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Abstract—Process shift of multimode process involving
data distribution and dynamic relation makes traditional
transfer learning methods be intractable and even result in
negative transfer. To tackle this issue, this article proposes
a novel self-tuning transfer dynamic modeling method for
quality prediction of multimode processes. First, in order to
capture domain-invariant spatiotemporal (DIST) features, a
transfer dynamic convolution autoencoder (TDCAE) with a
feature decomposition structure is established. Meanwhile,
a first-order vector autoregressive constraint is embedded
to extract consistent inner dynamics for DIST features.
Then, a shared regression network is established to extract
the relations with quality variables. Furthermore, by making
full use of private spatiotemporal information from target
labeled samples in response to the process shift, the self-
tuning TDCAE (STDCAE) aided by a fine-tuning strategy is
established for online compensation. Finally, the efficacy
of the proposed TDCAE and STDCAE is demonstrated by a
comprehensive study of a three-phase flow facility process.

Index Terms—Convolutional neural networks, deep au-
toencoder, dynamic process modeling, multimode pro-
cesses, quality prediction, transfer learning (TL).
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NOMENCLATURE

Abbreviations
CNN Convolution neural network.
MMD Maximum mean discrepancy.
DIST Domain-invariant spatiotemporal.
SEN Shared encoder network.
VAR Vector autoregressive.
TDCAE Transfer dynamic convolution autoencoder.
PTST Private-target spatiotemporal.
PSST Private-source spatiotemporal.
TERN Target error regression network.
STDCAE Self-tuning TDCAE.

Parameters
K Number of steady operating mode.
s Length of time window.
SMi

Collected dataset for modeMi.
XMi

,YMi
Process and quality data of modeMi.

Xc
Mi

,Xp
Mi

Shared and private part of process data for mode
Mi.

Xs
tar, tst Target domain test set.

Yc
Mi

,Yp
Mi

Shared and private part of quality data for mode
Mi.

Nsrc Number of source sequence samples.
Ntar Number of target sequence samples.
Xs,L

tar Process variables of target labeled samples.
Ys,L

tar Quality variables of target labeled samples.
Ŷs,L,c

tar Predicted value of TDCAE for Xs,L
tar .

Ys,L,p
tar Predicted error of TDCAE for Ys,L

tar .

I. INTRODUCTION

IN the last decade, data-driven quality prediction methods
have been widely utilized in modern industrial processes due

to the abilities to acquire relations between quality indicators and
process measurements in a simple manner [1], [2]. In response
to the diverse market demand, multimode processes have been
widely used and data-driven quality prediction of multimode
processes has received much attention recently [3], [4], [5], [6],
[7]. The multimode characteristics that come from the switching
of operation conditions and adjusting the ratio of raw materials
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can result in unfavorable data distribution discrepancies. Also,
it is difficult to establish a reliable quality prediction model for
the operating mode with limited labels while abundant labels are
only applicable to specific operating modes. Data-driven quality
prediction of multimode processes with scarcity of labels and
data distribution discrepancies remains a challenge in academia
and industry.

Recently, transfer learning (TL) [8], [9] has shown great
potential in cross-domain learning scenarios. TL is to extract
information from domains with abundant labeled dataset and
reduce the distribution discrepancies across domains. In this
regard, multimode process modeling can be viewed as a cross-
domain learning task. Specifically, the operating mode with
abundant labeled samples is taken as the source domain, and
those new modes with limited or no labeled samples are taken
as the target domain [4], [10], [11].

In the literature, deep transfer learning (DTL) [12], [13], [14],
[15], [16], [17], [18], [19], [20] has been studied in develop-
ing quality prediction models for multimode processes due to
the merit of good feature representation. The developed DTL
quality prediction methods can be classified into three types,
i.e., pretraining combined with fine-tuning methods [15], [16],
unsupervised domain adaptation methods [4], [17], [18], and
joint learning methods [14], [19]. In general, the performance
of TL is highly relevant to the ability to reduce the distribu-
tion discrepancy by adopting appropriate metrics, e.g., maxi-
mum mean discrepancy (MMD) [21], and correlation alignment
(CORAL) [22]. Furthermore, adversarial learning is an effective
alternative to reduce distribution discrepancy between domains.
It can be combined with TL to form adversarial transfer learn-
ing [13], [17], [23], [24]. Moreover, feature disentanglement
technique in [25] and [26] is incorporated into TL to reduce the
distribution discrepancy by alleviating the negative influence
of private perturbed variations. For example, Hu et al. [26]
proposed a deep feature disentanglement-based TL method for
the remaining useful life prediction of bearings under different
working conditions. However, the existing work only consid-
ers feature disentanglement with static relation. The process
dynamics are not considered for quality prediction, while the
domain-invariant dynamic feature extraction is still unsolved.

