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Abstract—Face normalization is a critical technique for
improving the robustness and generalizability of face recogni-
tion systems by reducing intra-personal variations arising from
expressions, poses, occlusions, illuminations, and domain shifts.
Existing normalization methods, however, often lack the flexibility
to handle multi-factorial variations and exhibit limited cross-
domain adaptability. To address these challenges, we propose
a Unified Multi-Domain Face Normalization Network (UMFN),
which is designed to process facial images with diverse variations
from various domains and reconstruct frontal, neutralized facial
prototypes in the target domain. As an unsupervised domain
adaptation model, the UMFN facilitates concurrent training
across multiple cross-domain datasets and demonstrates robust
prototype reconstruction capabilities. Notably, the UMFN func-
tions as a joint prototype and feature learning framework,
extracting domain-agnostic identity features through a decou-
pling mapping network and adversarial training with a feature
domain classifier. Furthermore, we design an efficient Hetero-
geneous Face Recognition (HFR) network that integrates these
domain-agnostic features and the identity-discriminative features
extracted from normalized prototypes, enhanced by contrastive
learning to improve identity recognition accuracy. Empirical
evaluation on multiple cross-domain benchmark datasets validate
the effectiveness of the UMFN for face normalization and
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the superiority of the HFR network for heterogeneous face
recognition.

Index Terms—Face normalization, cross-domain prototype
learning, heterogeneous face recognition, adversarial learning,
contrastive learning.

I. INTRODUCTION

FACIAL normalization, a pivotal technique in computer
vision, focuses on mitigating disruptive variations in

facial images, including pose, expression, occlusion, and
lighting, to generate a neutral-expression, frontal-view facial
prototype that is unoccluded and uniformly illuminated [1].
Its utility spans diverse domains such as criminal investiga-
tions, identity verification, and human-computer interaction
[2], [3], [4]. Despite its potential, current normalization
approaches struggle to address the escalating complexity and
diversity of real-world scenarios, emphasizing the pressing
demand for more robust and adaptable solutions capable
of accommodating dynamic environmental and conditional
changes.

The limitations of existing face normalization methods
are mainly manifested in two aspects: single contaminant
element processing constraints, and single-domain applicabil-
ity constraints. The former indicates that most current face
normalization methods [5], [6] primarily focus on modeling
and processing a single contaminant element. For example,
they may be designed for only one specific category of
variation factors such as pose, expression, illumination, or
occlusion, and are unable to effectively handle other cat-
egories of variation factors, let alone cope with situations
where multiple variation factors coexist. Additionally, some
unsupervised normalization methods [7], [8] may inadver-
tently lose some crucial identity information of the input
face during processing, resulting in an inconsistent identity
between the generated facial prototype and the input face. The
latter constraint points out that existing normalization models
are usually only applicable to facial images within a single
domain and lack universality across multi-domain scenarios
[9], [10]. However, from a practical perspective, the images
received by the system may come from various different
domains, such as visible light images, near-infrared images,
and even sketch images commonly used in criminal investiga-
tion. Therefore, there is an urgent need for a face normalization
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Fig. 1. Illustration of a desired face normalization method capable of handling
multiple cross-domain face normalization tasks and addressing various types
of facial variations.

method that can span multiple domains and simultane-
ously handle various types of facial variations, as illustrated
in Fig. 1.

To tackle the aforementioned challenges, we propose an
innovative Unified Multi-domain Face Normalization Net-
work (UMFN) model. This model demonstrates proficiency
in managing facial images originating from diverse domains
and contaminated with various elements such as pose vari-
ations, expressions, occlusions, among others. It is capable
of reconstructing a frontal, neutral facial prototype within
the target domain, while concurrently extracting identity
features that remain independent of domain-specific infor-
mation. It is worth noting that, despite the remarkable
advancements of diffusion models in image generation, their
constraints in interpretable representation learning render
them unsuitable for our requirements of joint prototype and
feature learning [11]. Consequently, this paper embraces
a fusion framework that integrates an Autoencoder with
a Generative Adversarial Network (GAN), as illustrated
in Fig. 2.

Specifically, the UMFN model incorporates a feature decou-
pling network alongside a domain classifier for adversarial
training, effectively separating domain-agnostic features. By
utilizing concatenated masks, it meticulously controls the
generation of clean prototypes within designated domains or
reconstructs the original images, thereby ensuring identity
consistency throughout the process. Moreover, a multi-scale
InstanceNorm Patch-based discriminator [12] is employed to
refine image details and textures, significantly enhancing the
visual quality of the outputs. As an unsupervised domain
adaptation model, the UMFN facilitates the simultaneous
training of diverse, unlabeled datasets within a unified net-
work framework, showcasing its flexibility and practicality in
cross-domain prototype reconstruction. Furthermore, we have
devised an efficient heterogeneous face recognition (HFR) net-
work that operates in conjunction with the UMFN’s encoder.
This network is tasked with extracting identity-discriminative
features from the generated prototypes. These features are then

fused with the domain-agnostic features of the input images for
the purpose of HFR. During the training of the HFR network,
a contrastive learning mechanism is leveraged to minimize
the feature distance between the generated and authentic
prototypes, thereby bolstering the network’s proficiency in
accurately recognizing identities.

The contributions of the paper are summarized below:
• We present a unified framework for face normalization,

referred to as UMFN, which tackles the shortcomings of
current approaches in managing diverse facial variations
and cross-domain images. This framework efficiently pro-
cesses multiple types of facial variations and is adaptable
to face images from various domains.

• We develop a high-performance HFR network that com-
bines domain-independent features from input samples
with identity-specific features extracted from generated
prototypes. Additionally, a contrastive learning strategy
is incorporated to enhance the network’s accuracy in
identity recognition.

