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Abstract— As an important topic in the remote sensing (RS)
image processing community, change detection has attracted
much attention from researchers, which aims to distinguish
land-cover changes in a geographic position. This is a challenging
task because the visual representations of land cover captured
from RS images at different periods would vary widely and
considerably, resulting in significant differences in feature repre-
sentations. To alleviate this problem, many existing deep-based
methods employ the parameter-shared strategy to map RS images
into a common feature space for detecting the changes. Although
they are feasible, the simple and single visual information
learned by deep models is still not sophisticated enough for
satisfactory results. To address this problem, we propose a
forward dictionary learning (DL) model named forward DL
detector (FDLdet) in this article. Besides the common visual
features, our FDLdet takes into account the essential information,
e.g., element composition and land-cover category, for change
detection. FDLdet consists of a feature extractor, a coefficient
generator, and a deep dictionary. Specifically, first, the feature
extractor is used to extract shared deep features from RS images.
Second, the coefficient generator transforms these deep features
into word coefficients. Third, words within the deep dictionary
are combined by word coefficients to generate the dictionary
features with essential information. Finally, the dictionary fea-
tures are used instead of deep features to detect land-cover
changes. Extensive experiments are conducted on two public
large-scale datasets, i.e., season-varying change detection (SVCD),
Sun Yat-sen University change detection (SYSU-CD), and LEVIR
change detection (LEVIR-CD). Experimental results demonstrate
the effectiveness of the proposed FDLdet. Our source codes are
available at https://github.com/TangXu-Group/FDLdet.

Index Terms— Change detection, deep learning, dictionary
learning (DL), remote sensing (RS).
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I. INTRODUCTION

CHANGE detection of remote sensing (RS) image aims to
identify changes in land covers between multitemporal

RS images covering the same geographic areas [1], [2]. It has
been applied to many practical applications, such as disaster
monitoring [3], resource survey [4], and urban planning [5].
In recent years, with the development of sensor technologies,
the resolution of RS images has improved significantly. The
land-cover information within high-resolution RS (HRRS)
images is delicate and sufficient, which simultaneously brings
opportunities and challenges for RS change detection. On the
one hand, the precise and elegant land-cover contents can
provide valuable clues for researchers to make their decisions.
On the other hand, owing to this detailed information, the
problem of the same objects with various appearances has
become particularly prominent, which obviously raises the
difficulty of change detection. For example, the same forest
within HRRS images produced at different times may render
diverse states. Its distribution is sparse in spring, autumn, and
winter but is dense in summer. Also, its color will change from
green to yellow and gray when the season varies from spring
to winter. Therefore, exploring the invariant characteristics of
land covers to eliminate the negative influences caused by
the “visual appearance gap” (see Fig. 1), i.e., the different
appearance of the same land covers in multitemporal HRRS
images, is one of the crucial problems in HRRS image change
detection.

In an early stage, the conventional machine-learning-based
technologies (such as principal component analysis and mix-
ture parameter estimation) with hand-crafted features were
popular in HRRS image change detection as they are easy
to implement and stable in behavior [6], [7], [8]. However,
their performance cannot meet what we expected because
the low-level features are unable to describe the complex
contents within HRRS images. Then, learning-based fea-
ture extraction methods appeared and became prevalent in
HRRS image change detection. One popular feature learn-
ing approach is dictionary learning (DL) [9]. Benefiting
from its learning strategy, the representation capacity of
the features obtained by DL is stronger. Both the shal-
low information (e.g., color and textual) and the essential
clues of various land covers within HRRS images can be
captured. Therefore, DL achieves successes in many HRRS
applications [10], [11], as well as HRRS change detec-
tion [12], [13]. Nevertheless, the inadequate generalization
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Fig. 1. Sample illustrating the concept of “visual appearance gap.” Here,
images A and B denote the two temporal HRRS images, while the change
ground truth depicts changes between them. It is evident that even though most
areas in both images A and B are not labeled as changes, they still display a
significant difference in appearance. For instance, the red/yellow/blue boxes
correspond to the reasons of “leaf fall”/“snow cover”/“shadow variation,”
respectively.

limits its performance in multitemporal HRRS image change
detection.

With the development of deep learning [14], [15], many
deep-based HRRS image change detection methods have been
proposed [16], [17], [18]. Owing to the strong capacity of
nonlinear fitness, the methods developed based on deep con-
volutional neural network (DCNN) have dominated the HRRS
change detection community [19]. Most of them are habituated
to embedding the multitemporal HRRS images into a common
feature space so that the relationships between diverse land
covers corresponding to various HRRS images can be mea-
sured directly. In other words, they always input multitemporal
HRRS images into the same or parameter-shared DCNNs to
extract features and generate the change maps [20], [21], [22].
Despite their well performance, these DCNN-based methods
have not reached the satisfactory stage. Due to the stacked
structure and hierarchical learning, DCNN-based methods can
capture visual and semantic information from HRRS images.
These deep features can support diverse HRRS tasks [23], [24],
[25], [26], [27], [28]. However, when we apply them to com-
plete HRRS change detection, the false alarm rates of change
maps may be relatively high [29], because the visual and
semantic clues cannot effectively narrow the “visual appear-
ance gap.” Therefore, supplementing the essential knowledge
to the deep features is key to improving the accuracy of
deep-based change detection models.

Most recently, the deep DL emerged [30], [31], [32].
Combining deep learning and DL, the obtained feature repre-
sentation contains visual, semantic, and essential information,
which benefits HRRS image change detection. However, some
inherent disadvantages influence deep DL’s efficiency. First,
complicated reverse reconstruction and repeated coefficient
training are required to generate word coefficients, even in
the inference stage. Second, the sparsity constraint in word
coefficient production may result in information loss. These
two shortcomings limit the current deep DL technologies’
performance for HRRS image change detection tasks.