Due to the effect of process dynamics, the collected data are
often multidimensional time series, which are autocorrelated and
cross-correlated over time. It is essential to develop dynamic la-
tent variable (DLV) models for dynamic process modeling [27].
Meanwhile, quality-relevant variations are driven by a reduced
dimensional DLVs. DLV-based approaches have been developed
for quality prediction [28], [29], [30]. However, these methods
are linear methods. To model nonlinear dynamic relations, deep
learning models for quality prediction have attracted much at-
tention due to their advantage in handling complicated nonlin-
ear characteristics [31]. In particular, deep DLV models [32],
[33], [34], [35], [36], which incorporate with long short-term
memory (LSTM) networks [37], [38], and convolution neural
networks (CNN) [39], [40], [41], are investigated. Furthermore,
DLV-based quality prediction has been extended to be applica-
ble for multimode processes [34], [35]. One-dimensional CNN
(1DCNN) has been applied for modeling time series in [42].

Also, the work of [43] develops a multidimensional CNN for
the cement clinker production process.

During the switching of operation modes, process dynamics
may shift over time. Recently, some work on TL aided by dy-
namic relation has been investigated [44], [45], [46], [47], which
mainly focuses on reducing the dynamic discrepancy between
different modes. Besides, some DTL methods [12], [13] rely on
shared feature extractors composed of LSTM or CNN to extract
domain-invariant spatiotemporal (DIST) features. The challenge
of extracting invariant spatiotemporal features is addressed when
the two objectives are met [44], [45]: 1) reducing marginal distri-
bution discrepancy; 2) maintaining consistent process dynamic
variations when labeled dataset are not available in the target
domain. To the best of authors’ knowledge, it is difficult to
extract effective DIST features since the existing work cannot
effectively exclude the negative effects of domain-private spa-
tiotemporal features.

In multimode processes, data collected from different modes
that operate in similar but different process mechanism may
be different in data distribution and dynamics. The objective of
extracting DIST features is, therefore, not only reducing the data
distribution discrepancies while maintaining the consistency
of process dynamics, but also excluding the negative effects
of irrelevant variations. DIST feature extraction is crucial for
quality prediction of the new mode with no abundant labels,
especially for the early stage of the operating mode. In view
of this, this article proposes a transfer dynamic convolution
autoencoder (TDCAE) with a feature decomposition structure
for quality prediction of multimode dynamic processes with
shifts. Specifically, the 1DCNN is adopted as the basic architec-
ture to extract the DIST features by a shared encoder network
(SEN) separated from the private ones. Then, the maximum
mean distance metric and discriminator network are adopted
to reduce the distribution discrepancy between DIST features.
Meanwhile, a first-order vector autoregressive (VAR) constraint
is expected to extract consistent dynamics of DIST features.
Finally, when a few labeled samples are available, self-tuning
TDCAE (STDCAE) is proposed to utilize the private-target
spatiotemporal (PTST) features to perform online compensation
in response to process shifts of the target domain.

The major contributions of this work are two-fold.
1) A novel feature decomposition structure that can simul-

taneously consider marginal distribution discrepancy and
process dynamics is proposed to extract invariant spa-
tiotemporal features between modes for quality prediction
of multimode processes.

2) A self-tuning error compensation mechanism is devel-
oped to alleviate the shift caused by conditional dis-
tribution discrepancy, which exploits separated private
spatiotemporal features of a few labeled dataset in the
target domain.

The rest of this article is organized as follows. We make
an overview of related works on Autoencoder, 1DCNN, and
VAR for dynamic modeling in Section II. Then, Section III
gives the motivation and framework of the proposed TDCAE.
Subsequently, an online compensation method called STDCAE
is presented in Section IV. In Section V, the effectiveness of
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the proposed methods is demonstrated through a three-phase
flow facility process (TPFF). Finally, Section VI concludes this
article.

II. OVERVIEW OF RELATED WORKS

A. Autoencoder

Autoencoder is one kind of deep models that can preserve
dominant low-dimensional features for high dimension dataset
and has gained popularity in recent years for quality predic-
tion [48], nondestructive testing [49], etc. It has a symmetrical
network structure consisting of an input layer, a hidden layer, and
an output layer, which is trained by reconstruction loss. Here,
we let the collected dataset S = {X} = {(xi), i = 1, . . . , N}
with N samples, where xi = [xi1, xi2, . . . , xip]

� ∈ Rp, p is the
number of process variables. The input sample is encoded and
decoded sequentially in the encoder and the decoder as follows:

hi = Se (We · xi + be) (1)

x̃i = Sd (Wd · hi + bd) (2)

where hi = [hi1, hi2, . . . , hiu] ∈ Ru denotes u encoded latent
features, x̃i = [x̃i1, x̃i2, . . . , x̃ip] ∈ Rp is the reconstructed pro-
cess variables, We ∈ Ru×p and be ∈ Ru denote weight matrix
and bias vector of the encoder, respectively, Wd ∈ Rp×u and
bd ∈ Rp denote weight matrix and bias vactor of the decoder,
respectively.Se andSd denote the nonlinear activation functions,
respectively.

