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Abstract—Human motion retrieval from motion capture data
forms the fundamental basis for computer animation. In this paper,
the authors propose an efficient human motion retrieval approach
via temporal adjacent bag of words (TA-BoW) and discrimina-
tive neighborhood preserving dictionary learning (DNP-DL). The
retrieval process includes two phases: offline training and online re-
trieval. In the first phase, the original skeleton model is first simpli-
fied and then pairwise joint distances are computed to characterize
each motion frame. Then, a novel motion descriptor, namely TA-
BoW, is proposed to discriminatively code the motion appearances,
through which the articulated complexity and spatiotemporal di-
mensionality can be greatly reduced. Subsequently, by considering
the neighborhood relationships of intraclass structure and the ad-
vantage of Fisher criterion, a DNP-DL method is exploited through
which each human action can be discriminatively and sparsely rep-
resented by a linear combination of such dictionary atoms. In the
second phase, a hierarchical retrieval mechanism is used by incor-
porating the sparse classification and chi-square ranking, whereby
the searching range is significantly reduced. The experimental re-
sults show that the proposed human motion retrieval approach
performs better than the state-of-the-art competing approaches.

Index Terms—Hierarchical retrieval mechanism, human motion
retrieval, neighborhood preserving dictionary, pairwise distance,
temporal adjacent bag of words (TA-BoW) .
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I. INTRODUCTION

R EAL-TIME motion capture (mocap), aimed at gaining
a precise representation of the complex human or other

object movements, has recently sparked a revolution in the com-
puter animation industry. Consequent to this, human mocap data
analysis has, of late, evoked considerable interest by virtue of
its attractive applications, ranging from data-driven animation,
virtual reality, three-dimensional (3-D) film production, sports
biomechanics, athletic training, etc. [1]. For instance, interac-
tive and touchless games became tractable only after using these
types of accurate data. With mounting popularity of commer-
cial systems, such as wearable kinematic sensors and multiview
cameras, a large amount of precise human mocap data has been
increasingly recorded. But, the acquisition of such mocap data is
prohibitively expensive, and this emphasizes the growing need
for reusing the previously recorded data. Further, a number of
research domains, such as human motion synthesis, motion style
translation and motion editing, have emerged recently to reuse
the precaptured mocap data. For instance, animators often prefer
to create new animations by working on prior examples. One
of the key issues of reusing mocap data is retrieving a specific
motion sequence from a large data repository, which has proven
to be an extremely challenging task, because human motion al-
ways exhibits highly articulated complexity, in both spatial and
temporal domains.

Human mocap data is generally specified by a group of me-
chanical degrees of freedom in the body, and the motion se-
quence with a particular semantic meaning can be popularly
utilized for character animation. In general, the human mo-
tion retrieval problem can be stated as the process of automatic
searching for a semantically correlated motion clip from an ex-
isting mocap corpus, which comprises mainly two key issues:
feature representation and similarity matching; the former aims
at characterizing the motion appearance and increasing its sep-
arability, while the latter is designed for motion comparison.
In general, logically similar motions are not matched numeri-
cally. Although different feature representations and matching
approaches have been addressed, precise retrieval of a specific
human action is still a nontrivial task because of its spatiotem-
poral and articulated complexity.

To bridge the semantic gap between logical similarity, as
perceived by humans, and computable similarity, the authors
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propose here an efficient human motion retrieval approach via
temporal adjacent bag of words (TA-BoW) and discriminative
neighborhood preserving dictionary learning (DNP-DL). The
proposed approach improves the state-of-the-art methods by
providing the following three contributions.

1) A novel motion descriptor, namely, TA-BoW, is proposed
to discriminatively characterize the human motion se-
quence, through which the articulated complexity and
spatiotemporal dimensionality can be greatly reduced.

2) In DL framework, the proposed DNP-DL algorithm aims
at not only preserving the neighborhood relationships of
intraclass structure, but also at encouraging the discrim-
inability among the interclass variances.

3) A hierarchical retrieval mechanism is exploited to facili-
tate coarse-to-fine similarity matching. Without complex
time-alignment, the proposed approach holds a higher dis-
crimination power to achieve an efficient retrieval task.

The remaining part of this paper is organized as follows.
Section II will briefly survey the related work. Section III
presents the proposed approach in detail. Section IV introduces
the experimental results and makes extensive comparisons.
Section V sums up the conclusions drawn for this study.

II. RELATED WORKS

In general, human mocap data consists of red–green–blue
(RGB) images, skeleton joints, and depth maps [2]. Among
these, skeleton joints are generally more productive for com-
puter animation. In the literature, the research areas of human
action recognition and retrieval are similar, but not identical.
Inherently, action recognition is generally regarded as a pro-
cess of recognizing the semantic meaning, and action retrieval
as a process of retrieving similar motions. Although these two
topics are a little different, they often share the same motion
representation. In this section, an extensive survey is carried
out on motion retrieval works from skeleton joints, followed by
presenting some typical motion recognition works.

The representative features that characterize the inherent mo-
tion characteristics are crucial to motion analysis. As human
movement is of high dimensionality, an intuitive way for charac-
terization is to transform the mocap data into a low-dimensional
representation. With this approach, Li et al. [3] applied the
singular value decomposition (SVD) on multiattribute motion
matrices and obtained one representative vector for motion in-
dexing, while Pradhan and Prabhakaran [4] utilized the SVD for
indexing the subbody motions in a reduced space. These two
approaches demonstrate that similar motion sequences have al-
most linearly correlated eigenvectors, while different motion se-
quences have diverse eigenpatterns. Heuristically, Barbic et al.
[5] utilized the principal component analysis (PCA) to detect
inherent motion changes, while Forbes et al. [6] presented a
weighted PCA to increase the importance of some key joints. Re-
cently, motion representation, characterized by manifold learn-
ing [7], eigenjoints [8] and eigenvector [9], was also exploited
for mocap data analysis. Although these dimension-reduction
methods succeeded in capturing significant motion variances,
they often failed in capturing a lot of subtle information con-

cerning the articulated joint movements. As a result, these ap-
proaches may degrade the primitive postures and lead to a poor
retrieval performance.

