
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024 3719

Lossless Data Hiding in NTRU Cryptosystem by
Polynomial Encoding and Modulation

Hao-Tian Wu , Senior Member, IEEE, Yiu-Ming Cheung , Fellow, IEEE,
Zhihong Tian , Senior Member, IEEE, Dingcai Liu, Xiangyang Luo , and Jiankun Hu , Senior Member, IEEE

Abstract— Lossless data hiding in ciphertexts (LDH-CT) is
to perform data embedding without changing their plaintexts,
which can be used to transmit extra data in the applications of
homomorphic encryption at little cost. In this paper, two LDH-CT
algorithms named Polynomial Encoding (PE) and Polynomial
Modulation (PM) are proposed for the “N-th Degree Truncated
Polynomial Ring Unit” (NTRU) scheme, respectively. In the PE
algorithm, a polynomial is encoded according to a string of
bit values and further used to encrypt a plain-text polynomial.
After decrypting the ciphertext, the encoded polynomial can be
retrieved so that dozens of bit values can be extracted from it.
Moreover, the PE algorithm can be combined with a polynomial
partitioning strategy to achieve data extraction before decryption
as well. In applying the PM algorithm, no parameter setting of
an NTRU cryptosystem is changed while a cipher-text polynomial
is generated by selectively sampling a polynomial to match the
to-be-hidden value. Furthermore, the data hidden with the PM
algorithm can be pre-chosen to be extracted without decryption
or after decryption, and in each case up to 10 bit values
can be hidden into one cipher-text polynomial. The proposed
algorithms and schemes are implemented and compared with
several schemes developed for NTRU, BGN, LWE and Paillier
encryption. Experimental results and performance evaluations
demonstrate the efficacy and superiority of the proposed algo-
rithms and schemes.

Manuscript received 8 September 2023; revised 23 December 2023;
accepted 30 January 2024. Date of publication 6 February 2024; date of
current version 26 April 2024. This work was supported in part by the
National Key Research and Development Program of China under Grant
2023YFE0202700; in part by the Natural Science Foundation of Guangdong
Province of China under Grant 2021A1515011798; in part by NSFC under
Grant 62372129, Grant U20B2046, and Grant 62172435; in part by ARC
Discovery Program under Grant DP190103660 and Grant DP200103207;
in part by ARC Linkage Program under Grant LP180100663; in part by
the Open Foundation of Henan Key Laboratory of Cyberspace Situation
Awareness under Grant HNTS2022017; in part by NSFC/Research Grants
Council (RGC) Joint Research Scheme under Grant N_HKBU214/21; in
part by the General Research Fund of RGC under Grant 12201321, Grant
12202622, and Grant 12201323; and in part by RGC Senior Research Fellow
Scheme under Grant SRFS2324-2S02. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof.
Mark Manulis. (Corresponding author: Yiu-Ming Cheung.)

Hao-Tian Wu and Zhihong Tian are with the Cyberspace Institute of
Advanced Technology, Guangzhou University, Guangzhou 510006, China
(e-mail: wuht@scut.edu.cn; tianzhihong@gzhu.edu.cn).

Yiu-Ming Cheung is with the Department of Computer Science,
Hong Kong Baptist University, Hong Kong SAR, China (e-mail:
ymc@comp.hkbu.edu.hk).

Dingcai Liu is with the Zhengzhou Xinda Institute of Advanced Technology,
Zhengzhou 450001, China (e-mail: ldc971022@163.com).

Xiangyang Luo is with the State Key Laboratory of Mathematical Engi-
neering and Advanced Computing, Zhengzhou 450000, China, and also with
the Henan Key Laboratory of Cyberspace Situation Awareness, Zhengzhou
450001, China (e-mail: luoxy_ieu@sina.com).

Jiankun Hu is with the School of Engineering and Information Technol-
ogy, Australian Defence Force Academy, University of New South Wales,
Canberra, ACT 2612, Australia (e-mail: j.hu@adfa.edu.au).

Digital Object Identifier 10.1109/TIFS.2024.3362592

Index Terms— Homomorphic encryption, lossless data hiding,
polynomial, encoding, modulation.

I. INTRODUCTION

WITH the development of remote services and cloud
computing [1], more and more data are uploaded to the

server for storage and processing. For privacy preservation and
content protection, the data containing sensitive information
are often encrypted. A ciphertext may need to be processed
but directly decrypting it will cause privacy infringement.
To process a ciphertext without disclosing its plaintext, the
notion of “privacy homomorphism” was proposed in [2]. With
the homomorphic encryption schemes [3], [4], [5], [6], [7], [8],
[9], data processing in encrypted domain has been reported in
[10], [11], [12], [13], and [14].

In past decades, reversible data hiding (RDH) in ciphertexts
has been intensively studied to embed an amount of data for
annotating, tracing and authenticating content (e.g., [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41]). Although extra data are embedded into a
ciphertext, the plaintext should not be permanently changed
but should be exactly recovered when needed. To achieve
this property, redundancy in ciphertexts or their plaintexts
needs to be exploited, denoted by vacating room after encryp-
tion (VRAE) and vacating room before encryption (VRBE),
respectively. For the VRAE-based algorithm, the ciphertext
for data hiding is unnecessarily an encrypted image, while
the correlations between pixels in a plain-text image are
often leveraged in the VRBE-based algorithm. For instance,
some sophisticated algorithms have been designed to spare
room in the plain-text image before encryption (e.g., [17],
[23], [30], [31], [32]). Alternatively, Puteaux and Puech pro-
posed an efficient prediction-based method in [24] so that
the most significant bit (MSB) plane can be almost vacated
before encryption. Depending on the specific applications, the
hidden data need to be retrieved before or after decrypting
the ciphertext. For instance, a separable RDH scheme (e.g.,
[16], [25], [26], [28]) indicates that data extraction can be
performed without decryption, while decryption is required
for data extraction with the inseparable algorithms (e.g., [23],
[39]).

In view of whether a plaintext is changed after hiding data
into it, the methods of RDH in ciphertexts can be classified
into two categories. In the first category, both of a ciphertext

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6462-7193
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0002-9409-5359
https://orcid.org/0000-0001-6062-2950
https://orcid.org/0000-0003-0230-1432

3720 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 1. Two approaches of lossless data hiding in ciphertexts by exploiting the randomness introduced by homomorphic encryption.

and its plaintext are changed while the plaintext is supposed to
be recovered after the hidden data are retrieved. For instance,
a cipher value is modified so that its plain-text value is
multiplied with two and then added by a bit value (zero or
one). After decrypting the modified cipher value and extracting
the bit value from the decrypted plaintext by modulo 2, the
original plain-text value can be recovered by division with
two. In such a case, it is inconvenient to directly process the
ciphertext with hidden data. Otherwise, neither the original
plaintext can be exactly recovered nor the hidden data can be
correctly extracted. Consequently, applying this type of RDH
methods likely limits the usages of ciphertexts.

For homomorphic encryption schemes, lossless data hiding
in ciphertexts (LDH-CT) has been recently proposed to hide
extra data without changing the file size or plaintext of a
ciphertext (e.g., [30], [38], [39]). Hereinafter, a RDH method
that maintains the plaintext unchanged after hiding data into
a ciphertext is denoted as LDH-CT. As a countermeasure to
the known plain-text attack, randomness is introduced in the
encryption so that one plain-text value corresponds to multiple
cipher values. For homomorphic encryption schemes, one or
more bit values can be hidden by selecting or generating
the cipher values according to designed embedding rules,
as shown in Fig. 1. Since the plain-text value is kept unchanged
by applying an LDH-CT method, a cipher value containing
the hidden data can be used as usual. In addition, an LDH-CT
algorithm is called compatible with a type of homomorphic
processing if data extraction can still be performed after the
ciphertext with the hidden data undergoes the processing.

A. RDH Methods for Homomorphic Encrypted Images

For RDH in homomorphic encrypted images, early methods
suited for Paillier cryptosystem [4] were proposed in [19],
[20], and [21]. In [19], every pixel value is divided into two
parts, i.e., the least significant bit (LSB) and the rest bits,
which are separately encrypted so that the file size of an
encrypted image is doubled. After modifying the LSB part by
applying homomorphic multiplication, one bit value is hidden
into two adjacent pixels and can be extracted after image
decryption. To avoid the increase of file size, the technique
of difference expansion [42] is adopted in [21], while an
encrypted location map needs to be generated and separately
sent as side information to address overflow problem.

To eliminate the side information, Xiang and Luo pro-
posed another Paillier-based RDH scheme in [31] by vacating
selected bit values in a plain-text image. In a group of pixels
named mirroring ciphertext group (MCG), a reference pixel
is chosen so that data embedding can be carried out by
homomorphic multiplication. In particular, the hidden data can
be retrieved before image decryption by applying a modular
multiplicative inverse operation and referring to a lookup table,
while the same data can be extracted after image decryption.
In [32], three LSB values of some pixels are reversibly embed-
ded into the rest pixels in a plain-text image for embedding
extra bits into the encrypted image. Besides, the self-blinding
algorithm proposed in [33] is adopted to embed data that can
be extracted without image decryption. Furthermore, several
RDH methods have been developed for other homomorphic
encryption schemes such as those based on integer modulo
(e.g., [28], [29], [36]), the “N-th Degree Truncated Polynomial
Ring Unit” (NTRU) (e.g., [40], [41]) and fully homomorphic
encryption scheme (e.g., [37]).