B. One-Dimensional CNN

1DCNN inherits the property of weight sharing, which re-
duces the number of learning parameters and accelerates the
convergence [42]. It has a one-dimensional convolution kernel
only focusing on receptive field information along the tempo-
ral direction. For Ss = {Xs} = {(xs

i ), i = 1, . . . , N}, where
xs
i = (xs+i−1,xs+i−2, . . . ,xi) ∈ Rp×s with a time window

size of s, the extracted features by convolution operation is
described as

hs
i (m) =

p∑
j=1

C1v (x
s
i (j)) ,

i = (1, . . . , N)
m = (1, . . . ,M)

(3)

where C1v ∈ R1×v is a one-dimensional convolution operation
with a length size of v (v < s), hs

i (m) denotes the mth feature
map of the ith window of samples. M convolution kernels are
adopted to extract features.

C. VAR for Dynamic Modeling

A class of explicit DLV models [27], [28] is developed by
introducing the VAR model in the latent subspace. They can
drive some DLVs with noninteracting relations with each other.
It is assumed that S = {X} = {(xk), k = 1, . . . , N + s} with
N + s samples are available, where xk ∈ Rp is the sample vec-
tor at time instant k. For each DLV, its latent dynamic relations
depending on the past lagged data are described as

tk = x�kw (4)

tk = β1tk−1 + β2tk−2 + · · ·+ βstk−s + rk (5)

where β = (β1, . . . , βs)
� satisfies ‖β‖2 = 1, tk is the score of

process variables, w ∈ Rp×1 is the weight vector determined
by maximizing predictability of the projected latent variables
(LVs) [27]. s is the length of time window selected according to
the dynamic order. rk is the residual that denotes the predictive
error.

III. PROPOSED TDCAE ALGORITHM

A. Motivation and Basic Framework of TDCAE

K steady operating modes of a multimode process are denoted
as {M1,M2, . . . ,MK}. Only a few modes can collect abundant
labeled datasets, while most modes cannot. Given that each
mode is different but similar, it is assumed that each mode
dataset SMi

= {XMi
,YMi

}, where i ∈ {1, 2, . . . ,K}, can be
decomposed into the shared part and the private part as

{XMi
,YMi

} = {
Xc
Mi

+Xp
Mi

,Yc
Mi

+Yp
Mi

}
=

{
Xc
Mi

,Yc
Mi

}
+
{
Xp
Mi

,Yp
Mi

}
(6)

where Xc
Mi

and Yc
Mi

denote the shared part with respect to the
input and output, and Xp

Mi
and Yp

Mi
are the private part.

In TL, the first term of the right side in (6) is expected to be cap-
tured and aligned, which facilitates cross-domain learning, while
the second term should be discarded due to its potentially nega-
tive effects. Therefore, a novel TDCAE using feature decompo-
sition is proposed in this work. For ease of understanding, using
the time window of size s for serialization, the sequence samples
of source domain and target domain are, respectively, organized
as {Xs

src,Y
s
src} = {(xs

src,i,y
s
src,i)}Nsrc

i=1
, where Nsrc is the number

of source sequence samples, and {Xs
tar} = {(xs

tar,i)}Ntar

i=1
, where

Ntar is the number of target sequence samples. The framework
of the proposed TDCAE algorithm is shown in Fig. 1.

1) Shared Encoder Network: The SEN Ec(·; θc) is to extract
l DIST features between the source domain and target domain.
For each input sample xs

src,i and xs
tar,i, the modeling process is

described as

hs,c
src,i = Ec(x

s
src,i) (7)

hs,c
tar,i = Ec(x

s
tar,i) (8)

where hs,c
src,i ∈ Rs×l and hs,c

tar,i ∈ Rs×l denote DIST features
from the source domain and target domain, respectively.

2) Private Encoder Network: Different from the SEN, the
private encoder network includes two parts, i.e., private-source
encoder network Eps(·; θps) and private-target encoder network
Ept(·; θpt), which are to extract l PSST and PTST features
concerning the source domain or target domain, respectively.
The corresponding modeling process is described as

hs,p
src,i = Eps(x

s
src,i) (9)

hs,p
tar,i = Ept(x

s
tar,i) (10)

where hs,p
src,i ∈ Rs×l and hs,p

tar,i ∈ Rs×l denote the private spa-
tiotemporal features concerning the source domain and target
domain, respectively.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on September 09,2024 at 02:22:15 UTC from IEEE Xplore.  Restrictions apply. 



11298 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 9, SEPTEMBER 2024

Fig. 1. Modeling framework of TDCAE for cross-domain quality prediction.