• As an unsupervised domain adaptation framework, the
UMFN supports the concurrent training of multiple
datasets from different domains without involving identity
labels within a single network. It excels in reconstruct-
ing prototypes across multiple domains, improving the
model’s adaptability and practicality, while reducing the
dependence on labeled data.

• Extensive experiments on diverse cross-domain face
datasets with varying facial variations demonstrate the
UMFN’s superior performance in face normalization
tasks, in both single-modal and cross-modal settings, as
well as in HFR tasks.

The rest of this paper is organized as follows. Section II
makes an overview of the related works on face normaliza-
tion and heterogeneous face recognition. Section III details
the proposed UMFN and HFR network. In Section IV, we
conduct experiments on six real-world datasets to evaluate the
performance of the proposed algorithms. Finally, we draw a
conclusion in Section V.

II. RELATED WORKS

A. Face Normalization

Face normalization, an emerging and highly regarded
research domain, has demonstrated significant practical impor-
tance in various applications, including criminal identification
and facial evidence collection. The mainstream approaches in
face normalization primarily focus on mitigating facial varia-
tions within single-modal contexts, striving to eliminate factors
such as varying lighting conditions, exaggerated facial expres-
sions, extreme head poses, or partial occlusions, in order to
restore a standardized facial prototype. Existing single-modal
face normalization algorithms can be broadly categorized into
two categories [13]. The first category constructs clustering
models utilizing auxiliary sample information to estimate
the facial prototypes of contaminated samples. The second
category harnesses generative AI models, such as GANs [14],
[15] and Diffusion Models (DMs) [16], to learn the mapping
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Fig. 2. Overview of the UMFN architecture. xc ∈ Xc represents an input image from domain c. The encoder Genc and mapping network extract domain-
agnostic features p from xc. vc and vc̄ are control masks used for reconstructing the original input (x̂c) and generating the target prototype (x̂rp

c̄ ) in domain c̄,
respectively. xc

rp denotes the real prototype corresponding to xc in its native domain c.

relationship between contaminated and standardized facial
samples.

In the first category, Gao et al. [17] integrated unlabeled
facial samples with a labeled training set, applying a Gaus-
sian Mixture Model for clustering to estimate prototypes.
Pang et al. [18] introduced a more robust semi-supervised
low-rank representation model for clustering and prototype
estimation, which is updated using labeled retrieval samples.
While these methods are effective in prototype reconstruction,
they require prior access to facial samples, making them
unsuitable for real-time applications. In the second category,
researchers have leveraged the image generation and mapping
capabilities of generative AI models to propose a series of
generative learning methods. These methods target specific
facial variations, such as expression [5], [19], lighting [6], [7],
pose [8], [20], [21], and partial occlusions [10], [22], [23], to
generate facial prototypes with consistent identities. However,
these methods are typically limited to specific types of facial
variations and struggle to handle combinations of multiple
variations. Pang et al. [9] attempted to address multiple types
of contaminations by designing a Variation Disentangling
GAN (VD-GAN). Nevertheless, this approach has limitations
in preserving identity characteristics and is only effective for
single-domain contamination.

Recently, several cross-domain face synthesis methods [24],
[25], [26], [27], [28], [29], [30] have been introduced,
including Cycle-consistency GAN (CycleGAN) [24], Parallel
Multistage GAN (PMSGAN) [25], Brownian Bridge Diffusion
Model (BBDM) [27], and NIR-FER Stochastic Differential
Equations (NFER-SDE) [28]. Though these methods focus
on transforming domain styles while preserving facial details,

they are not designed to eliminate facial variations from
input images. Given these limitations, this paper aims to
develop a multi-domain face normalization framework capable
of addressing universal facial variation removal and to explore
the effective integration and optimization of domain transfor-
mation and prototype learning within a unified structure.

B. Heterogeneous Face Recognition

HFR pertains to the challenge of matching identities across
disparate image domains, such as near-infrared (NIR) and
visible light (VIS) imagery. The substantial distributional
differences between these image domains significantly elevate
the complexity of the matching and recognition tasks for the
system. Existing HFR approaches can be broadly classified
into three primary strategies [31]: modality-invariant feature
representation, subspace learning-based techniques, and cross-
modal synthesis methods.

Modality-invariant feature representation methods [32],
[33], [34], [35] strive to extract common features from het-
erogeneous face data, aiming to minimize the discrepancies
between different modalities by identifying cross-modal con-
sistency during the feature extraction process. Liu et al. [33]
utilized a multi-scale Difference of Gaussian (DoG) filter to
capture illumination-invariant features from NIR and VIS face
images. Gong et al. [32] proposed a universal encoding model
that adopts a pixel-wise encoding approach to distill shared
features from heterogeneous faces. Yi et al. [34] combined
Gabor filters with Restricted Boltzmann Machines to extract
common features from such faces, while also employing
Principal Component Analysis (PCA) to reduce heterogeneity
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and redundancy. Furthermore, [35] introduced a synchro-
nized learning strategy for Local Binary Patterns (LBP) and
encoding, effectively mitigating the impact of expression and
illumination variations through binary encoding. However,
these methods often necessitate substantial prior knowledge,
and the extracted features can be redundant or lack compact,
effective representations, thereby limiting their widespread
application.

