set
by minimizing the size of the reduced objectives. Second, the
objective reduction aims to find an objective set, given a pre-
specified size k, in which the change in the PF is as small as
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possible. This can be achieved by minimizing the error δ in
k-EMOSS [35], or the correlation between the reduced objec-
tives in the proposed algorithm. For example, it can be seen
that either perspective mentioned above allows the PF of the
original objectives to be changed to a certain degree. A prob-
lem is said to be reducible if the change of its PF through
an objective reduction is not too much and bounded. In this
sense, the requirement of objective reduction without PF loss
is usually too strict to be used from a practical perspective.

From the first perspective, the nondominated solution set
obtained by an algorithm might not be able to provide a good
PF-representation, as described in [7]. It makes the number of
conflict objectives with respect to the nondominated solution
greater than the dimension of the original problem, as shown
in [7]. Under such circumstances, it is difficult to assign an
appropriate value to the threshold of the indicator. Thus, we
focus on the second perspective in this paper.

Typically, the objective reduction methods with k-sized
objective set can be formulated as follows. Let X =
{x1, x2, . . . , xN} be N nondominated solutions with respect to
f obtained by an EMO algorithm. Then, a prespecified k-sized
(k ≤ M) objective subset can be defined as

f ′(x) = (
fi1(x), . . . , fik(x)

)T
= IT( f1(x), . . . , fM(x))T (4)

where i1, i2, . . . , ik ∈ {1, 2, . . . , M} and IM×k =
[ei1 , ei2 , . . . , eik ] is an index matrix with

eij = (
0, . . . , 0︸ ︷︷ ︸

ij−1

, 1, 0, . . . , 0︸ ︷︷ ︸
M−ij

)T
.

We have fij = eT
ij
( f1, f2, . . . , fM)T . The objective reduction, or

more accurately objective selection, can be regarded as finding
the index matrix I according to a given rule, e.g., preserving
the dominance structure with respect to X as much as possible
in k-EMOSS [35], and maximizing the distance between the
reduced objectives in REDGA [42], etc.

There are at least two limitations of the objective reduc-
tion methods based on objective selection. First, as the size
of the reduced MaOP f ′(x) is smaller than the dimension of
the problem, it cannot give a good approximation of that for
the original MaOP f (x). For example, the PF of a synthetic
test problem is composed of three line segments that join
in the center of the plane f1 + f2 + f3 = 1 with the points
(1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T , as illustrated in Fig. 2(a).
Obviously, the intrinsic dimension and the dimension of this
problem are 2 and 3, respectively. Three hundred points are
randomly generated on the PF as the nondominated solutions.
Generally, this problem cannot be reduced using the objec-
tive selection-based reduction methods. In this problem, the
distribution of the projections of the original objective on sub-
spaces { f1, f2}, { f1, f3}, and { f2, f3} is the same. We forcibly
reduce the problem to two objectives, denoted as { f1, f2}, and
plot the projection of the nondominated solutions on sub-
space { f1, f2}, i.e., the objective values of the reduced MaOP
f ′(x) = ( f1, f2)T , as in Fig. 2(b). In this figure, we can see that
only one nondominated solution of the original MaOP is also
that of the reduced MaOP. The PF of the reduced MaOP is not

(a) (b)

Fig. 1. Relation between the PS of the original problem and that of the
reduced problem. (a) Reduced MaOP obtained by the objective reduction
methods based on objective selection. (b) Reduced MaOP obtained by the
proposed OEM.

a good approximation of that of the original MaOP. Second,
a Pareto solution of the reduced problem f ′(x) may not be a
Pareto solution of f (x), i.e., E( f ′,�) � E( f ,�), as shown
in Fig. 1(a) and illustrated in Fig. 2. Suppose that a domi-
nated solution (0, 0, 1.1)T , denoted as ‘�’, is on the f3-axis.
Its projection on subspace { f1, f2} is (0, 0)T , i.e., the origin in
Fig. 2(b). Obviously, it is the nondominated solution of the
reduced problem but not that of the original problem. In other
words, for the objective reduction methods based on objective
selection, the PS of the reduced problem is not a subset of
that of the original problem in general. However, we expect
that the PS of the reduced MaOP is a subset of the PS of the
original MaOP, and the size of the PS of the reduced problem
is as great as possible. As such, we propose a novel OEM in
the next section.

III. PROPOSED OBJECTIVE EXTRACTION

METHOD BASED ON CORRELATION

A. Novel Correlation-Based Objective Extraction Model

In general, a negative correlation between each pair of
objectives means that one objective increases while the other
decreases, and vice versa [43]. Thus, this paper infers that
the more negative the correlation between two objectives,
the more conflict between them. We can utilize the correla-
tion between two objectives to measure the degree of conflict
between them. Subsequently, we propose an objective extrac-
tion method based on correlation to deal with MaOPs. It
is expected that the conflict between the reduced objectives
should be as high as possible, i.e., the correlation between
the reduced objectives with respect to the nondominated solu-
tions X should be minimized. Then, the model of the objective
extraction method proposed in this paper can be formulated
as follows:

min L(W) =
k∑

i=1

⎡
⎣max

j,j �=i
ρ
(
gi, gj

)+ λ

k∑
j=1,j �=i

wT
i wj

⎤
⎦

s.t. wi ∈ R
M+ , i = 1, . . . , k

‖wi‖1 = 1, i = 1, . . . , k (5)

where W = [w1, . . . , wk] is the weighted matrix and wi =
(wi1, wi2, . . . , wiM)T for i = 1, . . . , k. The ith reduced objec-
tive gi(x) = wT

i ( f1, . . . , fM)T is formulated as a linear
combination of the original objectives. We call “fj within gi”
if wij is not close to zero. According to the definition of a
correlation, the correlation between objectives gi and gj can
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(b) (c)(a)

Fig. 2. Proposed objective reduction method on a synthetic test problem. (a) Nondominated set and the projection subspace spanned by w1 and w2.
(b) Projection of the nondominated set on the subspace of f1 versus f2. (c) Projection of the nondominated set on the subspace spanned by w1 and w2.

be calculated as

ρ
(
gi, gj

) = wT
i Rwj√

wT
i Rwi

√
wT

j Rwj

(6)

where R is the correlation matrix of f (x) with respect to X .
The second term of the model in (5) is a penalty term that
makes the solution of this model sparse and avoids overfitting
the current nondominated solutions. That is, most elements of
wi, i = 1, . . . , k, approach zero. λ is the penalty coefficient,
which is used to control the sparsity level. The greater the
value of λ, the sparser the solution. It also ensures that the
weight vectors wi, i = 1, . . . , k, are all approximately orthog-
onal to each other. That is, each objective fj is within a reduced
objective gi at most. For simplicity, λ is set at 1 in this paper.
Evidently, a reduced MaOP with a size of k, denoted as g(x),
is achieved

g(x) = WT( f1(x), . . . , fM(x))T

s.t. x ∈ �. (7)

Putting (6) into (5), the model of (5) can be rewritten as

min L(W) =
k∑

i=1

⎡
⎣max

j,j �=i

wT
i Rwj

‖wi‖R‖wj‖R
+ λ

k∑
j=1,j �=i

wT
i wj

⎤
⎦

s.t. wi ∈ R
M+ , i = 1, . . . , k

‖wi‖1 = 1, i = 1, . . . , k (8)

where ‖wi‖R =
√

wT
i Rwi.