To overcome the above limitations, we propose a forward
DL detector (FDLdet) for HRRS image change detection.
On the one hand, considering the targets of the HRRS image
change detection task (i.e., judging whether each pixel is
changed or not), FDLdet replaces the complicated reverse
image reconstruction by narrowing the differences between the
predicted change maps and ground truth. In this way, the effi-
ciency of FDLdet can be improved significantly. On the other
hand, taking the characteristics of HRRS images (e.g., diverse

land covers with various types and scales) into account, instead
of learning the sparse word coefficients at the pixel level,
FDLdet develops the regional word coefficients to explore the
land-cover essences deeply. In this fashion, the information
loss issue can be mitigated. At the same time, the shape and
edge knowledge, which is crucial for HRRS change detection,
can also be captured. Specifically, for two temporal HRRS
images, we first use a feature extractor to learn the useful
visual features. Then, these visual features are input into a
coefficient generator to generate regional word coefficients.
Next, a deep DL algorithm is proposed to construct dictionary
features (which are rich in essential information) according
to regional word coefficients. Finally, the obtained dictionary
features of two temporal HRRS images will be concatenated
and fed into the follow-up detector to produce the change map.

The main three contributions of this article are summarized
as follows.

1) A forward DL-based HRRS image change detection
framework (FDLdet) is proposed, which can effectively
alleviate the negative influence caused by the “visual
appearance gap” and achieve accurate change detection
results in an end-to-end manner.

2) We propose a regional word coefficient learning strategy
and a simple yet effective dictionary feature algorithm.
Along with DCNN, the diverse land covers’ visual,
semantic, and essential features can be fully explored
for change detection.

3) The comprehensive experiments are conducted in three
large-scale public change detection datasets to demon-
strate the effectiveness of the proposed FDLdet.

The remainder of this article is organized as follows.
Section II briefly reviews the HRRS change detection methods
based on DL and DCNN. Section III discusses the details of
the proposed FDLdet. The experiments and results analyses
are shown in Section IV. Finally, we draw a conclusion in
Section V.

II. RELATED WORK

A. Dictionary-Learning-Based Methods

The target of HRRS image change detection is to accurately
distinguish the change information of land covers by analyzing
the complex contents of HRRS images. To this end, the
essential knowledge of various land covers should be exploited
carefully. Fortunately, DL is a suitable technique for this goal.
Therefore, many notable DL-based HRRS change detection
methods were proposed. As early as 2014, DL was applied
to HRRS change detection successfully [33], in which a
tree-structured dictionary is learned to generate robust dis-
tance for accurately distinguishing changed land covers. Then,
Li et al. [34] applied coupled DL (CDL) to HRRS change
detection tasks. The authors leveraged two coupled dictionaries
to model the relationships between patches corresponding
to difference images (DIs) and change maps so that credi-
ble detection results can be generated. Another CDL-based
method was proposed in [13] for multisource HRRS image
change detection. The designed coupled dictionaries map
multisource HRRS images into a high-dimensional feature
space and find their differences. Also, an iterative optimization
algorithm is proposed to update the atoms within coupled
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dictionaries to guarantee that the useful information hidden
in different HRRS images can be explored. Lu et al. [12]
introduced a joint DL method to detect the changes from
multitemporal HRRS images. The change detection task is
converted into a dictionary reconstruction issue using the
unchanged prior information. Furthermore, DL was integrated
with graph technology to carry out the HRRS change detection
task [35]. The process involves utilizing DL to construct the
similarity graph matrix, which is then employed to generate
sparse DIs and the change map. As a robust low-rank learning
tool, DL was also utilized to construct low-rank representation
(LLR) in [36] for finding the representative pixels within
DIs so that favorable HRRS change maps can be obtained.
Similarly, a nonlocal low-rank model was proposed [37],
which groups similar patches into a nonlocal window for
conducting LLR learning, then adopts the two-level clustering
to predict the change map.

Although the above-mentioned methods have succeeded in
their application domains, they all depend on the grid HRRS
image patches. In other words, each word of a dictionary
links a regular rectangular image patch. This would decrease
their performance more or less. To solve this limitation,
several strategies were proposed. For instance, a deformable
DL algorithm was proposed in [38] for HRRS image change
detection. Instead of the simple patches, the flexible patches
are used to construct the dictionary, which enhances the preci-
sion and robustness of the change detection results. Moreover,
Yu et al. [39] presented a joint-related DL to address HRRS
image change detection, where the concept of dictionary
correlation is embedded to ensure that the initial dictionary
is uniform and change detection results are stable. A deep
DL-based change detection model was developed in [40],
in which the weighted collaborative representation is adopted
to enhance the model robustness for regular image patches and
invisible outliers.

B. Deep-Based Methods

In recent years, with the help of deep learning, especially
the DCNNs, many deep-based methods have been proposed
to accomplish HRRS image change detection [41], [42], [43].

As a pixel-level task, change detection can be regarded
as a two-class semantic segmentation mission. Thus, UNet
[44] and fully convolutional network (FCN) [45] are two
popular structures in deep-based methods. For example,
in [21], three FCN-based models fully convolutional-early
fusion (FC-EF), FC-siamese-difference (FC-Siam-diff), and
FC-siamese-concatenation (FC-Siam-conc) were proposed for
HRRS image change detection. Here, FC-EF is a single
encoder–decoder network that first concatenates the multitem-
poral HRRS images and then leverages FCN to generate the
change maps. While FC-Siam-diff and FC-Siam-conc have
two encoders, they receive bitemporal HRRS images. Along
with the different skip connection schemes and a unique
decoder, FC-Siam-diff and FC-Siam-conc can predict the land-
cover changes. Another similar work can be found in [20].
Besides the FCN backbone, the authors introduce the pyramid
pooling and skip connection to improve the HRRS image
change detection performance. Based on UNet, an end-to-
end HRRS change detection framework was proposed [46].
It combines the contributions of co-registered image pairs,

global and fine-grained information extraction, and a specific
fusion strategy to produce superb change maps.