Subspace learning-based methods [36], [37], [38], [39], [40]
endeavor to project face images from disparate modalities into
a common subspace, where identity classification performance
is optimized by maximizing inter-class distances and mini-
mizing intra-class distances for more effective classification.
He et al. [36] mapped NIR and VIS faces onto orthogonal
subspaces, incorporating the Wasserstein distance to diminish
modal discrepancies. Hu et al. [38] represented cross-modal
faces as a blend of domain-specific and identity-related factors,
then proposed a cross-domain factor separation module to
erase modality differences in NIR-VIS pairs. Mudunuri et al.
[39] introduced an orthogonal dictionary alignment method to
align low-resolution NIR and VIS face images. Meanwhile,
Cho et al. [40] presented a relational graph module that
mitigates dependence on local texture details by integrating
global information from cross-domain faces. Hu et al. [41] pro-
posed the Dual Facial Alignment Learning (DFAL) method,
addressing domain discrepancies in face recognition through
feature- and image-level alignment, along with cross-domain
compact representation. Yang et al. [42] introduced the Robust
cross-domain Pseudo-labeling and Contrastive learning (RPC)
network, enhancing NIR-VIS face recognition via pseudo-
label sharing and intra- and cross-domain contrastive learning.
Hu et al. [43] developed the Adversarial Disentanglement and
Modality-Invariant Representation Learning (DMiR) method,
eliminating spectral differences in cross-modal features using
domain-relevant disentanglement, modality-invariant represen-
tation, and orthogonal decorrelation.

Cross-modal synthesis methods [1], [44], [45], [46], [47]
aim to eliminate modality discrepancies by synthesizing het-
erogeneous faces into a unified modality at the pixel level.
He et al. [44] proposed a cross-spectral face synthesis net-
work, which includes two modules: texture restoration, which
generates realistic textures, and pose correction, which pro-
duces front-facing pose images. To address the pose mismatch
issue in NIR-VIS datasets, Yu et al. [45] introduced a pose-
preserving cross-spectral face refinement method to generate
NIR-VIS paired images that maintain pose consistency at the
pixel level. Pang et al. [1] proposed a unified framework
that generates cross-domain prototypes through bidirectional
prototype learning, eliminating domain information and noise
from input faces at the pixel level. Fu et al. [47] introduced the
Dual Variational Generation (DVG-Face) framework, which
generates large-scale heterogeneous data by sampling from
noise. Our proposed UMFN method can be regarded as a
combination of cross-modal synthesis methods and subspace
learning-based methods, distinguished by its ingenious utiliza-
tion of synthesized standard prototypes to retroactively train
the HFR network. It employs a contrastive learning mechanism
to learn highly identity-discriminative features and integrates

TABLE I
MEANING OF THE NOTATIONS IN UMFN

them with domain-agnostic features extracted from the original
input by the UMFN, facilitating efficient and accurate HFR.

III. THE PROPOSED METHOD

This paper introduces a generalized framework for facial
normalization, named UMFN, with its structural overview
depicted in Fig. 2. The UMFN framework is built to process
facial images containing diverse variations (e.g., lighting,
pose, occlusion) across multiple image domains, generat-
ing standardized facial prototypes aligned with a specified
target domain. The system integrates two primary mod-
ules: (1) resolving cross-domain discrepancies by converting
input images from heterogeneous sources into the unified
target domain, and (2) simultaneously addressing multiple
facial variations while ensuring identity-preserving proto-
type generation. These modules are thoroughly discussed in
Sections III-A and III-B, respectively. Section III-C further
elaborates on the HFR network, which is optimized through
integration with UMFN to enable seamless cross-domain
recognition. Section III-D outlines the overall algorithm logic
and related relationships. Key terminologies and symbols used
in this work are consolidated in Table I for clarity.

A. Feature Decoupling and Cross-Domain Generation

To address the issue of input face images potentially
originating from diverse domains, we have developed a
feature decoupling mapping network. This network is capa-
ble of isolating domain-specific information from the latent
space, thereby producing domain-invariant representations.
Such decoupled, domain-agnostic identity features can sub-
sequently be utilized for HFR tasks.

Feature Decoupling: We design a feature decoupling map-
ping network that first extracts the primary feature z = Genc(xc)
from the input image xc via a pre-trained encoder Genc,
and subsequently generates its latent feature representation
p = map(z) using the mapping network map. Specifically, the
domain feature classifier Dc processes the latent representa-
tions p as input and produces the domain prediction code (i.e.,
the image domain to which p belongs). The objective of Dc
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is to precisely identify the domain of p, while the mapping
network map is designed to disrupt Dc’s accurate domain
prediction. Through adversarial training, the dynamic inter-
action between the two facilitates the decoupling of domain
information. Consequently, the objective function for training
Dc is defined as follows:

LDc = E
�
log P(lpre

p = lreal
xc
| p)
�
, (1)

where lpre
p is the domain label predicted by Dc, lreal

xc
is the real

domain label of xc. On the other side, the objective function
for training the mapping network map is as

Lmap = −E
�
log P(lpre

p = lreal
xc
| p)
�
. (2)

Cross-Domain Generation: We propose integrating a control
mask with reconstruction learning to enable cross-domain
image generation. The primary goal of reconstruction learning
is to train the decoder Gdec to decode domain-agnostic latent
representations p = map(Genc(xc)) conditioned on the original
attribute mask vc, thereby reconstructing the input image xc.
This framework ensures the decoder not only learns to interpret
and apply mask semantics but also leverages identity-related
features embedded in the latent representation p. Conse-
quently, by modifying the mask, images from target domains
can be generated in subsequent stages. The reconstruction
learning objective function is formulated as

Lrec = Exc∼pdata

�
‖xc − x̂c‖1

�
, (3)

where x̂c = Gdec(p, vc) is the reconstructed image of xc,
vc is the original attribute mask of the input image xc,
indicating whether xc is contaminated and its domain infor-
mation. Specifically, vc is composed of a four-digit one-hot
vector, where the first digit indicates whether the image is
contaminated, and the last three digits represent the domain it
belongs to. In Eq. (3), l1 norm is employed instead of the l2
norm to suppress the issue of blurred generated images.