To solve (8), we optimize wi alternately for i = 1, . . . , k.
That is, suppose that wjs with j = 1, . . . , i−1, i+1, . . . , k are
fixed, the ith optimization problem with respect to wi, which
is deduced from (8), is given as follows:

min li(wi) = max
j,j �=i

wT
i Rwj

‖wi‖R
∥∥wj

∥∥
R

+ λ

k∑
j=1,j �=i

wT
i wj

s.t. wi ∈ R
M+

‖wi‖1 = 1. (9)

As (9) is a continuous and piecewise differentiable constrained
optimization problem, we can utilize the subgradient pro-
jection method [46] to solve it. The subgradient projection
method is based on projecting the search direction into the
subspace, tangential to the active constraints. The subgradient

of the objective of (9) at point wt−1
i obtained in the (t − 1)th

iteration is given as

∇li = Rwτ∥∥∥wt−1
i

∥∥∥
R
‖wτ‖R

−
(

wt−1
i

)T
Rwτ Rwt−1

i∥∥∥wt−1
i

∥∥∥3

R
‖wτ‖R

+ λ

k∑
j=1,j �=i

wj

(10)

where τ = arg max
j,j �=i

(((wt−1
i )TRwj)/(‖wt−1

i ‖R‖wj‖R)). To

ensure that the constraints wi ∈ R
M+ and ‖wi‖1 = 1, the new

point can be given as

wt
i = P

(
wt−1

i − α∇li
)

(11)

where P(x) = (xε/‖xε‖1), xε is the componentwise max of
ε and x, ε is a small positive constant and let ε = 0.0001 in
this paper. ‖xε‖1 is the 1-norm of vector xε, and α is the step
length, which can be solved by the following problem:

min
0<α<αmax

li
(

P
(

wt−1
i − α∇li

))
(12)

where αmax is the maximum value of α to ensure that wi ∈ R
M+ .

There exists at least one component greater than zero. This
means that if 0 ≺ ∇li, we have

αmax = max
j

{
wij

∇lij

}
(13)

where wij and ∇lij are the jth element of wi and ∇li, respec-
tively. Otherwise, we set αmax = 100. Equation (12) is a
one-variable optimization problem. We use the linear search
to solve the best step length α. The pseudocode for computing
the weighted matrix W is given in Algorithm 1.

B. Characteristics of the Proposed OEM

The characteristics of the proposed OEM are as follows.
1) The Pareto set of the reduced problem g(x) obtained by

the proposed OEM must be a subset of the Pareto set of the
original MaOP, as shown in Fig. 1(b), which can be shown by
the following proposition.

Proposition 1: Let positive matrix W = [w1, . . . , wk]M×k

and g(x) = WT f (x), then for any x1, x2 ∈ �, if f (x1) ≺ f (x2),
we have g(x1) ≺ g(x2), i.e., E(g,�) ⊆ E( f ,�).
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Algorithm 1: Compute the Weighted Matrix W
input :

• A stopping criterion;
• The correlation matrix R;
• The initial weighted matrix W.

output: The weighted matrix W.
while the stopping criteria is not met do

for i ← 1 to k do
Compute the subgradient with respect to wi by
Eq. (10); perform the linear search on α to obtain
the optimal step length α by solving problem:

αbest ← arg min
0<α<αmax

li(P(wi − α∇li));
wi ← P(wi − αbest∇li).

end
end

Proof: We only need to prove that for any x∗ /∈ E( f ,�), it
must not be in E(g,�), i.e., x∗ /∈ E(g,�). As x∗ /∈ E( f ,�),
by the definition of E( f ,�), there exists a solution x ∈ � such
that f (x) ≺ f (x∗), i.e., for any fi ∈ f , we have fi(x) ≤ fi(x∗).
Meanwhile, there exists fi ∈ f such that fi(x) < fi(x∗). Then,
we have

gi(x) =
M∑

j=1

wij fj(x) <

M∑
j=1

wij fj
(
x∗) = gi

(
x∗)

where i = 1, . . . , k. This means that g(x) ≺ g(x∗), i.e., x∗ /∈
E(g,�).

This proposition claims that any nondominated solution
of the problem g(x) is also a nondominated solution of the
original problem f (x) but not vice versa. Fig. 2(c) plots the
projection of the nondominated solutions, i.e., the objective
values of g(x), on the subspace spanned by w1 = (0.5051,

0.4948, 0.0001)T and w2 = (0.0001, 0.0001, 0.9998)T , which
are the optimal solution of the problem in (5). Then, the pro-
jection of the dominated solution (0, 0, 1.1)T in the original
objective space, also denoted as ‘�’, is (0.00011, 1.09978)T in
this subspace. Obviously, it is also a dominated solution of the
reduced problem. This means that the Pareto solution obtained
by the reduced problem g(x) is also the Pareto solution of the
original problem f (x).

2) The proposed objective reduction method can preserve
the dominance structure as much as possible in terms of the
correlation. Subsequently, we have the following proposition.

Proposition 2: Let X = {x1, x2, . . . , xN} be N nondomi-
nated solutions with respect to the original problem f , and
gi = wT

i f (x) with wi obtained by solving the model of (5),
i = 1, . . . , k. Then, for any i1, i2, . . . , ik ∈ {1, 2, . . . , M},
we have

k∑
i=1

max
j,j �=i

ρ
(
gi, gj

) ≤
k∑

i=1

max
j,j �=i

ρ
(

fii , fij
)
.

Proof: It is easy to verify that

L(I) =
k∑

i=1

⎡
⎣max

j,j �=i
ρ
(

fii , fij
)+ λ

k∑
j=1,j �=i

eT
ii eij

⎤
⎦.

Algorithm 2: Pseudocode for the EMO Algorithm With
the Proposed OEM

input :
• Maximum number of generations: Tmax;
• Number of reductions during the search: O;
• Size of the population: N;
• Number of reduced objectives: k; and
• Genetic operators and their associated parameters.

output: All of the nondominated solutions in final
population PO,pre.