To avoid loss of information in the transformed low-
dimensional space, some researchers chose to extract repre-
sentative motion features in a semantical way. For instance,
Müller et al. [10] defined a class of boolean features and uti-
lized a group of motion templates (for their motion classifica-
tion [11]. Although this semantically interpretable feature has
demonstrated its scalability and efficiency in motion retrieval,
the specification of well-defined geometric relationships is very
difficult for highly dynamic human motions (e.g., dancing). To
overcome this problem, Raptis et al. [12] presented an angular
skeleton representation to recognize the dance actions, while
Vieira et al. [13] proposed a group of joint distance matrices
for motion classification. Similarly, a group of kinetic inter-
val features [14], a histogram of oriented displacements (HOD)
[15] and a local skeletal quad [16] were also studied for mo-
tion characterization. In general, these motion features can re-
duce the motion complexity. However, the temporal dynamics
of joint movements have not been adequately investigated, and
hence some ambiguous motions may fail in being identified.
To tackle this problem, an action graph [17], hidden Markov
models (HMM) [18] and spatiotemporal body parts [19] were
proposed, which can describe the temporal visual movements
within the 3-D joint locations. Evidently, these approaches de-
pend highly on a consistent semantic period, failing which their
performance would be degraded to some extent [20]. Until
very recently, Kapsouras and Nikolaidis. [21] have been uti-
lizing joint orientation angles and their forward differences to
represent an action. But, their approach cannot distinguish a
given movement from its reverse, e.g., forward walking from
backward walking. In addition, a group of motion strings [22],
joint-angle rotations [23], motion keys [24], covariance of 3-D
joints [25] and a sequence of the most informative joints [26]
have also been exploited in modeling the motion sequences
by synchronous consideration of temporal dynamics. Never-
theless, those approaches generally require some prior knowl-
edge to stipulate the key poses or motion keys, which would
not be readily accessible to the novice users in the real-world
applications.

Recently, sparse representation has been demonstrated to be
a powerful tool for data representation [27]. Motivated by this
success theory, Zhu et al. [28] proposed a sparse decomposition
model to encode human motions, while Qi et al. [29] sparsely en-
coded a group of key poses for motion representation. However,
those two approaches did not consider the temporal dynamics
within motions, because of which the retrieval performances
were a bit poor. To overcome this problem, Zhou et al. [30]
exploited a temporal sparse representation to characterize the
motion and utilized spatiotemporal pyramid matching (STPM)
to achieve motion retrieval. Since the human motions are mostly
natural activities, the semantically similar motions (e.g., walk-
ing) may have large variations while some other diverse actions
can be very similar to each other. Consequently, such sparse
representations may fail to discriminatively represent those
motions as well.
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Fig. 1. Schematic pipeline of the proposed human motion retrieval framework.

Similarity matching is another key factor in motion re-
trieval systems. To measure motion similarity, Adistambha
et al. [31] utilized dynamic time warping (DTW) for com-
puting motion distance. But, the performance of DTW highly
depends on a consistent semantic period; besides, the motion
clips with similar semantic meanings are usually not ideally
aligned. Some extensions of DTW [32] also suffered similarly
from large temporal misalignment. Although the recent iso-
tonic canonical correlation analysis (ISOCCA) [33], canoni-
cal time warping (CTW) [34], and correlation-optimized time
warping (CoTW) [35] algorithms have delivered a good per-
formance in temporal motion alignment, they are always con-
strained by computational complexity and exhaustive search
for optimum parameters. Histogram-based similarity measure-
ment has recently emerged as another popular matching scheme
[36]–[38]. For instance, Barnachon et al. [36] employed the
Bhattacharyya distance to measure the motion difference be-
tween two incremental histograms, whereas Fotiadou et al.
[38] constructed a pose correspondence matrix to characterize
the similarity between two pose histograms. Although those
histogram-matching approaches could reduce the impact of
motion misalignment, they could not properly compare the
temporal dynamics. As a result, matching of some seman-
tically related motions may fail. Therefore, there is still a
need to develop a practical and efficient similarity matching
algorithm.

III. PROPOSED METHODOLOGY

In general, logically similar motions may not be numerically
similar; besides, the articulated complexity of joints often ren-
der motion retrieval difficult. To address this issue, the authors
present an efficient human motion retrieval approach via TA-
BoW and DNP-DL, as shown in Fig. 1. The proposed approach
aims not only to discriminatively model the human motion with
internal temporal constraint, but also to exploit an efficient ap-
proach for motion retrieval. The proposed approach is explained
below in detail.

Fig. 2. Selected skeleton joints within HDM05 human mocap data.

A. Motion Representation

In general, the human skeleton model is recorded by a series
of articulated joints, which can produce different skeletal poses.
In this paper, the typical HDM05 mocap dataset [39] has been
selected for illustration, which is often shared by other related
datasets for similar representations. HDM05 mocap dataset pro-
vides a skeletal model of 31 joints, as shown in Fig. 2. Interest-
ingly, some joints inherently contribute less to the motion anal-
ysis, and it is reasonable to simplify the original skeleton model
by retaining only 23 joints. The eliminated joints, i.e., the joints
rtoes/ltoes, rfingers/lfingers, rthumb/lthumb, rradius/lradius, are
marked by the red circle.

It can clearly be seen from Fig. 2 that the simplified skeleton
model looks almost the same as the original model. In physical
terms, each recorded joint can be further represented by a 3-D
position in space. Accordingly, a motion clip M , consisting of
n frames, can be described as follows:

M = [f1 , f2 , . . . , fn ] ∈ R3J×n (1)

where ft = [p1 , . . . , pJ ]t represents one pose at time t, pj =
(xj , yj , zj ) is the 3-D position of jth joint in the space, and J
denotes the total joint number in the skeleton model.

In practice, joint positions may not well characterize the mo-
tion frame discriminatively. Therefore, joint rotations or angles
can be employed to characterize articulated movement [12], but
it has been found that they have limited capability in expressing
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a large variety of motions [30]. For instance, one rotation value,
representing the left foot in front of the plan, may be spanned
by the right foot. In addition, those types of features may suf-
fer from periodicity of angles. Often, two poses are considered
identical, when one of them remains the same even after adding
2π to the other pose vector. As suggested in [13] and [40], the
joint pairs are able to reduce the ambiguity between different
actions. Inspired by this finding, the pairwise distance d(i, j)
between each pair of joints {pi, pj} has been calculated

d(i, j) = ‖pj − pi‖2 , j > i. (2)

It is to be noted that d(i, j) = d(j, i) and M can be repre-
sented in terms of a pairwise distance matrix

M = [d1 ,d2 , . . . ,dn ] ∈ Rm×n (3)

where di is a column vector consisting of all the pairwise dis-
tances, andm = J (J − 1)/2 is the number of all the computed
pairwise distances. Often, the motion sequences may contain
different kinds of actions and that the pairwise joint distances
are sensitive to different performers. To make these motions
comparable, the skeleton structure is normalized following the
work of [41]. Given the joint pi and its parent joint pj , the
retargeted position of joint pi can be calculated

pri = pj + ui × b(i, j), ui =
pi − pj
|pi − pj | (4)

where b(i, j) is the initialized bone length between joints pi and
pj . Evidently, the retargeted joint depends on its parent joint, and
the process of normalization of all joints is best begun with the
root joint. The skeleton model can thus be well normalized, after
which the transferred motions will remain adaptive to different
performers.

B. Temporal Adjacent Bag of Words

Intuitively, the pairwise distance matrix can well characterize
each motion sequence. However, the whole distance matrix, in-
corporating all the joint pairs, would significantly increase the
computational load because of its high dimensionality. As in-
dicated in [13], the distance matrix with strong correlations is
mainly characterized by four lines, and its low dimensional rep-
resentation would be more effective for motion indexing. In the
past, different dimensionality reduction techniques have been
developed, e.g., linear PCA [5] and nonlinear Locality Preserv-
ing Projections (LPP) [42]. Nonlinear dimensionality reduction
techniques could be more suitable to articulated motions [38],
which are generally nonlinear. Therefore, LPP algorithm is em-
ployed to excavate the inherent structure within the pairwise
distance matrix.