B. Prototype Generation

Unlike traditional single-contamination normalization
approaches, which heavily emphasize categorizing facial
variations and meticulously modeling them, our method
revisits the core objective of prototype reconstruction. It
focuses on directly generating standardized facial prototypes
that retain identity information by leveraging identity cues
from contaminated facial samples. This strategy effectively
circumvents the complexities associated with explicitly
modeling facial variations in an innovative way.

Notably, we introduce a prototype adversarial loss, distinct
from traditional GAN-based image translation approaches that
seek to model the distribution of original face data with diverse
variations. Our loss focuses on approximating a condensed
distribution of standardized facial prototypes while simultane-
ously mitigating overfitting to these variations. Additionally,
we develop a multi-scale Markov discriminator D = [Dw,D f ]
to enhance detail refinement in synthesized faces and stabilize
training dynamics. Specifically, the domain-agnostic identity
feature p = map(Genc(xc)) is concatenated with a control
mask vc̄, where the first bit in vc̄ determines whether face

normalization is applied (1 for activation), while the remaining
three bits specify the target domain for prototype generation.
This combined feature is fed into the decoder to synthesize a
pixel-level standardized facial prototype within the designated
target domain. The adversarial objectives for training the
generator and the discriminator are defined below:

Ladv
D = Dw

�
x̂rp

c̄

�
+ D f

�
crop

�
x̂rp

c̄

��
− Dw

�
xrp

c

�
− D f

�
crop

�
xrp

c

��
, (4)

Ladv
Gdec

= −
�
Dw

�
x̂rp

c̄

�
+ D f

�
crop

�
x̂rp

c̄

���
, (5)

where Dw and D f represent the global path discrimi-
nator and local path discriminator, respectively. x̂rp

c̄ =

Gdec(map(Genc(xc), vc̄) denotes the specified domain prototype
generated by inputting xc and the control mask vc̄, while xrp

c

represents the uncontaminated faces in the training set. The
function “crop” is used to cut out the facial features from the
input face images. Considering that the Wasserstein distance
is more stable and can avoid training instability and mode
collapse in GANs, we adopt the WGAN-GP [48] loss in our
model to replace the traditional cross-entropy loss.

Furthermore, to ensure that the generated prototype x̂rp
c̄ can

effectively preserve the identity information from the input xc,
we have designed an identity feature similarity loss function.
This is achieved by feeding the generated prototype back into
the encoder and mapping network to obtain the latent feature
map(Genc(x̂rp

c̄ )), and then calculating its similarity to the latent
feature p of the input xc, thereby retaining identity. The loss
function is as follows:

Lid =
p −map

�
Genc

�
x̂rp

c̄

��2
2 , (6)

where ‖ · ‖22 denotes l2-norm. On the other hand, UMFN
transfers the identity feature retention ability from the recon-
struction learning task to the face prototype generation task.
Since these two tasks share the same input and output
domains, the transferability gap [49] between them is minimal.
Therefore, the identity feature retention ability learned from
the reconstruction learning task can be easily transferred to
the prototype reconstruction task. Therefore, the overall loss
function of the decoder Gdec is

Ladv
Gdec

= λ1Lrec + λ2Lid, (7)

where λ1 and λ2 are weighting hyperparameters of Lrec and
Lid, respectively.

C. Heterogeneous Face Recognition

At this stage, we meticulously construct an HFR network,
whose core components encompass an encoder Fθ (its network
architecture aligns with Genc in UMFN) and a fully connected
layer lθ. The detailed structure is shown in Fig. 3. Specifically,
the HFR network consists of two core operations:

Feature Fusion: During the training phase, we fuse domain-
agnostic features (derived from the source domain input
image via UMFN’s encoder Genc and mapping network map)
with identity-discriminative features (extracted from real target
domain prototypes using encoder Fθ). The fused features are
processed by a softmax layer for classification. To enhance
robustness, the fully connected layer lθ expands the feature
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Fig. 3. Overview of the HFR network and training process. The HFR
network is trained using the loss function in Eq. (10), which is composed
of Lcls (classification loss) and αLcont (contrastive loss), where α is a trade-
off hyperparameter balancing these two losses.

dimensions, enabling richer integration of multi-dimensional
identity information. The classification loss is formulated as

Lcls = softmax
�
lθ
�
Fθ(xrp

v,i) ⊕map(Genc(xn,i))
�
, i
�
, (8)

where xn,i denotes the source domain image, xrp
v,i rep-

resents the real target domain prototype, Fθ(xrp
v,i) is the

identity-discriminative feature of xrp
v,i, and map(Genc(xn,i))

corresponds to the domain-agnostic feature of xn,i. The
operator ⊕ signifies feature concatenation. During inference,
identity-discriminative features from generated target domain
prototypes are extracted via the trained Fθ and combined
with domain-agnostic features from test-phase source domain
images to enable heterogeneous face recognition.

Contrastive Learning Mechanism: During the cross-domain
generation process, the generated target domain prototypes
may experience identity feature loss or the introduction of
noise. Relying directly on such data for identity classification
training can result in overfitting to absent or noisy features,
thereby compromising classification performance. To address
this issue, we innovatively incorporate a contrastive learning
mechanism that aligns the generated prototypes with real ones
within the feature space, while simultaneously mitigating the
impact of noise and missing features. This approach ensures
that the encoder Fθ extracts features that closely resemble
those of real prototypes.