� Initialize a random population P0 in the decision space.
� Run the EMO algorithm s generations for original
objectives until all of the solutions in the population are
nondominated solutions.
� Compute the weighted matrix W on current
nondominated solutions.
� Tpre ← �(Tmax − s)/O�.
for o ← 1 to O do

for t ← 1 to Tpre do
� Run the EMO algorithm on the new
optimization problem g(x) = WT f (x) and obtain
the population Po,t;

end
� Compute the correlation matrix R of f (x) w.r.t.
Po,t;
� Update the weighted matrix W as described in
Algorithm 1;

end

Noting that eT
ii

eij = 0 as i �= j, we have

L(I) =
k∑

i=1

max
j,j �=i

ρ
(

fii , fij
)
.

Moreover, based on the model in (5), we have

k∑
i=1

max
j,j �=i

ρ
(
gi, gj

) ≤
k∑

i=1

⎡
⎣max

j,j �=i
ρ
(
gi, gj

)+ λ

k∑
j=1,j �=i

wT
i wj

⎤
⎦

= L(W).

As W is the optimal solution of (5), we have L(W) ≤ L(I).
This implies that

k∑
i=1

max
j,j �=i

ρ
(
gi, gj

) ≤
k∑

i=1

max
j,j �=i

ρ
(

fki , fkj

)
.

From this proposition, we can know that, as I is the optimal
solution of (5), the proposed OEM is equivalent to the objec-
tive selection. This means that the objective selection-based
reduction method using a correlation analysis of the objec-
tives [41] is a special case of the proposed OEM. Moreover,
as the intrinsic dimension of the problem is smaller than
the dimension of the problem, the proposed algorithm can
reduce the MaOP with fewer objectives compared with objec-
tive selection-based reduction methods. From the projection of
the nondominated solution on the subspace spanned by w1 and
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w2 [see Fig. 2(c)], we can see that the dominance structures
of most solutions are preserved. We can find most of the non-
dominated solutions in this subspace. Thus, it is conjectured
that the proposed OEM can preserve the dominance structure
with fewer objectives.

C. Integration of the Proposed OEM Into EMO Algorithm

This section integrates the OEM into an EMO algorithm
to deal with MaOPs. We obtain a set of nondominated solu-
tions for an M-objective problem and initialize the weighted
matrix W. Then, we compute the weighted matrix W on the
current nondominated solutions by Algorithm 1, and run the
EMO algorithm corresponding to the new problem g(x) as
described in (7). Algorithm 2 gives the details of the EMO
algorithm with the proposed OEM.

IV. PROPOSED FRAMEWORK FOR MANY-OBJECTIVE

TEST PROBLEMS

A. Measuring the Performance of Given Objective Set

We introduce a direct σ -metric for measuring the perfor-
mance of a given objective set f ′. It is defined as

σ =
∣∣E( f ′,�

) ∩ E( f ,�)
∣∣

|E( f ,�)| (14)

where |A| is the size/cardinality of set A. Obviously, σ ∈ [0, 1].
When σ = 1, it implies that the PS with respect to f ′ is the
same as that of the original problem f . The condition that
PS must not change is too strict from a practical perspective.
Such a measure is helpful in that it allows the researcher to
gradually tune the acceptable σ in the PS. The greater the
value of σ , the better f ′ is. Thus, it can be used to evaluate
the performance of objective reduction methods.

In this way, we define a metric below for measuring the
contribution/importance of objective fi ∈ f ′ to the objective
set fi

σfi2f ′ =
∣∣E( f ′,�

)− E
(

f ′ \ fi,�
)∣∣

|E( f ′,�)| (15)

where E( f ′,�) − E( f ′ \ fi,�) indicates that set E( f ′,�)

subtracts set E( f ′\ fi,�). From the definition, we have that
σfi2f ′ ∈ [0, 1]. As σfi2f ′ = 0, fi is a redundant objective with
respect to objective set f ′. Moreover, the greater the value of
σfi2f ′ , the greater the contribution of fi to the objective set f ′.

For a given solution set X , (14) and (15) can also be utilized
to measure the performance of the objective set and the contri-
bution of an objective to an objective set on this solution set.
Then, they can be rewritten as

σ =
∣∣E( f ′,X

) ∩ E( f ,X )
∣∣

|E( f ,X )| (16)

and

σfi2f ′ =
∣∣E( f ′,X

)− E
(

f ′ \ fi,X
)∣∣

|E( f ′,X )| . (17)

Such a metric is utilized to construct the many-objective test
problems, as it is convenient to control the importance of the
essential objectives and thereby evaluate the performances of
the objective reduction methods.

B. Framework for Many-Objective Test Problems

Some many-objective test problems are proposed in [48].
For these benchmarks, i.e., DTLZ and WFG [48], the essential
objective fi is totally indispensable to the essential objective
set f ′, i.e., σfi2f ′ → 1. This, however, is not common from a
practical perspective. Moreover, it is not easy to compute the
value of σ -metric on these benchmarks.

Thus, we propose a framework for MaOPs, in which the
decision space is

� =
n∏

i=1

[ai, bi] (18)

where −∞ < ai < bi < ∞ for i = 1, . . . , n.
Then, the objectives of the problem f (x) =

( f1(x), f2(x), . . . , fM(x))T are given as

fi(x) = αi(xI) + βi(xII − γ (xI)) ∀ i = 1, . . . , M (19)

where
1) x = (x1, x2, . . . , xn) ∈ �, xI = (x1, . . . , xl) and

xII = (xl+1, . . . , xn) are two subvectors of x, and l is
the dimension of xI ;

2) P = {p1, p2, . . . , pM} is a point set with pi ∈∏l
i=1 [ai, bi], and i = 1, 2, . . . , M;

3) α(xI) = (α1(xI), . . . , αM(xI))
T with αi(xI) = ‖xI −pi‖2

2
is defined as the Euclidean distance from xI to pi, and
i = 1, 2, . . . , M;

4) βi is a function from R
n−l to R

+ for i = 1, . . . , M;
5) γ is a function from

∏l
i=1 [ai, bi] to

∏n
i=l+1 [ai, bi].

Subsequently, regarding the PS E( f ,�) and PF �( f ,�) of
the test problem, we have the following theorem.

Theorem 2: Supposing βi(z) = 0 if and only if z = 0 for
i = 1, . . . , M, we have:

1) E( f ,�) = {x|xI ∈ C(P), xII = γ (xI)};
2) �( f ,�) = {α(xI)|xI ∈ C(P)}, where C(P) is the

convex hull spanned by P .
Proof of Theorem 2:
1) Let x = (xI, xII)

T ∈ E( f ,�). According to
Schütze et al. [51], E(α,

∏l
i=1 [ai, bi]) = C(P). Thus,

we only show that xII = γ (xI). As βi(z) = 0 if and
only if z = 0, suppose that xII �= γ (xI), we then have
βi(xII − γ (xI)) > 0 for all i = 1, . . . , M. That is,
there exists x′ = (xI, γ (xI)) such that fi(x′) = αi(xI) <

αi(xI) + βi(xII − γ (xI)) = fi(x) for i = 1, . . . , M. This
means that f (x) is dominated by f (x′). That is, x is not
Pareto optimal of f (x). This conflicts with x ∈ E( f ,�).
Thus, we have that xII = γ (xI).