3) Shared Decoder Network: To extract effective DIST,
PSST, and PTST features, their combined form is reconstructed
back to the original space as much as possible through a shared
decoder network Dds(·, θds). The reconstructed loss of mean
square error (MSE) is calculated as

Qrec =
1

Nsrc

Nsrc∑
i=1

∥∥xs
src,i − x̂s

src,i

∥∥2

F

+
1

Ntar

Ntar∑
i=1

∥∥xs
tar,i − x̂s

tar,i

∥∥2

F
(11)

where x̂s
src,i = Dds(h

s,com
src,i ) and x̂s

tar,i = Dds(h
s,com
tar,i ). hs,com

src,i =

hs,c
src,i + hs,p

src,i and hs,com
tar,i = hs,c

tar,i + hs,p
tar,i denote the combined

spatiotemporal features with respect to the source and target
domain.

4) Shared Regression Network: The source DIST features
hs,c

src,i are expected to achieve maximum predictability for ys
src,i.

Before feeding into the shared regression network fcr(·; θcr),
hs,c

src,i is flattened to a vector form us,c
src,i ∈ Rsl×1. Therefore, the

prediction loss of MSE is calculated as

Qreg =
1

Nsrc

Nsrc∑
i=1

∥∥ys
src,i − ŷs

src,i

∥∥2
(12)

where ŷs
src,i = fcr(u

s,c
src,i) denotes the predicted quality.

5) Domain Discriminator Network: The objective of the do-
main discriminator network Gd(·; θd) is to make the flatten
DIST features us,c

src,i and us,c
tar,i indistinguishable. Meanwhile,

a gradient reversal layer, which is the identity function with
reverse gradient is adopted to make the domain discriminator

and the SEN trained in an adversarial manner. The adversarial
loss can be maximized and minimized concerning θd and θc,
which is defined as

Qd =

Nsrc+Ntar∑
i=1

{
dilogd̂i + (1− di)log(1− d̂i)

}
(13)

where di ∈ {0, 1} denotes the actual label of the ith sample.
When i ≤ Nsrc, d̂i = Gd(u

s,c
src,i) is predicted label of the source

domain, otherwise d̂i = Gd(u
s,c
tar,i) is predicted label of the target

domain.
Remark 1: Note that both the SEN and private encoder net-

work are composed of two 1-D convolution layers with batch
normalization. The shared decoder network is composed of two
1-D deconvolution layers, and the shared regression network
and discriminator network are composed of two fully connected
layers (FCL).

B. Distribution Alignment and Separation

The MMD, as a common distribution distance metric func-
tion, is to further align flattened DIST features. The MMD loss
between us,c

src,i and us,c
tar,i is calculated as

Qmmd =

∥∥∥∥∥
Nsrc∑
i=1

φ(us,c
src,i)−

Ntar∑
i=1

φ(us,c
tar,i)

∥∥∥∥∥
2

H
(14)

where φ(·) denotes the mapping function,H is the reproducing
kernel Hilbert space.

Meanwhile, the DIST features should be separated from
the private ones in each domain. For all samples of
the source domain, the DIST and PSST features are
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flattened to Us,c
src = [us,c

src,1, . . . ,u
s,c
src,i, . . . ,u

s,c
src,Nsrc

]� ∈ RNsrc×sl

and Us,p
src = [us,p

src,1, . . . ,u
s,p
src,i, . . . ,u

s,p
src,Nsrc

]� ∈ RNsrc×sl. Simi-
larly, the DIST and PTST features of the target domain are also
flattened to Us,c

tar = [us,c
tar,1, . . . ,u

s,c
tar,i, . . . ,u

s,c
tar,Ntar

]� ∈ RNtar×sl

and Us,p
tar = [us,p

tar,1, . . . ,u
s,p
tar,i, . . . ,u

s,p
tar,Ntar

]� ∈ RNtar×sl. The or-
thogonality loss constraint is introduced between the SEN and
the private encoder network in each domain, which is calculated
as

Qorth =
∥∥∥(Us,c

src )
�Us,p

src

∥∥∥2

F
+
∥∥∥(Us,c

tar )
�
Us,p

tar

∥∥∥2

F
(15)

where ‖ · ‖2
F denotes the Frobenius norm.

C. Consistent Inner Dynamic by VAR

To make DIST features have consistent inner dynamics, a
first-order VAR model, called VAR(1), is introduced to guide
the learning of SEN. Considering that hs,c

src,i and hs,c
tar,i have time

dimension size of s, the last value of their time dimension is dis-
carded to formh

(1:s−1),c
src,i andh(1:s−1)c

tar,i , followed by the first value

of their time dimension is discarded to form h
(2:s),c
src,i and h

(2:s),c
tar,i .

