
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, AUGUST 2015 1603

Learning Compact Binary Codes for
Hash-Based Fingerprint Indexing

Yi Wang, Member, IEEE, Lipeng Wang, Yiu-Ming Cheung, Senior Member, IEEE, and Pong C. Yuen

Abstract— Compact binary codes can in general improve the
speed of searches in large-scale applications. Although fingerprint
retrieval was studied extensively with real-valued features, only
few strategies are available for search in Hamming space. In this
paper, we propose a theoretical framework for systematically
learning compact binary hash codes and develop an integrative
approach to hash-based fingerprint indexing. Specifically,
we build on the popular minutiae cylinder code (MCC) and are
inspired by observing that the MCC bit-based representation
is bit-correlated. Accordingly, we apply the theory of Markov
random field to model bit correlations in MCC. This enables
us to learn hash bits from a generalized linear model whose
maximum likelihood estimates can be conveniently obtained
using established algorithms. We further design a hierarchical
fingerprint indexing scheme for binary hash codes. Under the
new framework, the code length can be significantly reduced
from 384 to 24 bits for each minutiae representation. Statistical
experiments on public fingerprint databases demonstrate that our
proposed approach can significantly improve the search accuracy
of the benchmark MCC-based indexing scheme. The binary hash
codes can achieve a significant search speedup compared with the
MCC bit-based representation.

Index Terms— Fingerprint recognition, binary codes, Markov
random fields, nearest neighbour searches.

I. INTRODUCTION

CORE to personal identification systems is the retrieval of
relevant identities based on biometric traits. With ever-

increasing data volume and access demand, it is necessary
to develop efficient search methods subject to a certain
accuracy level. This is particularly important for biometric
identity management in critical national security applications
that involve large-scale computationally intensive tasks.

Manuscript received October 7, 2014; revised January 19, 2015 and
March 21, 2015; accepted March 26, 2015. Date of publication April 9, 2015;
date of current version June 18, 2015. This work was supported in part by the
HBKU Strategic Development Fund, Hong Kong Research Grants Council
(HKBU211612 and HKBU12202214), and in part by the National Natural
Science Foundation of China (61272366 and 61403324). The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Matti Pietikainen.

Y. Wang is with the Department of Computer Science, Institute of
Computational and Theoretical Studies, Hong Kong Baptist University,
Hong Kong (e-mail: yiwang@comp.hkbu.edu.hk).

L. Wang is with the Institute of Information Engineering, Chinese Academy
of Sciences, Beijing 100093, China (e-mail: 15008401372@126.com).

Y.-M. Cheung is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong, and also with the United International College,
Beijing Normal University—Hong Kong Baptist University, Zhuhai 519085,
China (e-mail: ymc@comp.hkbu.edu.hk).

P. C. Yuen is with the Department of Computer Science, Hong Kong Baptist
University, Hong Kong (e-mail: pcyuen@comp.hkbu.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2015.2421332

For example, identity de-duplication is essential to ensure the
uniqueness of an enrolment. Current de-duplication service
typically performs cross-matching over the data set [1], which
can become prohibitive when operating at large scale.

In general, a search can be made more efficiently by
1) increasing the speed of a comparison and 2) reducing the
number of comparisons. For one-to-one comparison, the speed
largely depends on how the similarity measure is evaluated
between two instances, whereas the choice of the similarity
measure generally depends on the feature representations.
For instance, an exhaustive search can finish one million
comparisons of binary iris codes in one second on a
single computer whereas comparisons between real-valued
feature vectors require specific circuits and are usually done
much slower. On the other hand, database filtering can be
accomplished by either exclusive classification or nearest
neighbour search algorithms. In this paper, we propose an
integrative approach to index and search fingerprints in
Hamming space.

Biometric fingerprint templates are not typically represented
as fixed-length binary strings but real-valued point-sets with
a dynamic number of minutiae points. In the fingerprint
literature, there are binary embedding algorithms for
converting point-set features into binary strings, such
as [2]–[5]. However, they are mostly developed for feeding
particular security sketches of template protection in biometric
cryptosystems [6], [7]. As the objectives therein are accuracy
and secrecy, the resulting binary representations are often
of long bit-length to achieve high discriminability for
one-to-one verification. For example, the bit-implementation
of the minutiae cylinder code (MCC) [2] encodes a minutiae
point into a 384-bit long binary feature vector. In [3],
8960 spectral bits and 2000 phase bits are required to encode
a single spectral minutiae. The enhanced multi-line code
proposed in [4] takes 1476B bits per minutiae, where B is the
quantization bit-length, the value of which is usually larger
than one. Note that, even with the 384-bit MCC, it requires
15 kilobits to encode a template with 50 minutiae points, not
even including the validity mask.

Such long binary representations are acceptable for
one-to-one verification owing to the fast operations of XOR
and bit counts. However, they can be problematic for
large-scale searches. In general, a nearest neighbour search in
Hamming space can be done by exploring the Hamming-ball
around a query or using hash tables. As the average
Hamming distance increases, the Hamming-ball volume
quickly becomes prohibitive to explore. Beyond 64 bits or so,

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1604 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, AUGUST 2015

the Hamming-ball method is no longer significantly faster
than an exhaustive search. It can also be quite often the case
that a query may not find any neighbour within the restricted
volume [8]. For hash-based methods, long binary codes tend
to result in a low recall because the collision probability
decreases exponentially with an increasing code length [9].
As a result, there is a strong motivation to develop compact
binary codes for large-scale search applications.

The main contributions of this paper are:
• We study data characteristics of MCC and observe that its

binary representation is bit-correlated. This points to the
possibility of representing a minutiae feature in a more
compact binary form.

• We propose a theoretical framework for systemati-
cally learning compact binary hash codes. In particular,
we apply the theory of Markov random field (MRF)
to model adjacent bit correlations in the binary repre-
sentation of MCC. This enables us to learn hash bits
from a generalized linear model (GLM) whose maximum
likelihood estimates can be conveniently obtained using
efficient algorithms.

• We design a hierarchical fingerprint indexing scheme
based on the proposed hash codes. Under the new
framework, the binary search code length can be signifi-
cantly reduced from 384 bits to 24 bits. This allows less
hash functions and tables to be used for nearest neighbour
search in Hamming space.

The remainder of this paper is organized as follows.
Section II provides a review of the related work in fingerprint
indexing. Section III presents the theoretical framework
for modelling bit correlations and learning hash codes
from MCC binary representations. Section IV describes
the hierarchical fingerprint indexing scheme for nearest
neighbour search based on the binary index codes. Section V
reports experimental results. Finally, we draw conclusions
in Section VI.

II. RELATED WORK

Fingerprint indexing creates index values for every identity
in the database so that those with higher matching scores can
be mapped closer to each other in the index space. Earlier
work along this line has been focused on real-valued indexing
features and relevant similarity-preserving transformations for
dimensionality reduction [10]–[12]. Typically, distances of
all points to a probe in the index space are sorted to return a
candidate list.

For fast retrieval, the index terms of database entries may
be organized into certain data structures. This can be done
following the partitioning principle as in most nearest
neighbour search algorithms [13]. Examples include tree-like
data structures such as Kd-tree [14] and minutiae tree [15].
A critical step of these methods is to identify the pivots for
partitioning the space. In this regard, the index codes [16]
based on matching scores as the indexing features also fall
into this category. However, finding an optimal set of pivots
is not trivial.

Another class of nearest neighbour search techniques is
based on the collision principle [17]. The basic idea is to

hash similar points into the same “buckets” such that, with a
relatively high probability, it will find colliding segments from
two similar instances in at least some of these buckets. The
hashing strategy has been shown to outperform tree-based
techniques in high dimensions [18]. Geometric hashing is
one of the earliest collision-based methods used for point-set
(e.g., fingerprint) recognition [19]. The model points are
represented in a transformation-invariant way and stored
redundantly with their identifiers in a hash table. Recognition
of a query object is based on accumulating the collision
scores of similar local invariants and their geometric relations.
The retrieved model with the maximum collision score is
considered as the most likely candidate for a match.

Conventional fingerprint geometric hashing algorithms
use minutiae triangulation for extracting local geometric
invariants [20], [21]. However, Delaunay triangulation is
sensitive to noise and distortion. To improve the stability
and robustness, complicated construction schemes and extra
geometric invariants are required [22]. They often result in
real-valued and high-dimensional feature descriptors in order
to achieve accuracy. Moreover, most of these algorithms
generate index values by quantizing the geometric invariant
measures. As a result, homogeneous local features are used
for both index creation and feature comparisons. As only
local information is exploited, these methods can become
problematic if two fingerprints have small overlapping
areas.