To further improve the HRRS image change detection
results, the visual attention mechanism [47] is adopted by
scholars, which can alleviate the negative influence caused
by noise, pseudo-changes, etc. A deeply supervised attention
metric-based network (DSAMNet) was proposed in [48],
in which the convolutional block attention module is used
to generate the discriminative features for change detection.
Cheng et al. [49] developed a deliver improved separability
network to generate the change maps with low false alarms.
In this network, channel and spatial attention are embedded
to highlight the semantic and positional information within
HRRS images so that the learned features can be refined
to ensure the change maps’ quality. Similarly, Li et al. [50]
proposed a densely attentive refinement network for HRRS
image change detection. This network contains a hybrid atten-
tion module and a recurrent refinement module, which aim to
explore the contextual information and refine change maps.
By combining them, favorable change detection results can be
obtained.

Although the behavior of the above methods is assertive,
they ignore the valuable spatial–temporal dependency informa-
tion, which is also essential for HRRS image change detection.
To fill this gap, Chen et al. [51] propose a bitemporal image
transformer (BIT). With the help of self-attention, BIT is
good at modeling contextual clues in the spatial–temporal
domain effectively and efficiently. Consequently, the change
maps are improved markedly. In view of the low capacity
of the transformer in capturing low-level details, UNet and
Transformer are combined to construct a new change detection
framework in [52] named TransUNetCD. By solving the prob-
lems of feature redundancy and context loss, TransUNetCD
can precisely find the changes in bitemporal HRRS images.

III. PROPOSED METHOD

The framework of FDLdet is shown in Fig. 2. It consists of a
feature extractor, a coefficient generator, and a deep dictionary.
The feature extractor aims to learn visual and semantic features
from bitemporal HRRS images. The coefficient generator
pays attention to transforming these image features into word
coefficients considering regional information hidden in HRRS
images. Then, the deep dictionary can generate discriminative
sentences (i.e., dictionary features) for describing bitemporal
HRRS images based on these word coefficients. Finally, the
produced sentences are utilized to identify land-cover changes.

A. Preliminary of Dictionary Learning
Suppose there is an HRRS image X with N patches, the

process of DL is defined as

arg min
ci ,D

N∑
i=1

||xi − D · ci ||
2
2 + λ

N∑
i=1

||ci ||1 (1)

where xi ∈ Rl represents i th image patch, D ∈ Rl×n denotes
the dictionary with n word vectors, ci ∈ Rn indicates i th word
coefficient corresponding to xi , λ implies the optimization
weight that is used to balance the accuracy of image recon-
struction and the sparsity of word coefficients, and ||·||1 and
||·||2 are the L1 and L2 norm, respectively.
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Fig. 2. Overall framework of the proposed FDLdet. First, two temporal HRRS images Image A and Image B are inputted into feature extractor to extract the
image features FA and FB . Second, the coefficient generator receives both image features and regional representations of two HRRS images to generate the
regional word coefficients Coefficient A and Coefficient B. Here, the regional representations are generated by utilizing the superpixel segmentation algorithm
simple linear iterative cluster (SLIC). Third, Coefficient A and Coefficient B are utilized to select words from deep dictionary for constructing the dictionary
features Sentences A and Sentences B. Finally, after utilizing fully connected (FC) layer to analyze these distances adaptively, the change map can be generated
by measuring the distances between these two Sentences.

Fig. 3. Feature extractor of the proposed FDLdet. It consists of a
ResNet-based backbone (marked by the background of blue color) and a
feature fusion process, which receives two temporal HRRS images Image
A and Image B, and outputs their image features FA and FB .

Generally, the elements within D are initialized with random
vectorized image patches, and ci is defined and initialized ran-
domly for each item in D. By optimizing D and ci alternately
according to (1), the HRRS image X can be reconstructed
under the sparse constraint. This way, the optimal dictionary
D contains essential information about the HRRS image, and
A composed by the optimized ci can be considered as features
learned from the HRRS image X. If there are several serial
dictionaries, the obtained A of the previous dictionary can
be deemed as X of the next dictionary. After the multi-
DL, more essential information of HRRS images can be
studied.

B. Feature Extractor

The visual and semantic features are important for HRRS
image change detection. To ensure their discrimination,
we develop the feature extractor in this section, and its
framework is shown in Fig. 3. To meet the demands of change
detection, there are two feature extractors in FDLdet to process
bitemporal HRRS images (Image A and Image B) with the
size of c × h × w, where c, h, and w denote the number of
channels, heights, and widths. Since two extractors have the
same structure and share the same parameters, we only explain
the extractor corresponding to Image A for clarity.

Specifically, considering the strong capacity of feature
learning, ResNet [53] is adopted as the feature extraction
backbone to extract multilayer features from Image A.
ResNet mainly consists of a convolution head and four
residual layers. After inputting Image A into ResNet, five
image features f0, f1, f2, f3, and f4 can be learned by the
convolution head and four residual layers, respectively.
Their sizes are 64 × (h/2) × (w/2), 64 × (h/4) × (w/4),
128 × (h/8) × (w/8), 256 × (h/16) × (w/16), and
512 × (h/32) × (w/32). Owing to the different learning
stages, those five features incorporate various information,
such as color, texture, semantics, and multiscale clues.
To integrate them, a feature fusion procedure is proposed
to hierarchically combine them for describing the complex
contents within the HRRS image comprehensively. This
fusion procedure is formulated as follows:

f′4 = Upsample(f4)

f′i = Conv
(
Upsample

(
f′i+1 ⊕ fi

))
, i = 3, 2, 1

F = Conv
(
Upsample

(
f′1 ⊕ f0

))
(2)

where Upsample(·) denotes the bilinear interpolation upsam-
pling, Conv(·) implies the 1 × 1 convolutional operation,
and ⊕ represents the feature concatenation in the channel
dimension. Along these lines, the learned five features f0, f1,
f2, f3, and f4 would be fused to feature FA ∈ RNc×w×h , which
involves rich visual and semantic knowledge. Here, Nc means
the number of channels. Similarly, when we input Image B into
the feature extractor, its feature representation FB ∈ RNc×w×h

can be obtained.
It is worth noting that f0 is learned by only one convolution

layer (convolution head), so it hardly contains much-advanced
information. However, it still is adopted in the feature fusion
procedure since the low-level information of land covers
within f0 is also important for change detection tasks.