Next, h(1:s−1),c
src,i , h(1:s−1)c

tar,i , h(2:s),c
src,i , and h

(2:s),c
tar,i are flattened to

vector form u
(1:s−1),c
src,i , u(1:s−1)c

tar,i , u(2:s),c
src,i , and u

(2:s),c
tar,i . Using

VAR(1) model fvar(·; θvar) driven by a fully connected network,
a shared autoregressive relation between u

(1:s−1),c
src,i and u

(2:s),c
src,i ,

and the one between u
(1:s−1),c
tar,i and u

(2:s),c
tar,i are established and

the MSE loss is calculated as

Qvar =
1

Nsrc

Nsrc∑
i=1

∥∥∥u(2:s),c
src,i − fvar(u

(1:s−1),c
src,i )

∥∥∥2

+
1

Ntar

Ntar∑
i=1

∥∥∥u(2:s),c
tar,i − fvar(u

(1:s−1),c
tar,i )

∥∥∥2
(16)

where fvar(u
(1:s−1),c
src,i ) and fvar(u

(1:s−1),c
tar,i ) are the predicted value

of VAR(1) with respect to the source domain and target domain.

D. Training Loss of TDCAE Algorithm

In TDCAE, all submodules are jointly trained and optimized
through Adam optimization until convergence [50]. The loss
function of TDCAE can be summarized as

QTDCAE = Qreg + λrecQrec + λmmdQmmd + λdQd

+ λorthQorth + λvarQvar (17)

where λrec, λd, λmmd, λorth, and λvar are tradeoff parameters for
various loss functions. The network parameters of TDCAE are
updated as follows:

θc ← θc − μ

(∇θcQreg + λrec∇θcQrec + λmmd∇θcQmmd

−λd∇θcQd + λorth∇θcQorth + λvar∇θcQvar

)

θps ← θps − μ
(
λrec∇θpsQrec + λorth∇θpsQorth

)
θpt ← θpt − μ

(
λrec∇θptQrec + λorth∇θptQorth

)
θds ← θds − μ∇θdsQrec

θcr ← θcr − μ∇θcrQreg

Algorithm 1: The Proposed TDCAE.

θd ← θd − μ∇θdQd

θvar ← θvar − μ∇θvarQvar (18)

where μ denotes the learning rate. The implementation details
of the TDCAE are summarized in Algorithm 1.

Remark 2: The distribution of process data in each mode not
only varies over time but also differs. This results in a marginal
distribution discrepancy with different process dynamics. As
demonstrated in the work of [44] and [45], the switching of
operating modes and inconsistent process inner dynamics can
degrade the modeling performance. The marginal distribution
discrepancy is addressed by minimizing the maximum mean
distance and confusing discriminator, i.e., the third and fourth
terms in (17). The extraction of consistent process dynamic
variations is achieved by using the same weight coefficients for
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Fig. 2. STDCAE modeling scheme for online compensation.

two domains in (16). Different from the existing work in [44] and
[45], the proposed method not only incorporates the deep models
for effective feature extraction but also excludes the negative of
invariant spatiotemporal features.

IV. STDCAE FOR ONLINE COMPENSATION

In this section, STDCAE is proposed to provide an error
compensation for TDCAE using a small number of labeled
dataset from the target domain.

In general, the distribution discrepancy between modes is
divided into the marginal distribution discrepancy and condi-
tional distribution discrepancy [6], [20], [44]. The conditional
distribution discrepancy can produce prediction error of TDCAE
for the new operating mode. To address this, after TDCAE is
first adopted to perform prediction for a few labeled dataset
from the new mode, the corresponding prediction errors that
contain the private information of the target domain are obtained.
Then, the extracted PTST dynamic features from the TDCAE
are compensated to obtain the private regression relation of the
target domain. This private regression relation achieves online
error compensation for TDCAE. As mentioned in Section III,
the proposed TDCAE aims to extract invariant information
between domains with the assistance of unlabeled samples
from the target domain. From (6), the invariant regression re-
lation of the target domain can be predicted through TDCAE,
while the private regression relation is not well considered.
In practice, however, a few labeled samples {Xs,L

tar ,Ys,L
tar } are

available in the target domain. Although it is difficult for the
target domain to train a reliable model, the private variations
may be significant for performance improvement. Therefore, an
STDCAE is developed by introducing private information to
perform online compensation. The detailed modeling scheme is
shown in Fig. 2. Specifically, after training TDCAE, the SEN
Ec(·; θc), the private-target encoder network Ept(·; θpt), and the
shared regression network fcr(·; θcr) are frozen to select trainable
parameters. TDCAE can provide a predicted label Ŷs,L,c

tar for
process dataset Xs,L

tar from the target domain. It is noted that
TDCAE only extracts DIST features to perform prediction for
invariant regression relation between domains. The prediction
error between Ŷs,L,c

tar and Ys,L
tar is calculated as

Ys,L,p
tar = Ys,L

tar − Ŷs,L,c
tar = Ys,L

tar − fTDCAE(X
s,L
tar )

= Ys,L
tar − fcr(U

s,L,c
tar ) = Ys,L

tar − fcr(Ec(X
s,L
tar )) (19)

where fTDCAE(·;θTDCAE) denotes invariant regression relation
of TDCAE using source domain labeled dataset {Xs

src,Y
s
src}

and target domain unlabeled dataset {Xs
tar}. Us,L,c

tar denotes the
flattened DIST features from the target domain. Ŷs,L,c

tar is the
predicted value of TDCAE, which is equivalent to the shared
information of label value. Ys,L,p

tar denotes the predicted error,
which contains the private information of label value.