The schemes in [19], [21], [29], [31], [32], [36], [37],
and [40] modify a plain-text image so that they belong to
the first category of RDH in ciphertexts. In [30], an early
LDH-CT scheme was proposed for Paillier cryptosystem to
perform data extraction without decrypting the encrypted
image. In particular, several LSB planes of a cipher image are
replaced with new values by applying multi-layer wet paper
coding technique [43]. Beside the lossless scheme, a reversible
scheme was also presented in [30] by conducting histogram
shrinkage before image encryption. Similarly, the self-blinding
property is utilized in [33] to select a cipher value from those
corresponding to the same plain-text value to embed a string
of bit values. With the same parameter setting, the hiding rate
was increased from less than 1 bpp (bit per pixel) in [30]
to about 12 bpps with the method in [33]. In [38], another
LDH-CT method is proposed by setting up a mapping between
the cipher values and secret bits to be hidden. In addition,
an LDH-CT scheme is developed in [34] for the learning with
errors (LWE)-based public-key cryptography [9]. In [35], two
preprocessing-free schemes using additive and multiplicative
homomorphism were proposed for BGN [5] and ELGamal [6]
public-key encryptions, respectively.

As shown in Fig.1(a), the data hidden with the schemes
in [30], [33], [34], [35], and [38] can be directly extracted
from the ciphertext given the extraction rule. Thereby, the

WU et al.: LOSSLESS DATA HIDING IN NTRU CRYPTOSYSTEM BY POLYNOMIAL ENCODING AND MODULATION 3721

to-be-hidden data need to be protected by adopting symmetric
encryption schemes before being embedded with this kind
of LDH-CT methods. In [39], an LDH-CT method named
random element substitution (RES) was proposed by using
the to-be-hidden bit values to generate a random element
in a Paillier cryptosystem. For data extraction, it is critical
to retrieve the random element from the cipher value after
obtaining the decrypted plaintext. As shown in Fig.1(b), the
data hidden with the RES method can only be extracted by the
receiver owing the decryption key. Note that the RES method
can be combined with the self-blinding algorithm in [33]
without affecting each other.

B. RDH Schemes for NTRU Encryption

For NTRU encryption, two RDH schemes were proposed
in [40] and [41], respectively. With the scheme in [40], a plain-
text image is partitioned into groups of adjacent pixels. As the
pixels in one group are encrypted with the same parameters,
the differences between a reference cipher value and the other
values in the same group are used for histogram shifting.
A data hiding rate less than 1 bpp was obtained in [40] and
the hidden data can be extracted without image decryption.
In [41], the additive homomorphism is utilized by adding the
ciphertext of a to-be-hidden bit to that of a pixel value. Similar
to the methods in [21] and [28], the technique of difference
expansion [42] is applied on a plain-text image so that the
hidden data can only be extracted after image decryption.
To convey useful data in the applications of NTRU encryption,
it is desirable to conduct LDH-CT instead of using the RDH
schemes in [40] and [41]. However, the LDH-CT schemes
developed for other homomorphic cryptosystems cannot be
applied in an NTRU cryptosystem where polynomials are
used. As the schemes in [40] and [41] modify the plain-text
image for data embedding, how to hide data into a cipher-text
polynomial without changing its plaintext emerges as a chal-
lenging issue.

To address the above issues, two LDH-CT algorithms named
Polynomial Encoding (PE) and Polynomial Modulation (PM)
are proposed for NTRU encryption. In the PE algorithm,
a polynomial is encoded according to a string of bit values so
that the encoded polynomial complies with the requirements
of NTRU encryption. By retrieving the encoded polynomial
from the cipher-text polynomial, the bit values hidden in it can
be extracted. To achieve data extraction before decryption, the
PE algorithm is combined with a polynomial partitioning (PP)
strategy to generate a scheme named PE-PP. In applying the
PM algorithm, no parameter setting of an NTRU cryptosystem
needs to be changed while a cipher-text polynomial is selec-
tively sampled to match the to-be-hidden value. Furthermore,
the data hidden with the PM algorithm can be pre-chosen to
be extracted without decryption or after decryption. A scheme
named PM-hybrid is developed by adopting the PM algorithm
to achieve data extraction in different stages.

The proposed algorithms and schemes can be applied in
the internet of things systems where NTRU encryption is
employed to protect the data being shared. Since the plaintext
is unchanged by data hiding, the server can aggregate the
shared ciphertexts normally. Extra data can be transmitted to

the server or multiple receivers without increasing the file
size of a ciphertext. That means the proposed algorithms
and schemes can be used to save bandwidth in the case
that extra data need to be sent. Besides, a ciphertext can
be authenticated after extracting the data newly added in
it. Another important application can be privacy-preserving
medical data processing. It is well known that medical images,
especially 3D medical images, are large in volume, which
makes it costly in encryption. With our proposed scheme,
medical diagnosis results can be efficiently embedded into the
encrypted medial images without increasing their file sizes and
then extracted in a confidential way.

C. Our Contribution

Our contributions are summarized as follows.
• We propose two NTRU-based LDH-CT algorithms to

hide data into a cipher-text polynomial without affecting
the usages, and the PE algorithm is compatible with
additive operations on the ciphertext.

• Much higher embedding capacity can be obtained with
the proposed algorithms than the schemes in [40] and
[41]. Experimental results show that dozens of bit values
can be hidden into one cipher-text polynomial with the
PE algorithm, while up to 10 bit values can be embedded
in one cipher-text polynomial with the PM algorithm.

• Data retrieval in different scenarios is achieved with the
proposed PE-PP and PM-hybrid schemes to improve the
applicability, respectively. For the first time, the data
hidden by selecting cipher values can be extracted after
decryption, which is different to the two cases shown in
Fig. 1. Moreover, the security level of NTRU encryp-
tion is not affected by applying the PM algorithm or
the PM-hybrid scheme because no parameter setting is
changed.

The rest part of this paper is organized as follows. The pre-
liminaries of the NTRU encryption is introduced in Section II.
In Section III, the PE algorithm is presented with security
analysis, where the PP strategy is introduced to generate the
PE-PP scheme. In Section IV, the PM algorithm is presented,
and then the PM-hybrid scheme is proposed. The experimental
results are given in Section V, where the performance of the
proposed PE and PM algorithms as well as the PE-PP and PM-
hybrid schemes is compared with the state-of-the-art schemes.
Finally, we draw a conclusion in Section VI.

II. PRELIMINARIES

In this section, the NTRU encryption scheme is briefly
introduced, followed by two properties of homomorphism.

A. NTRU Encryption

The NTRU encryption was first proposed by Hoffstein et al.
in [7] and regulated in IEEE P1363.1 standard [44] in 2009,
which is also called “Number Theory Research Unit”. Com-
pared with the partially homomorphic encryption schemes
such as [3] and [4], the fully homomorphic encryption
schemes support arbitrary computations on ciphertexts. In [8],

3722 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
COMPARISON OF HOMOMORPHIC ENCRYPTION SCHEMES

C. Gentry proposed the first fully homomorphic encryption
scheme, which lighted the lattice-based path to homomor-
phic encryption. In the literature, D. Stehlé et al. proposed
a revised NTRUEncrypt scheme which can provide higher
level of security [45]. In [46], A. López-Alt et al. found
the fully homomorphic property in the revised NTRUEn-
crypt scheme and proposed a multi-key fully homomorphic
encryption scheme. The security of NTRU encryption is
reduced to the Shortest Vector Problem (SVP) [47] on lat-
tices, which can resist to Shor’s algorithm [48] and quantum
attacks. As demonstrated in Table I, the efficiency and resis-
tance to quantum-computer attacks [49] makes the NTRU
scheme attractive in public-key cryptography, which has
been used in applications such as mobile devices and smart
cards. Specifically, the NTRU is a ring-based public-key
cryptosystem, which is featured with reasonably short and
easily created keys, high operation speed and low memory
requirements. As an anti-quantum cipher, it consists of two
algorithms, NTRUEncrypt [7] for encryption and decryption,
and NTRUSign [50] for digital signature.

The NTRUEncrypt system is defined over the truncated
polynomial ring, which is denoted by R =

Z[x]

X N −1 , where N
is a prime number, Z[x] denotes the set of polynomials of
arbitrary degree with integer coefficients. Since X N

− 1 is the
modulo polynomial, the set of R contains all the polynomials
with degree up to N −1. An element a(x) ∈ R is a polynomial,
which can be represented by a(x) = a0 + a1 · x +· · ·+ aN−1 ·

x N−1 where ai ∈ Z for i = 0, 1, · · · , N −1, so a(x) is usually
represented by a vector, i.e.,

a(x) =

N−1∑
i=0

ai · x i
= [a0, a1, . . . , aN−1]. (1)

The arithmetic operations that can be conducted on R includes
addition and multiplication. The addition of two polynomials
[y0, y1, . . . , yN−1] and [z0, z1, . . . , zN−1] is also a polyno-
mial, i.e., [y0 + z0, y1 + z1, . . . , yN−1 + zN−1]. By using ⊗ to
denote the multiplication operation in R, the multiplication of
two polynomials y(x) and z(x) denoted by u(x) =

∑N−1
k=0 uk ·

TABLE II
RECOMMENDED VALUES FOR SIX PARAMETERS USED IN NTRU CRYP-

TOSYSTEM WITH DIFFERENT SECURITY LEVELS

x i is defined as a cyclic convolution product by

uk =

k∑
i=0

yi · zk−i +

N−1∑
i=k+1

yi · zN+k−i =

∑
i+ j≡k(mod N)

yi · z j .