Although there is an extensive literature on nearest
neighbour search in Euclidean space, only a few strategies
exist for retrieval in Hamming space [8]. The most
popular method is locality sensitive hashing (LSH) [23], [24].
Recently, LSH-like algorithms were introduced to search
large-scale biometric databases of iris codes [25], palmprint
codes [26], and MCC [27]. In [28] and [29], LSH was also
applied to combined level-1 and level-2 fingerprint features.
In these applications, LSH mainly serves for two purposes:
1) reducing dimensionality of the input binary strings, and
2) clustering data points into buckets. For binary feature
vectors, the LSH functions of random sampling bits can
preserve Hamming distance. This is due to the fact that, if the
number of sampled bits is sufficiently large, the collision
probability of two hashes is equal to the fraction of bit
positions on which the two binary strings agree [8]. Thus,
to achieve a good precision, LSH-related methods require
more sampling bits and hash tables. Both can lead to a
significant increase in query time and storage requirement
for long inputs, typically seen in biometric representations,
that often contain hundreds, if not thousands, of bits in a
single instance.

Recently, machine learning techniques were leveraged to
pursue compact binary hash codes for similarity search of
natural images. This results in various data-dependent
algorithms by considering the distribution of data
points [30]–[32]. It is known that the solutions heavily depend
on specific data characteristics and performance requirements
of their applications [33]. Therefore, binary hashes developed
for general images may not be used directly for biometric
indexing because biometric data has its own characteristics

WANG et al.: LEARNING COMPACT BINARY CODES FOR HASH-BASED FINGERPRINT INDEXING 1605

and performance requirements. Compared to a nature image
search, biometric identification requires higher accuracy for
more critical security applications. Due to the large sample
variations inherent in biometric feature acquisition, the index
value of a probe is not going to be identical to that of a
match in database. For fingerprints in particular, the number
of feature points is dynamic and there is no alphabetical nor
numerical order among these points. Such specific challenges
require special hash designs in the context of fingerprint
search applications.

III. LEARNING COMPACT BINARY CODES

In this section, we provide the details of our
approach to learn compact binary codes from the binary
representation of MCC for fingerprint search applications. The
MCC representation is a robust and effective local feature
descriptor. Recent studies showed that MCC, being a minutiae-
only algorithm, can provide the best performance in terms
of accuracy [2], [34] even for cross-device matching [35].
Its bit implementation requires hundreds of bits, compared
to thousands of bits as in [3] and [4], for representing
a single minutiae feature in the minutiae point set of a
fingerprint template. It enables binary feature based fingerprint
indexing [27], [28] and high performance fingerprint matching
via parallelism [34]. Therefore, we choose to build on MCC by
exploiting the data characteristics of its binary representation.

A. Data Characteristics of MCC

The MCC representation is derived from the minutiae-only
representation (i.e., x-y coordinates and angles) of standard
fingerprint templates. It encodes the neighbourhood informa-
tion of each minutia into a 3D data structure, called minutiae
cylinder, which is invariant to translation and rotation, and
is robust against skin distortion and small feature extraction
errors. The 3D cylinder structure is divided into sections, each
corresponding to a directional difference in the range [−π, π].
Sections are discretized into a fixed number of N × N cells.
Each cell value is calculated by accumulating spatial and
directional contributions from all other minutiae in the
neighbourhood for encoding. Note that the spatial contribution
affects cell values in base and the directional contribution
affects the height (i.e., which section to assign a base
value) of the 3D cylinder. An example is provided in Fig. 1
for illustration of the MCC descriptor. In the original
MCC algorithm, each cylinder cell is associated with
two bits: one denoting the cell value and the other specifying
the cell “validity”. The corner cells may be labelled as
“invalid” so that they are not used in the cylinder matching
phase. The readers are referred to [2] for more details.

The cell values are quantized into binary values for the bit
implementation. In practice, bits from all sections are concate-
nated into one fixed-length binary feature vector. It is worth to
note that the resulting binary representation is long and with
far more zeros than ones after quantization. This effect can be
demonstrated by the statistics over 100,000 MCC bit-based
representations that we collected from 2000 fingerprints in a

Fig. 1. Illustration of the MCC descriptor: (a) The local neighbourhood of
a minutiae m; the reference frame created with m located at the origin and
the x-axis pointing to its direction. (b) A cylinder is divided into six sections,
each of which encodes some relative minutiae information in (a).

benchmark database, which shows that the average bit value
is 0.05. That is, about 95% of MCC bits are zeros on average.

We may use entropy [36] to derive a conservative estimate
of the number of bits required for representing the local
minutiae feature. In particular, let X1, X2, . . . , Xn , where
n = N × N , be a sequence of random variables, each
representing the binary value of a cell on the regular lattice
of an MCC section. If X1, X2, . . . , Xn are independent and
identically distributed, the probability p = Pr{X = 1} is the
same across all bit positions and is equivalent to the average
bit value. Given p = 0.05 as obtained in our test above,
the entropy H (p) per MCC bit is thus approximately 0.3.
Without loss of information, it is theoretically possible to find
a more compact description of 384 × 0.3 = 115.2 bits for
n = 384 in this case. If X1, X2, . . . , Xn are indepen-
dent but not identically distributed instead, we estimate
pi = Pr{Xi = 1} at each bit position for i = 1, . . . , n and
obtain the entropy as

H (X1, X2, . . . , Xn) =
n∑

i=1

H (Xi). (1)

In this latter case, the expected description length becomes
102.1 bits for the MCC bit-based representation.

Certainly, if the bits are somewhat correlated, the expected
description length can be even shorter because

H (X1, X2, . . . , Xn) ≤
n∑

i=1

H (Xi) (2)

1606 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, AUGUST 2015

Fig. 2. Neighbours of cell i on a regular lattice where realizations in
lower-case letter are written for random variables associated with each site.
The outermost neighbours are encoded in different colors for the nth-order
neighbourhood system with n = 1, 2, 3, 4.

with equality if and only if the Xi ’s are independent [36].
Indeed, correlations are likely to exist in the MCC bits
due to the way they are generated. As shown in Fig. 1,
when generating the MCC descriptors, the cell values are
obtained from accumulating contributions of minutiae in the
neighbourhood. In particular, the spatial contribution that a
neighbouring minutia, denoted by mt , gives to a cell m is a
standard Gaussian function of the Euclidean distance between
mt and m [2]. The continuous function can extend minutiae
contributions to adjacent cells, resulting in correlated values
and hence bit dependencies even after quantization. This effect
enables us to develop more compact binary codes by modelling
bit correlations in the binary representation of MCC.

B. Modelling Bit Correlations

We propose to model each MCC section as an MRF for
capturing bit correlations. MRFs have been widely used in
image processing and computer vision tasks [37], [38].
They have also been adapted to fingerprint recognition
for smoothing ridge orientation fields [39] and fingerprint
enhancement [40]. Most of the work follow the paradigm of
texture modelling [41], whereas in this paper we apply MRF
for hashing long binary representations into more compact
forms.

We consider a neighbourhood system N = {Ni |∀i ∈ S},
where S is the regular lattice of an MCC section and Ni is
the set of sites neighbouring to cell i within an integer-
numbered radius. The radius value defines the order of the
neighbourhood system N . Figure 2 illustrates an example by
colouring outermost neighbours that encompass lower-order
ones in the nth-order system for n = 1, 2, 3, 4.

Specifically, we treat the set of random variables
X1, X2, . . . , Xn on S as a homogeneous MRF. In this way,
only the neighbouring cell values are correlated. That is,
p(xi |xS−{i}) = p(xi |xNi), where xS−{i} denotes the values
of bits on S excluding i , and xNi denotes only the values
of bits neighbouring to i . Further, the homogeneity property
specifies that p(xi |xNi) is translation invariant to i . That is,
if xi = x j and xNi = xN j , then p(xi |xNi) = p(x j |xN j)
for i �= j .

There are a few methods for MRF parameter
estimation [37]. One approach is by coding [42]. The basic

Fig. 3. Coding of a second-order MRF system. The “Y” sites are mutually
independent in the presence of the “·” sites.

idea is to partition S into several disjoint sets S(k) such
that no two sites in S(k) are neighbours to each other.
Under the Markovian property, variables associated with
the sites in S(k) are mutually independent, which provides
convenience to calculate the maximum likelihood estimate of
MRF parameters.