Subsequently, the extracted flattened PTST features Us,L,p
tar

by private-target encoder network and the predicted error are
reorganized as a new training dataset {Us,L,p

tar ,Ys,L,p
tar } to train

a target error regression network (TERN) by fine-tuning strat-
egy to minimize the MSE. The private regression relation is
described as

fTERN(·; θTERN) := Us,L,p
tar −→ Ys,L,p

tar (20)

where fTERN(·; θTERN) is the mapping function of target error
compensation network.

Finally, the predicted result of STDCAE on target domain test
dataset Xs

tar,tst is a linear combination of TDCAE and TERN,
which is described as

Ŷs
tar,tst = fSTDCAE(X

s
tar,tst)

= fcr
(
Ec

(
Xs

tar,tst

))
+ fTERN

(
Ept

(
Xs

tar,tst

))
(21)

where fSTDCAE(·) is the regression relation of STDCAE.

V. CASE STUDY

In this section, the effectiveness of the proposed TDCAE and
STDCAE methods is demonstrated through the TPFF process.

A. Description of TPFF Process

The TPFF process [51] is a dynamic process, which aims to
regulate and measure the flow rate of air, water, and oil in a pres-
surized facility. In the supplement material file, Fig. S1 shows
the TPFF process, including a gas–liquid separator, a three-phase
separator, numerous coalesces, and storage tanks connected by
pipelines of different specifications and geometries. In the test
area, there are pipelines with various bore sizes and geometries,
as well as a gas and liquid two-phase separator located on a high
platform. The fluid mixtures made up of air, water, and oil, can
be provided as the input of the TPFF process at required rates,
which are further separated through the three-phase separator at
ground level. The whole process produces 24 process variables
and the sampling rate is 1 Hz. In addition, multiple steady
operating modes can be switched by regulating the setpoints of
waterflow and airflow rate. It is, therefore, a dynamic multimode
process with a shift between different modes, suitable for the
evaluation of the proposed TDCAE and STDCAE methods. In
this work, the pressure of the three-phase separator is chosen as
the quality variable, and a total of related 16 process variables
are the inputs. A detailed description of the quality variable and
chosen process variables are listed in Table SI of the supplement
material file. Furthermore, we investigate three operation modes
with abundant samples, denoted by {M1,M2,M3}, and the
corresponding parameters are listed in Table I. There are 1000,
800, 950 labels inM1,M2, andM3, respectively.
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TABLE I
PARAMETERS FOR THREE MODES

B. Experimental Details

For the comparison across different modes, one mode among
M1,M2, andM3 is randomly selected as the source domain,
while the remaining two are designated as target domains. In
the source domain, all collected dataset are utilized as training
dataset, whereas in the target domain, the initial 200 data samples
are employed as training dataset and the remaining ones are
reserved as test dataset. Consequently, a total of six transfer sce-
narios are executed. Within each scenario, traditional dynamic
modeling approaches, such as dynamic inner partial least squares
(DiPLS) [28], LSTM [37], and 1DCNN [42], along with several
TL baselines including Deep CORAL [22], domain adversarial
neural network (DANN) [17], transfer dynamic latent variable
regression (TDLVR) [44], domain adaptation regression by
aligning inverse gram matrices (DARE-GRAM) [18], and condi-
tional distribution deep adaptation in regression (CDAR) [12],
are investigated as comparison methods. All methods are as-
sessed using the same test dataset. Here, traditional dynamic
modeling approaches trained by solely labeled training samples
of the source domain are to validate the necessity of trans-
ferring invariant dynamic variation. Some domain adaptation
TL baselines, such as Deep CORAL, DANN, TDLVR, and
DARE-GRAM, are chosen to validate the benefits of DIST
feature extraction in the proposed TDCAE. The CDAR method
that solely considers conditional distribution discrepancies is
chosen to validate the benefit of the proposed method that also
takes into account in the marginal distribution discrepancies.
STDCAE, as an improvement of TDCAE, serves to verify the
effectiveness of online compensation mechanism for alleviating
conditional distribution discrepancy. It is noted that 200 labeled
training samples from the target domain are only utilized for
STDCAE and CDAR, not TDCAE and other TL baselines.