Specifically, we randomly sample two pairs of real hetero-
geneous images, (xrp

v,1, xn,1) and (xrp
v,2, xn,2), where xn,1 and xn,2

are NIR images with contamination. We then use UMFN to
perform cross-domain restoration on xn,1 and xn,2, generating
the corresponding target VIS domain prototypes x̂rp

v,1 and x̂rp
v,2.

Next, we form positive pairs (xrp
v,1, x̂

rp
v,1) and (xrp

v,2, x̂
rp
v,2), and

negative pairs (xrp
v,1, x̂

rp
v,2) and (xrp

v,2, x̂
rp
v,1). The corresponding

contrastive loss is

Lcont =
X
j,k

(1 − 〈 f j, f̃ j〉) + (1 − 〈 fk, f̃k〉)

+ max(0, 〈 f j, f̃k〉−m) + max(0, 〈 fk, f̃ j〉−m), (9)

where f j = lθ[Fθ(xrp
v, j) ⊕ map(Genc(xn, j))], 〈, 〉 represents the

calculation of the cosine similarity between two features, and
m is a margin value set at 0.5. In summary, the ultimate loss
function of the HFR network is expressed as

Lh f r = Lcls + αLcont, (10)

where α is a trade-off parameter.

D. Summary of the Proposed Algorithm

Finally, we present a summary of the proposed UMFN and
the HFR network. The UMFN framework encompasses two
primary components: (1) feature decoupling and cross-domain
transformation, and (2) prototype generation. It commences
by transforming input images into latent representations
and decouples domain-specific information to yield domain-
agnostic features. Subsequently, these features are harnessed to
generate standardized facial prototypes employing adversarial
loss and identity feature similarity loss, while a multi-scale
Markov discriminator further refines facial details. Regarding
the HFR network, it integrates the domain-agnostic features
with identity-discriminative features extracted from the proto-
types, incorporating contrastive learning to align the generated
prototypes with real ones, enabling robust cross-domain face
recognition. Together, these components constitute a cohesive
framework that provides a comprehensive solution for face
normalization and cross-domain face recognition.

IV. EXPERIMENTS

A. Datasets Descriptions

LAMP-HQ [50] is a newly created, challenging large-scale
NIR-VIS dataset comprising over 56, 000 NIR and 16, 000 VIS
face images from 573 individuals, featuring diverse expres-
sions, poses, lighting conditions, occlusions, and complex
backgrounds.In the heterogeneous face recognition experi-
ments, we adopted a 10-fold cross-validation setup, ensuring
that the training and testing sets in each trial were completely
identity-disjoint.

CASIA NIR-VIS 2.0 [51] consists of 725 identities, with
each identity containing 1 to 22 VIS images and 5 to 50 NIR
images. The experimental setup involves 10 independent tri-
als designed for heterogeneous face recognition tasks. The
training set comprises approximately 6, 100 NIR images and
2, 500 VIS images, covering a total of 360 identities. In each
experimental test phase, the gallery set includes 358 VIS
images, each representing one of 358 identities, while the
probe set contains over 6, 000 NIR images corresponding to
the same 358 identities. The identities in the training and
testing sets are completely disjoint, ensuring the independence
and fairness of the experimental results.
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BUAA NIR-VIS [52] includes 150 identities, each with
9 NIR and 9 VIS images, covering various head poses and
expressions.

CUFSF [53] is a widely used sketch dataset commonly
applied in sketch synthesis and recognition tasks. It comprises
1, 194 identities sourced from the FERET dataset [54], with
each identity represented by a standard facial photograph and
an artist-drawn sketch.

IJB-A [55] is one of the most challenging unconstrained
face recognition benchmark datasets, featuring uncontrolled
pose variations. It includes images and video frames from
500 subjects, comprising 5, 397 images and 2, 042 videos,
which are split into 20, 412 frames. On average, each subject
has 11.4 images and 4.2 videos, captured in real-world settings
to avoid frontal bias.

LFW [56] comprises more than 13, 000 images of 5, 749
identities, captured in unconstrained environments with sig-
nificant variations in expressions, poses, lighting conditions,
and other factors.

B. Experimental Setup

In the experimental section, we primilary conduct five
experiments: (1) Homogeneous Multi-domain Face Normal-
ization Experiment, (2) Heterogeneous Multi-domain Face
Normalization Experiment, (3) Domain Disentanglement and
Identity Preservation Visualization Experiment, (4) Heteroge-
neous Face Recognition Experiment, and (5) Ablation Study.
The configurations of these experiments are as follows:

1) Homogeneous Multi-domain Face Normalization
Experiment: In this experiment, we employ three types of
domain data from the LAMP-HQ dataset to train our model,
ensuring all data originates from the same set of identities
(IDs). The primary objective is to assess the model’s facial
normalization performance across multi-domain data within a
single dataset. Specifically, we utilize frontal pose (FP) data
from the LAMP-HQ dataset, where all NIR and VIS images
from 100 IDs are designated as the training set. Given that
the LAMP-HQ dataset only includes NIR and VIS domain
data, we use software1 to convert NIR photographs into sketch
images, thereby simulating a scenario encompassing three
types of domain data. Firstly, we present and analyze the
in-domain face normalization results of the UMFN model
on the LAMP-HQ dataset, as well as its performance when
transferred to the LFW and IJB-A datasets. Secondly, we
showcase and analyze the cross-domain face normalization
results of the UMFN model on the LAMP-HQ dataset. Lastly,
we quantitatively assess the face normalization performance
of the UMFN model.

2) Heterogeneous Multi-domain Face Normalization
Experiment: To showcase the model’s ability to operate effec-
tively without requiring paired training data and to validate its
generalization across diverse datasets, we leverage domain-
specific data from three independent sources. For training, VIS
domain data is sourced from 250 identities in the LAMP-HQ
dataset, NIR domain data comprises 130 identities from the

1The link for the transformation software is at https://fotosketcher.com

BUAA dataset, and Sketch domain data is extracted from 400
identities in the CUFSF dataset.