(2)

1) Parameter Setting: To construct an NTRU cryptosys-
tem [7], six parameters need to be set, which recommended
values with respect to security level are given in Table II.
Among them, N is a prime number that determines the degree
of the ring, while p is a small odd prime used to build the set
of plain-text polynomials denoted by Lm defined by

Lm =

{
e(x) ∈ R : −

p − 1
2

≤ ei ≤
p − 1

2

}
. (3)

The parameter q is a positive integer much greater than p,
which is used for modular operations during encryption and
decryption. Note p is often set to 3 so that ei ∈ {−1, 0, 1} for
simplicity and gcd(p, q) = 1.

Another three parameters (d f , dg, dr) need to be set in
constructing an NTRU cryptosystem. Among them, d f is a
positive integer used to build a set of polynomials denoted
by Lf. A polynomial f (x) in Lf has d f coefficients equal
to 1, d f − 1 coefficients equal to −1, and the rest coefficients
equal to 0. The dg is a positive integer used to build a set of
polynomials denoted by Lg. A polynomial g(x) in Lg has dg
coefficients equal to 1, dg coefficients equal to −1, and the
rest coefficients equal to 0. The dr is a positive integer used
to build a set of polynomials denoted by Lr. A polynomial
r(x) in Lr has dr coefficients equal to 1, dr coefficients equal
to −1, and the rest coefficients equal to 0.

WU et al.: LOSSLESS DATA HIDING IN NTRU CRYPTOSYSTEM BY POLYNOMIAL ENCODING AND MODULATION 3723

The Key generation procedure is as follows.
(1) Randomly sample a polynomial f (x) ∈ Lf according to

the parameter d f so that the inverse of f (x) modulo p and
the inverse of f (x) modulo q exist. The two inverses of f (x)

are respectively denoted by Fp(x) and Fq(x), i.e.,

Fp(x) ⊗ f (x) ≡ 1 (mod p), Fq(x) ⊗ f (x) ≡ 1 (mod q).

(4)

Otherwise, re-sample another polynomial until Eq. (4) holds.
(2) Calculate Fp(x) and Fq(x) according to the obtained

f (x), which are also polynomials in R.
(3) Randomly sample a polynomial g(x) ∈ Lg. Then

calculate a polynomial denoted by h(x) by

h(x) = Fq(x) ⊗ g(x)(mod q) (5)

After the above steps, the public key K pub = h(x) and the
private key K pri = { f (x), Fp(x)} are generated. Note that
the operation of a polynomial modulo integer q is to let all
coefficients in the polynomial modulo q .

2) Encryption and Decryption: Given a plain-text polyno-
mial m(x) ∈ Lm, a cipher-text polynomial e(x) is generated
after the encryption consisting of the following two steps.

(1) Randomly sample a polynomial r(x) ∈ Lr.
(2) Obtain a cipher-text polynomial e(x) by

e(x) = Enc(m(x)) = p · r(x) ⊗ h(x) + m(x) (mod q). (6)

Given a cipher-text polynomial e(x) and the private key
{ f (x), Fp(x)}, a plain-text polynomial m(x) is decrypted by
first calculating

a(x) = f (x) ⊗ e(x) (mod q)

= (p · r(x) ⊗ g(x) + f (x) ⊗ m(x)) (mod q), (7)

then shifting a(x) to [−
q
2 ,

q
2], and finally calculating

b(x) = Fp(x) ⊗ a(x) (mod p)

= Fp(x) ⊗ f (x) ⊗ m(x) (mod p)

= m(x). (8)

B. Homomorphism in an NTRU Cryptosystem

In [45], D. Stehlé et al. proposed a revised NTRUEncrypt
scheme which has additive and multiplicative homomorphism.
Let e1(x) and e2(x) respectively be the ciphertexts of the
plaintexts m1(x) and m2(x) with the same private key fd(x).
The additive homomorphism of the revised NTRUEncrypt
scheme implies

eadd(x) = e1(x) + e2(x) (mod q),

Dec(eadd(x)) = fd(x) ⊗ (e1(x) + e2(x))(mod p)

= fd(x) ⊗ e1(x)(mod p) + fd(x) ⊗ e2(x)(mod p)

= Dec(e1(x)) + Dec(e1(x)) = m1(x) + m2(x),

while the multiplicative homomorphism implies
emul(x) = e1(x) ⊗ e2(x)(mod q),

Dec(emul(x)) = fd(x) ⊗ fd(x) ⊗ (e1(x) ⊗ e2(x))(mod p)

= (fd(x) ⊗ e1(x)(mod p)) ⊗ (fd(x) ⊗ e2(x)(mod p))

= Dec(e1(x)) ⊗ Dec(e2(x)) = m1(x) ⊗ m2(x).

Fig. 2. Procedure of applying the polynomial encoding algorithm for lossless
data hiding with NTRU encryption.

Algorithm 1 Encoding of a Polynomial
1: Input: A string of bit values b = {b1b2 . . . bx }, parameter

dr of an NTRU cryptosystem
2: Output: r ∈ Lr
3: function Encoding(b)
4: numzero = 0; numnz = 0; i = 0;
5: while numnz < 2dr or numzero < N − 2dr , do
6: if bi = 1 then ri = 1 or − 1; numnz + +;

7: otherwise ri = 0; numzero + +;

8: endif
9: i + +;

10: if numnz = 2dr then
11: for i < N then ri = 0; i + +;

12: end for
13: else if numzero = N − 2dr then
14: for i < N then ri = 1 or − 1; i + +;

15: end for
16: endif
17: return r = {r0, r1, r2, · · · , rN−1}

18: end function

III. POLYNOMIAL ENCODING ALGORITHM

This section presents the details of the PE algorithm,
including encoding of a polynomial for data embedding and
decoding of the encoded polynomial for data extraction.
In addition, the security of applying the PE algorithm is
analyzed. The procedure of applying the PE algorithm is
illustrated in Fig. 2.

A. Encoding and Decoding of a Polynomial

In the RES method [39], a string of bit values are used to
constitute a random element in Paillier cryptosystem. In an
NTRU cryptosystem, there is a polynomial randomly sampled
from Lr, i.e., r(x) in Eq.(6). Now we discuss how to use a
string of bit values b = {b1b2 . . . bx } to generate a polynomial
r(x)=[r0, r1, . . . , rN−1]. As stated in Section II-A, there are dr
1s, dr −1s and N−2dr 0s in the coefficients of any polynomial
in Lr. Consequently, there are N − 2dr zero coefficients in
[r0, r1, . . . , rN−1] and an encoding procedure is proposed in
Algorithm 1 to generate r(x) according to b.

Without loss of generality, a non-zero coefficient in r(x) is
used to represent a bit value 1, while a zero coefficient is used
to represent a bit value 0. For correct decoding, it is required

3724 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

that the length of bit values to be hidden is up to N − 1. The
actually hidden bit number is adaptively determined and no
less than the minimum of 2dr and N − 2dr . That is, if dr 1s
and dr −1s have been assigned to the coefficients of r(x), then
the rest coefficients are assigned with 0s. Vice versa, if N −2dr
0s have been assigned to the coefficients of r(x), then the rest
coefficients are assigned with 1s or −1s. In addition, totally dr
1s and dr −1s are assigned to the coefficients of r(x). After
executing Algorithm 1, there are dr 1s, dr −1s and N − 2dr
0s in the coefficients of r(x), which is used in encrypting a
plain-text value in Eq. (6).

Given an encoded polynomial, the bit values hidden in
it are extracted as described in Algorithm 2. According to
Algorithm 1, a bit value 1 is extracted from a non-zero
coefficient and a bit value 0 is obtained from a zero coefficient
in the encoded polynomial. The number of extracted bit
values is automatically determined with the proposed encoding
algorithm. When either the non-zero or zero coefficients are
used up, i.e., a bit value 1 is extracted from the last non-zero
coefficient or a bit value 0 is extracted from the last zero
coefficient in an encoded polynomial, the decoding process is
completed.