For fair comparisons, the relevant parameters for all methods
should be set to be the same. The length of the time window
is selected as s = 4 by trial-and-error method. The number of
LVs of DiPLS is set to 2. The TDLVR has the same LVs as
the DiPLS. LSTM has a hidden layer containing 30 neurons,
and 1DCNN has two one-dimensional convolutional layers with
kernel size 3 and channel size {30, 5}, respectively, two batch
normalization layers, and two FCL with size {20, 10}. The
Deep CORAL, DANN, DARE-GRAM, and CDAR employ
the same network structures as the 1DCNN. For the proposed
TDCAE, the SEN and two private encoder networks have
the same convolutional structures as 1DCNN. Meanwhile, the
shared decoder network has a symmetric structure with the
private encoder network, and the shared regression network and
the discriminator network have the same FCL structure with
the 1DCNN. In the proposed STDCAE, the TERN also has
the same FCL structure. The rectification linear unit (ReLU)
and Tanh activation functions are used corresponding to the

TABLE II
COMPARISON OF MODE EFFICIENCY BETWEEN THE PROPOSED TDCAE,

STDCAE, AND OTHER APPROACHES

convolutional layer and the FCL, respectively. During train-
ing stage of TDCAE, the penalty parameters λrec, λmmd, λvar,
and λd are searched from {0.001, 0.01, 0.1, 1}, as well as λorth

is searched from {0.0025, 0.005, 0.0075, 0.01}. Moreover, the
batch size is set to 64, the number of training epochs is 50, the
Adam optimizer with a weight decay of 0.0001 is utilized to
train the abovementioned deep models, and its learning rate is
set to 0.005 from {0.001, 0.005, 0.01}. In STDCAE, the epochs
of fine-tuning the TERN model is set to 10 and its learning rate
is set to 0.001.

C. Model Efficiency, Convergence, and Parametric
Sensitivity

For simplicity, taking the scenario of M1 →M2 as an il-
lustration, four common metrics, including parameters, train-
ing time, model size, and floating point operations per second
(FLOPs) are adopted to evaluate the model efficiency. It is noted
that the FLOPs is only used to evaluate deep models rather
than DiPLS and TDLVR models. The comparison result of
model efficiency is listed in Table II. It can be seen that DiPLS
and TDLVR are attributed to the shortest training time with
fewer model parameters. The main reason is that they are linear
models. Compared with LSTM, 1DCNN shows a superiority in
four metrics. All TL methods adopt the same network structure
as 1DCNN. Deep CORAL and DARE-GRAM have comparable
model efficiency with 1DCNN, while DANN has a lower model
efficiency due to the introduction of a discriminant network.
The reason for the decreased model efficiency of CDAR is to
establish separate networks for the source domain and target
domain. Although the proposed TDCAE and STDCAE have
a more complex model due to a parallel learning framework
composed of multiple subnetwork modules, the model efficiency
is still acceptable. For example, the training time is around 16
s. Subsequently, to demonstrate the convergence of TDCAE
under multiple loss constraints, the training loss curve of the
proposed TDCAE in the scenario of M1 →M2 is shown in
Fig. S2 of the supplement material file. It is clear that these
losses are correlated with each other and can be efficiently
optimized to achieve the convergence of TDCAE. Furthermore,
the parametric sensitivity is conducted for each loss constraint
of the TDCAE. The impact of each parameter variation on
TDCAE performance in the scenario of M1 →M2 is shown
in Fig. S3 of the supplement material file. It is noted that
smaller values of λrec and λvar will weaken the desired effects of
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TABLE III
PREDICTION PERFORMANCE COMPARISON OF TDCAE, STDCAE, AND CONVENTIONAL METHODS FOR THE TPFF PROCESS

reconstruction loss and the VAR loss in TDCAE, which cor-
respondingly decrease the ability to extract the representative
spatiotemporal features of the original data and to maintain
the consistent inner dynamic variations. The remaining three
parameters, i.e., λmmd, λd, and λortho, are set to unify the cor-
responding loss to similar magnitude of the regression loss,
whereby avoiding imbalanced learning.

D. Results and Discussion

A total of three performance indicators, including root mean
squared error (RMSE), mean absolute error (MAE), and coef-
ficient of determination (R2), are adopted. In all scenarios, five
independent experiments are conducted for the proposed TD-
CAE, STDCAE, and comparison methods. The prediction per-
formance comparison of TDCAE, STDCAE, and other methods
is listed in Table III. Meanwhile, the corresponding prediction
performance boxplots of the proposed TDCAE, STDCAE, and
other TL approaches are shown in Fig. S4 of the supplement
material file. Some insights can be drawn, as follows.

1) Several traditional dynamic methods, including DiPLS,
LSTM, and 1DCNN, inevitably suffer from performance
degradation caused by distribution discrepancy between
modes.

2) Three unsupervised domain adaptation TL baselines,
including Deep CORAL, DANN, and DARE-GRAM,
achieve better prediction performance by reducing dis-
tribution discrepancies but are still hindered since they
can neither effectively exclude the negative effects of
domain-private information nor consider consistent dy-
namic variations between modes.