C. Coefficient Generator
Before introducing the proposed coefficient generator, let us

review how human beings understand an HRRS image. Given
an HRRS image, scholars will analyze its contents first, and
then they will select some words to describe the key contents.
Here, the key contents indicate the salient objects or regions
within the HRRS image, and they share similar low-level
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Fig. 4. Flowchart of the forward DL. After obtaining the image feature F, each of the feature pixels is inputted into coefficient transformation module
to generate word coefficient C. Then, the segmentation results generated by segmenting HRRS image with SLIC and word coefficients C are inputted into
sentence generation module to generate sentences S. The dictionary analysis module is employed to help the generation of word coefficients by preliminarily
understanding deep dictionary.

visual features or high-level semantical clues. For example,
“Lawn” can describe the object with green color and specific
texture (low-level visual features), and “Airport” can be used
to depict a region with “Airplane,” “Runway,” and “Building”
(high-level clues). Next, an HRRS image can be represented
by a sentence with these preferred words. Compared with the
feature vectors, the above expression’s manner matches human
cognition habits. Also, the obtained sentence can portray the
HRRS image’s key contents directly.

If we follow the above-mentioned human habits to address
our change detection tasks, the first problem to be solved is to
select the proper words for describing HRRS images. In other
words, assume that there is a dictionary D with sufficient
words. What we have to do is to find the suitable words
from D according to advisable word coefficients. To this end,
we develop our coefficient generator based on the visual and
semantic features (FA and FB). The obtained word coefficients
are rich in pixel- and region-level information. For clarity,
we use F to unify FA and FB to explain our coefficient
generator as their procedures are the same to each other.
The flowchart of the coefficient generator is shown in Fig. 4.
When we input the visual and semantic feature F, a coefficient
transformation module will be applied to generate the word
coefficients C at the pixel level. Then, a regional information
mining strategy is developed to reinforce C at the region
level. Finally, the enriched C can be used to select valuable
words from the dictionary D. Note that, to optimize the
coefficients and dictionary at the same time, the dictionary
D will be analyzed deeply, and the analyzed results will be
added to F. The details of dictionary analysis are discussed in
Section III-D.

In detail, for F ∈ RNc×w×h , we first use two FC layers
to transform it into word coefficients C ∈ RNw×w×h , where
Nw indicates the volume of words within D. Then, a sigmoid
function is applied to normalize the values of the elements
within C into an interval of (0, 1). The above process can be
formulated as

C = sigmoid(Ffc(F)) (3)

where sigmoid(·) and Ffc(·) indicate the sigmoid function and
nonlinear mapping function of FC layers. Although the current
word coefficients can help us pick useful words from the dic-
tionary, they only involve pixel-level information. This leads
to a potential problem, i.e., some feature pixels corresponding
to similar image characteristics may not be transformed to

similar word coefficients. It is adverse to distinguishing the
land-cover changes accurately, especially the edges of change
regions. To overcome this limitation and further improve
C, the “word region” (WR) is developed here. Particularly,
assume that the HRRS image has been over-segmented into
Nr superpixels by the SLIC algorithm [54]. Therefore, C can
be divided into WRs {c1, . . . , cNr }, ci ∈ RNw×N fi according
to these superpixels first, where N fi means the number of
pixels within i th superpixel. Then, the regional coefficients
V = {v1, . . . , vNr }, vi ∈ RNw will be generated for WRs by
averaging the word coefficients within each WR. Finally, the
regional coefficients will be embedded to C by

C = C + V =
{

c1 + v1, . . . , cNr + vNr

}
ci + vi =

{
ci[:,1]

⊕ vi , . . . , ci[:,N fi
]
⊕ vi

}
(4)

where ci[:, j] ∈ RNw and ⊕ indicates element-wise addition
operation. Consequently, the current word coefficients enclose
the pixel- and region-level information.

Based on the above method, we can get CA and CB for FA
and FB . By multiplying the dictionary with them (i.e., D · CA
and D · CB), the appropriate sentences can be produced to
represent Image A and Image B.

D. Deep Dictionary

In Section III-C, we suppose there is a dictionary D with
sufficient words. Along with the coefficients C, suitable words
can be selected from D to form a sentence for describing
the HRRS images. In this section, we will explain how to
get the appropriate D. To enhance the effectiveness of words
for our change detection tasks, we develop a simple analysis
method for D and the analyzed results will be added to F (see
Fig. 4). Such that the dictionary and word coefficients can be
optimized simultaneously.

The flowchart of the dictionary analysis module is shown in
Fig. 5. Assume that the Nw words’ length is l, so that the size
of D is l × Nw. First, the word vectors within the dictionary
are averaged into the word value w = [w1, . . . , wNw

]
T for

exploring word characteristics and representing various words
simply. Second, two FC layers with the weight of Nw →

2·Nw → Nc are employed to capture the relations between dif-
ferent words and output the relation vector r = [r1, . . . , rNc ]

T .
Finally, the relation vector r is added to each feature pixel
within F.
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Fig. 5. Flowchart of the dictionary analysis module. First, each word vector
within the dictionary is pooled averagely to one value. Second, all values are
inputted into two FC layers to capture the relations between different words.
Finally, the relation vector with the length of Nc is added to each feature
pixel within F in channel dimension.

Furthermore, to accurately align the land-cover represen-
tation in different periods, the dictionary should contain
sufficient and normalized information. Therefore, the deep
dictionary is expected to be an orthogonal matrix (OM). On the
one hand, the full-rank property of OM ensures that the
information within the dictionary is sufficient. On the other
hand, row vectors of OM are the unit vectors, which guarantee
the dictionary is regularized. To this end, we develop the
following loss function for D:

O = DDT
− E

Lom =
1
n2

n∑
i=1

n∑
j=1

Oi, j (5)

where E denotes the unit matrix and n represents the
row/column number of the square matrix O.