We are inspired by the coding method for a lossy
compression. To illustrate the idea, Fig. 3 shows coding for a
second-order MRF neighbourhood system. The “Y” sites form
a coding set S(Y). Due to Markovianity and homogeneity, the
“Y” site variables are independent and identically distributed
given values at the remaining “·” sites. Accordingly, the
independent observations yi on the “Y” sites have a joint
distribution conditional on the MRF parameters θ , which is
the product of density functions f (yi |θ), i.e.,

f (y|θ) =
∏

i∈S(Y)

f (yi |θ). (3)

Since the expected value E(Yi) = Pr{yi = 1} is a function
of f (yi), we may set

E(Yi) = g(xNi |θ), (4)

where g(·) is an unknown function defining the relationship
between the expected value E(Yi) and some explanatory terms
xNi in the local neighbourhood, conditional on θ . By the
homogeneity property, we can further drop the subscripts in (4)
for building the model.

Once the model is trained, we can estimate E(Yi) and
apply a threshold to produce one bit at each “Y” site i .
In this way, (4) can be regarded as hashing the neighbourhood
information, carried by xNi , into a single bit, by quantiz-
ing E(Yi). The compression ratio is effectively 4 : 1 for a
second-order neighbourhood system, as shown in Fig. 3, and
9 : 1 for a third- or fourth-order scheme accordingly.

Usually, the set of MRF parameters θ is estimated by taking
an arithmetic average of the maximum likelihood estimates
over all coding sets. This is done by shifting the coding
framework over the MRF lattice [41], [42]. For fingerprint data
and with the homogeneity property, it is possible to collect
a large number of (yi , xNi) samples on a single coding set
from MCC sections across all minutiae templates. With such
a large sample size available, the MRF parameters θ can
be approximated by a single coding estimate as the sample
statistics converge to the same value from all coding sets.

C. Learning Binary Hash Codes

Instead of estimating the MRF parameters θ , we propose to
regard the statistical relationship in (4) as a regression with

WANG et al.: LEARNING COMPACT BINARY CODES FOR HASH-BASED FINGERPRINT INDEXING 1607

Fig. 4. Schematic diagram of learning the proposed binary hash codes.

a set of parameters β under the framework of GLM [43].
GLM provides a unification of various statistical methods
particularly for distributions from the exponential family.
In GLM, the evaluation interests are usually not the specific
distribution parameters θ but a smaller set of parameters β
that link the random variables to the explanatory terms. This is
precisely the situation that we encounter in (4) in our context.

One strength of GLM is that it is not limited to distri-
butions from the exponential family. In fact, it suffices to
know the mean-variance relationship. This provides flexibility
and robustness to model specification and parameter
evaluation. Moreover, the maximum likelihood estimate of
GLM parameters can be readily obtained using established
optimization algorithms [43]. Under the GLM framework,
our bit correlation model can be specified in terms of
three essential components, namely, the probability distribu-
tion, the linear predictor and the monotone link function.

Specifically, let x̃1, x̃2, . . . , x̃t denote t possible different
neighbourhood configuration patterns in one MCC section.
By definition xNi in the neighbourhood of cell i must match
one of the t configuration patterns. Then, for each explanatory
pattern x̃i , i = 1, 2, . . . , t , we collect ni samples of the
pair (yi , x̃i) and count the number Zi for which yi = 1.
Let Zi ∼ Binomial(πi , ni), where the binomial distribution
parameter πi denotes the probability of yi = 1 in response to
a particular configuration pattern x̃i . Thus, the parameter πi

is in fact E(Yi) which is the left-hand side of (4)
and is of our main interest. We can simplify the
binomial distribution as Di = Zi/ni ∼ Binomial(πi). The
log-likelihood function for a maximum likelihood estimate
of π1, π2, . . . , πt , given observations of the response
probabilities d1, d2, . . . , dt , is therefore

l(π1, . . . , πt |d1, . . . , dt)

=
t∑

i=1

[
di · log

(πi

1− πi

)
+ log(1− πi)

]
. (5)

The linear predictor has the form Xβ for all explanatory
terms X = [x̃1, x̃2, . . . , x̃t]T , given p < t parameters in
β = [β1, β2, . . . , βp]T . We propose to compose x̃i from
the combination of cliques which can effectively summarize
the neighbourhood information. The details will be discussed
separately in Section III-D.

The monotone link function connects the expected value of
those response variables to the linear predictor. For example,

the canonical link function of a binomial distribution with
parameter πi is the logit link log[πi/(1 − πi)] = x̃T

i β = ηi .
Therefore,

πi = g(x̃i |β) = exp(x̃T
i β)

1+ exp(x̃T
i β)
= exp(ηi)

1+ exp(ηi)
. (6)

Accordingly, we obtain l(β1, . . . , βp|d1, . . . , dt ; x̃1, . . . , x̃t),
denoted by l(β|·) for short, from (5) and (6). Note that p < t
results in a significant reduction on the number of parameters
required for model specification. To obtain the maximum
likelihood estimate for β, we need to use the chain rule
of differentiation on l(β|·) with respect to each β j . This
gives the score U j = ∂l/∂β j for j = 1, 2, . . . , p. The
variance-covariance matrix of the U j ’s is also termed the
information matrix J with each element Jj,k = E[U j Uk].
The method of scoring gives an iterative numerical
evaluation of maximum likelihood estimates based on the
Newton-Raphson algorithm:

b(m) = b(m−1) + [J(m−1)]−1U(m−1), (7)

where b(m) is the vector of maximum likelihood estimates for
β1, . . . , βp at the m-th iteration, and the score matrix U(m−1)

and the information matrix J(m−1) are evaluated based
on b(m−1) whose initial value can be randomly selected.
Multiplying J(m−1) at both sides, (7) can be written explicitly
in matrix notation as [43]:

XT W(m−1)Xb(m) = XT W(m−1)z(m−1), (8)

where W is a diagonal matrix with elements

wii = 1

πi (1− πi)

(∂πi

∂ηi

)2
,

and z is a vector with elements

zi =
p∑

k=1

xi,kβk + (di − πi)
(∂ηi

∂πi

)
.

Both πi and ηi are evaluated at b(m−1). Evaluation of (8)
is called iterative weighted least squares (IRLS) as it takes
the same form as a linear model obtained by weighted least
square except being solved iteratively for W and z depending
on b. When �b = b(m) − b(m−1) is sufficiently small, the
IRLS procedure is converged with β.

Figure 4 plots a schematic diagram of our proposed bit
reduction scheme. At the training stage, the MCC’s are pooled

1608 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, AUGUST 2015

Algorithm 1 Training Model Parameters
INPUT : A training set of minutiae templates

DBt = {T1, T2, . . .}
OUTPUT: model parameter matrix β = {β[k, j]}

where k = 1, . . . , p for p explanatory
variables

and j = 1, . . . , 6 for each MCC section.

Reset counters Z [i, j] = 0 and n[i, j] = 0,
where i = 1, . . . , t for t possible x patterns;
foreach minutiae template T in DBt do

foreach minutiae point in T do
M ← MCC binary representation;
foreach S j ⊂ M of the j -th MCC section do

foreach Y site in the coding set S(Y)
j ⊂ S do

y ← site values of Y ;
x̃i ← neighbour site values of y;
n[i, j] = n[i, j] + 1;
if y == 1 then

Z [i, j] = Z [i, j] + 1;
end if

end foreach
end foreach

end foreach
end foreach
foreach S j ⊂ M of the j -th MCC section do

foreach i in [1, . . . , t] do
di ← Z [i, j]/n[i, j];

end foreach
substitute (d1, . . . , dt ; x̃1, . . . , x̃t) into (8) and
evaluate the j -th column of β;

end foreach

Algorithm 2 Learning Binary Hash Codes
INPUT : MCC binary descriptor M;

model parameters β;
OUTPUT: hash code C

foreach section S in M do
foreach Y site in the coding set S(Y) ⊂ S do

xNi ← neighbour site values;
πi = g(xNi ; β) as in (6);
yi = {0, 1} ← threshold πi at ε;
add yi to the binary string C;

end foreach
end foreach

to collect the configuration patterns x̃i and their observed
responses di . All the (di , x̃i) pairs are then input to GLM
for model fitting as outlined in Algorithm 1. The expected
“Y” cell response πi is estimated and used to encode the local
neighbourhood with a particular configuration pattern xi into
a single bit yi ∈ {0, 1}. In particular, the parameter ε serves
as the encoding threshold where yi = 0 if πi < ε; yi = 1
if πi ≥ ε. The process is outlined in Algorithm 2.