Evidently, human motion modeling is a very challenging task
because of the ambiguity caused by nonrigid articulations. Re-
cently, BOW model associated with the video descriptors has
led to a popular statistical motion framework [43]. However,
the traditional BOW model, without temporal information, may
suffer from the motion ambiguity and would, therefore, lead to
poor matching performance. To the best of the authors’ knowl-
edge, the BOW model, with internal temporal constraint, has

yet to be exploited for human mocap data analysis. In this sec-
tion, a TA-BoW is introduced to efficiently characterize the
human motion sequence. From a statistical viewpoint, BOW
provides a histogram representation by counting the number
of codewords existing in the sequence. Often, the histogram,
consisting of w codewords, is created by performing k-means
clustering, and the clustering centers can be defined as code-
words. Assuming that a motion codebook is learned for each
sequence, the motion clip M can be further transformed into
the form M̄ =

[
d̄1 , d̄2 , . . . , d̄n

]
, where each transformed pose

d̄i is acquired by replacing the current motion pose di with its
nearest codeword in Euclidean space. As a result, the motion
clip can be represented concisely by a histogram of codewords:
hBoW = [h1 ,h2 , . . . ,hw ]

hi =
∑

d̄j ∈M̄
count

(
L(d̄j ) = i

)
, i = 1, 2, . . . ,w (5)

where L(d̄j ) returns its nearest codeword, and hi represents the
frequency of each codeword occurring in the sequence.

In essence, the traditional BOW method represents the mo-
tion sequence as an orderless collection of local motion features,
with no explicit inclusion of temporal correlations. To tackle this
problem, a novel TA-BoW, which can improve the distinguisha-
bility from traditional BOW, is proposed. The proposed TA-
BoW aims not only to count the number of occurrences of each
codeword, but also to calculate the number of the codewords
that appear consecutively adjacent to the current codeword tem-
porally. By augmenting this temporal relationship, the following
matrices are obtained:

1) forward codeword matrix hF :

hF
i,t =

{
hi, t = i

∑
d̄j ∈M̄ ,j∈F (i) count

(
L(d̄j ) = t

)
, t �= i

(6)
2) backward codeword matrix hB

hB
t,i =

{
hi, t = i

∑
d̄j ∈M̄ ,j∈B (i) count

(
L(d̄j ) = t

)
, t �= i

(7)
3) integrated codeword matrix hI

hI =
[
hF ,hB] (8)

where j ∈ F (i) represents the adjacent neighbors of
codeword i in the consecutive forward direction, while
j ∈ B(i) denotes the adjacent neighbors of codeword i in
the consecutive backward direction, and i = 1, 2, . . . ,w.
A typical example is shown in Fig. 3, in which the mo-
tion sequences are mapped into four motion primitives
{a, b, c, d}. The forward and backward codeword matri-
ces are built according to (6) and (7), respectively. It can
be seen that hF shows the consecutive appearance of the
codewords adjacent to the given codeword in the forward
direction, and hB the consecutive appearance of the code-
words adjacent to the given codeword in the backward
direction. As a result, the integrated codeword matrix can
intrinsically characterize the motion with temporal con-
straints.
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Fig. 3. Examples of the proposed temporal codeword matrices. (a) Forward
feature matrix. (b) Backward feature matrix. (c) Integrated feature matrix.

It should be noted that the dimension of histogram has in-
creased from w to w ∗ 2w, and a histogram with such a very
large w would be computationally expensive. For instance, if
the total number w of codewords is 50, then the dimension of
the codeword matrix in (8) will increase to 5000, which is sig-
nificantly large. In general, temporal relationships exist within
the adjacent poses, and the frequency of adjacent codewords is
closely related to the current codeword. Inspired by this finding,
such TA information is utilized to further simplify the motion
histogram. Except for the number of occurrences of each code-
word hi , the maximum number within the forward codeword
matrix hF and backward codeword matrix hB are also counted

hFmi = arg max
t

(
hF

i,t

)
, t = 1, 2, . . . ,wandt �= i (9)

hBm
i = arg max

t

(
hB

t,i

)
, t = 1, 2, . . . ,wandt �= i. (10)

By considering the temporal constraint, the numbers of the
codewords that appear consecutively adjacent to the current
codeword are also computed. Without loss of motion distin-
guishability, the feature histogram, with internal temporal con-
straints, can thus be rewritten

hTA-BoW =
[
hFm1 , h1 , h

Bm
1 , . . . , hFmw , hw , h

Bm
w

]
. (11)

The feature histogram in (11) is just thrice larger in size than
that of the traditional BOW, and the discriminative ability, re-
ferred here as TA-BoW model, has greatly improved. Fig. 4
is a typical example of this model, in which eight different
motion sequences are mapped into four codewords {a, b, c, d}.
From this figure, it can also be observed that the traditional
BOW represents these motion sequences in terms of the same
histogram, while the proposed TA-BoW exhibits diverse feature
histograms. Evidently, the proposed TA-BoW has more discrim-
ination power and can better characterize these diverse motion
sequences.

C. Discriminative Neighborhood Preserving Dictionary
Learning

Sparse representation has been demonstrated to be very pow-
erful for classification, and DL is the key issue to the success
of that method. In general, the neighboring poses are similar

Fig. 4. Illustration of the TA-BoW model. Each sequence is mapped into
four codewords {a, b, c, d} and transformed into feature matrix by (8), reduced
feature matrix and its feature histogram by (11).

because of the high speed of current mocap camera (e.g.,
300 fps) and the smoothness of human daily movement. There-
fore, the learned dictionary should be able to preserve the same-
label neighbors of each training sample, while repelling those
belonging to other classes. However, the normal DL methods do
not ensure such neighborhood preservation and thus may fail to
faithfully depict the intrinsic manifold geometry. In this section,
a novel method is proposed to explicitly learn a discriminative
dictionary for sparse coding, referred to here as DNP-DL.

1) Neighborhood Relationship Mining: For discriminative
learning, it is imperative to preserve the same-label neigh-
bors while inducing a large distance between diverse points
of different classes. To achieve this goal, the first step is to
find the neighborhood relationships of each sample. In the past,
the K-nearest neighbors (KNN) are often selected to search
the local geometric structures in training data. However, the
fixed neighborhood number may not adaptively reflect the real
neighborhood relationships. Also, it cannot guarantee that the
identifiability of constructed dictionary basis is discriminative
enough. Recently, it has been found that iterative nearest neigh-
bors (INN) [44] algorithm can ensure better similarity group-
ing adaptively, while keeping the computational similarity with
KNN. Heuristically, INN is applied to exploit the neighborhood
relationship of each motion clip and simultaneously add this
constraint to DL. Given a motion clip hi ∈ H and its remaining
part in the database Hr

i = [h1 ,h2 , . . . ,hi−1 ,0,hi+1 , . . . ,hN ],
the optimization objective function of INN can be
formulated as

min
{ci }k

i= 1

hi −
k∑

i=1

ciαi, s.t.
k∑

i=1

ci ≈ 1 (12)
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Algorithm 1: Neighborhood Relationship Mining via INN.