2) As βi(x) = 0 for any x ∈ E( f ,�), we have f (x) = α(x).
Thus, �( f ,�) = �(α(x),

∏l
i=1 [ai, bi]). Consequently,

we have that �( f ,�) = {α(xI)|xI ∈ C(P)}. �
By this theorem, the PS and PF of the reduced problem

f ′ = ( fi1 , fi2 , . . . , fik)
T ⊆ f obtained by the objective selection-

based reduction methods can be given as:
1) E( f ′,�) = {x|xI ∈ C(P ′), xII = γ (xI)};
2) �( f ′,�) = {α′(xI)|xI ∈ C(P ′)}, where

α′(xI) = (αi1(xI), αi2(xI), . . . , αik(xI))
T and

P ′ = {pi1, pi2 , . . . , pik } is a point set that is used
to construct the reduced problem f ′.
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With regard to the PS and the PF of the reduced MaOP
obtained by the proposed OEM on such test problem, we have
the following theorem.

Theorem 3: Let non-negative matrix W = [w1, . . . , wk]M×k

with ‖wi‖1 = 1 for i = 1, . . . , k, f (x) as defined in (19). If
g(x) = WT f (x), we have:

1) E(g,�) =
{

x|xI ∈ C(P̃), xII = γ (xI)
}

;

2) �(g,�) = {α̃(xI)|xI ∈ C(P̃)}, where
α̃(xI) = (α̃1(xI), α̃2(xI), . . . , α̃k(xI))

T with α̃i(xI) =∑M
j=1 wijαj(xI) and P̃ = {

p̃1, . . . , p̃k
}

with
p̃i = ∑M

j=1 wijpj, i = 1, . . . , k.
Proof of Theorem 3:
1) Suppose x = (xI, xII) ∈ E(g,�) is a Pareto solu-

tion of g(x). We first prove that xI ∈ C(P̃). As g(x)

is a differentiable function of xI , by Theorem 1, we
have that there exist λ1, . . . , λk ≥ 0 with

∑k
i=1 λi = 1

such that
∑k

i=1 λi �xI gi(x) = 0. The gradient of gi(x)

on xI is

�xI gi(x) = 2
M∑

j=1

wij
(
xI − pj

) = 2
(
xI − p̃i

)
.

Then
k∑

i=1

λi �xI gi(x) = 2
k∑

i=1

λi
(
xI − p̃i

)

= 2

(
xI −

k∑
i=1

λip̃i

)
= 0.

This means that xI = ∑k
i=1 λip̃i, i.e., xI ∈ C(P̃).

Moreover, g(x) is a convex function of xI . By
Theorem 1, the Pareto set on xI is equal to C(P̃). As
proven in Theorem 2, we can also show that xII = γ (xI).

2) As proven in Theorem 2, for any x ∈ E(g,�), we have
that βi(x) = 0. This means that, for any x ∈ E(g,�),
g(x) = α̃(x). Thus, �(g,�) = �(α̃(x),

∏l
i=1[ai, bi]).

Consequently, we have that �(g,�) = {α̃(xI)|xI ∈
C(P̃)}. �

Theorem 4: For the MaOP f (x) defined in (19), fi(x) is an
essential objective, if and only if pi is a vertex of C(P).

Proof of Theorem 4:
1) Necessary Condition: Let fi(x) be an essential objec-

tive, then E( f \fi,�) ⊂ E( f ,�). By Theorem 2, we
have E( f \fi,�) = C(P\pi) and E( f ,�) = C(P). As a
result, we have C(P\pi) ⊂ C(P). Thus, pi is a vertex
of C(P).

2) Sufficient Condition: Let pi be a vertex of C(P).
Recalling the definition of a vertex, we have C(P\pi) ⊂
C(P). On the other hand, by Theorem 2, we have
E( f \fi,�) = C(P\pi) and E( f ,�) = C(P). We obtain
E( f \fi,�) ⊂ E( f ,�). This means that fi is an essential
objective. �

Obviously, fi(x) is a redundant objective if and only if pi is
an interior point of C(P).

1It can also be applied to the reduced problem obtained by the proposed
OEM because the PS of the reduced problem is also a convex hull spanned
P̃ by Theorem 3.

In the proposed test problem, the size |E( f ,�)| of the PS
of f is equivalent to the volume of C(P). Then, the value of
the σ -metric defined in (14) can be calculated as

σ = V
(
P ′)

V(P)

1 (20)

and the importance fi ∈ f ′ to f ′ defined in (15) is equivalent to

σfi2f ′ = V
(
P ′)− V

(
P ′ \ pi

)
V(P ′)

(21)

where V(P) is the volume of the convex hull of C(P).
It is noted as follows.
1) The PS of the problem is determined by α(xI) and γ .

Precisely, the distribution of the solutions obtained by
an algorithm can be represented by the distribution of
the solutions in the l dimensional space and controlled
by α(xI). As l = 2, by Theorem 2, the shape of the PS
is a convex polygon in 2-D space. It is therefore easily
visually represented.

2) Plotting the convex hull of C(P̃) clearly shows that
which is the identified essential objective and the impor-
tance of each reduced objective. The performance of the
reduced objectives can be revealed by comparing C(P̃)

with C(P).
3) For the reduced problems obtained by either objec-

tive selection or objective extraction, we can easily
obtain the PS and PF of the reduced problem using
Theorems 2 and 3, and compute the value of the
σ -metric by using (20). This is convenient for under-
standing the performance of the algorithms equipped
with the objective reduction method.

4) By Theorem 4, the dimension and the intrinsic dimen-
sion of the problem are the number of vertices of C(P),
and the number of redundant objectives is the number
of the interior points of C(P). Thus, it is easy to control
the number of essential objectives.

5) By (21), we can see that σfi2f ′ can be any value in [0, 1].
Thus, one is able to control the importance of fi for
i = 1, . . . , M.

C. Modular Approach to Test Instances

This section proposes a modular approach for composing
test instances with different numbers of essential objectives
and variations in the importance of the essential objectives. It
involves the following steps.

1) Decide the number of objectives (M), the dimension
(m ≤ M) of the problem, the dimension l of xI and
the dimension (n ≥ l) of the decision variable.