Here we give a numerical example for the key quantities
shown in Fig. 4. In a second-order MRF system, for example,

the configuration pattern x̃i = [1, 1, 0, 1, 1, 0, 1, 0, 0] has
appeared ni = 176 times, and in ten of these instances the
“Y” cell response is one. This gives di = 10/176 = 0.0568.
Note that most statistical packages (see [43] and [44]) for
fitting GLM have implemented the IRLS procedure of (8).
We used the glm function from the stats package in R where
the sample size ni may be used as an optional prior weight for
model fitting. As a result, the estimated value of πi in response
to the pattern xi = [1, 1, 0, 1, 1, 0, 1, 0, 0] is πi = 0.0880, and
the bit output is yi = 0 given ε = 0.1.

D. Order of the MRF

The joint distribution of the MRF variables x has the
general form P(x) = exp[Q(x)]/ ∑

exp[Q(x)], where Q(x)
is called an energy function by taking a sum over all possible
cliques, i.e., subsets of internal sites with a single site or
mutual neighbours. For a rectangular lattice, the order of an
MRF determines the number and types of cliques in
a neighbourhood scheme. For example, the first order
neighbourhood system contains the single-site and horizontal
and vertical pair-site cliques. The second order system
includes, in addition to those of the first order system, diagonal
pair-site cliques and triple-site and quadruple-site cliques.
As the MRF order increases, the probability distribution
depends on not only more variables from neighbouring
sites but also possibly more complex interactions of these
neighbours. Since each MCC section has only 8 × 8 sites,
we limit our attention to the case of a maximum fourth-order
dependence for practical constructions.

The homogeneous first-order scheme for binary random
variables on a rectangular lattice has the energy function [42]:

Q(x) = β1

∑
xi, j + β2

∑
xi, j xi+1, j + β3

∑
xi, j xi, j+1,

(9)

where β = {β1, β2, β3} are parameters for the single-site
cliques and vertical and horizontal pair-site cliques. This
leads to the probability structure of y conditional on a given
neighbourhood pattern x:

pi (y|x) = exp{y · f (x)}
1+ exp{ f (x)} (10)

with

f (x) = β1 + β2(t + t ′)+ β3(u + u′) (11)

in the notation of Fig. 2.
The homogeneous second-order scheme has more terms

added to (11), including:
• Two types of diagonal pair-site cliques:

β4(v + v ′)+ β5(w +w′). (12)

• Four types of triple-site cliques:

β6(tu + u′w +w′t ′)+ β7(tv + v ′u′ + ut ′)
+ β8(tw + w′u + u′t ′)+ β9(tu

′ + uv + v ′t ′). (13)

• Quadruple-site cliques:

β10(tuv + t ′u′v ′ + tu′w + t ′uw′). (14)

WANG et al.: LEARNING COMPACT BINARY CODES FOR HASH-BASED FINGERPRINT INDEXING 1609

Fig. 5. Each minutiae point in its binary representation creates a Hamming
ball in the search space. We propose to reduce the search radius of each point
using more compact codes.

In particular, (13) and (14) can be regarded as the effect
of interaction terms of the neighbouring sites. The scheme
becomes an auto-logistic model if parameters for the
interaction terms, i.e., β6 to β10, become all zeros.

Therefore, for Pr(Y = 1|x), we can construct the explana-
tory variables in xNi as [1, (t + t ′), (u + u′), . . .]T with
terms from (11) to (14) so that ηi = f (x) = xT β with
β = [β1, β2, β3, . . .]T in (6). Note that x may be extended
with terms from higher-order schemes. In the simplest case,
a third-order auto-logistic model will include two additional
terms (m + m′), (l + l ′) and a fourth-order model will add
(o1 + o1′ + o2 + o2′) and (q1 + q1′ + q2 + q2′). Note that
a lower-order MRF is a special case of a high-order MRF
by setting parameters associated with the additional terms
to zero.

IV. HASH-BASED FINGERPRINT INDEXING

Minutiae templates are indexed by an unordered set of
binary hash codes. The conventional Hamming ranking only
applies to a single minutiae point and does not guarantee
any correspondence if a point is compared to its counterparts
(compatible points). The situation studied here is illustrated
in Fig. 5, where every minutiae point creates a Hamming ball
encompassing its nearest neighbours in Hamming space.
Therefore, it is a matter of collecting evidence from all the
Hamming balls of a query fingerprint to nominate the most
likely candidates of its match. In the following, we propose a
hierarchical collision-based approach for indexing fingerprints
with binary hash codes.

A. Hierarchical Fingerprint Indexing

We showed in [45] that a geometric hashing based on
the MCC (Geo-MCC for short hereafter) can improve
the retrieval accuracy over existing fingerprint indexing
algorithms including the state-of-the-art MCC-LSH [27].
The MCC-LSH and other fingerprint geometric hashing
algorithms used homogeneous features for both indexing
points and approximating point similarities, which generally
require high-dimensional representations to generate key
values. The Geo-MCC method incorporates complementary
information of local invariants and their relative geometric
configurations for matching points and generating key values,
respectively. It is more robust against noise and uncertainties
such as missing points which are not unusual for fingerprints.

However, Geo-MCC has two limitations. Firstly, a few
geometric hash bins contain a large number of entries.
As the longest list dominates the search time, a more
uniform distribution of the entries is desired. Secondly, the
point matching is based on the MCC bit-based representation.
Although this is done by fast bit operations in Hamming space,
it is still desirable to reduce extensive comparisons of long
binary codes. LSH can distribute binary codes more evenly
to buckets by random bit sampling. Therefore, in this paper,
we combine the merits of both hash-based methods
and propose a hierarchical indexing scheme, named as
Geo-LSH for short hereafter. Figure 6 illustrates a general
schematic diagram of the proposed Geo-LSH framework.
In the following, we describe the proposed algorithms in
details.

The local invariants are MCC features [2] that may be
hashed into more compact forms as introduced in Section III.
We call the minutiae point that defines the local neighbourhood
invariants as basis. The basis representations are indexed by
LSH functions for binary vectors [17]. In the approach, each
LSH function randomly selects a few bits from the input binary
vector. Suppose that the input binary vector has n bits and
the random selection is h bits per LSH function. Then, all
entries in an LSH bucket have a Hamming distance no larger
than (n − h) bits. In other words, all bucket entries retrieved
from the L LSH tables for a query point are in the query’s
Hamming ball with a radius of (n − h) bits. With the binary
input of the same bit length, decreasing the number h of
random selection effectively increases the radius of Hamming
ball search, whereas increasing the number of LSH functions
explores more instances of the same radius but different at
bit positions in the search space. Both include more instances
for a nearest neighbour search, which avoids missing the true
match at a cost of increasing the search time.

Each entry in a hit bucket contains an identifier of the
instance and a feature for similarity measure. We propose
to construct the matching feature from geometric hashing,
called geometric dictionary in this paper. The underlying
idea of geometric hashing is to incorporate relative spatial
configuration of the local invariants as the access keys [19].
This can be done by creating basis-defined coordinates
as if “seeing” the invariants from multiple access points
(geometric hash keys). The multiple views create redundancy
of description for the local invariants, which improves the
robustness of matching against missing points and increases
the probability of successful collisions. Conversely, we may
use a bunch of geometric hash keys to identify a basis that
unambiguously defines an orthogonal coordinate system in
which the access points reside. An example is shown in the
subframe of Fig. 6. Denote a basis point as q . Thus, every
other point p in the point-set can take an affine transform
with respect to q followed by a quantization as in [45].

The quantized values can be aggregated into a single integer
number for positioning p in the reference frame defined by a
particular basis. Accordingly, we create an integer array to
construct a geometric dictionary. In particular, we implement
the dictionary as a hash table container with the created
integers as access keys. The access keys of each dictionary

1610 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, AUGUST 2015

Fig. 6. The proposed Geo-LSH framework for a hierarchical collision-based fingerprint indexing approach.

encode the global geometric configuration from the view of a
particular basis point. The matching of geometric dictionaries
mimics geometric hashing in a micro way. In this way,
we construct a hierarchical indexing framework where the
first-level LSH is indexed by the basis points and the
second-level geometric hashing is deployed by the geometric
dictionaries.

The second-level geometric hashing is linked to the
first-level LSH via the basis points. Each LSH table entry
is composed of the pair (Model_I D, Minutiae_I D) for
identifying the basis point and the address of a geometric
dictionary associated with that basis. For example, a typical
LSH table entry may contain the identity (i, j) and a pointer
value Ptr(Si

j) recording the address of dictionary Si
j defined

by the basis (i, j). Algorithm 3 outlines the main procedures
for creating the hierarchical indices.

B. Searching by Accumulated Collisions

At retrieval time, a query template Q creates a set
of binary index codes for the basis points and a set of
dictionaries defined by each basis. For a query point,
e.g., q ∈ Q in Fig. 6, the LSH functions are applied to binary
code Cq for allocating collision buckets in the corresponding
hash tables. An authorized user is able to access all
entries in the hit buckets and retrieve the identifier
(Model_I D, Minutiae_I D) and the dictionary address
of potential matched points. Algorithm 4 summarises the
main procedures.