For instance, a string of bit values {0, 1, 1, 0, 1, 0, 0, 1, 0, 1,

1, 1, 0, 1, 0, 1, 0, 1, 0} are used to encode a random polynomial
r(x) in an NTRU cryptosystem with N = 107 and dr = 5.
As there are 107 coefficients to be assigned in r(x), the first,
fourth, sixth, seventh, ninth, thirteenth, fifteenth, seventeenth
coefficients are assigned with 0s so that eight 0s are embedded.
Meanwhile, the second, third, fifth, eighth, tenth, eleventh,
twelfth, fourteenth, sixteenth and eighteenth coefficients are
assigned with five 1s and five −1s so that ten 1s are embedded.
As dr = 5, no more 1 or −1 can be assigned to r(x) so
that the rest coefficients are assigned with 0s. Accordingly,
ten 1s can be extracted from the non-zero coefficients in
r(x). Meanwhile, eight 0s can be extracted from the first,
fourth, sixth, seventh, ninth, thirteenth, fifteenth, seventeenth
coefficients in r(x). Then no more bit values can be extracted
because there are no more non-zero coefficients left.

B. Encryption and Decryption of a Plaintext

Since a polynomial r(x) can be generated according to a
string of bit values b to be hidden, encrypting a plain-text
polynomial with r(x) has no difference from that in Eq.(6).
As discussed in Section II-A, a plain-text polynomial m(x) is
encrypted with a public key h(x), parameters p and q , and an
encoded polynomial r(x) to generate a cipher polynomial e(x).
With the private key {(f (x), Fp(x)}, m(x) can be decrypted
from e(x) by applying Eq.(7) and Eq.(8). Now we discuss how
to retrieve the encoded polynomial r(x) from e(x) to extract
the hidden bit values. If a receiver has the private key f (x)

to decrypt a plaintext m(x) from the cipher polynomial e(x),
a new polynomial can be calculated by

p−1
· [e(x) − m(x)] ⊗ f (x) (mod q)

= p−1
· p · r(x) ⊗ h(x) ⊗ f (x) (mod q),

= p−1
· p · r(x) ⊗ Fq(x) ⊗ f (x) ⊗ g(x) (mod q),

= r(x) ⊗ g(x) (mod q). (9)

Algorithm 2 Decoding of an Encoded Polynomial
1: Input: r = {r0, r1, r2, · · · , rN−1} ∈ Lr
2: Output: A string of bit values b = {b1b2 . . . bx } with

length automatically determined
3: function Decoding(r)
4: numzero = 0; numnz = 0; i = 0;
5: while numnz < 2dr or numzero < N − 2dr , do
6: if ri = 1 or − 1 then bi = 1; numnz + +;

7: otherwise bi = 0; numzero + +;

8: endif
9: i + +;

10: return b = {b1b2 . . . bnumnz+numzero}

11: end function

where p · p−1
≡ 1 (mod q) and Fq(x) ⊗ f (x) ≡ 1 (mod q).

To obtain r(x) from Eq.(9) by

r(x) ⊗ g(x) ⊗ Gq(x) ≡ r(x) (mod q),

a polynomial Gq(x) needs to be found such that Gq(x) ⊗

g(x) ≡ 1 (mod q) holds. In an NTRU algorithm, a polynomial
g(x) has the same number of coefficients valued at 1 and −1,
indicating that g(1) =

∑N−1
i=0 gi · 1 = 0 so that there is no

Gq(x)⊗g(x) ≡ 1 (mod q). To make it possible to retrieve r(x)

from r(x) ⊗ g(x), the constraint on g(x) is slightly modified
so that a polynomial in Lg has dg coefficients equal to 1,
dg −1 coefficients equal to −1, and the rest equal to 0. In this
way, g(1) ̸= 0 so that Gq(x) can be calculated from g(x).
Meanwhile, g(x) can be obtained by multiplying f (x) in the
private key with the public key h(x), i.e.,

f (x) ⊗ h(x) = f (x) ⊗ Fq(x) ⊗ g(x) (mod q) = g(x).

According to Eq.(6), Eq.(7) and Eq.(8), the existence of the
inverse of g(x) modulo q does not affect the encryption and
decryption of a plain-text value. After decryption, r(x) can
be retrieved from e(x) and further decoded to obtain the bit
values hidden in it, so the hidden data can be extracted after
decryption given that the encoded polynomial r(x) is intact.

C. Security Analysis

As the polynomial g(x) is made invertible so that its
modular multiplicative inverse Gq(x) exists, the public key
h(x) = Fq(x) ⊗ g(x) (mod q) is also invertible because
the polynomial Fq(x) is invertible. Making the public key
invertible does not leak information about the plain-text poly-
nomial m(x). This is due to that the encoded polynomial
r(x) is non-invertible so that thee polynomial r(x) ⊗ h(x)

is non-invertible. Consequently, it is very hard to remove the
polynomial p · r(x) ⊗ h(x) from the cipher-text polynomial
e(x) in Eq. (6) to obtain m(x) without using the private key.

With Gq(x), i.e., the modular multiplicative inverse of g(x),
Fq(x) can be obtained from the public key h(x) by

Gq(x) ⊗ h(x) = Gq(x) ⊗ g(x) ⊗ Fq(x) (mod q) = Fq(x).

According to Eq.(4), the private key { f (x), Fp(x)} can be
calculated with Fq(x). In fact, the polynomials g(x) and
Gq(x) can only be calculated by knowing the private key

WU et al.: LOSSLESS DATA HIDING IN NTRU CRYPTOSYSTEM BY POLYNOMIAL ENCODING AND MODULATION 3725

{ f (x), Fp(x)} because g(x) is randomly chosen from Lg to
generate the public key h(x) in Eq. (5) and will not be used
anymore. Thus, obtaining g(x) from h(x) inevitably needs to
know Fq(x) and the private key.

D. Polynomial Partitioning Strategy

As the PE algorithm can be applied to hide confidential
data to be extracted after decryption, a polynomial partitioning
strategy is introduced for data extraction without decryption.
In an NTRU cryptosystem, both a plaintext and a ciphertext
are represented by a polynomial with N coefficients. With the
values suggested in Table I, it can be seen that redundancy
is introduced in data representation because there are N
coefficients needing to be specified to constitute a polynomial.
Due to the redundancy, quite a few of coefficients are zeroes
so that it is possible to represent a plaintext or a ciphertext
with less coefficients, whereby a polynomial partitioning (PP)
strategy is proposed to divide the coefficients into two parts.
The first part of coefficients are used to represent a plain-text
value, while the rest coefficients are vacated in the plain-text
domain to carry extra data in the encrypted domain.

Given a plain-text polynomial m(x) = [m0, m1, . . . , m N−1]

where m N−k = 0 for k ∈ {1, 2, · · · , y} and y < N , a cipher-
text polynomial e(x) can be obtained by sampling a random
polynomial r(x) and using the public key h(x) in encryption,
as shown in Eq. (6). For data hiding, the last y coefficients
in the cipher-text polynomial e(x) is modified according to
a string of bit values {b1, b2, · · · , by} to generate another
polynomial e′(x) by

e′

k =

ek f or 0 ≤ k < N − y
ek, i f N − y ≤ k < N , ek mod 2 = bN−k

ek + 1, i f N − y ≤ k < N , ek mod 2 ̸= bN−k

In this way, a polynomial u(x) = [u0, u1, . . . , uN−1] where

uk =

{
0, f or 0 ≤ k < N − y
e′

k − ek, f or N − y ≤ k < N

is actually added to e(x) to generate e′(x) so that we have

e′(x) = p · r(x) ⊗ h(x) + m(x) + u(x) (mod q). (10)

As a result, m(x)+u(x) can be decrypted from e′(x) with the
private key {(f (x), Fp(x)}. Since m N−k = 0 for 1 ≤ k ≤ y
and u j = 0 for 0 ≤ j < N − y, the plaintext m(x) can be
separated from u(x) by knowing the value of y.

From e′(x), a string of y bit values {b1, b2, · · · , by} can be
extracted without decryption by

bk = e′

N−k mod 2, f or 1 ≤ k ≤ y.

Thus, the hidden data can be easily extracted from a ciphertext
by knowing the value of y, which is an integer between
1 and N. Besides extracting the bit values hidden with the PP
strategy, r(x) ⊗ g(x) can be retrieved from e′(x) as discussed
in Section III-B to retrieve r(x) given that g(x) is invertible.
Therefore, the PP strategy can be combined with the PE
algorithm to hide bit values to be extracted before decryption
and those to be extracted after decryption. The combination is

named PE-PP scheme, in which the coefficients in a plain-text
polynomial are partitioned for data extraction without decryp-
tion and data extraction after decryption. In the next section,
another LDH-CT algorithm named polynomial modulation
will be further proposed, which can also be used to achieve
data extraction in different stages.

IV. POLYNOMIAL MODULATION ALGORITHM

In this section, the polynomial modulation algorithm is
presented for NTRU encryption without making the public
key invertible such as in the PE algorithm or reserving part
of coefficients in the PP strategy. The procedure of applying
the PE algorithm is illustrated in Fig. 3. Different from the
PE algorithm, the data hidden with the PM algorithm can
be pre-chosen to be extracted without decryption or after
decryption.