2) For simplicity, we suppose that all functions βi are the
same and let βi = β for i = 1, . . . , M. In this paper,
xII − γ (xI) is represented by yl:n, then β(yl:n) in (19) is
defined as follows:

β(yl:n) =
n∑

j=l

y2
j . (22)

To visualize the PS with an arbitrary number of the
essential objectives, we only consider the case of l = 2
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(a) (b) (c)

Fig. 3. Basic strategy of the objective reduction method-based feature selection (taken from [42]). (a) Divide the objective set into neighborhoods around
each objective. (b) Select the most compact neighborhood. (c) Retain the center and remove the neighbors.

in this paper. Then, as in [49], we define

yj = xj − 2x2 sin

(
2πx1 + jπ

n

)
where j = 3, . . . , n, and xj ∈ [−2, 2].

3) Generate m vertices p1, . . . , pm to compose the essential
objectives. As l = 2, we can generate the points on the
circle to compose the set of vertices

pi = (sin φi, cos φi) (23)

where i = 1, . . . , m, and φi ∈ [0, 2π ]. If φi, i = 1, . . . , m
is uniformly distributed in [0, 2π ], these essential objec-
tives have the same degree of importance. We can
control the objectives’ importance using the distance
between the points. That is, the farther the point is
from the other points, the more important the objec-
tive. Obviously, the points on the circle must be the
vertices of the convex hull spanned by these points. We
can use the interior points to compose the redundant
objectives. Specifically, pi, i = m + 1, . . . , M can be
given as follows:

pi =
m∑

j=1

θijpj, i = m + 1, . . . , M (24)

where θij ≥ 0 is a randomly generated constant and∑m
j=1 θij = 1. We also let the domain of xi ∈ [−2, 2] for

i = 1, 2.

V. COMPARED ALGORITHMS AND TEST SUITE

A. Algorithms Utilized for Comparison

We compared the proposed algorithm with REDGA [42],
L-PCA, and NL-MVU-PCA [7].

1) Online Objective Reduction Based on Feature Selection:
Jaimes et al. [42] proposed an online objective reduction algo-
rithm based on feature selection for MaOPs, namely REDGA.
They have shown that this objective reduction algorithm has
a lower time complexity and can improve the convergence
of an EMO algorithm in MaOPs. It finds an objective subset
by using a correlation matrix to estimate the conflict between
each pair of objectives. It first defines the distance between two
objectives (features) fi and fj as 1 −ρ( fi, fj), where ρ( fi, fj) is
the correlation between fi and fj on a given nondominated set
X . Thus, a value of 2 indicates that fi and fj are completely
conflicting, while a value of 0 indicates that the objectives have

no conflict. Then, the objective reduction algorithm based on
the feature selection is divided into three steps.

1) It divides the objective set into homogeneous neigh-
borhoods of size q around each objective. As q = 2,
Fig. 3(a) shows a hypothetical situation with two neigh-
borhoods and eight objectives.

2) Select the neighborhood with the minimum distance to
its qth nearest neighbor. In the example, the neighbor-
hood on the left is the most compact [see Fig. 3(b)].

3) Retain the center of the neighborhood and discard its
q neighbors. As shown in Fig. 3(c), it retains the
objective 2 and discards neighboring objectives 5 and 6.

Then, [42] incorporates the objective reduction method into
NSGA-II and presents an online objective reduction to deal
with MaOPs.

2) Linear Objective Reduction Based on Correlation
Matrix: Saxena et al. [7] proposed a framework for the linear
objective reduction algorithm, namely L-PCA. The basic idea
is to find the essential objectives by eigenvalue and reduced
correlation matrix analyses. In the following, we overview
the L-PCA algorithm [7]. Given a nondominated set X , the
objective reduction method works as follows.

1) Compute the correlation matrix R of the objective values
with respect to X .

2) Compute the eigenvalues and eigenvectors of R with the
jth principal component denoted as Vj. The ith compo-
nent of Vj reflects the contribution of the ith objective
fi toward Vj.

3) Perform the eigenvalue analysis to identify the set of the
important objectives. For each significant principal com-
ponent Vj, if all components have the same sign, i.e., all
positive or all negative, the pair of objectives with the
top two elements in terms of magnitude is picked; oth-
erwise, the objective with the highest contribution to Vj

by magnitude and all the other objectives with opposite
sign contributions to Vj are selected.

4) Perform the reduced correlation matrix analysis to iden-
tify the subset of identically correlated objectives within
the important objectives. If such a subset exists, the most
significant objective in each subset is retained while the
rest is discarded. It can further reduce the set of impor-
tant objectives. The eigenvalue and reduced correlation
matrix analyses are repeatedly performed until no objec-
tive can be reduced. Consequently, the reduced objective
set is regarded as the essential objective set.
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3) Nonlinear Objective Reduction Based on Kernel Matrix:
Saxena et al. [7] also proposed a nonlinear objective algorithm
based on a kernel matrix, namely NL-MVU-PCA. It is similar
to the L-PCA, but it uses the kernel matrix K instead of the
correlation matrix R. The kernel matrix K can be obtained by
solving the following problem:

max trace(K) = 1

2M

∑
ij

(
Kii + Kjj − 2Kij

)
s.t. Kii + Kjj − 2Kij = Rii + Rjj − 2Rij ∀ ηij = 1,∑

ij

Kij = 0 (25)

where K is positive-semidefinite, and Kij and Rij are the (i, j)th
element of the kernel matrix K and correlation matrix R,
respectively. η = [ηij]M×M is the neighborhood matrix, in
which each element ηij ∈ {0, 1} and ηij = 1 only when
objective function fi is the neighbor of fj.

In their original versions of REDGA, L-PCA, and
NL-MVU-PCA, all finds the minimum objective set as given
the number q of the neighbors in REDGA and the correlation
threshold Tcor in L-PCA and NL-MVU-PCA. The number of
the reduced objectives may not equal the prespecified size k.
We adjust the value of parameter q in REDGA and Tcor in
L-PCA and NL-MVU-PCA so that the number of reduced
objectives equals k.

B. Test Suite Constructed by the Proposed Framework

Ten test problems constructed by the above-stated frame-
work are used to evaluate the performance of the proposed
algorithm in this paper. The parameters for these test problems
are presented in Table I, where V is the area of the convex
polygon spanned by {p1, . . . , pM} and φ is used in (23) to
generate the points {p1, . . . , pM}. The dimension of the deci-
sion variable is set at 5, i.e., n = 5. To observe the effects of
the number of objectives and essential objectives, these test
problems have the different number m of objectives and the
number M of essential objectives given in Table I. For the
odd-numbered test problems, i.e., MAOP1, MAOP3, MAOP5,
MAOP7, and MAOP9, the points used to compose the essen-
tial objective set are uniformly distributed on the unit circle.
That is, all essential objectives have the same degree of impor-
tance. For the other test problems, the essential objectives have
different degrees of importance.