The matched point similarity is measured by the number of
collisions between the query and matched dictionaries, denoted
as colli sion(Sq, Si

j) in Algorithm 4. Recall that the geometric
dictionary is implemented as a hash table based container.
Thus, the collision is simply the number of hit buckets

Algorithm 3 Creating Hierarchical Indices
INPUT : minutiae templates DBe = [T1, T2, . . . , TN];

model parameters β; set of LSH functions
H = { f1, f2, . . . , fL}

OUTPUT: hash tables H1, H2, . . . , HL and
an unordered set of dictionaries {Si

j }
foreach minutiae template Ti in DBe do

foreach minutiae point pi
j in Ti do

foreach minutiae point pi
k(k �= j) in Ti do

si
k ← geometric transform pi

k w.r.t. pi
j ;

quantize and insert si
k into dictionary Si

j ;

end foreach
E ← (i, j, Si

j);
Mi

j ← MCC binary descriptor for pi
j ;

Ci
j ← HashCode (Mi

j , β);
foreach fl in H do

b← fl(Ci
j);

insert E into bucket b of Hl ;
end foreach

end foreach
end foreach

via the access keys. The number is accumulated across the
LSH tables. This is done with an accumulator matrix A reset
for every basis point. The most likely match to the query basis
is the one, among others belonging to the same Model_I D,
that has the maximum number of accumulated collisions. The
value is taken as a score for Model_I D and accumulated
for all query points in Q. The final list of candidates can
be produced by sorting the score accumulator and return as

WANG et al.: LEARNING COMPACT BINARY CODES FOR HASH-BASED FINGERPRINT INDEXING 1611

Algorithm 4 Searching by Accumulated Collisions
Input : A query template Q; model parameters β;

set of LSH functions H = { f1, f2, . . . , fL };
hash table H1, H2, . . . , HL and dictionaries {Si

j }
Output: a list of candidates C L = {(i, sco[i])}
reset score accumulator sco[i] = 0;
foreach minutiae point q in Q do

reset collision accumulator A[i, j] = 0;
foreach minutiae point t (t �= q) in Q do

st ← geometric transform t w.r.t. q;
quantized and insert st into Sq ;

Mq ← MCC binary descriptor for q;
Cq ← HashCode (Mq , β);
foreach fl in H do

b← fl(Cq);
foreach (i, j, Ptr(Si

j)) in b from Hl do
A[i, j] = A[i, j] + colli sion(Sq, Si

j);

end foreach
end foreach
foreach Ti with at least one collision in A do

sco[i] ← sco[i] + max j {A[i, j]};
end foreach

end foreach
Return C L = {(i, sco[i])} with the maxc highest scores

the top maxc number of Model_I D’s that have the highest
accumulated scores.

C. Memory Consumption

Assume a fingerprint database of N minutiae templates and
each template contains F minutiae points. Every minutiae
point in a template defines a basis for a specific geometric
transformation of the point-set. This results in O(N F) basis
points indexed by LSH and O(N F) dictionaries indexed by
geometric hashing, respectively. It is possible to implement
the dictionaries as an array index of (F − 1) 4-byte integers.
But such a direct approach can require a logarithmic search
time. So we implement the geometric dictionaries in hash
table based containers that can offer constant-time lookups,
as provided in the standard C++11 library. Since each dic-
tionary is independent of each other, the related processing
can be done in parallel and in an asynchronous manner.
It also allows easy addition and removal of instances, which
is vital with large datasets. The dictionaries may be stored on
separate disks and accessed independently via pointers when
needed.

The basis points are indexed by binary codes. There are
O(N F) entries in each LSH table. Each entry contains
a 4-byte identifier (Model_I D, Minutiae_I D) and a 4-byte
address of the dictionary associated with the basis point. The
number of bits required for an identifier should be larger
than �log2(N F)�. Thus, 4 bytes (32 bits) can identify
16 million fingerprints each with maximum 128 minutiae
points. Note that the hash functions are independent and do
not require continuous memory. The LSH tables can be loaded

and searched in parallel. With N = 1.6× 106 and F = 128,
the memory required for a LSH table is about (4+4)×N×F =
8× 1.6× 106× 128 = 1.5GB, which can be easily fit into the
memory of most desktop PCs today.

Note that each LSH table accommodates a copy of all points
(hashed to different buckets though) from the enrolled subjects.
As more hash tables are used, more replicates of the database
entries have to be stored. Therefore, reducing the number
of hash tables is needed for memory savings especially on
large-scale data sets.

D. Computational Complexity

Existing fingerprint geometric hashing algorithms construct
local invariant features based on minutiae triangulations. This
preprocessing takes O(F3) time for arbitrary minutiae triplets
and O(F log F) time for the Delaunay triangulation [22], [46].
Our approach requires two preprocessing parts. One is to
obtain binary codes. Once the model parameters are learned
from the training set, it takes O(F) time to compute MCC and
subsequently O(F) time to compute the binary hash codes.
This part of preprocessing is very fast as each MCC bit-based
representation can be computed within a millisecond using the
MCC SDK [47] on a 3.40 GHz Intel(R) machine. The other
part is to obtain geometric dictionaries. Since every minutiae
point is used as a basis, there are F transformations for
calculating the relative positions of F − 1 points in the basis-
defined reference frame. This results in O(F2) operations.
Therefore, the total preprocessing time is 2O(F) + O(F2)
for a template.

At retrieval time, the key value of a query point is hashed,
and then the corresponding bucket is searched for the matching
item. The hashing and bucket access are constant-time, but
the time to search a bucket for the matching item is linear
with the number of items in the bucket. It is desirable to
keep the number of items in each bucket small, which is
affected by two factors. Firstly, the number of buckets should
be large enough and every bucket contains at least one item.
Secondly, the hashing function should distribute items more
evenly among the buckets so that they each contain about
the same small number of items. In LSH, the number of
buckets is controlled by the number of bits selected by each
hash function. As the number of items increases, the bit
length of binary index codes should also increase. Ideally, for
binary codes that have maximum entropy, random sampling
bits will produce bit patterns of the same length with an equal
probability and thus distribute the binary descriptors to buckets
indexed by the bit patterns uniformly. In that case, by selecting
a sufficient number of bits, it is possible to provide constant
lookup time in the LSH table.

The proposed hierarchical indexing casts a vote to every
entry in the hit buckets and accumulates evidence from
relevant dictionaries. Therefore, the number of entries in the
most occupied bin in an LSH table determines the worst case
scenario for a query search. By sampling long enough bits,
LSH can generate a sufficient number of possible buckets.
Thus, the search complexity largely depends on how the
basis points, hashed by their binary code representations, are
distributed over the buckets. Suppose the most occupied bin

1612 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, AUGUST 2015

has M entries (the worst case being M = N F). A query point
needs to search M dictionaries and find the best match with
maximum collisions of the geometric indices. For a fingerprint
with F minutiae points, the search time complexity is thus
O(M F). The maximum collision counts are accumulated for
all N fingerprints in the database. The final results of N scores
are sorted to produce a list of match candidates, which can be
done in O(N log N) time.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
approach. In particular, we demonstrate the search accuracy
achieved by our hierarchical indexing approach and the
speed-up in search using more compact codes after hashing as
proposed in this paper. The experiments are conducted on the
public fingerprint benchmark databases of FVC2002 DB1 [48]
and NIST SD 14 [49].

FVC2002 DB1 has two subsets: FVC2002 DB1a
contains 800 optical-scanned fingerprints from 100 subjects
each with 8 different impressions, and FVC2002 DB1b
contains 80 fingerprints from 10 subjects separated from
those recorded in FVC2002 DB1a. In the following
FVC experiments, we used FVC2002 DB1b for training
the model parameters and FVC2002 DB1a for testing the
indexing performance. Unless otherwise specified, the first
impression was used for enrolling the subject and the rest
seven impressions of the subject were used as query for
searching the FVC2002 DB1a database.

The NIST SD 14 database contains in total 27,000 pairs
of ink-rolled impressions scanned from fingerprint cards.
In general, the ink-rolled impressions tend to suffer more noise
and distortions compared to the live-scanned fingerprints. The
instances in NIST SD 14 are collected randomly to resemble
the natural horizontal distribution of fingerprint classes.