A. Data Hiding by Polynomial Modulation

As shown in Eq. (9), a polynomial r(x)⊗ g(x) can only be
obtained after decrypting the plain-text polynomial m(x) with
the private key { f (x), Fp(x)}. In the PE algorithm, g(x) is
invertible so that r(x) can be retrieved to extract the bit values
hidden in it. To perform data hiding without interfering with
encryption, all properties and parameter setting of an NTRU
are kept unchanged in applying the PM algorithm. That means
a polynomial in Lg still has dg coefficients equal to 1, dg
coefficients equal to −1 and N − 2dg coefficients equal to 0,
while a polynomial g(x) is randomly sampled from Lg in key
generation. Instead of being generated according to the to-be-
hidden values such as in the PE algorithm, r(x) is randomly
sampled from Lr but not arbitrarily. In particular, the sampled
r(x) is used to modulate the cipher polynomial e(x) so that the
desired information can be extracted from it. That is, r(x) is
randomly sampled in trial until the coefficients in e(x) exactly
match the bit values to be hidden.

To hide a string of bit values b = {b1b2 . . . bk}, all
coefficients in e(x) modulo k +1 are calculated and the parity
of the frequencies are used for data hiding. For instance, there
are six possible values {0, 1, 2, 3, 4, 5} after all coefficients in
e(x) modulo 6 and their frequencies are counted, which are
respectively denoted by f0, f1, f2, f3, f4, f5. Without loss of
generality, a bit value zero is represented by an even fi for
i ∈ {1, 2, 3, 4, 5} while an odd number fi stands for a bit
value one. The reason of using the parity of k + 1 frequencies
to embed k bits is due to that the total number of coefficients
(i.e., N) is odd. As a result, there must be an odd number of
odd frequencies so that it is impossible to hide k + 1 zeros
into the parity of k + 1 frequencies. Nevertheless, it is still
possible to embed k bit values into the k + 1 frequencies by
using one frequency to compensate the parity of N . In the
example, r(x) is randomly sampled to update e(x) until the
parity of f1, f2, f3, f4, f5 exactly matches the five-bit value
to be hidden. Given a cipher-text polynomial e(x), the modulo
operation is conducted to calculate the parity while there is no
need to modify e(x) itself.

To show the feasibility of data hiding by using the PM
algorithm, the bit values matching the cipher-text polyno-
mials generated with different parameter settings of NTRU

3726 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 3. Procedure of applying the Polynomial Modulation algorithm for lossless data hiding with NTRU encryption.

Fig. 4. The time of hiding every five-bit value after randomly sampling r(x) 1024 times. Note that the hidden bit values are represented by the parity of the
frequencies of 1, 2, 3, 4, 5 after all coefficients in a cipher-text polynomial modulo 6 with the parameter settings: (a) N = 107, dr = 5, dg = 12; (b) N = 503,
dr = 55, dg = 72.

encryption were counted. For a cipher-text polynomial e(x),
all coefficients modulo 6 were calculated to find the five-bit
value that is matched. Then the time of embedding every
five-bit value was counted after randomly sampling r(x)

1024 times with the different parameter settings recommended
in Table II, respectively. As shown in Fig. 4, every five-bit
value occurred dozens of times under each parameter setting
of NTRU encryption, which indicates that data hiding with
the proposed PM algorithm is feasible in practice. It can be
seen that the distributions in Fig. 4(b) is more uniform than the
one shown in Fig. 4(a), indicating that an NTRU cryptosystem
with a larger parameter N is more secure.

The procedure of data embedding and that of data extraction
are given in Algorithm 3 and Algorithm 4, respectively.
In Algorithm 4, the hidden bit values can be obtained after
encrypting the to-be-hidden data, which are extracted from the
coefficients of a cipher-text polynomial without decryption.

B. Data Extraction After Decryption

In some cases, data extraction after decryption is preferred
to transmit confidential messages, such as diagnosis made
by a doctor on a medical image of a patient. Before being
transmitted over Internet, the medical image is encrypted

for privacy protection by using a public key provided by
the patient while the diagnosis information may be hidden
into the encrypted medical image. Instead of being extracted
before decryption, the hidden diagnosis information should be
extracted after decryption by the patient owing the private key.
In such a case, the PM algorithm can also be applied to hide bit
values to be extracted after decryption. Instead of modulating
the cipher-text polynomial e(x) as described in Algorithm 3,
the polynomial e(x)−m(x), i.e., r(x)⊗h(x), is modulated by
randomly sampling r(x) to match the to-be-hidden bit values.
As the polynomial r(x) is randomly sampled, r(x) ⊗ h(x)

will not be disclosed until m(x) is decrypted from e(x) by
using the private key. Consequently, the procedure of data
extraction after decryption is given in Algorithm 5, which is
quite different from the one in Algorithm 4.

C. PM-Hybrid Scheme

To achieve data extraction in different situations, a portion
of plain-text polynomials are encrypted by modulating the
cipher-text polynomial e(x) to embed the to-be-hidden data
while the other polynomials are encrypted by modulating
e(x)−m(x) for data embedding. Hereinafter, applying the PM
algorithm in the hybrid way is named PM-hybrid scheme.

WU et al.: LOSSLESS DATA HIDING IN NTRU CRYPTOSYSTEM BY POLYNOMIAL ENCODING AND MODULATION 3727

Algorithm 3 Data Embedding With PM Algorithm
1: Input: Plain-text polynomial m(x), k bit values to be

hidden, the public key h(x) shared by the receiver
2: Output: Cipher-text polynomial e(x)

3: Data embedding:
4: Randomly sample r(x) in Lr and encrypt m(x) with the

public key h(x) to obtain a cipher-text polynomial e(x);
5: Modulo all coefficients in e(x) with k + 1 and count the

frequencies of {0, 1, · · · , k}, respectively;
6: while the parity of the frequencies of {1, · · · , k} does not

match the k bit values to be hidden, do
7: Sample another r(x) in Lr and update e(x);
8: Modulo all coefficients in e(x) with k + 1 and count

the frequencies of {0, 1, · · · , k};
9: if there is no match after a certain number of trials,

10: then decrease the value of k by one and restart the
process of data embedding.

11: endif
12: return the generated cipher-text polynomial e(x)

Algorithm 4 Data Extraction With the PM Algorithm (without
decryption)

1: Input: Cipher-text polynomial e(x), modulo divisor k +1

2: Output: k bit values extracted from e(x)

3: Data extraction:
4: Modulo all coefficients in e(x) with k + 1 and count the

frequencies of {1, · · · , k};
5: return k bit values obtained from the parity of the k

frequencies

In applying the PM-hybrid scheme, the indices of those
polynomials encrypted by modulating e(x) − m(x) can be
pre-chosen with a secret key. Consequently, only the autho-
rized receiver knowing the secret key can extract the bit values
hidden in the coefficients of e(x) − m(x) after decrypting the
cipher-text polynomial e(x) to obtain m(x).

V. EXPERIMENTAL RESULTS AND EVALUATION

To evaluate the performances of the proposed algorithms
and schemes, ten test images were used in the experiments
for comparison with the schemes in [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], and [40]. All of the test
images were downloaded from USC-SIPI Image Database1

and converted to grayscale with 512 × 512 pixels. With the
parameters listed in Table I, an NTRU cryptosystem was built
by setting p to 3 so that a plain-text coefficient value falls into
{−1, 0, 1} according to Eq. (3). Note that an 8-bit pixel value
was decomposed into eight bit values so that each bit value
was assigned to a coefficient in a plain-text polynomial, while
the coefficient value −1 may be used to represent the integer 2,
which can be obtained after modulo p. The programs of image
encryption/decryption, data embedding and extraction were
implemented with Python programming language (3.7 version)

1http://sipi.usc.edu/database/

Algorithm 5 Data Extraction With PM Algorithm (after
decryption)

1: Input: Cipher-text polynomial e(x), private and public key
pair, modulo divisor k + 1

2: Output: Plain-text polynomial m(x), k bit values
extracted from e(x) − m(x)

3: Data extraction:
4: Decrypting m(x) from e(x) with the private key;
5: Calculating r(x) ⊗ h(x) by e(x) − m(x);
6: Modulo all coefficients in e(x) − m(x) with k + 1 and

count the frequencies of {1, · · · , k};
7: return k bit values obtained from the parity of the k

frequencies, and the plain-text polynomial m(x)

TABLE III
DATE HIDING RATE OF PROPOSED PE ALGORITHM AND PE-PP SCHEME

and Pycharm compiler on a 64-bit PC with 16G RAM and
Windows 10 operating system.

In the following, the PE and PM algorithms are firstly
evaluated and compared, including data hiding rate, security
and compatibility with homomorphic processing. Then the
computational complexity of the two algorithms is analyzed
and compared with representative RDH schemes in encrypted
domain (e.g., [23], [24], [30], [38], [39], [40]). Finally, the
proposed PE and PM algorithms, as well as the PE-PP and
PM-hybrid schemes, are compared with various RDH schemes
developed for Paillier, BGN, LWE, NTRU and homomorphic
encryption based on integer modulo, including [29], [30], [31],
[32], [34], [35], [38], [39], [40].