Input: The query motion hτ ∈ H, λ ∈ (0, 1), iterations T ,
and reconstruction error ε;
Output: Neighborhood relationships
Cτ = [c1 , c2 , . . . , ck ];
Initialize: k = 0, q́ = hτ , q̂ = 0, c0 = λ;
1. NN search in Hr

τ , k = k + 1:
αk = NN (Hr

τ , q́), ck = ck −1
(1+λ) ;

2. Approximation and error update:
q̂ = q̂ + ckαk , r = ‖hτ − q̂‖2 ;
3. Adapt the query q́ = q́ + λ(q́ − αk );
4. Repeat steps 1) and 2) until k > T or r ≤ ε.

where αi∈Hr
i , k represents the number of neighbor elements,

and ci ∈ (0, 1) is the residual weight. It is obvious that the
larger the ci , the more αi it contributes to the reconstruction
of hi . The main steps of INN algorithm, summarized below
under the subhead Algorithm 1, can be well utilized for neigh-
borhood relationship mining. If C = [C1 , C2 , . . . , CN ] repre-
sents the learned neighborhood matrix, the motion relation-
ships can be well exploited through this neighborhood matrix.
However, regularizing this neighborhood matrix as a constraint
for discriminative DL is still very difficult, because C may
be asymmetric. To tackle this problem, the neighborhood ma-
trix is further regularized to be symmetric as C̄ = {c̄ij}N×N =
1
2 {cij + cTij}N×N , which can be treated as a weighted neighbor
graph with edges.

The discriminative DL encourages the sparse representation
of each sample to stay close to its nearest same-label neighbors,
and the neighborhood relationship between the sparse coeffi-
cients {vi, vj} can be preserved by minimizing

min
1
2

N∑

i,j=1

‖vi − vj‖2 c̄ij . (13)

Alternatively, the objective function in (13) can be relaxed to
its equivalent trace form

min ψ (V ) = tr
(
V T

(
C̄∗ − C̄

)
V
)

= tr
(
V T LV

)
(14)

where tr (·) denotes the trace of a matrix, C̄∗ is a diagonal matrix
whose entries are the column sum of C̄, i.e., C̄∗

ii =
∑

j c̄ij , and
L = C̄∗−C̄ is the Laplacian matrix. With this regularization,
the nearest same-label neighbors of each motion clip can be
well preserved adaptively.

2) Discriminative Regularization in DL: The discriminative
DL also encourages that samples from other classes are scarce
in the vicinity, and this can be achieved by seeking a Fisher
projection to maximize the interclass scatter and minimize the
intraclass scatter. To this end, the Fisher discrimination criterion
is added as an additional constraint and a DNP-DL approach is
proposed to characterize the motion sequence.

If H = [H1 ,H2 , . . . ,Hc ] represents the whole training se-
quence and Hi all the samples from motion class i, then each
subdictionary Di of the ith class can be learned separately.
As a result, the whole dictionary can be concatenated as D =

[D1 ,D2 , . . . ,Dc ]. Accordingly, the coding coefficient matrix
V of H over D can be denoted as V = [V1 ,V2 , . . . ,Vc ],
and submatrix Vi contains the coding coefficients over Hi . By
imposing both the neighborhood preserving relationships and
Fisher discrimination criterion onto the DL, the following opti-
mization problem is obtained

JD ,V = arg min
D ,V

{R (D,V) + λ1‖V‖1

+ λ2F (V) + λ3ψ(V)} (15)

where R(D,V) denotes the reconstruction error that approxi-
mates the input data, ‖V‖1 is the regularization term for sparsity,
F (V) is the discrimination term regularized by Fisher criterion,
ψ(V) is the regularization term of neighborhood relationship
preserving, and {λ1 , λ2 , λ3} are the parameters utilized for bal-
ancing different items. Further, R (D,V) and F (V) are con-
cretely elaborated as follows:

A. Reconstruction error R (D,V): In sparse representation,
the whole dictionary D is designed to represent the samples of
any class Hi; so, ‖Hi − DVi‖2

F has to be as small as possible.
Besides, each Hi should be intensively represented by its corre-
sponding subdictionary Di and very sparsely characterized by
Dj , j �=i. This implies that minimization of ‖Hi − DiVi

i‖2
F is

essential, and that Vj
i should have nearly zero coefficients, so

that
∑c

j=1,j �=i ‖DjV
j
i‖2
F is small. Hence, R(D,V) should be

regularized as

R (D,V) =
c∑

i=1

(
∥
∥Hi − DiVi

i

∥
∥2
F

+ ‖Hi − DVi‖2
F

+
c∑

j=1,j �=i

∥
∥
∥DjV

j
i

∥
∥
∥

2

F

)

. (16)

B. Fisher discrimination term F (V): In DL, Fisher criteria
can be well applied to regularize coefficient V, so that the sam-
ples from different classes are efficiently separated [45]. It aims
at minimizing the intraclass scatter SW (V), while maximizing
the interclass scatter SB (V)

SW (V) =
c∑

i=1

∑

vk ∈Vi

(vk − vi) (vk − vi)
T (17)

SB (V) =
c∑

i=1

ni (vi − v) (vi − v)T (18)

where vi and v are the mean samples of Vi and V, respectively,
and ni is the number of samples in ith class. Therefore, the
discrimination item F (V) can be achieved by

F (V) =
SW (V)
SB (V).

(19)

Accordingly, an equivalent form of Fisher criterion that is
being imposed onto the DL can be regularized as

F (V) = tr (SW (V)) − tr (SB (V)) + η ‖V‖2
F (20)

where an elastic term ‖V‖2
F , associated with parameter η, is

utilized to make the function convex and stable.
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C. Proposed DNP-DL model: The proposed DNP-DL model
attempts to preserve the neighborhood relationships of intraclass
structure, while encouraging discriminability of the interclass
variances. The constraints acting on the coding coefficients are
formulated as follows:

JD ,V = arg min
D ,V

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑c
i=1 (‖Hi − DiVi

i‖2
F + ‖Hi − DVi‖2

F

+
∑c

j=1,j �=i ‖DjV
j
i‖

2
F ) + λ1‖V‖1

+λ2(tr(SW (V)) − tr(SB (V)

+η‖V‖2
F) + λ3tr‖VTLV‖

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(21)

As a result, the test sample can be well represented by the
dictionary atoms of its own class, while dictionary atoms of
other classes have little contribution to its reconstruction.

3) Optimization in DNP-DL: The optimization in (21) is not
jointly convex to (D,V), but is individually convex with respect
to each of them. Therefore, the solution of (21) can be solved
alternatively by optimizing D and V [45].