In all experiments, we used the third-party commercial
software VeriFinger 6.6 from NeuroTechnology to extract
minutiae features from the fingerprints. No particular
pre-processing steps, such as image enhancement, foreground
segmentation or fingerprint alignment, were carried out before
feature extraction. The extracted minutiae templates are
input to the MCC SDK v1.3 software [47] using the same
parameters reported in [27] to create the MCC bit-based
representations. In particular, we followed the practice in [27]
that disregards the cell validity bits by considering all
cells valid. Therefore, MCC bit-based representation has
effectively 384 bits created from 8 × 8× 6 cylinder cells for
each minutiae feature.

The 384-bit MCC is input to Algorithm 1 and Algorithm 2
to generate binary hash codes. We tested the 96-bit and 24-bit
binary hash codes generated from the second- and third-order
MRF system, respectively. Recall in Algorithm 2 that the
encoding threshold ε can be used to control the output ratio
of zero- and one-valued bits. Increasing ε has the effect
of producing more zero-valued bits and resulting in more
instances hashed to the same bin. In the extreme case where
we have all zeros, our proposed hierarchical indexing scheme,
Geo-LSH, will reduce to exhaustive comparisons based on
geometric dictionary. On the other hand, decreasing ε will

Fig. 7. ANN search performance w.r.t. Hamming ball radius for binary codes.

produce more one-valued bits that may introduce spurious
information and thus impair the indexing performance. Our
empirical results showed that in this context the encoding
threshold ε = 0.1 is appropriate for the FVC database and
ε = 0.2 is appropriate for the NIST database. With ε = 0.1
for the FVC database, the percentage of zero-valued bits is
on average 91.7% for the 96-bit code and 91.2% for the
24-bit code.

A. Nearest Neighbour Search in Hamming Space

As illustrated in Fig. 5, a fingerprint is not represented by
a single but a set of binary codes. Each minutiae feature in
the point-set is associated with a Hamming ball of its nearest
neighbours in the binary vector space. Thus, one should
aggregate evidence collected from all relevant Hamming balls
for comparing two fingerprints. It is possible to approximate
the Hamming distance between two binary vectors by
the number of hash collisions in LSH [27]. However, the
approximation only works for moderately large value of n
(long binary vectors) and compatible points already in the
Hamming ball. In our approach, both conditions are relaxed
as the point similarities are measured by maximum collision
counts between two geometric dictionaries. The approximate
nearest neighbour (ANN) search is done via exploring a
Hamming ball by retrieving entries from the hit buckets that
are LSH indexed.

We compared MCC bit-based representations before and
after hashing as input to the LSH. Since each hash table
accommodates a copy of all points from the enrolled subjects,
we used one LSH function (hence one hash table) at a
time to avoid redundant points in an ANN search and ran
the random selection of bits for ten times. The experiments
were conducted on the FVC database. Since the training
sample size in FVC2002 DB1b is small (only 80 fingerprints),
we combined all the observation patterns from the six MCC
sections to obtain more reliable statistics for fitting the GLM
in Algorithm 1. This adjustment was carried out in all the
FVC experiments.

Figure 7 reports the ANN search performance from the ten
runs. The performance is plotted with respect to an increasing
radius of Hamming ball for the comparing binary codes

WANG et al.: LEARNING COMPACT BINARY CODES FOR HASH-BASED FINGERPRINT INDEXING 1613

of 384 bits, 96 bits and 24 bits, respectively. For the ease
of comparison, the search radius r is normalized by the code
length n as the x-axis. As r increases, more points are probed
in the search space. When r/n = 1, it becomes an exhaustive
search of all enrolled points. Note that the number of random
selection bits h = n − r . When only one bit is selected, half
of the points will be put into the same bucket. In particular,
we increase r by every 1/12 of the respective code length n.
For example, the normalized radius r/n = 0.08 indicates
a Hamming ball radius of r = 2 bits for a 24-bit code,
r = 8 bits for a 96-bit code and r = 32 bits for a 384-bit
code, respectively.

The y-axis plots the top rank accuracy corresponding to the
search radius, i.e., the percentage of true match in the top-rank
results retrieved from the hit bucket in one hash table. It can
be seen that the ANN search is more effective using more
compact codes in Hamming space. With a smaller search
radius, even in the normalized scale, the chance of finding a
true match is significantly higher after hashing. For example,
at a normalized radius r/n = 0.08, finding a true match in the
top rank is on average over 65% more likely by the 24-bit code
and 30% more likely by the 96-bit code after the proposed
bit reduction on the 384-bit MCC representation. The search
performance will converge to the maximum value
(below 1.0 and is determined by the point comparison
method) in all three cases when r/n = 1 equivalent to an
exhaustive search.

The search accuracy of 384-bit long binary codes can be
largely boosted by using multiple hash tables. However, this
will also increase the search time significantly as can be seen
in the indexing experiments below. It is also worth to note
that more hash tables implies more replicates of data points
as they are hashed to different buckets via the LSH functions.
This increases the storage requirement, which can become
impractical for large data sets.

B. Fingerprint Indexing Experiments
Here, we evaluate the performance of our hierarchical

indexing approach, Geo-LSH, proposed in this paper.
In particular, we focus on the effect of using binary hash
codes in the proposed framework. The indexing performance
is typically indicated by the trade-off between identification
accuracy and efficiency [48]. The identification accuracy is
often measured by the hit rate which is the percentage of
queries found with correct identities, while the efficiency is
measured by the penetration rate which is the proportion of
database that the system has to search.

The 384-bit MCC and the resulting binary hash codes
are used as input to the Geo-LSH scheme, which are
named hereafter as 384-bit Geo-LSH, 96-bit Geo-LSH and
24-bit Geo-LSH, respectively. For comparison, we used the
384-bit MCC based LSH algorithm as the performance
benchmark, since the LSH algorithm outperforms many other
non-hash based and conventional hash based methods for
fingerprint indexing [27], [45]. The MCC-LSH results were
produced from the MCC SDK v1.3 software [47] with the
MCC and LSH parameter setting following those reported
in [27].

Fig. 8. Indexing performance on FVC2002 DB1.

TABLE I

LSH PARAMETERS USED FOR FVC2002 DB1

Figure 8 plots the FVC2002 DB1 indexing results. A drop of
the MCC-LSH performance can be noticed in Fig. 8 compared
to that reported in [27] on the same database. We believe that
the discrepancy is largely due to different minutiae extraction
tools. In our experimental settings, we do not carried out any
pre-processing step on the fingerprints before the minutiae
feature extraction. Thus, the extracted features are likely to
contain more noise such as spurious detections and missing
points. The noisy input to the SDK software may affect
the indexing performance. Nevertheless, we used the same
minutiae features as input to all the testing methods in our
experiments. We consider that the indexing results are still
fairly comparable in this case. Moreover, the noisy inputs can
be useful to test the robustness of the comparing methods in
the presence of noise.

Our experimental results showed that the proposed
Geo-LSH scheme outperforms MCC-LSH in terms of the
search accuracy by the candidates returned. We believe that
the performance gain is credited to two main reasons. Firstly,
the point similarity is measured instead of being approximated.
Secondly, the global geometric configuration is incorporated
via the dictionary set and provides complementary information
to the local feature for matching. The gain may come with
a cost of time though. This is especially so for long binary
codes, as will be seen in later experiments. Table I provides the
LSH parameters used for the binary codes of different length.

In Fig. 8, it can be observed that the 384-bit MCC has
the best hit rate among all. Note that its normalized search
radius is (n − l)/n = (384− 24)/384 = 0.94 which is fairly
close to 1 in Fig. 7. Thus, there are more points hashed
to each used bucket. By using multiple (32 in this case)
LSH functions, the search performance is largely boosted
by accumulating collisions under many hash functions.

1614 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, AUGUST 2015

Fig. 9. Searching partial minutiae points on FVC2002 DB1.

Fig. 10. Indexing performance on 2,000 segmented fingerprints of NIST
SD14.

Whereas after bit reduction, the binary hash codes require
much less hash functions and smaller search radius
(r/n = 0.33 for 24 bits and r/n = 0.83 for 96 bits) to reach
an accuracy close to that of 384 bits.

Figure 9 plots the indexing performance by searching partial
fingerprints on the FVC database. In particular, we used only
the first half part and discarded the second half part of the
minutiae features in each query template generated by the
VeriFinger 6.6 software to search the FVC database. It can be
observed that the proposed search algorithm again outperforms
MCC-LSH and the proposed hash codes are able to maintain
a similar level of accuracy as that of the 384-bit MCC.