A. Performance of PE and PM Algorithms

1) Data Hiding Rate: With the PE algorithm, the data
hiding rate is subject to the bit values to be hidden as well as
the values of dr and N . In the experiments, the bit values to be
hidden were randomly generated, which contained the same
or close numbers of 0s and 1s. After 210 runs, the average
number of bits hidden in a cipher-text polynomial was close
to the minimum of 4dr and 2(N − 2dr) bits, as shown in
Table III with different parameter settings. Averagely, there is
a half chance to embed a bit value in a non-zero coefficient
or a zero coefficient. As there are 2dr non-zero coefficients
and N − 2dr zero coefficients in a random polynomial r(x),
the actual hiding rate is about the double of the minimum.
The theoretical limit of embedding capacity is to embed N -bit

3728 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE IV
DATE HIDING RATE OF PM ALGORITHM AND PM-HYBRID SCHEME

value into a cipher-text polynomial consisting of N coefficients
because one coefficient can carry at most one-bit value.

The rate for data extraction after decryption with the PE-PP
scheme is also listed, which was very close to that of the PE
algorithm. This is because the PP strategy does not interfere
with applying the PE algorithm but exploits the redundancy
in data representation within an NTRU cryptosystem. Only
the first 8 coefficients in a plain-text polynomial were used to
represent a 8-bit pixel value while the rest coefficients were
vacated for data hiding as described in Section III-D.

The data hiding rate with the PM algorithm is not so
high as that of the PE algorithm. As shown in Table IV,
at most 10 bit values were hidden in a cipher-text polynomial
for N = 107, in which case the coefficient values modulo
11 were counted to embed ten bit values at the same time.
When N was set to 503, at most 10 bit values were also
hidden in one cipher-text polynomial, while at most 12 bit
values were hidden into one cipher-text polynomial for N =

167. The hiding rate slightly changes with the parameter N
because the modulo operation is performed on all coefficients.
Different from the PE algorithm, increasing the parameter dr
does not increase the hiding rate with the PM algorithm.
Although increasing dr makes the coefficient values in a
cipher-text polynomial e(x) more scattered, the maximum data
hiding rate with the PM algorithm was stable because all
coefficients in a cipher-text polynomial after modulo operation
are concentrated. The theoretical limit of embedding capacity
with the PM algorithm depends on the space of p ·r(x)⊗h(x)

so that a set of cipher-text polynomials can be generated from
the same plain-text polynomial. The data hiding rate with the
PM-hybrid scheme was the same as that of the PM algorithm.

As less than one bit is hidden into a cipher-text polynomial
in [40] and [41], much higher data hiding rates are achieved
with the PM algorithm and PM-hybrid scheme, respectively.
The improvement is due to that the redundancy introduced by
NTRU encryption instead of the redundancy in the plain-text
image is exploited by applying the proposed PM algorithm.

2) Security: Security is an important aspect of data hid-
ing and encryption schemes. To apply the PE algorithm,
the polynomial g(x) employed in key generation is made
invertible. Consequently, the public key h(x) is invertible,
which is the multiplication of an invertible polynomial Fq(x)

and g(x) as shown in Eq. (5). The impact of making g(x)

Fig. 5. A plain-text grayscale image and those decrypted from the cipher-text
images to which different noises have been respectively added. The experi-
mental results show that the data hidden in encrypting the plain-text image is
unchanged after adding different noises to the cipher-text image, respectively.

and h(x) invertible has been analyzed in Section III-C and
no obvious vulnerability is found. Furthermore, the security
level of an NTRU cryptosystem is intact for applying the PM
algorithm because the parameter setting is unchanged by data
embedding. In applying the PM-hybrid scheme, the indices
of those polynomials from which the hidden data should
be extracted after decryption need to be protected by using
cryptographic algorithms and a secret key.

3) Compatibility With Homomorphic Processing: With the
PE algorithm, the hidden data can be extracted after decryption
if the encoded polynomial r(x) is unchanged. Specifically,
adding another polynomial to the cipher-text polynomial (such
as adding u(x) to e(x) in Eq. (10)) does not change r(x).
To verify the compatibility with addition operations on the
ciphertext, a cipher-text image with hidden data was process-
ing by adding the salt-and-pepper noise (density = 0.05),
the Gaussian noise (variance = 0.01) and the Gaussian noise
(variance = 0.05), as shown in Fig. 5. Then the hidden
data were correctly extracted after decrypting the cipher-text
images processed in the encrypted domain, respectively. It can
be seen that the PE algorithm is compatible to the addi-
tion operations conducted on ciphertexts in the NTRU-based
encrypted domain. With the PM algorithm, the hidden data
can hardly be extracted if the coefficients in the cipher-text
polynomial e(x) are modified, while data extraction after

WU et al.: LOSSLESS DATA HIDING IN NTRU CRYPTOSYSTEM BY POLYNOMIAL ENCODING AND MODULATION 3729

TABLE V
COMPUTATIONAL COMPLEXITY OF APPLYING THE PROPOSED SCHEMES AND THOSE IN [23], [24], [30], [38], [39], AND [40] TO EMBED X BITS PER

PIXEL VALUE IN AN IMAGE WITH Y PIXELS

decryption cannot be correctly performed if the coefficients
in the polynomial e(x) − m(x) are changed. Thus, the PE
algorithm is suitable when additive operations need to be con-
ducted on the ciphertext. Meanwhile, it is easier to implement
the PM algorithm to convey useful data without decrypting
the plaintext, such as by a web administrator in the cloud
computing environment.

B. Computational Complexity

In the following, the computational complexity of applying
the PE and PM algorithms is analyzed and compared with
the representative schemes for RDH in encrypted domain
(e.g., [23], [24], [30], [33], [38]). To embed X bit values by
encoding a random polynomial r(x) as shown in Algorithm 1,
every of the N coefficients in r(x) needs to be enumerated
and the encoded polynomial is used in encrypting a plain-
text polynomial. The computational complexity of applying
the PE algorithm on a grayscale image consisting of Y
pixels is O(NY), where X bit values are embedded into one
encoded polynomial consisting of N coefficients to generate
a cipher-text polynomial. The computational complexity of
data embedding with the scheme in [40] is O(Y 2) because
the difference of a reference pixel value and a neighboring
pixel value needs to be calculated and the histogram of
difference values needs to be calculated for shifting. The
computational complexity of applying the PM algorithm is as
follows. To embed X bit values by sampling a polynomial
r(x) to modulate the cipher-text polynomial as described
in Algorithm 3, the computational complexity is O(2X Y)

because at most 2X permutations of X bit values need to be
enumerated for data embedding.

The computational complexity of the scheme in [38] is
also O(2X Y) because one out of 2X possible cipher values
needs to be found to embed X bit values into one cipher
value. To embed data into a grayscale image consisting of
Y pixels, the computational complexity of applying the RES
method [39] is O(Y) because X bit values simultaneously
constitute the random element to generate one cipher pixel
value. Note that the parameter N in a Paillier cryptosystem
has no relationship with the parameter N in an NTRU cryp-
tosystem. A cipher value in a Paillier cryptosystem has 2N
bits, while a cipher value in an NTRU has N coefficients.
In addition, the computational complexity of the schemes in
[23], [24], and [30] has been reported in [23] and [38]) and
summarized in Table V. As for the computational complexity
of the scheme [23], K is the number of atoms in the dictionary

while L is the number of nonzero elements in each coefficient
vector.

The computational complexity of data extraction with the
schemes in [30] and [38] and the RES method is O(Y), which
is lower than that of data embedding with these schemes.
The reason is that X bit values can be simultaneously and
directly extracted from one cipher value with these schemes.
The complexity of data extraction with the PE algorithm is
O(NY) because every coefficient in the retrieved polynomial
needs to be enumerated. The computational complexity of
data extraction with the scheme in [40] is O(Y 2) because
the histogram of difference values needs to be calculated. The
complexity of data extraction with the PM algorithm is O(XY)

because the frequencies of 1, 2, · · · , X need to be counted.
With the scheme in [23], the complexity of data extraction
is approximated to O(K LY) because there is no more need
to sort the smooth areas for data extraction. The complexity
of data extraction with [24] is the same as data embedding
because one bit value is extracted at each time.

C. Comparisons With Schemes for Homomorphic Encryption

In Table VI, the proposed algorithms and schemes are
compared with the schemes in [29], [30], [31], [32], [34], [35],
[38], [39], and [40] for LWE, Paillier, BGN, NTRU and homo-
morphic encryption based on integer modulo, respectively. The
data extraction rate in the encrypted domain represents the
amount of bit values that can be extracted without decryption,
while the one after decryption is the amount of bit values that
can be retrieved after a plain-text image is decrypted.

The scheme proposed in [29] is for RDH in encrypted
images by using a rhombus pattern prediction in a plain-
text image. A third party may embed data into an encrypted
image, which is obtained from a modified plain-text image
after additively homomorphic encryption based on integer
modulo. The hidden data can only be extracted after direct
image decryption and vulnerable to processing made to the
encrypted image. The combined scheme proposed in [30], the
MCG scheme [31] and the scheme in [32] are similar because
a preprocessing is required in applying them, respectively.
Although data extraction can be separately performed without
image decryption, they are not compatible with homomorphic
processing. Besides, the hidden data can hardly be correctly
extracted after an encrypted image is processed.