Updating coding coefficient matrix V: If the whole dictionary
D is fixed, then the objective function in (21) is reduced to a
sparse coding problem

JVi = arg min
Vi

⎧
⎪⎪⎨

⎪⎪⎩

∥
∥Hi − DiVi

i

∥
∥2
F

+ ‖Hi − DVi‖2
F

+
∑c

j=1,j �=i ‖DjV
j
i‖2
F + λ1‖Vi‖1

+λ2F (Vi) + λ3tr
(
VT

i LVi
)

⎫
⎪⎪⎬

⎪⎪⎭

(22)

where F (Vi) =
∥
∥Vi−Vi

∥
∥2
F
−∑c

k=1

∥
∥Vk−V

∥
∥2
F

+η ‖Vi‖2
F ,

Vk and V are matrices composed of the mean vectors of kth
class and all classes, respectively. Then, each Vi can be updated
one by one while all other Vj (j �= i)s are fixed.

Updating subdictionaries Di: Each Di can be updated by
fixing coefficient matrix V and all the other Dj (j �= i)s. Thus,
the objective function in (21) is reduced as

JDi = arg min
Di

⎧
⎪⎨

⎪⎩

∥
∥
∥H − DiVi −∑c

j=1,j �= i DjVj
∥
∥
∥

2

F
+

∥
∥Hi − DiVi

i

∥
∥2
F

+
∑c

j=1,j �=i
∥
∥
∥DiVi

j

∥
∥
∥

2

F

⎫
⎪⎬

⎪⎭

(23)

where Vi is the coding coefficient of H over subdictionary
Di . The quadratic programming problem in (23) can be solved
by updating Di , atom by atom [46]. Once the dictionary D is
initialized, the optimizations of (22) and (23) can be obtained by
iteratively repeating the above process until reaching a stopping
criterion. The main procedures of optimization are summarized
below under Algorithm 2.

4) Complexity of the DNP-DL: In DNP-DL framework, the
time complexity of updating coding coefficients is approxi-
mately

∑
i niO(piq2), where ni and pi , respectively, denote the

number of training samples and dictionary atoms in the ith class,
and q is the feature dimensionality of each training example.
Time complexity of updating dictionary atom is approximately∑

i piO(niq). As a consequence, the overall time complexity of
DNP-DL is

∑
i niO(piq2) +

∑
i piO(niq). Since n =

∑
i ni

Algorithm 2: Optimization solution to DNP-DL.
1. Initializing dictionary D: initialize each Di as a random
vector with unit �2 norm.
2. Updating the sparse coding coefficients V: fix dictionary
D and calculate Vi , one by one via (22).
3. Updating dictionary D: fix V and update each Di , class
by class via (23), and atom by atom [46].
4. Checking the values of JD ,V between two iterations; if
the difference between them is small enough or if the
maximum iteration has reached to its maximum, output V
and D; otherwise, return to step 2, continue.

and p =
∑

i pi , respectively, represent the total number of train-
ing samples and dictionary atoms, the whole time complexity
of DNP-DL is acceptable in relation to the traditional sparse
coding problem [27].

D. Hierarchical Motion Retrieval Mechanism

In DNP-DL, the learned dictionary will be discriminative
enough to sparsely represent the motion sequence. In the past,
most of the motion retrieval approaches often chose to compare
the query motion clip with all the training samples, which will
be quite time-consuming when the training database there is too
large. To tackle this problem, a hierarchical retrieval mechanism
is exploited to facilitate a coarse-to-fine similarity matching,
which involves interclass recognition by sparse classification
and intraclass ranking by chi-square measurement. The main
steps are summarized as follows.

1) Calculate sparse coding coefficients v = [v1 ,v2 , . . . ,vc ]
of query motion sample hq via learned dictionary D

v = arg min
v

‖hq − Dv‖2
2 + τ‖v‖1 (24)

where D is obtained by DNP-DL, vi is the coefficient
vector over subdictionary Di , and τ is a scalar constant.

2) Estimate the reconstruction error of the ith class

ei = ‖hq − Divi‖2
2 + ω ‖v − vi‖2

2 (25)

where vi is the mean coefficient of ith class, and ω is the
weight to balance the contribution of the two terms.

3) Find the label of smallest reconstruction error

class (i) = arg min
i

{ei} , i = 1, 2, . . . , c. (26)

4) Once the motion class c is determined, searching for
most of the other similar motion clips can be further
ranked by a well-known chi-square distance χ2 . Given
two TA-BoW histograms hq = [hq1 , h

q
2 , · · · , hq3w ] and

hc = [hc1 , h
c
2 , · · · , hc3w ], χ2 distance can be formulated

as

χ2 (hq ,hc) =
1
2

3w∑

t=1

(hqt − hct )
2

hqt + hct
. (27)
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TABLE I
DIVIDED ACTION SUBSETS OF MSR-ACTION3D DATABASE

ActionSet1 (AS1) ActionSet2 (AS2) ActionSet3 (AS3)

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw cross Side-kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two-hand wave Tennis serve
Tennis serve Side-boxing Golf swing
Pick-up and throw Forward kick Pick-up and throw

IV. EXPERIMENTAL RESULTS

For experimental evaluation, two publicly available datasets
are selected: MSR-Action3D [17] and HDM05 library [39].
There are two main differences between these datasets: 1) The
MSR-Action3D dataset, acquired by a depth camera of Kinect
sensor, often incorporates more noise than the HDM05 dataset,
acquired by a multicamera motion capturing system; 2) The
frame rate of HDM05 dataset is much higher (120 fps) than that
of the MSR-Action3D dataset (15 fps).

A. Experimental Setup and Parameter Tuning

MSR-Action3D dataset is selected to evaluate the proposed
motion descriptor on action recognition task because of its lim-
ited size. In contrast to this, HDM05 library provides a large
number of motion sequences, which will be used extensively
to validate the retrieval performance. All the experiments were
conducted on an Intel CoreTM i3 3.30 GHz processor with 8-GB
memory, implementing the coding language with MATLAB. In
LPP algorithm, the reduced dimension was automatically ob-
tained by preserving 99% energy, and the neighboring points
were empirically set at 30 and the heat kernel function at 3.7.
In general, the vocabulary size w often balances the tradeoff
between discrimination and complexity. Following [38], several
sizes,w = {10,30,50,70,90,110,150}, were tested and the
best performance was selected. Similar to the parameters sug-
gested in the literature [44], [45], several parameters in INN
algorithm were set as λ = 0.5, ε = 10e− 5, and those in DNP-
DL as η = 1, λ1 = 0.005, λ2 = 0.05 and λ3 = 0.05. In addition,
the parameters in sparse coding were chosen as τ = 0.001 and
ω = 0.05, empirically.

B. Datasets From MSR-Action3D Database

The public MSR-Action3D database [17] consists of ten sub-
jects, performing 20 actions, with up to three repetitions. This
led to a total of 567 sequences, and only skeleton joints were
employed in the experiments.