We also performed the indexing experiments on
NIST SD 14. We firstly conducted a small-scale experiment
on the last 2,700 pairs of fingerprints from NIST SD 14.
The 2,700 pairs of fingerprint images are foreground
segmented. Among them, about 700 fingerprints are used for
training parameters and the remaining 2,000 pairs are used
for the tests. Figure 10 plots the indexing results of enrolling
2,000 fingerprints and searching on their counterparts. Again,
there is a significant gain (about 20%) of accuracy achieved
by the proposed Geo-LSH method over LSH. With the same

TABLE II

LSH PARAMETERS USED FOR NIST SD 14

Fig. 11. Indexing performance on 20,000 fingerprints from NIST SD 14.

search algorithm, the maximum difference in hit rate between
the 96-bit code and the 384-bit MCC is about 2.1% while that
between the 24-bit code and the 384-bit MCC is about 4.5%.
The LSH parameters in this case are listed in Table II.

Figure 11 plots the indexing results of the comparing
method on NIST SD 14 by enrolling the first
20,000 fingerprints and excluding the last 7,000 prints
for training model parameters. Compared to Fig. 10, the
search accuracy is dropped in both schemes because the
20,000 pairs of fingerprints used in the test are not foreground
segmented and thus tend to contain more noise in the extracted
minutiae templates. However, the proposed Geo-LSH method
is more robust in the presence of noise.

It is important to note that the binary hash codes can
achieve a significant speed-up as well as savings of storage
space by reducing the number of hash functions (thus hash
tables) and bits selected per hash function. For example,
by using 32 hash functions, the 384-bit MCC representation
requires 32 replicates of all points from the enrolled templates,
whereas the 24-bit code only requires 4 hash functions. This
is particularly important for large-scale data sets.

Figure 12 plots the average time by searching one query
print against an increasing number of templates enrolled in the
database. The timer refers to C# implementations on a 3.4 GHz
Intel(R) machine. The results show a general linear increment
of search time as the database rolls bigger. The 384-bit
Geo-LSH scheme is much slower than the MCC-LSH because
of the second-level hashing for point similarity comparisons.
However, this time inefficiency of Geo-LSH can be largely
mitigated by using the more compact binary codes proposed
in this paper. As shown in Fig. 12, Geo-LSH based on the
24-bit code can significantly reduce the search time per query
after bit reduction from the 384-bit code. Table III reports the

WANG et al.: LEARNING COMPACT BINARY CODES FOR HASH-BASED FINGERPRINT INDEXING 1615

Fig. 12. Average time of searching one query against an increasing data set.

TABLE III

AVERAGE SEARCH SPEED-UP BY THE HASH CODES

average search time speed-up obtained by the compact codes.
It can be seen that a Geo-LSH search based on the 96-bit code
and that based on the 24-bit code is about 2.5 times and up to
5.86 times, respectively, faster than that based on the original
384-bit MCC representation.

VI. CONCLUSION

In this paper, we proposed to learn compact binary
hash codes from high-dimensional binary representations of
biometric fingerprints. This is done by applying the theory
of MRF to model bit correlations in the translation-invariant
local structure of the 384-bit MCC. The hash ratio is
4:1 by using a second-order MRF and 9:1 by using a
third-order MRF, resulting in 96-bit and 24-bit binary codes,
respectively. We also developed a hierarchical indexing
scheme that combines the merits of LSH and geometric
hashing. The proposed Geo-LSH indexing approach can
effectively achieve superior identification accuracy and is
more robust in the presence of noise and missing points.
Moreover, it does not require any pre-processing steps such as
image segmentation and pre-alignments for feature extraction.
Although the gain comes at an expense of more memory
consumption and longer search time due to the additional
point similarity comparison, the cost can be largely mitigated
by using compact binary hash codes developed in this paper.
Our indexing experiments showed that a Geo-LSH search
based on the 24-bit hash code can maintain a comparable
identification accuracy while achieving a significant speed-up
of over four-fold in the average search time compared to
that based on the 384-bit MCC representation. Our future
work includes extending the proposed framework to indexing
latent fingerprints and developing compact binary codes
with higher entropy values. We also plan to submit the
proposed approach to FVC-onGoing [50] for independent
evaluation.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
valuable comments that contributed to the improved quality of
this paper.

REFERENCES

[1] Neurotechnology. (2014). Duplicates Search Service. [Online].
Available: http://www.neurotechnology.com/duplicates-search-service
.html

[2] R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia cylinder-code:
A new representation and matching technique for fingerprint recog-
nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12,
pp. 2128–2141, Dec. 2010.

[3] H. Xu and R. N. J. Veldhuis, “Binary representations of fingerprint
spectral minutiae features,” in Proc. 20th Int. Conf. Pattern Recognit.,
Aug. 2010, pp. 1212–1216.

[4] W. J. Wong, A. B. J. Teoh, M. L. D. Wong, and Y. H. Kho, “Enhanced
multi-line code for minutiae-based fingerprint template protection,”
Pattern Recognit. Lett., vol. 34, no. 11, pp. 1221–1229, Aug. 2013.

[5] Z. Jin, M.-H. Lim, A. B. J. Teoh, and B.-M. Goi, “A non-invertible
randomized graph-based Hamming embedding for generating cancelable
fingerprint template,” Pattern Recognit. Lett., vol. 42, pp. 137–147,
Jun. 2014.

[6] A. Nagar, K. Nandakumar, and A. K. Jain, “Multibiometric cryptosys-
tems based on feature-level fusion,” IEEE Trans. Inf. Forensics Security,
vol. 7, no. 1, pp. 255–268, Feb. 2012.

[7] N. Zhang, X. Yang, Y. Zang, X. Jia, and J. Tian, “Generating registration-
free cancelable fingerprint templates based on minutia cylinder-code
representation,” in Proc. IEEE 6th Int. Conf. Biometrics, Theory, Appl.,
Syst., Sep./Oct. 2013, pp. 1–6.

[8] K. Grauman and R. Fergus, “Learning binary hash codes for large-scale
image search,” in Machine Learning for Computer Vision, vol. 411,
R. Cipolla, S. Battiato, and G. M. Farinella, Eds. Berlin, Germany:
Springer-Verlag, 2013, pp. 49–87.

[9] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast exact search in Hamming
space with multi-index hashing,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 6, pp. 1107–1119, Jun. 2014.

[10] R. Cappelli, D. Maio, and D. Maltoni, “Multispace KL for pattern
representation and classification,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 23, no. 9, pp. 977–996, Sep. 2001.

[11] Y. Wang, J. Hu, and D. Phillips, “A fingerprint orientation model based
on 2D Fourier expansion (FOMFE) and its application to singular-point
detection and fingerprint indexing,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 4, pp. 573–585, Apr. 2007.

[12] O. Iloanusi, A. Gyaourova, and A. Ross, “Indexing fingerprints using
minutiae quadruplets,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. Workshops, Jun. 2011, pp. 127–133.

[13] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The
Metric Space Approach. New York, NY, USA: Springer-Verlag, 2006.

[14] U. Jayaraman, S. Prakash, and P. Gupta, “Indexing multimodal biometric
databases using Kd-tree with feature level fusion,” in Information
Systems Security (Lecture Notes in Computer Science), Berlin,
Germany: Springer-Verlag, 2008, pp. 221–234.

[15] P. Mansukhani, S. Tulyakov, and V. Govindaraju, “A framework for
efficient fingerprint identification using a minutiae tree,” IEEE Syst. J.,
vol. 4, no. 2, pp. 126–137, Jun. 2010.

[16] A. Gyaourova and A. Ross, “Index codes for multibiometric pattern
retrieval,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 2,
pp. 518–529, May 2012.

[17] P. Indyk, Nearest Neighbors in High-Dimensional Spaces. Boca Raton,
FL, USA: CRC Press, 2003.

[18] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 11, pp. 2227–2240, Nov. 2014.

[19] H. J. Wolfson and I. Rigoutsos, “Geometric hashing: An overview,”
IEEE Comput. Sci. Eng., vol. 4, no. 4, pp. 10–21, Oct./Dec. 1997.

[20] R. S. Germain, A. Califano, and S. Colville, “Fingerprint matching using
transformation parameter clustering,” IEEE Comput. Sci. Eng., vol. 4,
no. 4, pp. 42–49, Oct./Dec. 1997.

[21] B. Bhanu and X. Tan, “Fingerprint indexing based on novel features
of minutiae triplets,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 5, pp. 616–622, May 2003.

[22] X. Liang, A. Bishnu, and T. Asano, “A robust fingerprint index-
ing scheme using minutia neighborhood structure and low-order
Delaunay triangles,” IEEE Trans. Inf. Forensics Security, vol. 2, no. 4,
pp. 721–733, Nov. 2007.

1616 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, AUGUST 2015

[23] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. 25th Int. Conf. Very Large Data Bases,
1999, pp. 518–529.