E. Change Map Generation

So far, we can get the sentences SA = D·CA and SB = D·CB
for bitemporal HRRS images. Then, they are concatenated
and inputted into a classifier to generate the change map.
The classifier is composed of two 1 × 1 convolution layers
and outputs 2-D prediction. To narrow the gaps between the
prediction and ground truth, we select the cross-entropy loss
function which is defined as

Lc = −
1
n

n∑
i=1

(
p̂i · log pi +

(
1 − p̂i

)
· log (1 − pi )

)
(6)

where p̂ and p denote the ground truth and prediction,
respectively, and n is the number of image pixels. Combining
Lc and Lom together, the final loss function for training our
FDLdet is formulated as

L = Lc + Lom. (7)

IV. EXPERIMENTS

A. Dataset Introduction

Three public large-scale datasets are employed to evaluate
the performance of our FDLdet, including season-varying
change detection (SVCD) [55], Sun Yat-sen University change
detection (SYSU-CD) [48], and LEVIR change detection
(LEVIR-CD) [56]. The corresponding visual samples of three
datasets are exhibited in Fig. 6.

1) SVCD: This dataset is obtained from Google Earth (GE).
There are 11 season-varying HRRS pairs in SVCD, including
seven real HRRS pairs with the size of 4725 × 2700 and four
synthetic HRRS image pairs with the size of 1900 × 1000.
Here, the synthetic pairs generate land-cover changes by
incorporating additional objects manually. The spatial reso-
lution of HRRS images in SVCD varies from 0.03 to 1 m
per pixel. For easy access, the original HRRS pairs within
SVCD are randomly rotated and cropped into 16 000 HRRS
image patches with the size of 256 × 256 first. Then, the
obtained HRRS patches are further divided into the training,
validation, and testing sets, whose volumes are 10 000, 3000,
and 3000.

2) SYSU-CD: This archive incorporates 20 000 aerial image
patch pairs with a spatial resolution of 0.5 m and an image
patch size of 256 × 256, which were constructed according
to 800 original HRRS images which cover the Hong Kong
area from 2007 and 2014. The SYSU-CD dataset contains
many high-rise buildings, which are easily affected by illu-
mination, shadows, and other environmental factors. Thus,
the difficulties of change detection using this dataset are
increased. According to the literature [48], we randomly select
10 000/4000/4000 image pairs for training/validation/testing
sets.

3) LEVIR-CD: It comprises 637 HRRS images, each with
a resolution of 0.5 m per pixel and an image size of
1024 × 1024 pixels. These images are sourced from GE
and specifically capture changes in diverse building types
across 20 distinct regions over the period from 2002 to 2018.
In this article, we crop each image from 1024 × 1024 to
16 × 256 × 256. According to the original division, the
training, validation, and testing sets contain 7120, 1024, and
2048 image pairs.

B. Experimental Settings

The proposed FDLdet is implemented on the Pytorch [57]
platform, and all experiments are conducted on the
high-performance computer with GeForce RTX 3090 of
24-GB memory and Inter Xenon Silver 4214R. The back-
bone of our feature extractor (i.e., ResNet) is initialized
with the pre-trained parameters (obtained by the ImageNet
dataset [58]). The rest components of FDLdet are initialized
randomly. We select the Adam optimizer to train FDLdet, and
the batch size and epoch are set to 32 and 200, respectively.
The initial learning rate is set to 1e−3, and it is multiplied
by 1e−1 after every 60 epochs. In the training stage, some
data augmentation schemes are used to improve the robustness
of FDLdet. First, the bitemporal HRRS images are rotated
with the same angle, which is randomly valued in a range
of [−180◦, 180◦

]. Second, the random vertical and horizontal
flips are applied to them orderly. Third, two image patches
are randomly cropped from two processed HRRS images,
and the cropping scale is in a range of [0.7, 1.0]. Finally,
the augmented images are normalized and input into FDLdet
for training. In the inference stage, the bitemporal images are
directly normalized and inputted in the trained FDLdet. The
proposed FDLdet involves two hyperparameters, including the
numbers of words within deep dictionary Nw and the volume
of WRs Nr . Their empirical values and influence on FDLdet
will be discussed in Section IV-C.
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Fig. 6. Ten examples of the SVCD (first three rows), SYSU-CD (second
three rows), and LEVIR-CD (last three rows) datasets. The first/fourth/seventh
and second/fifth/eighth rows of (a)–(e) are aerial images of the former and
later periods, respectively. Their ground truths are listed in the third/sixth/ninth
rows of (a)–(e).

To quantitatively evaluate the performance of FDLdet, five
assessment criteria are adopted [16], i.e., precision (P), recall
(R), F1-score (F), intersection over union (IoU), and overall
accuracy (OA). To calculate these evaluation metrics, we first
count the true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) at the pixel level. Here, TP and
FP denote the number of changed pixels that are detected
correctly and incorrectly, while TN and FN represent the
number of unchanged pixels that are predicted correctly and
incorrectly. Then, the definitions of the five assessment criteria
are

P =
TP

TP + FP
, R =

TP
TP + FN

, F =
2 · P · R
P + R

IoU =
TP

TP + FP + FN
, OA =

TP + TN
TP + FP + TN + FN

. (8)

C. Parameter Analysis
As mentioned before, two hyperparameters should be set in

advance, i.e., the word number Nw and the region number Nr .
To analyze their influences on FDLdet, we change their values
alternately. For Nw, its values vary in [16, 32, 64, 128]. For
Nr , its values are changed from 100 to 400 with an interval of
100. Note that we fix Nw = 32 and Nr = 200 when the other

TABLE I
ANALYSIS OF TWO HYPERPARAMETERS (%)

releases the changes. The results counted on three datasets are
listed in Table I.