3) Domain Disentanglement and Identity Preservation
Visualization Experiment: We conduct a visualization exper-
iment, to validate the effectiveness of the proposed UMFN
in decoupling domain information and preserving identity in
multimodal scenarios.

4) Heterogeneous Face Recognition Experiment: We
conduct heterogeneous face recognition experiments on the
LAMP-HQ and CASIA NIR-VIS 2.0 datasets, following the
standard evaluation protocol in [57].

5) Ablation Study Experiment: We investigate the contri-
bution of each component within the UMFN framework and
explore the roles of the contrastive learning mechanism and
feature fusion operation in the HFR network.

C. Implementation Details and Parameter Setting

In the UMFN, we employ a Resnet-50 pre-trained on the
MS1M [58] dataset and fine-tuned on VGGFace2 [59] as the
encoder Genc to extract 2048-dimensional identity features,
keeping Genc fixed during training and testing. The mapping
network map consists of three linear layers, inputting a 2048-
dimensional vector and outputting a 2048-dimensional vector.
The feature domain classifier Dc is composed of linear layers
and outputs the predicted domain category, while the decoder
Gdec outputs images of size 224×224. The discriminators Dw

and D f are both patchGAN discriminators with a receptive
field of 70, using instance normalization as the normalization
layer, and the crop size is 150 × 150. The network architec-
tures of the decoder Gdec, the discriminators Dw and D f are
presented in Table II. The total number of trainable parameters
(Params) in the UMFN model is approximately 36.8M. The
model training was conducted on a machine equipped with
an Intel Xeon Gold 6430 processor, 32GB of memory, an
NVIDIA GeForce RTX 4090 GPU, running Ubuntu 22.04.5
LTS, and using PyTorch version 2.1.2.

In the UMFN prototype generation phase, two hyperparam-
eters, λ1 and λ2, are introduced to balance the reconstruction
loss Lrec and the identity feature similarity loss Lid in Eq. (7).
Specifically, λ2 is set to 10 as recommended in [60], while
λ1 is dynamically adjusted by 10− curepoch

sumepoch
× 9, where curepoch

and sumepoch denote the current and the total training epochs,
respectively. This dynamic adjustment incorporates a penalty
term tied to the training progress. The design rationale stems
from experimental insights: reconstruction learning effectively
leverages masks to guide domain-specific image generation in
early training stages, but its impact on identity preservation
diminishes as training advances. Thus, λ1 is progressively
reduced to address this trade-off. For HFR network training,
the hyperparameter α in Eq. (10) is empirically set to 0.001
through grid search. Optimization employs the Adam opti-
mizer with a learning rate of 0.0002 and momentum of 0.5.

It is worth noting that the implementation strategy used in
our experiments represents one of many viable configurations
tailored to our specific task. We encourage researchers to adapt
the network architecture to suit their specific requirements.
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TABLE II
THE NETWORK ARCHITECTURES OF DECODER Gdec , DISCRIMINATORS Dw AND D f

Fig. 4. In-domain face normalization results on the LAMP-HQ dataset. Fig. 4(a) illustrates the in-domain normalization results for input images with various
types of contaminations from the visible light domain of the LAMP-HQ dataset. Fig. 4(b) presents the in-domain normalization results for input images with
various types of contaminations from the near-infrared and sketch domains of the LAMP-HQ dataset.

D. Homogeneous Multi-Domain Face Normalization

In this subsection, we evaluate the performance of UMFN
in homogeneous multi-domain face normalization using the
LAMP-HQ dataset.

In-Domain Face Normalization: The in-domain normaliza-
tion results of the UMFN are presented in Fig. 4. Fig. 4(a)
showcases the results of inputting VIS domain faces corrupted
by different facial variations such as pose, lighting, occlusion,
and expression, and outputting normalized VIS domain faces.
Fig. 4(b) displays the outcomes of inputting corrupted faces
from the NIR and Sketch domains and outputting normalized
faces in their respective domains. The bottom row serves as
a reference for the true prototypes. As evident from Fig. 4,
the UMFN demonstrates the ability to concurrently normalize
diverse types of corrupted faces from multiple distinct domains
to their respective normalized states, effectively retaining the
identity of the input faces while acquiring facial prototypes.

Subsequently, Fig. 5 presents the in-domain face normaliza-
tion performance of UMFN after training on the LAMP-HQ
dataset and evaluating on the LFW and IJB-A datasets. The
results indicate that, even when the input faces are subjected
to various types of contaminations, such as occlusions, pose
variations, expression distortions, or combinations of these
corruptions, the UMFN can efficiently mitigate these facial
variations and reconstruct standardized frontal faces, while
accurately preserving the crucial identity features of the inputs.
The experiments suggest that our model possesses excellent
cross-dataset transferability and versatility in handling diverse
facial variations. Furthermore, we undertake a comparative
analysis between our UMFN and the other three recent single-
domain face normalization techniques, namely TP-GAN [61],
FNM [60] and DisPV [13], using contaminated face images

Fig. 5. Face normalization results on LFW and IJB-A datasets. The first row
presents the input samples with various facial variations, while the second
row shows the corresponding prototypes reconstructed by UMFN.

from the LFW and IJB-A datasets as inputs. The face normal-
ization results for each method are illustrated in Fig. 6. It is
evident that the target prototype generated through UMFN nor-
malization demonstrates superior performance in both image
quality and identity preservation.