For a fair comparison, the same experimental settings as those
employed in work [40], were utilized, and the data divided into
three action sets (i.e., AS1, AS2, AS3), as shown in Table I. For
each action subset, cross-subject test [17] was conducted. That
is, half of the subjects (1, 3, 5, 7, 9) were used for training and
the other half for testing. Similarly, 20 skeleton joints [47] were
selected to shape the posture, and the pairwise joint distances

TABLE II
RECOGNITION ACCURACY, TESTED ON MSR-ACTION3D DATASET

Recognition accuracy

Method (cross-subject test) AS1 AS2 AS3 Overall

A bag of 3-D points (Li et al. [17]) 72.9 71.9 79.2 74.67
Histogram of 3-D Joints (Xia et al. [18]) 87.98 85.48 63.46 78.97
Eigenjoints (Yang et al. [8]) 74.5 76.1 96.1 82.33
Skeletal Quads (Evangelidis et al. [16]) 88.39 86.61 94.59 89.86
Cov3DJ descriptor (Hussein et al. [25]) 88.04 89.29 94.29 90.53
Histograms of part sets (Wang et al. [19]) – – – 90.22
HOD+2-level TP (Gowayyed et al. [15]) 92.39 90.18 91.43 91.26
Pose-based TP (Eweiwi et al. [37]) – – – 90.1
BOW+SVM (H) (Fotiadou et al. [38]) 87.03 81.02 86.08 84.71
Hanklet-based HMM (Presti et al. [20]) – – – 89
TA-BoW+SVM (H) (Ours) 92.36 90.68 91.06 91.37

computed to characterize the human movements. Since the size
of MSR-Action3D database is limited, it is improper to train a
DNP-DL in each action subset. Therefore, SVM, associated with
histogram intersection kernel (H), was utilized to perform action
recognition, and the proposed motion descriptor was compared
with some typical skeleton-based representations, i.e., a bag
of 3-D points [17], histogram of 3-D joints [18], eigenjoints
[8], skeletal quads [16], covariance of 3-D Joints (Cov3DJ)
[25], histograms of part sets [19], HOD (16 bins) with two-level
temporal pyramid (TP) [15], pose-based TP [37], Hanklet-based
HMM [20], and BoW with SVM (H) [38].

The recognition accuracies obtained on different representa-
tions were shown in Table II. It is to be noted that some sub-
set results were not reported in [19], [20] and, [37], and most
of the recognition accuracies obtained by the previous motion
representations [8], [16]–[18], [38] are less than 90%. This is
probably because actions in AS1 and AS2 subsets share almost
similar movements, while those in AS3 subset are complex, but
distinct. Evidently, similar motions of diverse semantics are dif-
ficult to identify; for example, “Hammer” tends to be confused
with “Forward Punch” in an AS1 subset. In addition, the 3-D
skeleton joints, acquired from depth maps, often incorporate the
view variance, besides being very noisy. Under such circum-
stances, the sampling scheme of method [17], which depends
on the same view, may fail to identify some similar motions,
while the Eigenjoints [8] and skeletal quads [16] are very sen-
sitive to noise. Specifically, Xia et al. [18] and Presti et al. [20]
selected the discrete HMM to model temporal motion evolu-
tions, which may not fully characterize the motion temporality;
besides, its recognition performances is rather poor. Another
plausible reason is that the complex actions adversely affect
HMM identification when the number of training samples is
small. Although the histograms of part sets [19], covariance of
3-D joints [25], pose-based TP [37], and the BOW method [38]
could well characterize the motion sequence, those descriptors
without internal temporal regularization may fail to identify
some complex motions, and hence their performances are not
competitive in practice.

Comparatively speaking, the motion descriptor proposed here
has achieved promising results in all the action subsets and si-
multaneously obtained the best overall recognition accuracy.
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TABLE III
DIVIDED SUBSETS IN HDM05 DATASET

Subsets Training set Testing set

A Two-third of the samples in each class Remaining part
B Half of the samples in each class Remaining part
C One-third of the samples in each class Remaining part

For instance, the recognition accuracy is higher than 90% in
all the subsets. That is, the proposed TA-BoW is discrimina-
tive enough to identify diverse human actions, including those
with subtle differences, and is more robust against noise. Also,
the proposed motion descriptor has yielded a very competi-
tive performance with method [15]. This supremacy can be at-
tributed to the physical meaning of the descriptor illustrated in
Section III-A, which contains significant spatiotemporal infor-
mation about the sequence. In contrast to this, the approach in
[15] utilized three orthogonal cartesian planes to describe the
3-D trajectories of each body joint, and applied a TP approach
to capture the temporal evolution of motions. Therefore, the
TA-BoW proposed here is inherently more discriminative to
encode both spatial and temporal information within the mo-
tion sequences. Further, as suggested in [37], [48], and [49],
a total of 20 actions were employed, considering all the 252
combinations by choosing half of the actors for training and the
other half for testing. This setting is generally considered more
challenging than the former setting because it involves more ac-
tion classes. Fortunately, the average accuracy obtained by the
proposed motion descriptor is 74.7±3.1 (mean value and stan-
dard deviation), while that of the BOW descriptor [38] is 61.8
± 3.9. This indicates that the proposed TA-BoW, with internal
temporal constraint, has higher discriminatory power, and its
competing performance is demonstrated by the experiments.

C. Datasets From HDM05 Database

The popular HDM05 MoCap dataset consists of 130 motion
classes with multiple trials, and five different actors enrolled
in each class. For evaluation, 339 motion clips were manually
collected from 10 different human actions. In total, more than
82 298 frames were scattered into ten categories: Clapping,
Elbow to Knee, Hopping, JumpJack, Kicking, Punching, Skier-
ing, Squatting, TurnLeft, Walking. As described in Table III, the
collected motion sequences were divided into three subsets and
then various experiments conducted.

Earlier, most dimension reduction methods have often been
failing to exploit the motion temporality (e.g., SVD [4], PCA [5],
and manifold learning [7]), while some typical motion alignment
methods have inherently been constrained by computational
complexity, requiring large runtime (e.g., CTW [34] and CoTW
[35]). Therefore, it is very difficult to perform a fair and mean-
ingful comparison with those approaches. To evaluate motion
retrieval performance, five competing approaches were selected
for comparison, i.e., DTW [31], derivative DTW (DDTW) [32],
ISOCCA [33], BOW [38], and STPM [30]. The main goal of
DTW, DDTW, and ISOCCA approaches is to search for a glob-
ally optimal path that can map the domain of the query motion

TABLE IV
RECOGNITION RATES OBTAINED BY DIFFERENT CLASSIFIERS, EACH TABLE

CELL SHOWS THE MEAN VALUE AND STANDARD DEVIATION

Classifiers (%)

Subsets Descriptor KNN+E KNN+C SVM+L SVM+H OUR

A BOW 81.1 ± 2.5 86.6 ± 2.7 89.3 ± 2.3 86.6 ± 2.7 89.3 ± 2.3
TA-BoW 87.5 ± 2.2 89.3 ± 2.3 94.6 ± 2.0 97.3 ± 1.7 97.3 ± 1.7

B BOW 74.4 ± 4.2 82.1 ± 3.1 87.5 ± 2.9 87.5 ± 2.9 87.5 ± 2.9
TA-BoW 80.9 ± 2.7 85.7 ± 2.4 97.0 ± 2.1 97.0 ± 2.1 97.0 ± 2.1