For SVCD, it is easy to find that various FDLdets with
different Nw and Nr values perform well, and their behavior is
close to each other. This indicates that FDLdet is not sensitive
to these two parameters on the SVCD dataset. The best
performance of FDLdet can be achieved when the values of
[Nw, Nr ] equal [32, 200] (P , F , and IoU), [64, 300] (R), and
[32, 300] (OA), respectively. Considering the tradeoff between
performance and computational costs, we suggest the optimal
values of Nw and Nr are set to 32 and 200 for SVCD. Different
from the observations found in SVCD, the influences of Nw

and Nr on FDLdet counted by the SYSU-CD dataset are
noticeable. This is mainly because of the complexity of SYSU-
CD, which encloses more diverse land covers. For F , IoU, and
OA, the strongest FDLdet can be obtained when the values of
[Nw, Nr ] are equal to [32, 200]. Nevertheless, For P and R,
FDLdet can reach the highest performance when the values
of [Nw, Nr ] are [64, 200] and [128, 100], respectively. Taking
various aspects into account, we suggest the proper values
of Nw and Nr are still 32 and 200 for SYSU-CD. For the
LEVIR-CD dataset, altering hyperparameters does not result in
significant performance changes, as the F1-score consistently
exceeds 90 across all cases. Furthermore, it is evident that
the optimal model performance is attained when the values
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TABLE II
PERFORMANCE OF DIFFERENT METHODS COUNTED ON SVCD (%)

TABLE III
PERFORMANCE OF DIFFERENT METHODS COUNTED ON SYSU-CD (%)

of Nw and Nr are set to [32, 200], yielding the highest P ,
F , IoU, and OA. Therefore, if the readers want to apply the
proposed model to other datasets, these two parameters’ values
are recommended for tuning around 32 and 200. In addition,
we also recommend adjusting the number of superpixels to
be less/more than 200 when the image size is smaller/larger
than 256 × 256 to ensure computational efficiency and detail
capture.

D. Compare With State-of-the-Art Methods
We adopt 12 methods to testify our FDLdet, including

FC-EF [21], FC-Siam-conc [21], FC-Siam-diff [21], change
detection network (CDNet) [59], spatial–temporal attention
neural network (STANet) [56], BIT [51], cross layer con-
volutional neural network (CLNet) [60], DSAMNet [48],
siamese network and nested UNet (SNUNet) [61], end-to-end
superpixel-enhanced change detection network (ESCNet) [2],
image fusion network (IFN) [62], and improved separability

TABLE IV
PERFORMANCE OF DIFFERENT METHODS COUNTED ON LEVIR-CD (%)

network (ISNet) [49]. The results of different methods are
listed in Table II (SVCD), Table III (SYSU-CD), and Table IV
(LEVIR-CD). Furthermore, we show the visualized results of
all methods in Figs. 7–9.

For the SVCD dataset, the proposed FDLdet achieves the
highest F , IoU, and OA values among all methods, which
demonstrates its effectiveness. Taking OA values as examples,
compared with the other 12 methods, the improvements of
FDLdet are 4.07% (over FC-EF), 3.29% (over FC-Siam-conc),
3.28% (over FC-Siam-diff), 3.44% (over CDNet), 0.95% (over
STANet), 0.81% (over BIT), 0.78% (over CLNet), 0.40% (over
DSAMNet), 0.30% (over SNUNet), 0.21% (over ESCNet),
0.11% (over IFN), and 0.03% (over ISNet), respectively. The
identical investigation can also be found in the results counted
on the SYSU-CD dataset, i.e., our FDLdet performs the best
under the indicators of F , IoU, and OA. For instance, the
enhancements in F values achieved by FDLdet are 2.76%
(over FC-EF), 1.71% (over FC-Siam-conc), 1.62% (over FC-
Siam-diff), 0.84% (over CDNet), 1.20% (over STANet), 0.53%
(over BIT), 1.39% (over CLNet), 0.13% (over DSAMNet),
2.31% (over SNUNet), 1.17% (over ESCNet), 0.88% (over
IFN), and 0.31% (over ISNet), respectively. Similar to previous
datasets, the model also achieves the best performance (F ,
IoU, and OA) on the LEVIR-CD dataset. Specifically, FDLdet
surpasses the performance of the second-best method, ISNet,
by 0.48% in terms of F and 0.8% in terms of IoU. These
positive results are owing to the following points. First, the
proposed feature extractor can learn the multiscale features
from HRRS images, which are able to describe the diverse
and complex land covers accordingly. Second, the pixel- and
region-level knowledge is further explored based on those deep
features, which is conducive to analyzing the essential infor-
mation hidden in HRRS images. By integrating the above two
parts and embedding them into a change detection-oriented DL
framework, the change maps can be produced. Along with the
“orthogonalization” constraint, both the completeness of the
learned deep dictionary and the accuracies of change maps
can be ensured.

However, our model’s P and R values are not optimal com-
pared to other methods. For SVCD, the best P and R values
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Fig. 7. Visual results of six examples for SVCD dataset. (a) Image T1. (b) Image T2. (c) Ground truth. (d) FC-EF. (e) FC-SC. (f) FC-SD. (g) CDNet.
(h) STANet. (i) BIT. (j) CLNet. (k) DSAMNet. (l) SNUNet. (m) ESCNet. (n) IFN. (o) ISNet. (p) FDLdet (our). Here, white, black, red, and green denote
TP, TN, FP, and FN, respectively.