[24] J. Ji, S. Yan, J. Li, G. Gao, Q. Tian, and B. Zhang, “Batch-orthogonal
locality-sensitive hashing for angular similarity,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 10, pp. 1963–1974, Oct. 2014.

[25] F. Hao, J. Daugman, and P. Zielinski, “A fast search algorithm for a
large fuzzy database,” IEEE Trans. Inf. Forensics Security, vol. 3, no. 2,
pp. 203–212, Jun. 2008.

[26] F. Yue, B. Li, M. Yu, and J. Wang, “Hashing based fast palmprint
identification for large-scale databases,” IEEE Trans. Inf. Forensics
Security, vol. 8, no. 5, pp. 769–778, May 2013.

[27] R. Cappelli, M. Ferrara, and D. Maltoni, “Fingerprint indexing based on
minutia cylinder-code,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 5, pp. 1051–1057, May 2011.

[28] R. Cappelli and M. Ferrara, “A fingerprint retrieval system based
on level-1 and level-2 features,” Expert Syst. Appl., vol. 39, no. 12,
pp. 10465–10478, 2012.

[29] A. A. Paulino, E. Liu, K. Cao, and A. K. Jain, “Latent fingerprint
indexing: Fusion of level 1 and level 2 features,” in Proc. IEEE 16th
Int. Conf. Biometrics, Theory, Appl., Syst., Sep./Oct. 2013, pp. 1–8.

[30] R. Salakhutdinov and G. Hinton, “Semantic hashing,” Int. J. Approx.
Reason., vol. 50, no. 7, pp. 969–978, Jul. 2009.

[31] F. Shen, C. Shen, Q. Shi, A. van den Hengel, and Z. Tang, “Inductive
hashing on manifolds,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 1562–1569.

[32] X. Bai, H. Yang, J. Zhou, P. Ren, and J. Cheng, “Data-dependent hashing
based on p-stable distribution,” IEEE Trans. Image Process., vol. 23,
no. 12, pp. 5033–5046, Dec. 2014.

[33] J. He, S. Kumar, and S.-F. Chang, “On the difficulty of nearest neighbor
search,” in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 1127–1134.

[34] P. D. Gutierrez, M. Lastra, F. Herrera, and J. M. Benitez, “A high
performance fingerprint matching system for large databases based on
GPU,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 1, pp. 62–71,
Jan. 2014.

[35] Y. Zang, X. Yang, X. Jia, N. Zhang, J. Tian, and J. Zhao, “Evaluation of
minutia cylinder-code on fingerprint cross-matching and its improvement
with scale,” in Proc. IEEE Int. Conf. Biometrics, Jun. 2013, pp. 1–6.

[36] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA: Wiley, 2006.

[37] S. Z. Li, Markov Random Field Modeling in Image Analysis, 3rd ed.
London, U.K.: Springer-Verlag, 2009.

[38] A. Blake, P. Kohli, and C. Rother, Eds., Markov Random Fields for
Vision and Image Processing. Cambridge, MA, USA: MIT Press, 2011.

[39] S. C. Dass, “Markov random field models for directional field and
singularity extraction in fingerprint images,” IEEE Trans. Image
Process., vol. 13, no. 10, pp. 1358–1367, Sep. 2004.

[40] R. K. N. V. Rama and A. M. Namboodiri, “Fingerprint enhancement
using hierarchical Markov random fields,” in Proc. IEEE Int. Joint Conf.
Biometrics, Oct. 2011, pp. 1–8.

[41] G. R. Cross and A. K. Jain, “Markov random field texture models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-5, no. 1, pp. 25–39,
Aug. 1983.

[42] J. Besag, “Spatial interaction and the statistical analysis of lattice
systems,” J. Roy. Statist. Soc., B (Methodological), vol. 36, no. 2,
pp. 192–236, 1974.

[43] A. J. Dobson and A. G. Barnett, An Introduction to Generalized Linear
Models, 3rd ed. Boca Raton, FL, USA: CRC Press, 2008.

[44] Y. Wang, U. Naumann, S. T. Wright, and D. I. Warton, “mvabund—An
R package for model-based analysis of multivariate abundance data,”
Methods Ecol. Evol., vol. 3, no. 3, pp. 471–474, Jun. 2012.

[45] Y. Wang, L. Wang, Y.-M. Cheung, and P. C. Yuen, “Fingerprint geomet-
ric hashing based on binary minutiae cylinder codes,” in Proc. 22nd Int.
Conf. Pattern Recognit., Stockholm, Sweden, Aug. 2014, pp. 690–695.

[46] G. Bebis, T. Deaconu, and M. Georgiopoulos, “Fingerprint identification
using Delaunay triangulation,” in Proc. IEEE Int. Conf. Inf. Intell. Syst.,
Bethesda, MD, USA, Oct. 1999, pp. 452–459.

[47] Biometric System Laboratory at University of Bologna. Minutiae
Cylinder-Code SDK. [Online]. Available: http://biolab.csr.unibo.it/,
accessed Sep. 16, 2014.

[48] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition, 2nd ed. London, U.K.: Springer-Verlag, 2009.

[49] NIST Special Database 14: Mated Fingerprint Cards Pairs 2
Version 2. [Online]. Available: http://www.nist.gov/srd/nistsd14.cfm,
accessed Sep. 16, 2014.

[50] B. Dorizzi et al., “Fingerprint and on-line signature verification compe-
titions at ICB 2009,” in Proc. 3rd Int. Conf. Biometrics, Alghero, Italy,
Jun. 2009, pp. 725–732.

Yi Wang (S’05–M’09) received the B.E. degree
in electronics and information engineering from
the South China University of Technology,
Guangzhou, China, in 2002, the M.E. degree
in telecommunications engineering from the
University of Melbourne, Melbourne, Australia,
in 2003, and the Ph.D. degree in computer science
from RMIT University, Melbourne, in 2009.

She was with the School of Mathematics
and Statistics, The University of New South
Wales, Sydney, Australia, from 2009 to 2012,

as a Post-Doctoral Research Associate. In 2012, she joined Hong Kong
Baptist University, Hong Kong, as a Research Assistant Professor with the
Department of Computer Science. Her research interests include biometrics
and statistical pattern recognition.

Lipeng Wang received the M.Sc. degree in
computer science from Sichuan University,
Chengdu, China, in 2012. In 2013, he joined the
Institute of Computational and Theoretical Studies,
Hong Kong Baptist University, as a Research
Assistant. He is currently with the Institute of
Information Engineering, Chinese Academy of
Sciences, Beijing, China. His research interests
include biometric indexing, information security,
and image processing.

Yiu-Ming Cheung (SM’06) received the
Ph.D. degree from the Department of Computer
Science and Engineering, Chinese University
of Hong Kong, in 2000. He is currently a Full
Professor with the Department of Computer Science,
Hong Kong Baptist University. His research interests
include machine learning, pattern recognition, visual
computing, and optimization. He is the Founding
Chairman of Computational Intelligence Chapter
of the IEEE Hong Kong Section. He is also a
Senior Member of the Association for Computing

Machinery.

Pong C. Yuen received the B.Sc. (Hons.) degree
in electronic engineering from The City University
of Hong Kong, in 1989, and the Ph.D. degree
in electrical and electronic engineering from The
University of Hong Kong, in 1993. He joined the
Hong Kong Baptist University, in 1993, where he is
currently a Professor and the Head of the Depart-
ment of Computer Science.

Dr. Yuen was a recipient of the University Fellow-
ship to visit The University of Sydney in 1996. In
1998, he spent a 6-month sabbatical leave with The

University of Maryland Institute for Advanced Computer Studies (UMIACS),
University of Maryland at College Park. From June 2005 to January 2006, he
was a Visiting Professor with the GRAVIR Laboratory (GRAphics, VIsion and
Robotics) of INRIA Rhone Alpes, France. He was the Director of Croucher
Advanced Study Institute (ASI) on biometric authentication in 2004 and the
Director of Croucher ASI on Biometric Security and Privacy in 2007.

Dr. Yuen has been actively involved in many international conferences as
an Organizing Committee and/or a Technical Program Committee Member.
He was the Track Cochair of International Conference on Pattern Recognition
in 2006 and the Program Cochair of the IEEE Fifth International Conference
on Biometrics: Theory, Applications and Systems in 2012. He also serves as
an Advisory Board Member of the BTAS conference 2015. He is an Editorial
Board Member of Pattern Recognition and an Associate Editor of the IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, and SPIE
Journal of Electronic Imaging. He is also serving as a Hong Kong Research
Grant Council Engineering Panel Member.

Dr. Yuen’s current research interests include video surveillance, human face
recognition, and biometric security and privacy.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