No preprocessing is required to apply the method proposed
in [38] for Paillier encryption and the scheme proposed in [35]
for BGN encryption, with which both data embedding and

3730 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE VI
PERFORMANCE COMPARISONS BETWEEN THE PROPOSED SCHEMES AND THOSE IN [29], [30], [31], [32], [34], [35], [38], [39], AND [40]

extraction are conducted in the encrypted domain. Although
resistance to cropping can be achieved by duplicate embed-
ding in the ciphertext, the hidden data are easily altered by
other homomorphic processing conducted on the ciphertext.
With the RES method in [39], no preprocessing is required
and the plain-text value is unchanged after data hiding. The
hidden data can only be extracted after decryption, while the
encrypted image with hidden data may be used as normal.
It has been shown that the data hidden with the RES method
can be correctly extracted after applying the self-blinding
method in [33] on the ciphertext. For a 1024-bit parameter N ,
the maximum data extraction rate after decryption is 1022 bpp.

The scheme in [34] was developed for the LWE-based
cryptography, with which a multilevel data hiding can be
performed by the secret key owner. Similar to the schemes
in [30] and [38], there is no preprocessing needed and the file
size of a cipher value is preserved by applying the multilevel
data hiding scheme. The plain-text image is unchanged by data
hiding, and a hiding rate about 614 bpp can be obtained. The
hidden data can be extracted without decryption, while resis-
tance to cropping can be achieved by duplicate embedding.

The RDH scheme in [40] is for NTRU encryption by
modifying the original image before data embedding. The
cipher-text image with hidden data can hardly be processed.
Otherwise, neither the original nor the desired plain-text image
can be obtained after decryption. Similar to the MCG scheme
proposed in [31] for Paillier encryption, data extraction is
separable from image decryption with the scheme in [40].
No preprocessing is required on the original plain-text poly-
nomial to apply the proposed PE or PM algorithm, nor the
file size of a ciphertext is changed. With the PE algorithm,
about 220 bits can be hidden into a cipher-text polynomial for
an NTRU cryptosystem with N = 503, and the hidden data
can be correctly extracted after another polynomial is added
to the cipher-text polynomial. With the PM algorithm, about
10 bits can be hidden into a cipher polynomial, which may
be extracted without decryption or after decryption. The data

hidden with the PM algorithm are vulnerable to operations
that change the cipher-text polynomial.

By applying the PM-hybrid scheme, data extraction without
decryption and after decryption can be both achieved. In apply-
ing the PE-PP scheme, the pre-chosen (e.g., eight, sixteen or
any number no more than N -8) coefficients in a plain-text
polynomial are vacated. As discussed in Section III-D, the
plain-text pixel values are not changed by data hiding with
the PP strategy. In the experiments, 495 coefficients in a
polynomial were used for data hiding so that the same number
of bit values were extracted from a cipher-text polynomial
before decryption. Similar to the schemes in [34], [35], [38],
and [39], the data hidden with the proposed algorithms and
schemes can be resistant to cropping by duplicate embedding
in the ciphertext.

VI. CONCLUSION

In this paper, we have proposed two preprocessing-free
algorithms for lossless data hiding with NTRU encryption,
namely polynomial encoding (PE) and polynomial modulation
(PM). In particular, the plaintext is not changed by data
embedding with either algorithm while the usages of the
ciphertext are not affected. With the PM algorithm, the security
level of a NTRU cryptosystem is intact while the hidden data
can be pre-chosen to be extracted without decryption or after
decryption. With the PE algorithm, much higher data hiding
rate can be achieved, while data extraction can be correctly
performed after conducting additive operations on the cipher-
text polynomial. The PE and PM algorithms can be applied
wherever NTRU encryption is adopted for privacy preservation
and security enhancement such as in internet of things systems.

A polynomial partitioning strategy has been proposed
and combined with the PE algorithm to generate the PE-
PP scheme. Meanwhile, the PM-hybrid scheme has been
developed without changing parameter setting of an NTRU
cryptosystem. Compared with the state-of-the-art schemes, one
advantage of the PE-PP and PM-hybrid schemes is that data

WU et al.: LOSSLESS DATA HIDING IN NTRU CRYPTOSYSTEM BY POLYNOMIAL ENCODING AND MODULATION 3731

hiding does not interfere with the usages of the ciphertext.
The performance comparisons demonstrate the advantages and
superiority of the proposed schemes, which are suitable for the
applications of high-secure NTRU encryption to convey extra
data to multiple receivers. Our future work is to study lossless
data hiding schemes for other post-quantum cryptography such
as ring learning with errors [51].

REFERENCES

[1] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, “Security and privacy
in cloud computing: Vision, trends, and challenges,” IEEE Trans. Cloud
Comput., vol. 2, no. 2, pp. 30–38, Mar. 2015.

[2] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Found. Secure Comput., vol. 4, no. 11,
pp. 169–179, Oct. 1978.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[4] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in Proc. Adv. Cryptol. EUROCRYPT, vol. 1592, Jan. 1999,
pp. 223–238.

[5] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Proc. Theory Cryptogr. Conf., 2005, pp. 325–341.

[6] T. Elgamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[7] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public
key cryptosystem,” in Proc. 3rd Int. Symp. Algorithmic Number Theory
Symp., 1998, pp. 267–288.

[8] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., May 2009, pp. 169–178.

[9] Z. Brakershi and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” SIAM J. Comput., vol. 43, no. 2,
pp. 831–871, 2014.

[10] M. Barni, T. Kalker, and S. Katzenbeisser, “Inspiring new research in
the field of signal processing in the encrypted domain,” IEEE Signal
Process. Mag., vol. 30, no. 2, p. 16, Mar. 2013.

[11] T. Bianchi, A. Piva, and M. Barni, “Composite signal representation for
fast and storage-efficient processing of encrypted signals,” IEEE Trans.
Inf. Forensics Security, vol. 5, no. 1, pp. 180–187, Mar. 2010.

[12] M. Barni, P. Failla, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider,
“Privacy-preserving ECG classification with branching programs and
neural networks,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 2,
pp. 452–468, Jun. 2011.

[13] C.-Y. Hsu, C.-S. Lu, and S.-C. Pei, “Image feature extraction in
encrypted domain with privacy-preserving SIFT,” IEEE Trans. Image
Process., vol. 21, no. 11, pp. 4593–4607, Nov. 2012.

[14] P. Zheng and J. Huang, “Discrete wavelet transform and data expansion
reduction in homomorphic encrypted domain,” IEEE Trans. Image
Process., vol. 22, no. 6, pp. 2455–2468, Jun. 2013.

[15] X. Zhang, “Reversible data hiding in encrypted image,” IEEE Signal
Process. Lett., vol. 18, no. 4, pp. 255–258, Apr. 2011.

[16] X. Zhang, “Separable reversible data hiding in encrypted image,” IEEE
Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 826–832, Apr. 2012.

[17] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, “Reversible data hiding
in encrypted images by reserving room before encryption,” IEEE Trans.
Inf. Forensics Security, vol. 8, no. 3, pp. 553–562, Mar. 2013.

[18] X. Wu and W. Sun, “High-capacity reversible data hiding in encrypted
images by prediction error,” Signal Process., vol. 104, pp. 387–400,
Nov. 2014.

[19] Y.-C. Chen, C.-W. Shiu, and G. Horng, “Encrypted signal-based
reversible data hiding with public key cryptosystem,” J. Vis. Commun.
Image Represent., vol. 25, no. 5, pp. 1164–1170, Jul. 2014.

[20] X. Wu, B. Chen, and J. Weng, “Reversible data hiding for encrypted
signals by homomorphic encryption and signal energy transfer,” J. Vis.
Commun. Image Represent., vol. 41, pp. 58–64, Nov. 2016.

[21] C.-W. Shiu, Y.-C. Chen, and W. Hong, “Encrypted image-based
reversible data hiding with public key cryptography from difference
expansion,” Signal Process., Image Commun., vol. 39, pp. 226–233,
Nov. 2015.

[22] J. Zhou, W. Sun, L. Dong, X. Liu, O. C. Au, and Y. Y. Tang, “Secure
reversible image data hiding over encrypted domain via key modulation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 3, pp. 441–452,
Mar. 2016.

[23] X. Cao, L. Du, X. Wei, D. Meng, and X. Guo, “High capacity reversible
data hiding in encrypted images by patch-level sparse representation,”
IEEE Trans. Cybern., vol. 46, no. 5, pp. 1132–1143, May 2016.

[24] P. Puteaux and W. Puech, “An efficient MSB prediction-based method
for high-capacity reversible data hiding in encrypted images,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1670–1681, Jul. 2018.

[25] Z. Qian, H. Zhou, X. Zhang, and W. Zhang, “Separable reversible data
hiding in encrypted JPEG bitstreams,” IEEE Trans. Dependable Secure
Comput., vol. 15, no. 6, pp. 1055–1067, Nov. 2018.

[26] S. Yi and Y. Zhou, “Separable and reversible data hiding in encrypted
images using parametric binary tree labeling,” IEEE Trans. Multimedia,
vol. 21, no. 1, pp. 51–64, Jan. 2019.