Fig. 8. Visual results of six examples for SYSU-CD dataset. (a) Image T1. (b) Image T2. (c) Ground truth. (d) FC-EF. (e) FC-SC. (f) FC-SD. (g) CDNet.
(h) STANet. (i) BIT. (j) CLNet. (k) DSAMNet. (l) SNUNet. (m) ESCNet. (n) IFN. (o) ISNet. (p) FDLdet (our). Here, white, black, red, and green denote
TP, TN, FP, and FN, respectively.

are achieved by IFN [62] and DSAMNet [48], separately.
For SYSU-CD, FC-EF [21] and STANet [56] perform best

in P and R, respectively. For LEVIR-CD, STANet [56] and
ISNet [49] achieve the peak values in P and R. The main
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Fig. 9. Visual results of six examples for LEVIR-CD dataset. (a) Image T1. (b) Image T2. (c) Ground truth. (d) FC-EF. (e) FC-SC. (f) FC-SD. (g) CDNet.
(h) STANet. (i) BIT. (j) CLNet. (k) DSAMNet. (l) SNUNet. (m) ESCNet. (n) IFN. (o) ISNet. (p) FDLdet (our). Here, white, black, red, and green denote
TP, TN, FP, and FN, respectively.

reasons behind this can be summarized as follows. P and R
are two mutually contradictory indexes since the number of FP
and FN pixels cannot be small simultaneously. If models pay
more attention to P values, their R values must be relatively
low, and vice versa. Taking IFN in SVCD as an example,
its P value is as high as 97.15%. Nevertheless, its R value is
only 91.70%, which is uncompetitive among various methods.
Therefore, an expected change detection model should keep a
balance between them. Looking back to our FDLdet, although
its P and R values are not the best, their differences are slight.
This implies that FDLdet is a robust model. Furthermore, the
performance gaps (measured by P and R) between FDLdet
and the optimal methods are small, and FDLdet’s P and R
values are still at the top ranks. This demonstrates that the
proposed model is helpful for HRRS change detection.

To further visually show the advantages of FDLdet, we ran-
domly select six sample pairs from three datasets and visually
report their change maps in Figs. 7–9, where the pixels of
TP, TN, FP, and FN within change maps are marked in
white, black, red, and green for convenience. By observing
Figs. 7–9, it is evident that FDLdet has fewer FP (red color)
and FN (green color) pixels than the other methods. For
FC-EF, STANet, BIT, and IFN, red and green colors take up
a large portion of the prediction map, meaning they have high
error rates in predicting changed and unchanged pixels. For
DSAMNet, SNUNet, ESCNet, and ISNet, the areas in red and
green colors are smaller than in previous methods. However,
some similar regions are mispredicted. In comparison, the
quality of the change maps produced by FDLdet is higher,
which are closer to the ground truths. These satisfying visual
results illustrate the usefulness of our FDLdet again.

E. Ablation Study

In this section, we study the contributions of FDLdet’s
different components. It can be regarded as an enhanced DL
framework embedded with a basic feature extractor, and the
enhanced DL framework can be deemed as a forward DL
with a regional clue supplement and a dictionary “orthogo-
nalization” constraint. To study their significance to FDLdet,
we construct the following four networks.

1) Net1: Feature extractor.
2) Net2: Feature extractor + forward DL.
3) Net3: Feature extractor + forward DL + regional clue.
4) Net4: Feature extractor + forward DL + regional clue +

orthogonalization.
Net1 means that only the deep features extracted by the
feature extractor are used to predict change maps directly.
Net2 represents that the forward DL is added after the feature
extractor to estimate the change areas. Net3 denotes that the
regional information of HRRS images is complemented to the
forward DL. Net4 is our FDLdet that encloses the feature
extractor and the enhanced DL.

The performance of different nets counted on SVCD,
SYSU-CD, and LEVIR-CD is exhibited in Table V. For the
SVCD dataset, we can find that the performance of four nets is
incremental in all cases, which illustrates that each component
plays a positive role. Taking IoU as examples, compared with
Neti , i = 1, 2, 3, the enhancements achieved by Neti+1 are
0.63%, 0.68%, and 0.95%, respectively. The reasons behind
this are threefold. First, the developed forward DL is good at
maintaining the consistency of HRRS image features, which
helps the net find the changed/unchanged information (see
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TABLE V
ABLATION EXPERIMENTAL RESULTS OF FOUR NETWORKS (%)

TABLE VI
PERFORMANCE OF FDLDETS WITH DIFFERENT COEFFICIENTS (%)

Net1 and Net2). Second, the mined regional clues assist the
net in discovering the essential information of HRRS images
so that the accuracies of the changed areas can be improved
(see Net2 and Net3). Third, the “orthogonalization” constraint
ensures that the learned dictionary could provide sufficient
and normalized messages for change detection (see Net3 and
Net4). Besides, an encouraging observation is that there is a
distinct performance gap between Net4 and Net1 (1.67% of P ,
0.86% of R, 1.26% of F , 2.26% of IoU, and 0.32% of OA).
This further confirms the usefulness of the forward DL and
two supplements. For the SYSU-CD and LEVIR-CD dataset,
we can find similar conclusions in most cases, i.e., the behavior
of Neti+1 is stronger than that of Neti+1, where i = 1, 2, 3.
Fortunately, the performance of Net4 is the best among all nets
in other assessment criteria.

F. In-Depth Components Study

This section further investigates the enhanced DL frame-
work of FDLdet. As mentioned in the ablation study, the
enhanced DL framework is a forward DL with the regional
clues (for coefficients) and the orthogonal constraint (for
dictionary). Thus, we will study the enhanced DL framework
from the following aspects. First, the effectiveness of the
regional clues will be discussed. Second, the necessity of dic-
tionary orthogonalization. Third, the function of the forward
DL. Finally, the superiorities of the enhanced DL framework
will be studied visually.

1) Effectiveness of Regional Clues: As mentioned in
Section III-C, the regional clues (obtained by SLIC) of
HRRS images are taken into account to generate the word
coefficients. We design the following experiments to further

study how those clues help our FDLdet. First, we remove
the regional clues during the coefficient generation. In other
words, the coefficients are generated by only the learned
feature maps. Note that the sparse constraint (L1 norm) would
be added to the coefficients in this case. Second, instead of
using the SLIC algorithm, we use a simple grid scheme to
divide an HRRS image into regular regions. Then, the infor-
mation of these regular regions would be added to produce
coefficients. Third, we leverage the SLIC algorithm to mine the
irregular regions and merge them into coefficients. We name
the three mentioned scenarios “Sparse,” “Grid,” and “Slic” for
convenience.