C. Redundant Problems

This paper also considers the benchmark
DTLZ5(m, M) [34], which is formulated as follows:⎧⎨

⎩
f1 = (1 + g)�M−1

i=1 cos(θi)

fl=2:M−1 = (1 + g)�M−l
i=1 cos(θi) sin(θM−l+1)

fM = (1 + g) sin(θ1)

where g = ∑M+k−1
i=M (xi − 0.5)2 and

θi =
⎧⎨
⎩

π

2
xi i = 1, . . . , m − 1
π

4(1 + g)
(1 + 2gxi) i = m, . . . , M − 1.

TABLE I
PARAMETERS OF MAOP1–MAOP10

Subject to
∑m−2

j=0 f 2
M−j + 2pi f 2

i ≥ 1 for i = 1, . . . , M − m + 1,
where

pi =
{

M − m i = 1
(M − m + 2) − i i = 2 : M − m + 1

and 0 ≤ xi ≤ 1 for i = 1, . . . , n, k = n − M + 1 is the
number of variables, which is used to design function g. As
suggested in [48], k = 10 is used in the experiments. The PF
occurs for the minimum of g function, i.e., at xi = 0.5 for
i = M, . . . , n and satisfies

∑M
i=1 f 2

i = 1. The first M − m + 1
objectives are perfectly correlated on the PF, which makes
it easier to identify the redundant objectives. The essential
objective set is { fi, fM−m+2, . . . fM}, where i ∈ {1, . . . , M −
m+1}. In this problem, the dimension of the PF is m−1. This
means that the problem has the same intrinsic dimension and
dimension.

D. Problems With Different Intrinsic Dimension
and Dimension

The above-mentioned test problems have the same intrinsic
dimension and dimension. We construct two test instances with
different intrinsic dimension and dimension using the same
formulation as (19). A detailed description of the constructed
test instances is as follows.

1) MF1: One test instance with the intrinsic dimension and
dimension being 2 and 3, respectively:⎧⎪⎨
⎪⎩

f1 = α(x1x2, x1(1 − x2), 1 − x1) +∑n
j=3

(
xj − 0.5

)2
f2 = α(x1(1 − x2), 1 − x1, x1x2) +∑n

j=3

(
xj − 0.5

)2
f3 = α(1 − x1, x1x2, x1(1 − x2)) +∑n

j=3

(
xj − 0.5

)2
where

α(a, b, c) =
{

a, if a = max(a, b, c)
0.5 ∗ (a + min(b, c)), otherwise

and, x ∈ [0, 1]n. The PF of this problem occurs at xj =
0.5 for j = 3, . . . , n. The PF is shown in Fig. 2(a).

2) MF2: The test instance MF2 is the same as MF1, with
the exception of α that is defined as follows:

α(a, b, c) =
⎧⎨
⎩

0, if a = min(a, b, c)
a(a + b + c)

a + max(b, c)
, otherwise.
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TABLE II
VALUES OF σ OBTAINED BY OEM, REDGA, L-PCA,

AND NL-MVU-PCA ON THE SOLUTIONS

SAMPLED ON THE TRUE PF

Its PF is a triangle whose vertexes are (1, 0, 0)T ,
(0, 1, 0)T , and (0, 0, 1)T . Its intrinsic dimension and
dimension are also 2 and 3, respectively.

VI. SIMULATION RESULTS

To study the effectiveness and robustness of the pro-
posed algorithm, we compared it with REDGA, L-PCA,
and NL-MVU-PCA. We conducted the following four exper-
iments: 1) objective reduction methods on the solutions
sampled on the true PF for MaOP suite test problems
in Section VI-A; 2) NSGA-II equipped with the objec-
tive reduction methods for MaOP suite test instances in
Section VI-B; 3) NSGA-II equipped with the objective reduc-
tion methods for DTLZ5 with a different number of objectives
and essential objectives in Section VI-C; and 4) NSGA-II
equipped with the objective reduction methods for MF1
and MF2, which have a dimension that differs from the
intrinsic dimension, in Section VI-D. For the sake of conve-
nience, we denote the NSGA-II equipped with OEM, REDGA,
L-PCA, and NL-MVU-PCA as OEM, REDGA, L-PCA, and
NL-MVU-PCA, respectively.

A. Experiment for the True PF of MaOP

We first applied the objective reduction algorithms to the
solutions sampled on the true PF, symbolizing an unnoised
signal, for the MaOP suite test problems proposed in this
paper to evaluate the effectiveness of the proposed algorithm.
It can quantitatively evaluate the performance of the objective
reduction methods in the best of circumstances.

1) Experimental Setting: For each test problem, 1000 solu-
tions were generated as follows. Let β = 0 in (19), and then
1000 points were uniformly generated in the convex polygon
spanned by {p1, . . . , pM}. The number of reduced objective k
was set at the number of essential objectives, which is given
in Table I.

2) Experimental Results: Table II lists the values of the
σ -metric obtained by OEM, REDGA, L-PCA, and NL-MVU-
PCA on the solutions sampled on the true PF. The results in
bold are the best of those obtained using these algorithms on
the test instances. It can be seen that the proposed OEM was

much better than REDGA and L-PCA in terms of the σ -metric,
except in the case of MAOP6. Moreover, OEM was slightly
worse than NL-MVU-PCA on MAOP2, MAOP3, MAOP5,
MAOP6, MAOP8, and MAOP9, but much better on MAOP1,
MAOP4, MAOP7, and MAOP10. To sum up, the performance
of the proposed OEM algorithm was comparable to that of
NL-MVU-PCA in terms of the σ -metric. Nevertheless, the sta-
bility of the proposed algorithm outperformed NL-MVU-PCA
because the OEM obtained a better result for all test instances
tried thus far.

Fig. 4 shows the results obtained by OEM, REDGA,
L-PCA, and NL-MVU-PCA on the solutions that were uni-
formly distributed on the true PF. In this figure, the convex
polygon with the legend is “ideally” spanned by p1, . . . , pM .
The convex polygon with the legend of algorithm names
is spanned by p̃1, . . . , p̃m obtained by the corresponding
algorithms. The larger the area of the convex polygon, the
better the performance of the objective reduction algorithm.
The proposed algorithm identified the essential objectives for
most test problems. Moreover, the value of its σ -metric in
Table II was smaller than that obtained by NL-MVU-PCA on
MAOP2, MAOP3, MAOP5, MAOP6, MAOP8, and MAOP9,
but the shape of the convex polygon obtained by the OEM
was very similar to the ideal convex polygon on these test
problems.