Cross-Domain Face Normalization: Fig. 7 depicts the cross-
domain normalization outcomes achieved by the UMFN model
on LAMP-HQ dataset. Specifically, the inputs encompass
facial images corrupted by various factors from domain A,
whereas the outputs represent the facial prototypes generated
in domains B and C. The bottom row showcases the refer-
ence prototypes of the inputs within the VIS domain. It can
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Fig. 6. Comparison with other single-domain face normalization methods on
(a) LFW and (b) IJB-A datasets.

Fig. 7. Cross-domain face normalization results on LAMP-HQ dataset. The
second and third rows depict face normalization results in different domains
from the inputs shown in the first row. The bottom row shows the real VIS
prototypes for reference.

be observed that the UMFN model successfully addresses
the challenges of domain transfer and prototype learning,
effectively preserving the identity characteristics of the inputs
when generating uncontaminated facial prototypes for the
target domains. The inspiring results demonstrate that the
UMFN is capable of performing effective domain-specific face
normalization on facial images sourced from different domains
and contaminated by various types of facial variations, all
while efficiently retaining the key identity information of the
inputs, utilizing a single network architecture.

Quantitative Evaluation: Adhering to the protocols out-
lined in [23] and [63], we conduct a further quantitative
evaluation of the UMFN on LFW and IJB-A datasets. By
feeding restored prototypes into the ResNet-18 [62] network
for face verification, our objective is to ascertain whether
prototypes restored by UMFN enhance verification rate (VR)

TABLE III
VERIFICATION PERFORMANCE AND SYMMETRY INDEX (SI)

ON LFW AND IJB-A DATASETS

performance. Additionally, we report the Symmetry Index (SI)
[65] to facilitate a comprehensive comparison of the quality of
prototypes generated by UMFN, R&R [63], CFR [23], DisPV
[13], and the state-of-the-art Mask Rotate [64].

Table III presents the verification performance and SI met-
rics for UMFN across both datasets. The results reveal that
UMFN normalization significantly elevates the verification
performance of the ResNet model: on IJB-A, when paired
with ResNet-18, it achieves a 5.35% improvement in VR,
with accuracy gains also evident on LFW. These experiments
corroborate two key findings: (1) the removal of pose, expres-
sion, occlusion, and illumination variations from input faces
enables the model to concentrate on essential identity fea-
tures more effectively, and (2) UMFN adeptly retains crucial
identity information while mitigating these facial variations.
Furthermore, UMFN outperforms the other comparing face
normalization methods in terms of SI, generating highly sym-
metrical faces that rectify facial distortions.

E. Heterogeneous Multi-Domain Face Normalization

In this subsection, we evaluate the performance of UMFN
in the heterogeneous multi-domain face normalization exper-
iment. It is particularly noteworthy that there is currently
no other face normalization method capable of adequately
addressing this complex issue. Fig. 8 showcases the normal-
ization results of images from the LAMP-HQ, BUAA, and
CUFSF datasets across different domains (VIS, NIR, Sketch).
We observe that regardless of the dataset (or domain) the input
comes from, UMFN successfully generates prototypes that are
highly matched to the target domain styles provided by another
dataset. It effectively eliminates interfering factors such as
pose, expression, and occlusion in the input face images
while accurately preserving the input identity information.
It is worth noting that the changes after normalization are
primarily manifested in the mouth area (as indicated by the
highlighted boxes in Fig. 8(c)), due to the minimal facial vari-
ations in most images of the CUFSF dataset, which generally
exhibit simple facial expressions such as smiles. Furthermore,
the challenging nature of cross-domain normalization tasks
involving sketch images, which contain the least amount of
facial detail information, leads to slight local distortions in the
generated VIS and NIR prototypes. Despite these challenges,
the results demonstrate the UMFN’s robust multi-domain and
multi-type face normalization capabilities, particularly when
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Fig. 8. The normalization results of face images from the LAMP-HQ, BUAA, and CUFSF datasets across different domains.

Fig. 9. The face recognition results of UMFN for multi-domain prototype
restoration on paired and unpaired scenarios.

trained on unpaired datasets from multiple domains, where its
performance remains impressive.

Quantitative Evaluation: Since input faces only have
real prototypes within their respective domains and lack
corresponding cross-domain real prototypes, we assess the
recognition accuracy of the reconstructed prototypes within
their own domains. As shown in Fig. 9, in this unpaired
scenario, intra-domain prototype restoration across multiple
domains achieves a high recognition accuracy exceeding 98%,
confirming that our UMFN can perform face normalization
with high identity preservation even without paired data for
training.

Furthermore, we report the recognition results of our model
after cross-domain prototype reconstruction in paired scenar-
ios, where the probe samples with contamination originate
from the VIS, NIR, and Sketch domains of LAMP-HQ, while
the gallery real prototypes come from the LAMP-HQ VIS
domain. We observe that, compared to generating VIS pro-
totypes within the same domain, the cross-domain generation
process inevitably leads to slight feature loss or noise intro-
duction, resulting in a decrease in recognition accuracy. This
is the key reason why we introduce the contrastive learning
mechanism to train the HFR network, aiming to align the
generated prototypes with the real ones in the feature space.

F. Domain Disentanglement and Identity Preservation
Visualization

To further validate the effectiveness of our UMFN in decou-
pling domain-specific information and preserving identity in

multimodal scenarios, we conduct a visualization experiment.
Specifically, we employ t-SNE to visualize the identity features
extracted by the UMFN for VIS, NIR, and sketch samples of
10 randomly selected individuals on LAMP-HQ dataset, as
illustrated in Fig. 10. To differentiate between identities and
sample domains, we assigned distinct colors to each.