The performance of FDLdets with different coefficients
is shown in Table VI. From the observation of the results,
we can find that the behavior of FDLdet with “Sparse” is the
weakest. This is mainly because: 1) the “Sparse” coefficients
only incorporate the pixel-level information which cannot
reflect the spatial relations within HRRS images and 2) the
sparse constraint puts most word coefficients toward zero,
which leads to the information loss. When the regular regions
are added (i.e., the “Grid” coefficients), the performance of
FDLdet is enhanced distinctly. For instance, the IoU values
are increased from 89.07% to 90.01%. This indicates that
the regional information can improve the coefficients for the
final change detection tasks. Once we incorporate the irregular
regions obtained by the SLIC algorithm, the obtained word
coefficients promote the performance of FDLdet significantly.
For example, the F-values rise from 94.74% to 95.16%. The
reason is that the irregular regions generated by “Slic” contain
rich homogeneous messages, which is conducive to identifying
the changed/unchanged information.

To further show the superiority of “Slic” over “Grid”
visually, we randomly select a pair of bitemporal HRRS
images from the SVCD dataset and generate corresponding
regional pooling results. The chosen HRRS images and their
change detection ground truth are shown in Fig. 10(a) and (b).
First, we use the SLIC algorithm to over-segment two HRRS
images. The results are displayed in Fig. 10(c), whose numbers
of irregular regions are 1731 and 1670, respectively. After
using average pooling in the channel dimension, the “Slic”
regional pooling maps can be produced [see Fig. 10(d)].
Then, the simple grid scheme is applied to bitemporal HRRS
images to partition them into regular regions. For the sake of
fairness, the grid size is set to 42 × 42 so that the number
of regular regions is 1764. The “Grid” regional pooling maps
are also obtained by the channel-wise average pooling, and
they are exhibited in Fig. 10(e). Finally, the “Slic” and “Grid”
regional pooling maps are masked by the ground truth, and
the masked maps are shown in Fig. 10(f) and (g) separately.
By observing these two kinds of masked maps, we can find
that the information involved in the “Slic” regional pooling
maps is more complete than the “Grid” maps. For example,
the shape and texture of land covers are apparent, and their
edges are clear and smooth. These profitable materials could
support our FDLdet to achieve satisfactory change detection
results.

2) Necessity of Dictionary Orthogonalization: To ensure
the learned dictionary covers sufficient information for change
detection, we add an orthogonal constraint to it [see (5)].
Here, we visually study the positive effect of dictionary
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Fig. 10. Visual exhibition of “Slic” and “Grid” regional pooling results. (a) Ground truth. (b) Bitemporal HRRS images. (c) Irregular regions obtained by
SLIC. (d) “Slic” regional pooling maps. (e) “Grid” regional pooling maps. (f) “Slic” masked maps. (g) “Grid” masked maps.

Fig. 11. 2-D scatterplots of the words from two dictionaries. (a) Orthogonized
dictionary. (b) Non-orthogonized dictionary.

Fig. 12. Feature and sentence DIs of three temporal HRRS image pairs.
(a) HRRS images of the former period. (b) HRRS images of the later period.
(c) Ground truths. (d) Feature DIs. (e) Sentence DIs.

orthogonalization. First, two dictionaries are trained
with/without the orthogonal constraint. Then, the t-distributed
stochastic neighbor embedding (T-SNE) algorithm [63] is
adopted to reduce the dictionaries’ dimension. Finally, the
2-D words of the two dictionaries are displayed in Fig. 11.
It is easy to find that the words within the orthogonal
dictionary follow an approximate uniform distribution, while
the distribution of words from the ordinary dictionary is
disordered and biased. This incomplete feature distribution
of the ordinary dictionary may cause the model to struggle
to distinguish similar land covers. Therefore, the orthogonal
dictionary takes more advantages for accurately distinguishing
the land-cover changes.

3) Superiorities of Enhanced DL Framework: To visually
exhibit the enhanced DL framework’s advantages, three pairs
of bitemporal HRRS images are randomly picked up from
SVCD dataset. Then, we put them into a trained FDLdet
and collect the image features {Fi

A, Fi
B, i = 1, 2, 3} (before

DL) and the sentences {Si
A, Si

B, i = 1, 2, 3} (after DL). Next,
the Euclidean distance is used to generate the feature DIs
{DIi

F , i = 1, 2, 3} and sentence DIs {DIi
S, i = 1, 2, 3}.

The bitemporal HRRS images, their ground truths, and the
different DIs are shown in Fig. 12. From observing them,
we can find that compared with feature DIs, the sentence
DIs are closer to the ground truth and involve more detailed
information. These findings indicate that: 1) the enhanced
DL framework could improve the consistency of temporal
image features and 2) besides the visual contents, the sentences
represent essential information hidden in HRRS images. The
encouraging investigations demonstrate that the enhanced DL
framework positively impacts change detection tasks.

V. CONCLUSION

In this article, a change detector FDLdet based on forward
DL is proposed to capture the potential land-cover changes
between bitemporal HRRS images. FDLdet consists of three
main components, including a feature extractor, a coefficient
generator, and a deep dictionary. Feature extractor aims to
extract the image features from HRRS images. The coeffi-
cient generator is employed to transform image features into
regional word coefficients. The words within the dictionary
are weighted and combined by word coefficients to generate
dictionary features for describing HRRS images. Finally, the
land-cover changes can be accurately captured by simply
analyzing differences between dictionary features. Compared
with the existing DL, the proposed forward DL explores
the essential feature of HRRS images, removing the com-
plicated reverse output and sparse procedure. The promising
experimental results on three public datasets demonstrate the
effectiveness of FDLdet.
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