C BOW 78.5 ± 3.3 80.6 ± 3.7 86.3 ± 2.9 76.2 ± 3.3 88.5 ± 2.7
TA-BoW 86.3 ± 2.9 84.1 ± 2.9 88.5 ± 2.7 89.9 ± 2.5 93.4 ± 2.3

sequence onto the indexing sequences. Specifically, the mo-
tion dimensionality conducted by these three approaches was
first reduced to 15, using PCA, while keeping 99% of the en-
ergy. The BOW method first builds a group of BOW-based
histogram and then utilizes SVM classifier for motion classifi-
cation, whereby similar motions can be retrieved by ranking the
motion sequences in the corresponding motion class. The recent
STPM method first introduces a temporal sparse representation
to represent the motion sequence, and then applies a spatial TP
matching scheme to perform similarity measurement. In this
approach, the gap value of frame index is set at 10 and the level
of total pyramid at 3. Meanwhile, other parameters suggested
by the exiting works are selected in all experiments.

1) Performance Analysis: First, an extensive comparison
was attempted between the traditional BOW representation and
the proposed TA-BoW descriptor under different classifiers.
Specifically, Euclidean (E) and Cosine (C) distances were se-
lected for KNN classifier, and linear kernel (L) and histogram
intersection kernel (H) for SVM classifier. The mean recogni-
tion rates obtained from five runs are shown in Table IV. Under
the same classifier, it can be found that the mean recognition
rates obtained by BOW representation are all less than 90%.
This descriptor provided little information about temporal in-
formation, consequent to which some ambiguous motions might
not have been well characterized and a certain ratio of motion
clips might have been misidentified. In contrast, the proposed
TA-BoW descriptor has achieved a higher recognition rate un-
der different classifiers. For instance, the mean recognition rate
of Subset B, tested with the TA-BoW descriptor and “SVM+L”
classifier, reached up to 97%, which is significantly higher than
that achieved by the BOW counterpart. It indicates that the pro-
posed TA-BoW descriptor, incorporating temporal constraint,
serves better for complex motion representation. Also, the pro-
posed DNP-NL classifier has achieved a higher and more stable
recognition rate (i.e., less standard deviations) under the same
representations.

The proposed approach is further compared with the exist-
ing methods by computing the confusion matrix, which is a
specific table layout that is utilized to visualize classification
performance. Typical results obtained by performing the test on
subset B are shown in Fig. 5. It can be observed that the DTW
and DDTW approaches yielded lower accuracies, and some
motion sequences were falsely recognized as other semantics,
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Fig. 5. Confusion matrices obtained by different approaches and tested within subset B. (a) DTW. (b) DDTW. (c) ISOCCA. (d) BoW. (e) STPM. (f) OURS.

i.e., Walking and Kicking. These two approaches were used to
compute the similarity between two motion clips by aligning
their time dimensions. The concerned motion clips would be
generally identified as being similar if their motion sequences
commenced with the same poses. But, human motions often
show large spatiotemporal variations between different execu-
tions of the same action, and thus the motion clips with similar
semantic meanings are usually not aligned temporally. There-
fore, logically similar motions may not strictly be temporally
similar or start with the same poses. For example, two walk-
ing motions, one with stepping the right leg first and the other
with stepping the left leg first, would be confused, in two differ-
ent classes. ISOCCA approach similarly performed similarity
matching by linearly mapping two sequences into a common
subspace, through which the property of nondecreasing mono-
tonicity can be preserved in time. Although its classification
performance has been improved to some degree, such an ap-
proach depends highly on a consistent periodic or aperiodic
motion period. Otherwise, some logically similar motions may
be confused, e.g., Squatting and Walking.

Instead of time-alignment, BOW simplified the motion rep-
resentation, in terms of the histogram, and was able to adapt
to the slightly misaligned motions. But, such a method repre-
sented the motion sequence as an orderless collection of primi-
tive poses, which often failed to identify some complex motion
sequences, e.g., “Elbow to Knee.” By considering the temporal
relationship within the motion sequence, the STPM approach
could efficiently identify some complex motion sequences. Un-
fortunately, even this approach may fail to distinguish between
some confusable motions. For instance, the classification rates of
“Clapping” and “Kicking” sequences are lower than 90%. The
main reasons for failure are twofold: First, the STPM approach

TABLE V
MEAN CLASSIFICATION RATES OBTAINED BY DIFFERENT METHODS, EACH

TABLE CELL SHOWS THE MEAN VALUE AND STANDARD DEVIATION

Methods (%)

Subsets DTW DDTW ISOCCA BOW STPM TSR OURS

A 72.3 ± 3.9 79.6 ± 3.8 83.6 ± 3.6 86.6 ± 2.7 91.3 ± 2.1 97.3 ± 1.7
B 61.6 ± 4.5 75.6 ± 4.1 80.9 ± 3.9 87.5 ± 2.9 90.5 ± 2.4 97.0 ± 2.1
C 62.5 ± 4.7 69.7 ± 4.5 72.8 ± 4.3 76.2 ± 3.3 85.1 ± 2.9 93.4 ± 2.3

utilized the normalized joints to directly represent the motion
sequence, which may not well characterize the inherent motion
semantics. The articulated complexity within the motions may
therefore result in identification confusion; Second, the dictio-
naries learned directly from concatenated motion frames, often
induce sparse ambiguity, which degrades its classification accu-
racy because of its limited discrimination power.

In contrast to this, the proposed approach has achieved,
notwithstanding the diversity in motion semantics, the best clas-
sification performance and correct identification of most of the
motion clips, e.g., “Clapping” and “Kicking” sequences. Fur-
ther, instances of identification confusion are significantly fewer
than those of the other five competing approaches. For instance,
“Hopping” was slightly confused with Kicking, and only 7% of
the “Walking” sequences were falsely classified.

Next, the mean classification rates within all the tested mo-
tions were computed and the results presented in Table V. It can
be seen that DTW, DDTW, and ISOCCA methods delivered low
classification rates, especially when the training samples were
very small. For instance, the mean classification rates, obtained
by these three approaches, are all less than 75% for Subset C.
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Fig. 6. Average precisions with standard deviation bars, obtain by using dif-
ferent approaches: Top: Subset A; Middle: Subset B; and Bottom: Subset C.

As regards the BOW and STPM approaches, they could, no
doubt, recognize most of the motion clips, but some of the iden-
tified results deviated a little from the ground truth because of
articulated complexity and motion ambiguity. Comparatively
speaking, the proposed approach could more successfully rec-
ognize different motion semantics appropriately, and the mean
classification rates are very competitive in practice. Besides,
more stable performances, in terms of low standard deviation
values, were achieved. For example, 97.3% of all the testing
motion clips of Subset A were correctly identified, and the stan-
dard deviation was only around 1.7%. The main advantages of
this high classification rate, achieved by the proposed approach,
are twofold: First, the proposed TA-BoW exploits the internal
temporal relationships among the codewords in such a way that
the spatiotemporal property within the motion is well charac-
terized. As a consequence, the whole motion sequence is well
represented and the articulated complexity is greatly reduced;
Second, the dictionaries learned from DNP-DL can well pre-
serve the same-label neighbors of each training sample, while
repelling those belonging to the other classes. As a result, the
motion clip can be discriminatively characterized by a more
compact set of dictionary atoms.