B. Experiment for MaOP Suite Test Problems

We performed the NSGA-II equipped with our proposed
OEM, REDGA, L-PCA, and NL-MVU-PCA, respectively, on
MaOP suite test instances to study the robustness of the
proposed OEM.

1) Experimental Setting: The σ -metric value defined
in (20) and IGD-metric [9] were used to evaluate the perfor-
mance of the algorithm. The IGD-metric is defined as follows.
Suppose Q∗ is a set of points that are uniformly distributed
along the PF in objective space, and Q is an approximation of
the PF. The distance between Q∗ and Q can be defined as

IGD
(
Q∗, Q

) =
∑

v∈Q∗ d(v, Q)

|Q∗|
where d(v, Q) is the minimum Euclidean distance from the
point v to Q and |Q∗| is the cardinality of Q∗. The IGD-metric
not only gives a good evaluation of the solutions’ accuracy,
but also their uniformity. Obviously, the smaller the value of
IGD, the better the performance of the algorithm. As it is
difficult to generate a set of uniform solutions in the objective
space for MaOPs, we utilize the objective values of the 1000
points generated in Section VI-A to form Q∗. The distribution
of these points may not be uniform in the objective space.

All algorithms ran 20 times independently for each test
problem. The parameters of the algorithms were given as
follows.

1) The crossover and mutation operators with the same
control parameters in [10] were utilized in the four
algorithms to generate new solutions.

2) The maximum number of generations is set at 300 for
all test problems, i.e., Tmax = 300.
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Fig. 4. Convex hull C(P) of the original MaOP and C(P̃) of the reduced
MaOP found by OEM, REDGA, L-PCA, and NL-MVU-PCA on the true PF
for the test problems MAOP1–MAOP10.

3) The number of reductions during the search is set at 10,
i.e., O = 10.

4) The size of the population is set at 300 in all the
algorithms for each test instance.

5) The size k of the reduced objectives is set at the number
of essential objectives given in Table I.

TABLE III
MEAN VALUE OF σ ON THE FINAL SOLUTIONS OBTAINED BY OEM,

REDGA, L-PCA, AND NL-MVU-PCA IN 20 INDEPENDENT

RUNS FOR TEST PROBLEMS MAOP1–MAOP10

2) Experimental Results: Table III lists the means of
σ -metric values obtained by OEM, REDGA, L-PCA, and
NL-MVU-PCA in 20 independent runs for test problems
MAOP1–MAOP10. The results in bold are the best of those
obtained using these algorithms in each test instance. This
table shows that, in terms of the mean of the σ -metric, the
results obtained by the proposed OEM were much better than
those obtained by its counterparts, i.e., REDGA, L-PCA, and
NL-MVU-PCA on MAOP1, MAOP3, MAOP9, and MAOP10.
For the other test problems, the proposed algorithm also
provided promising results. Furthermore, the stability of the
proposed OEM was better than that of its counterparts.

Table IV lists the minimum (best), mean, and maximum
(worst) values of the IGD-metric for the final solutions
obtained by OEM, REDGA, L-PCA, and NL-MVU-PCA
for MAOP1–MAOP10. The results in bold are the best of
those obtained using these algorithms in each test instance.
The results obtained by the proposed algorithm were bet-
ter than those produced by its counterparts for most test
problems.

Fig. 5 plots the final population in the subspace of x1
versus x2 and the convex polygon C(P̃) with the median
σ -metric value found by these algorithms on MAOP1–MAOP5
in the 20 independent runs. Fig. 6 plots the results on
MAOP6–MAOP10. These figures reveal not only the reduced
objectives obtained by the objective reduction methods but
also the performance of the reduced objectives.

We demonstrated the performance of the proposed algorithm
over the different values of k for MAOP6 with 20 indepen-
dent runs. We chose MAOP6 as an example because it had
the modest number of objectives and essential objectives, and
the latter exhibited the varied importance. Table V shows the
result. It can be seen that the proposed algorithm still worked
well, as the value of k was no less than the number of essential
objectives.

C. Experiment for Benchmark DTLZ5

In this section, we performed the algorithms on benchmark
DTLZ5 with different numbers of objectives and essential
objectives.
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TABLE IV
MINIMUM (BEST), MEAN, AND MAXIMUM (WORST) OF IGD-METRIC VALUES FOR THE FINAL SOLUTIONS OBTAINED BY OEM,

REDGA, L-PCA, AND NL-MVU-PCA IN 20 INDEPENDENT RUNS FOR TEST PROBLEMS MAOP1–MAOP10

TABLE V
BEST, MEAN, AND WORST σ -METRIC AND IGD-METRIC VALUES

OBTAINED BY OEM WITH DIFFERENT k IN 20 INDEPENDENT

RUNS FOR TEST PROBLEM MAOP6

k

1) Experiment Setting: The IGD-metric was also used to
evaluate the performances of the compared algorithms. In
this experiment, as the exact PF was known, we used a set
of evenly spread Pareto solutions on the PF that were gen-
erated by the methods presented in [52] to constitute Q∗.
The cardinality of Q∗ for these problems with the num-
ber of essential objectives m = {2, 3, 5, 7} were set as
|Q∗| = {1000, 1891, 10626, 18564}, respectively. The size k
of the reduced objectives was set to be the number of essen-
tial objective given in Table VI. The other parameter settings
used were as in Section VI-B.

2) Experiment Results: Table VI lists the minimum (best),
mean, and maximum (worst) values of the IGD-metric for
the final solutions obtained by OEM, REDGA, L-PCA, and
NL-MVU-PCA for DTLZ5 with the different numbers of
objectives and essential objectives. The results in bold are
the best of those obtained using these algorithms in each test
instance. This table shows the following.

1) All compared algorithms can obtain a perfect result on
the test problems with fewer essential objectives, i.e.,
DTLZ5(2, 5), DTLZ5(2, 20), and DTLZ5(2, 50).

2) In terms of IGD-metric values, the results obtained by
the OEM were excellent compared with those of its
counterparts.

Further, we utilized DTLZ5(3, 5) as an example to analyze
the weighted matrix W obtained by the proposed algorithm.

A snapshot of the correlation matrix of the final
solutions is

R =

⎡
⎢⎢⎢⎢⎣

1.000 0.583 0.755 −0.338 −0.417
0.583 1.000 0.792 −0.325 −0.388
0.755 0.792 1.000 −0.342 −0.391

−0.338 −0.325 −0.342 1.000 −0.514
−0.417 −0.388 −0.391 −0.514 1.000

⎤
⎥⎥⎥⎥⎦.