Our analysis reveals a fundamental distinction between
the input distribution (before UMFN normalization) and
the processed features. In the original feature space, sam-
ples from the same domain cluster together irrespective of
identity differences, indicating that domain-specific varia-
tions dominate over identity-related differences. In contrast,
the UMFN’s innovative architecture successfully disentangles
domain information from identity features during the feature
extraction process. This is evidenced by two key observations:
(1) distinct separation of identity features across different
IDs (see Fig. 10(c)), confirming precise identity information
preservation, and (2) effective clustering of same-identity sam-
ples from different domains (see Fig. 10(b)), demonstrating
robust domain-invariant feature representation. These results
collectively validate the UMFN’s ability to generate robust,
domain-agnostic representations while preserving discrimina-
tive identity information.

G. Heterogeneous Face Recognition

In this experiment, the UMFN is utilized to reconstruct
cross-domain prototypes from NIR data in the probe set,
producing VIS prototypes. Subsequently, we utilize the trained
HFR network to obtain fused features (i.e., concatenation of
domain-agnostic and identity-discriminative features) for both
these generated prototypes and the authentic prototypes in
the gallery set. Ultimately, by measuring the cosine similarity
between the combined features of the reconstructed prototypes
and those of the gallery set, a similarity matrix is derived,
which is then used to determine the rank-1 recognition accu-
racy and VR at FAR =0.001.

Table IV and Table V present a comparison of our UMFN
method with other advanced HFR approaches, including
ADFL [66], WCNN [36], PCFH [45], PACH [67], ADCANs
[68], MMTN [69], NLPF [57], LPL [31], and MDFD-
HFA [2], and HERE [70] on CASIA NIR-VIS 2.0 and
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Fig. 10. t-SNE visualization of feature distributions for VIS, NIR, and sketch samples from 10 randomly selected individuals.

TABLE IV

RANK-1 RECOGNITION ACCURACY AND VERIFICATION
RATE ON CASIA NIR-VIS 2.0 DATASET

TABLE V

RANK-1 RECOGNITION ACCURACY AND VERIFICATION
RATE ON LAMP-HQ NIR-VIS DATASET

LAMP-HQ datasets. It is observed that our method achieves
the highest Rank-1 recognition accuracy and verification rate
on the CASIA NIR-VIS 2.0 dataset, and performs compa-
rably to the state-of-the-art on the LAMP-HQ dataset. This
exceptional performance stems from: (1) The incorporation
of a contrastive learning mechanism that aligns the generated
prototypes with their real counterparts in the feature space,
effectively mitigating the impact of noise and missing features.
This enables the HFR encoder Fθ to extract identity-specific
features from the generated prototypes that closely resembling
those of real prototypes. (2) The fusion of domain-agnostic and
identity-discriminative features notably enhances the identity
distinguishability of the combined features.

H. Ablation Study

In the UMFN framework, there are six key modules:
Encoder (Genc), Decoder (Gdec), Mapping Network (map),
Domain Classifier (Dc), Global Pathway Discriminator (Dw),
and Local Pathway Discriminator (D f ). Notably, Genc and

Fig. 11. Face normalization results of the UMFN’s variants. The first row
depicts the input samples, while the second to sixth rows showcase the
face normalization results of UMFN after removing the DAM, the global
path discriminator Dw, the local path discriminator D f , the identity feature
similarity loss Lid , and the reconstruction loss Lrec, respectively. The final
row presents the normalization results of the complete UMFN.

Gdec act as the foundational encoding and decoding units,
respectively, and their removal renders the training process
unviable. map and Dc are tightly coupled in the domain
adversarial training process, forming an integrated module that
we refer to as the Domain Adversarial Module (DAM).

To evaluate the contributions of these components, we
perform ablation studies by systematically removing DAM,
Dw, and D f from UMFN. Additionally, we investigate the
impact of two pivotal loss terms in Eq. (7): Lid (identity
feature similarity loss) and Lrec (reconstruction loss), on the
training of UMFN. The results are visualized in Fig. 11,
and our key observations are as follows: (1) Removing the
DAM results in the retention of original domain information
in cross-domain prototypes, highlighting its role in domain
adaptation; (2) Removing Dw leads to incomplete faces with
poorly generated visual effects, underscoring its importance
in ensuring global consistency; (3) Removing D f causes a
loss of local details in generated prototypes, demonstrating its
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TABLE VI

ABLATION EXPERIMENTS OF THE CONTRASTIVE LEARNING MECHANISM
AND FEATURE FUSION IN THE HFR NETWORK

contribution to fine-grained feature preservation; (4) Without
Lid, the generated prototypes fail to preserve identity character-
istics, emphasizing its role in maintaining identity consistency;
(5) The absence of Lrec causes the control masks to fail,
preventing the generation of specified domain prototypes,
which confirms its essential role in the reconstruction process.

Furthermore, Table VI quantitatively analyzes the impact of
the contrastive learning mechanism and feature concatenation
on the HFR network training. Results show that contrastive
learning significantly enhances the network’s utilization of
the generated prototypes, allowing it to extract key features
similar to real prototypes while reducing the effects of noise
and feature loss. Besides, the fusion of domain-invariant
and identity-discriminative features improves classification
performance.

V. CONCLUSION

This paper has proposed the UMFN model that adeptly over-
comes the challenges posed by diverse facial variations and
cross-domain adaptability. By reconstructing frontal, neutral-
expression facial prototypes and facilitating unsupervised
domain adaptation, our approach addresses these limitations
with remarkable efficacy. Through joint prototype and fea-
ture learning, along with a well-designed HFR network, our
method significantly enhances identity recognition accuracy
across various domains. Comprehensive experiments demon-
strate that the UMFN achieves superior performance in both
single-modal and cross-modal face normalization tasks, while
the HFR network excels in heterogeneous face recognition.
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