The retrieval accuracy was further evaluated by calculating
precision and recall. For present experiment, the motion se-
quences, selected from the top two identified categories, were
ranked. The average precisions with standard deviation bars,
and the average precision-recall curves are shown in Figs. 6 and
7, respectively. From these figures, it can be seen that the pro-
posed approach has achieved the best retrieval performance, in
terms of higher average precisions and better precision-recalls.
This has become possible for three reasons:

1) The proposed TA-BoW model aims at not only counting
the number of codeword occurrences, but also at calculat-

ing the number of the codeword that appears consecutively
adjacent to the current codeword temporally. As a result,
the histogram obtained would be more interpretable, in-
tuitive, and semantically valid for motion representation;

2) The reconstruction error and sparsity inducing penalty of
DL are minimized alongside a neighborhood relationship
preserving item. Accordingly, each tested motion clip can
be sparsely represented by a linear combination of such
discriminative dictionary atoms.

3) The presented hierarchical retrieval mechanism, incorpo-
rating sparse classification scheme and chi-square rank-
ing, can facilitate coarse-to-fine similarity matching, ex-
cluding thereby some motion clips that are likely to be
confused with other semantics. Therefore, the proposed
approach is particularly suitable for complex motion re-
trieval in real-world applications.

2) Discussion and Analysis: It is worth noting that, in the
clustering process, the vocabulary size of the codebook w is con-
trolled by the number of key frame clusters, and that a tradeoff is
required between discriminability and generalizability to arrive
at an appropriate size of vocabulary. A compact codebook with
very few entries will have limited discrimination power, while
a large codebook size may induce complexity and ambiguity
sparsely. To the best of authors’ knowledge, there is, as yet, no
consensus on what should be considered the right vocabulary
size. Several vocabulary sizes, varying from 10 to 150, were
tested by the present authors, and the experimental results and
fitting curves, illustrating the impact of w on recognition accu-
racy are shown in Fig. 8. From this figure, it can be seen that,
with increase in vocabulary size, the recognition accuracy first
increased moderately, then peaked at a point, and finally de-
creased thereafter. This suggests that, when the vocabulary size
is small, the codewords will not be comprehensive, but when
the vocabulary size becomes very large, sparse ambiguity would
result.

Next, the influence of different parameter values in (22) on
mean recognition accuracy was evaluated. In Section III-C,
it has been clearly shown that neighborhood relationship-
preserving item encourages the sparse representation of each
sample to stay close to its nearest same-label neighbors, while
Fisher discrimination minimizes the intraclass scatter and max-
imizes the interclass scatter. Evidently, these two items are
so correlated that it is reasonable to assign them the same
weights in (22). Therefore, the scope of evaluation was con-
fined to assessing the influence of the values between λ1 and
pair (λ2 , λ3). Following the values suggested in [45], the mean
recognition accuracies were tested with different balancing
values λ1 = {0.001, 0.002, 0.005, 0.007, 0.01} and (λ2 , λ3) =
{0.01, 0.02, 0.05, 0.07, 0.1}, and the results are shown in Fig. 9.
From this figure, it can be seen that different settings of the bal-
ancing values in (22) do affect the mean recognition accuracy,
but not much differently. Experimentally, the suggested values
often delivered better performances.

Further, the storage space forN motion clips can be expressed
asS =

∑N
i=1 ni × 3J , whereni denotes the total frame number

of the ith clip. In contrast to that the proposed approach rep-
resents each motion clip as a TA-BoW vector and the storage
space becomes Ŝ = N×3w, where w denotes the number of
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Fig. 7. Average precision-recall curves conducted on different subsets and obtained by different approaches. (a) Subset A. (b) Subset B. (c) Subset C.

Fig. 8. Influence of vocabulary size on recognition accuracy. (a) Subset A.
(b) Subset B. (c) Subset C.

Fig. 9. Influence of {λ1 , λ2 , λ3} on mean recognition accuracy. (a) Influence
of λ1 and λ2 . (b) Influence of λ1 and λ3 .

codewords. Since the total number of motion frames is signifi-
cant greater than the number of motion clips, and the vocabulary
size is comparable to the joint number, the proposed TA-BoW
model can greatly reduce the storage space in comparison with
that of the frame level case.

Moreover, although the time-series matching methods, e.g.,
DTW, DDTW, and ISOCCA, do not need the training phase,
the computational costs of these approaches are significantly
higher and all their matching times exceed 5 h. This is mainly
because, these approaches require dynamic programming algo-
rithm to temporally align the motion sequences and to compare
each motion clip, one by one, within the whole database. All
this evidently requires more runtime. Since the dimensionality
of the proposed TA-BoW is higher than that of BOW, and the
proposed DNP-DL method shares more discrimination items
in the learning phase, the computation time of the proposed
method would be much more than that of other methods. For-
tunately, the runtime of the proposed method is acceptable, in
that its execution time is around 19.5 m, in contrast to 18.1
and 35.5 m, respectively, of BOW and STPM. Except for the
simplest BOW method, which does not require DL process, the
execution time of the proposed method is less than that of the
STPM method. The main advantage of the proposed method
is that its hierarchical retrieval mechanism facilitates coarse-to-
fine similarity matching, which serves to significantly reduce the
searching ranges. Although a discriminative DL involves more
computational load, it needs no complex time-series matching
process. Consequently, the computational load of the proposed
approach is comparable to that of the competing methods, and

the proposed retrieval scheme would be more suitable for in-
dexing large motion databases.

V. CONCLUSION

This paper presented a novel framework that allows for flex-
ible and efficient human motion retrieval from mocap data. In
our approach, the original skeleton model is first simplified and
then a novel TA bag of words is used to characterize the motion
appearances, through which the articulated complexity can be
greatly reduced. In addition, an improved DNP-DL framework
is presented. The framework sparsely represents the tested mo-
tion, in which the reconstruction error and sparsity inducing
penalty are minimized alongside a neighborhood relationship
preserving item and a discriminative item. Moreover, a hier-
archical retrieval mechanism is addressed to facilitate coarse-
to-fine similarity matching. Without complex time-alignment,
the proposed retrieval approach can perform well on different
kinds of motion semantics, and the experimental results have
demonstrated its outstanding performance.

Further research is warranted along the present lines of work
in order to solve several problems. For example, if new motions
of other semantics are incorporated into the training database,
then the proposed method will have to learn the dictionaries
again, which would be time-consuming. Therefore, it would
be necessary to extend the algorithm, so that it can handle the
new motion data adaptively. In addition, questions like how to
precisely determine the vocabulary size of a codebook, and how
to efficiently fuse with other types of motion descriptors, e.g.,
HOD, are yet to be solved.
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