Then, we optimized the problem (8) and obtained the weighted
matrix

WT =
⎡
⎣0.4557 0.3720 0.1723 0+ 0+

0+ 0+ 0+ 1− 0+
0+ 0+ 0+ 0+ 1−

⎤
⎦

where 0+ is a small positive number and 1− is a number
smaller than 1 and very close to 1. From WT , it can be seen
that the objectives { f1, f2, f3} are within the first reduced objec-
tives. That is, the original objectives within the same reduced
objective, i.e., { f1, f2, f3}, are harmonious and the objectives
within different objectives, i.e., { fk, f4, f5}, k ∈ {1, 2, 3} are
conflicting.

D. Experiment for MF1 and MF2

In this section, we conducted the algorithms on MF1 and
MF2 to demonstrate that the nondominated solutions of the
reduced problem obtained by the proposed algorithm were
also those of the original, and thus preserving the dominance
structure as much as possible.

1) Experiment Setting: The IGD-metric was also used to
evaluate the algorithms’ performance. There were 1000 points
uniformly distributed on PF to form Q∗. The success rate (SR)
was the percentage of nondominated solutions for both the
original problem and the reduced problem in the final solu-
tions obtained by an algorithm. It was used to measure whether
the final solutions obtained by the algorithm on the reduced
algorithm were the nondominated solutions of the original
problems. The maximum number of generations was set at
600 and the population size was set at 150 for the two test
problems. The size m of reduced objectives was set at 2. It
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Fig. 5. Final population in the subspace of x1 versus x2 and C(P̃) with the median σ -metric value found by OEM (the leftmost column), REDGA (the
second leftmost column), L-PCA (the third column), and NL-MVU-PCA (the rightmost column) on MAOP1–MAOP5.

was smaller than the number of essential objectives. The other
parameters were used as in Section VI-A.

2) Experiment Results: Table VII lists the minimum IGD-
metric value (IGD-metric-B), mean IGD-metric value (IGD-
metric-M), maximum IGD-metric value (IGD-metric-W),
maximum SR value (SR-B), mean SR value (SR-M), and the
minimum SR value (SR-W) obtained by OEM, REDGA, L-
PCA, and NL-MVU-PCA on MF1 and MF2. From this table,
we can see that the proposed algorithm, in terms of the IGD-
metric, was significantly superior to the compared algorithms
on these two problems. Moreover, the value of SR obtained

by the proposed algorithm was 100% for all test problems.
This shows that the nondominated solutions for the reduced
problems obtained by the OEM must be those of the origi-
nal problems. In contrast, we cannot draw such conclusion on
REDGA, L-PCA, and NL-MVU-PCA.

Fig. 7 plots the PF and the final solutions with the median
IGD-metric value obtained by OEM, REDGA, L-PCA, and
NL-MVU-PCA on MF1 and MF2. The results obtained by the
proposed algorithm were better than those of its counterparts.
Ideally, the proposed algorithm would obtain the whole PF, but
it may not from a practical perspective because the distribution
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Fig. 6. Final population in the subspace of x1 versus x2 and C(P̃) with the median σ -metric value found by OEM (the leftmost column), REDGA (the
second leftmost column), L-PCA (the third column), and NL-MVU-PCA (the rightmost column) on MAOP6–MAOP10.

of the solution is not uniform on the PF, such that the perfect
projection plane cannot be achieved.

E. Summary and Discussion

In summary, the simulation experiment results show that:
1) the proposed algorithm is of good stability, and the mean

of the performance metrics is better than that of the
compared algorithms for most test problems;

2) the proposed algorithm can preserve the dominance
structure as much as possible, based on the results given
in Section VI-D;

3) the nondominated solutions to the reduced problem
obtained by the OEM are also those of the original
problem.

In this paper, we assume that the value of k is prespeci-
fied. From a practical perspective, the value of k is needed
when the proposed method is applied to real-world problems.
Undoubtedly, an optimal value of k, i.e., the dimension of
the true PF, is crucial to achieving optimal performance from
the proposed algorithm. Unfortunately, as far as we know, the
best way to identify an optimal value of k remains unknown,
and this falls beyond the scope of this paper. We therefore
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Fig. 7. PF and the final solutions with the median IGD-metric values obtained by OEM (the leftmost column), REDGA (the second leftmost column),
L-PCA (the third column), and NL-MVU-PCA (the rightmost column) on test problems MF1 and MF2.

TABLE VI
MINIMUM (BEST), MEAN, AND MAXIMUM (WORST) OF IGD-METRIC VALUES FOR THE FINAL SOLUTIONS OBTAINED BY OEM, REDGA, L-PCA,

AND NL-MVU-PCA IN 20 INDEPENDENT RUNS FOR DTLZ5 WITH DIFFERENT NUMBERS OF OBJECTIVES AND ESSENTIAL OBJECTIVES

TABLE VII
RESULTS OBTAINED BY OEM, REDGA, L-PCA, AND NL-MVU-PCA

ON TEST PROBLEMS MF1 AND MF2

leave it to be studied in future work. Nevertheless, one feasi-
ble way to determine an appropriate value of k is to make
multiple runs of the proposed algorithm over the different
values of k, and use them to determine its value. For exam-
ple, Table V shows that an appropriate value of k should be
around 6 because the performance of the proposed algorithm

drops significantly when k < 6, but it does not change much
when k ≥ 6.

Furthermore, we use correlation to measure the degree of
conflict between the reduced objectives. The correlation is not
totally equivalent to the conflict between the reduced objec-
tives in some cases, especially for problems with multiple



CHEUNG et al.: OBJECTIVE EXTRACTION FOR MaOPs: ALGORITHM AND TEST PROBLEMS 771

essential objectives. Thus, the results obtained by the proposed
OEM for the test problems with multiple essential objectives
are not very good. In the future, we will try to present a more
accurate measure of the degree of conflict. In addition, a linear
transformation of the space has been presented in this paper.
It would be natural to study a nonlinear transformation of the
space to reduce the objectives.

VII. CONCLUSION

In this paper, we have proposed a novel OEM for MaOPs.
It formulates a reduced objective as a linear combination of
the original objectives to maximize the conflict between the
reduced objectives, i.e., minimize the correlation between
the reduced objectives. One of its features is that the PS of
the reduced MaOP obtained by the proposed algorithm is a
subset of the PS of the original MaOP, and the proposed
algorithm can preserve the dominance structure as much as
possible. Moreover, we have introduced a framework, fea-
turing both simple and complicated Pareto set shapes, for
many-objective test problems with an arbitrary number of the
essential objectives. More importantly, it can directly evalu-
ate the performance of objective reduction algorithms through
a usable and intuitive performance metric. Subsequently, we
have compared the proposed objective reduction method with
three objective reduction methods, i.e., REDGA, L-PCA, and
NL-MVU-PCA, on the proposed test problems and a bench-
mark (i.e., DTLZ5) with different numbers of objectives and
essential objectives. The experimental results confirm the
effectiveness and robustness of the proposed approach.
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