[27] F. Peng, Z.-X. Lin, X. Zhang, and M. Long, “Reversible data hiding
in encrypted 2D vector graphics based on reversible mapping model
for real numbers,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 9,
pp. 2400–2411, Sep. 2019.

[28] R. Anushiadevi and R. Amirtharajan, “Separable reversible data hiding
in an encrypted image using the adjacency pixel difference histogram,”
J. Inf. Secur. Appl., vol. 72, Feb. 2023, Art. no. 103407.

[29] R. Anushiadevi and R. Amirtharajan, “Design and development
of reversible data hiding-homomorphic encryption & rhombus pat-
tern prediction approach,” Multimedia Tools Appl., vol. 82, no. 30,
pp. 46269–46292, Dec. 2023.

[30] X. Zhang, J. Long, Z. Wang, and H. Cheng, “Lossless and reversible data
hiding in encrypted images with public-key cryptography,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 9, pp. 1622–1631, Sep. 2016.

[31] S. Xiang and X. Luo, “Reversible data hiding in homomorphic encrypted
domain by mirroring ciphertext group,” IEEE Trans. Circuits Syst. Video
Technol., vol. 28, no. 11, pp. 3099–3110, Nov. 2018.

[32] H.-T. Wu, Y.-M. Cheung, Z. Yang, and S. Tang, “A high-capacity
reversible data hiding method for homomorphic encrypted images,”
J. Vis. Commun. Image Represent., vol. 62, pp. 87–96, Jul. 2019.

[33] H.-T. Wu, Y.-M. Cheung, and J. Huang, “Reversible data hiding in
Paillier cryptosystem,” J. Vis. Commun. Image Represent., vol. 40,
pp. 765–771, Oct. 2016.

[34] Y. Ke, M.-Q. Zhang, J. Liu, T.-T. Su, and X.-Y. Yang, “A multilevel
reversible data hiding scheme in encrypted domain based on LWE,”
J. Vis. Commun. Image Represent., vol. 54, pp. 133–144, Jul. 2018.

[35] B. Chen, X. Wu, W. Lu, and H. Ren, “Reversible data hiding in
encrypted images with additive and multiplicative public-key homomor-
phism,” Signal Process., vol. 164, pp. 48–57, Nov. 2019.

[36] M. Li, D. Xiao, Y. Zhang, and H. Nan, “Reversible data hiding in
encrypted images using cross division and additive homomorphism,”
Signal Process., Image Commun., vol. 39, pp. 234–248, Nov. 2015.

[37] Y. Ke, M.-Q. Zhang, J. Liu, T.-T. Su, and X.-Y. Yang, “Fully homomor-
phic encryption encapsulated difference expansion for reversible data
hiding in encrypted domain,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 30, no. 8, pp. 2353–2365, Aug. 2020.

[38] S. Zheng, Y. Wang, and D. Hu, “Lossless data hiding based on
homomorphic cryptosystem,” IEEE Trans. Dependable Secure Comput.,
vol. 18, no. 2, pp. 692–705, Mar. 2021.

[39] H.-T. Wu, Y.-M. Cheung, Z. Zhuang, L. Xu, and J. Hu, “Lossless data
hiding in encrypted images compatible with homomorphic processing,”
IEEE Trans. Cybern., vol. 53, no. 6, pp. 3688–3701, Jun. 2023.

[40] N. Zhou, M. Q. Zhang, H. Wang, Y. Ke, and F. Q. Di, “Separable
reversible data hiding scheme in homomorphic encrypted domain based
on NTRU,” IEEE Access, vol. 8, pp. 81412–81424, 2020.

[41] N. Zhou, M. Q. Zhang, H. Q. Tang, H. N. Zhou, Y. Ke, and F. Q. Di,
“Reversible data hiding algorithm in encrypted domain based on NTRU,”
Sci. Technol. Eng., vol. 20, no. 32, pp. 13285–13294, 2020.

[42] J. Tian, “Reversible data embedding using a difference expansion,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 890–896,
Aug. 2003.

[43] J. Fridrich, M. Goljan, P. Lisoněk, and D. Soukal, “Writing on wet
paper,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3923–3935,
Oct. 2005.

[44] Standard Specification for Public Key Cryptographic Techniques Based
on Hard Problems Over Lattices, IEEE Standard P1363.1, MM
Committee, New York, NY, USA, Mar. 2009. [Online]. Available:
https://ieeexplore.ieee.org/document/4800404

3732 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

[45] D. Stehlé and R. Steinfeld, “Making NTRU as secure as worst-case
problems over ideal lattices,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptograph. Techn., 2011, pp. 27–47.

[46] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in Proc. 44th Annu. ACM Symp. Theory Comput., 2012, pp. 1219–1234.

[47] M. Ajtai, “Generating hard instances of lattice problems,” in Proc. 28th
Annu. ACM Symp. Theory Comput., 1996, pp. 99–108.

[48] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Rev., vol. 41, no. 2,
pp. 303–332, 1999.

[49] D. J. Bernstein and T. Lang, “Post-quantum cryptography,” Nature,
vol. 549, no. 7671, pp. 188–194, 7671.

[50] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and
W. Whyte, “Ntrusign: Digital signatures using the NTRU lattice,” in
Proc. Cryptogr. Track RSA Conf., 2003, pp. 122–140.

[51] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Proc. Int. Conf. Theory Appl. Cryp-
tograph. Techn., in Lecture Notes in Computer Science, vol. 6110, 2010,
pp. 1–23.

Hao-Tian Wu (Senior Member, IEEE) received the
B.E. and M.E. degrees from the Harbin Institute
of Technology, China, in 2002 and 2004, respec-
tively, and the Ph.D. degree from the Department of
Computer Science, Hong Kong Baptist University,
Hong Kong, in 2007. From 2008 to 2009, he was
a Research Engineer with the EURECOM Institute,
France. From 2016 to 2023, he was an Associate
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou, China. He is currently a Professor with

the Cyberspace Institute of Advanced Technology, Guangzhou University,
Guangzhou. His research interests include lossless data hiding, privacy com-
puting, deep learning, and blockchain.

Yiu-Ming Cheung (Fellow, IEEE) received the
Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University
of Hong Kong, Hong Kong. He is currently the
Chair Professor (Artificial Intelligence) with the
Department of Computer Science, Hong Kong Bap-
tist University, Hong Kong. His research interests
include machine learning and visual computing and
their applications in data science, pattern recogni-
tion, multi-objective optimization, and information
security. He is a fellow of AAAS, IET, BCS,

and AAIA. He is the Editor-in-Chief of IEEE TRANSACTIONS ON
EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE and an Associate
Editor of IEEE TRANSACTIONS ON CYBERNETICS, IEEE TRANSAC-
TIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, Pattern Recog-
nition, and Knowledge and Information Systems. For details, please visit:
https://www.comp.hkbu.edu.hk/∼ymc.

Zhihong Tian (Senior Member, IEEE) is cur-
rently a Professor with the Cyberspace Institute
of Advanced Technology, Guangzhou University,
Guangdong, China. He is also a part-time Pro-
fessor with Carleton University, Ottawa, Canada.
His research interests include computer networks
and cyberspace security. He has authored over
200 journal and conference papers in these areas. His
research work has been supported by the National
Natural Science Foundation of China, the National
Key Research and Development Plan of China, the

National High Tech RD Program of China (863 Program), and the National
Basic Research Program of China (973 Program). He is a Senior Member of
the China Computer Federation.

Dingcai Liu received the bachelor’s degree from the
Hebei University of Technology, China, in 2020, and
the Master of Engineering degree from the South
China University of Technology, China, in 2023. His
research interests include homomorphic encryption
and reversible data hiding in encrypted domain.

Xiangyang Luo received the B.S., M.S., and
Ph.D. degrees from the State Key Laboratory of
Mathematical Engineering and Advanced Comput-
ing, Zhengzhou, China, in 2001, 2004, and 2010,
respectively. He is currently a Professor with the
State Key Laboratory of Mathematical Engineering
and Advanced Computing. He is the author or coau-
thor of more than 200 refereed international journal
and conference papers. His research interests include
network security and multimedia security.

Jiankun Hu (Senior Member, IEEE) received
the Master of Computer Science and Software
Engineering (Research) degree from Monash Uni-
versity, Australia, in 2000, and the Ph.D. degree
in control engineering from the Harbin Institute of
Technology, China, in 1993. He was with Ruhr
University, Germany, on the prestigious German
Alexander von Humboldt Fellowship, from 1995 to
1996, a Research Fellow with Delft University, the
Netherlands, from 1997 to 1998, and a Research
Fellow with Melbourne University, Australia, from

1998 to 1999. He is currently a Full Professor of Cyber Security with the
School of Engineering and Information Technology, University of New South
Wales, Australian Defence Force Academy, Canberra, Australia. His main
research interests include biometrics security, intrusion detection, forensics,
data hiding, and machine learning, where he has published many papers
in high quality conferences and journals, including IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. He served as the
editorial board for several top international journals and served as the security
symposium chair for IEEE flagship conferences. He received ten Australian
Research Council (ARC) grants and has served for the prestigious Panel of
Mathematics, Information and Computing Sciences (MIC), and the Excellence
in Research for Australia (ERA) Evaluation Committee.