3) By virtue of effectively capturing consistent dynamic
variations between modes, TDLVR is generally superior

to Deep CORAL, DANN, and DARE-GRAM, except in
the scenario ofM2 →M3 where it is worse than DANN.
However, as a linear transfer method, it has shortcomings
in dealing with nonlinearity. Also, it cannot exclude the
negative effects of domain-private information for knowl-
edge transfer.

4) As a pretraining and fine-tuning TL method, CDAR only
outperforms Deep CORAL, DANN, and DARE-GRAM
in a few scenarios. The main reason is that it only con-
siders conditional distribution discrepancy and ignores
marginal distribution discrepancy.

5) The proposed TDCAE and STDCAE in all scenarios
show a better performance for the evaluation indices than
all baselines.

On the one hand, compared with the existing DTL methods
including Deep CORAL, DANN, DARE-GRAM, and CDAR
that do not consider the DIST feature extraction with consistent
inner dynamics, TDCAE has a significant benefit in quality
prediction from DIST features. On the other hand, the proposed
STDCAE achieves a better prediction performance compared
to TDCAE that validates the effect of self-tuning error com-
pensation mechanism. Taking the scenario of M1 →M2 as
an example, STDCAE can improve the performance indices of
RMSE, MAE, and R2 by 2.84%, 3.45%, and 0.95%, respectively.
Supplement material file, Fig. S5 displays the average predicted
values of TDCAE, STDCAE, and the other approaches in two
scenarios ofM1 →M2 andM1 →M3. It can be seen that the
proposed TDCAE and STDCAE exhibit better tracking of the
pressure variable.

To further demonstrate the feasibility of the proposed TD-
CAE, the distribution visualization of the first two LVs between
the source domain and target domain by TDCAE and other
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Fig. 3. Distribution visualization between the source domain and target
domain by TDCAE and other approaches: (Top four panel) scenario of
M 1 →M 2 and (bottom four panel) scenario ofM 1 →M 3. (a)
DANN. (b) Deep CORAL. (c) TDLVR. (d) TDCAE. (e) DANN. (f) Deep
CORAL. (g) TDLVR. (h) TDCAE.

TABLE IV
AVERAGE ABLATION RESULTS OF TDCAE IN TWO SCENARIOS

approaches, including Deep CORAL, DANN, and TDLVR are
shown in Fig. 3. It can be seen that Deep CORAL, DANN,
and TDLVR can only focus on the alignment of the shared
information but not separate the private information between
domains. The negative effect of private information will hinder
the transfer ability of the prediction model to some extent.
By contrast, the TDCAE not only aligns shared information
between domains but also separates private information and
renders it orthogonal to shared information as much as possible.

E. Ablation Experiment

The ablation experiment of TDCAE on VAR and MMD losses
is conducted in two scenarios ofM1 →M2 andM1 →M3.
By five independent experiments, the average ablation results of
TDCAE are listed in Table IV. Meanwhile, their performance
comparison histogram is shown in Fig. 4. In Fig. 4 and Table IV,
“w/o” represents “without” indicating that the corresponding
strategy is ignored. The following observations are summarized
as follows.

1) The “w/o VAR and MMD” exhibits the worst perfor-
mance in TDCAE, yet it still outperforms DANN, Deep
CORAL, and DARE GRAM, underscoring the impor-
tance of excluding private variations.

2) The “w/o VAR” reveals that TDCAE does not consider
the maintenance of consistent inner dynamics between
domains, highlighting the necessity of consistent dynamic
variations between domains.

3) The “w/o MMD” exhibits poorer performance compared
to TDCAE (all parts), indicating that MMD distance

Fig. 4. Performance comparison histogram of TDCAE in two scenar-
ios.

can further mitigate distribution discrepancy between
domains.

As a result, the proposed TDCAE achieves superior prediction
accuracy by jointly considering VAR and MMD losses, making
it an effective way for the extraction of DIST features.

VI. CONCLUSION

In this article, a new TL modeling framework based on
dynamic convolution autoencoder, including TDCAE and STD-
CAE, has been successfully developed for online prediction of
quality indicators for multimode processes with shifts. Specif-
ically, the proposed TDCAE provides a feature decomposition
framework and achieves an effective separation of shared and
private information so as to eliminate the negative effect of
TL to some extent. Meanwhile, the first-order VAR model and
MMD distance metric are embedded to capture consistent inner
dynamic variations and reduce distribution discrepancy between
modes, respectively. Furthermore, the proposed STDCAE ex-
ploits their private information and establishes a TERN for
online compensation in response to the shift of the target domain,
which can effectively improve the TDCAE.

Future work will focus on the development of dynamic TL
algorithms that incorporate continuous memory mechanisms to
avoid catastrophic forgetting of historical transfer tasks. More-
over, it would be interesting to develop a domain generaliza-
tion TL-based online quality prediction method for multimode
processes when the target domain unlabeled dataset are not
available.
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