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Robust Low-Rank Tensor Minimization via
a New Tensor Spectral k-Support Norm

Jian Lou and Yiu-Ming Cheung , Fellow, IEEE

Abstract— Recently, based on a new tensor algebraic
framework for third-order tensors, the tensor singular value
decomposition (t-SVD) and its associated tubal rank definition
have shed new light on low-rank tensor modeling. Its applications
to robust image/video recovery and background modeling show
promising performance due to its superior capability in modeling
cross-channel/frame information. Under the t-SVD framework,
we propose a new tensor norm called tensor spectral k-support
norm (TSP-k) by an alternative convex relaxation. As an interpo-
lation between the existing tensor nuclear norm (TNN) and tensor
Frobenius norm (TFN), it is able to simultaneously drive minor
singular values to zero to induce low-rankness, and to capture
more global information for better preserving intrinsic structure.
We provide the proximal operator and the polar operator for
the TSP-k norm as key optimization blocks, along with two
showcase optimization algorithms for medium- and large-size
tensors. Experiments on synthetic, image and video datasets in
medium and large sizes, all verify the superiority of the TSP-k
norm and the effectiveness of both optimization methods in
comparison with the existing counterparts.

Index Terms— Robust low-rank tensor minimization, tensor
robust principal component analysis, tensor singular value
decomposition (t-SVD), alternating direction method of multi-
pliers, proximal algorithm, conditional gradient descent.

I. INTRODUCTION

MULTIDIMENSIONAL data, formally referred to as
tensors, are high-order generalizations to vectors

(i.e. first-order tensors) and matrices (i.e. second-order ten-
sors). Tensor is a natural form of many real world data
that appears in various areas ranging from image and video
analysis in computer vision [1]–[4], social network analysis
and recommendation system [5] in data mining [6], [7],
to signal processing [8], [9], bioinformatics [10], and so on.
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One prominent example in computer vision and image
processing is natural color images, which are 3−way tensors
of size n1 × n2 × 3, where each of the three frontal slices
corresponds to a color channel. In practice, the collected
tensor X ∈ Rn1×n2×n3 is often: 1) having exact or approx-
imate intrinsic low-rank structure (denoted by a low-rank
component L ∈ Rn1×n2×n3 ); 2) missing some entries due
to unavailability or instrument failure; 3) contaminated with
arbitrary corruption (denoted by a sparse component E ∈
Rn1×n2×n3 ). Robust low-rank tensor minimization (RLTM) is a
popular tool for robustly recovering such complex multi-way
data, which imposes the tensor low-rank structure by � · �t l

and the sparse structure by the well-known �1-norm � · �1,
correspondingly. The following are two representative RLTM
problems frequently used in image and video recovery tasks,
where λ is a regularization parameter for balancing the low-
rank and sparse terms.

Example 1 (Robust Tensor PCA):

min
L,E

�L�t l + λ�E�1, s.t . X − L = E. (1)

Example 2 (Robust Low-Rank Tensor Completion):

min
L,E

�L�t l + λ�E�1, s.t . P�(X − L) = P�(E), (2)

where � denotes the index set of observed tensor entries such
that the projection P�(·) maps the entries in the observed
positions to itself and maps the unobserved ones to zero.

In the literature, based on different tensor decomposition
algebraic frameworks and their accompany rank definitions,
there exist three lines for deriving the tensor low-rank
regularization norm � · �t l , i.e. CANDECOMP/PARAFAC
(CP) decomposition model [11], [12], Tucker decomposition
model [13], and tensor singular value decomposition (t-SVD)
model [14]. The CP model defines the rank to be the small-
est number of rank one tensor decomposition, which then
approximates a tensor as sum of rank-one outer products.
The CP model has difficulty in determining the CP rank
(known to be NP-hard problem). Also, its convex relaxation is
ill-posed [15], [16]. The Tucker model unfolds a tensor to
matrices along each mode (i.e. a single dimension) and defines
the rank to be the matrix rank of each unfolded matrix. Many
methods use sum of matrix nuclear norm (SNN) of each matri-
cization to convexify the Tucker rank [3], [17]–[19]. A tensor
is then folded back from the low-rank matrices. Albeit more
favored than CP model in certain applications, it fails to exploit
the correlations between modes. Also, the unfolding and
folding processes tend to discard internal multidimensional
structure information. In addition, each mode of matricization
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has the same number of entries with the original tensor, which
leads to heavy computational burden for large size tensors.

A more promising approach which has received increasing
interests is the recently proposed t-SVD model [14]. The
t-SVD model decomposes a tensor A into a SVD-structure
(i.e. A = U ∗ S ∗ V�) similar to the matrix SVD,
which is based on a new defined tensor-tensor product “∗”
(t-Product) [14]. The t-SVD naturally arises a new tensor
tubal rank definition, which is the number of non-zero singular
tubes of S [8], [14] and is also equivalent to the number of
nonzero singular values of A [20]. By seeking low-rankness in
terms of the tubal rank, t-SVD based methods expect to better
capture the intrinsic structure of a tensor without much loss
of correlation information as opposed to matricization of the
Tucker model. By mimicking the relationship between matrix
rank and matrix nuclear norm, most existing work utilize
the tensor nuclear norm (TNN) as convex surrogate, which
has achieved state-of-the-art performance in various computer
vision and image processing tasks. For example, image and
video completion (also called inpainting) [1], [8], [21]; robust
image and video recovery [2]; outlier detection [4], [22];
moving object detection [23]. In terms of computation,
TNN is equivalently defined as the sum of the matrix nuclear
norm of each frontal slices after Fourier transformation,
whose sizes are much smaller than matricization along modes.
It reduces the computational cost with a certain degree when
compared to the Tucker model.

The TNN relaxation shares similar rationale with �1-norm
in the vector case and nuclear norm in the matrix case:
seeking a convex relaxation on the unit max norm ball of
the vector/singular vector (the max norm of a singular vector
is also known as spectral norm). However, relaxing on the
spectral norm ball can be less optimal. For example, in the
vector cardinality case, papers [24], [25] show that seeking
convex surrogate within unit �2 norm ball results into superior
performance in sparse regression and feature selection tasks.
In the matrix rank case, papers [26], [27] show that the
convex relaxation of rank function within unit Frobenius norm
ball is superior than the nuclear norm. Hence, we may ask:
1) Whether it is possible to derive an alternative (and better)
convex surrogate to t-SVD ranks? 2) Whether the new norm
allows convenient formulation that can be represented by
matrices norms of the frontal slices in the Fourier domain?
3) Whether efficient optimization algorithms exist for the new
norm regularized tensor minimization model?

In this paper, we focus on the new t-SVD framework and
provide positive answers to each of the above three questions.
For 1), we propose a new tensor norm, called tensor spectral
k-support norm (TSP-k norm), which is derived by relaxing
the t-SVD rank (sum of tubal multi-rank to be specific) within
a scaled tensor Frobenius norm ball, rather than on the scaled
tensor spectral norm ball as TNN does. For 2), we derive
the closed-form formulation for the TSP-k norm, in terms of
the matrix spectral k-support norm of the frontal slices of the
tensor in the Fourier domain. For 3), we develop two key
optimization components: the proximal operator and the polar
operator for the TSP-k norm, which can be integrated into
most proximal and conditional gradient algorithms to solve

the TSP-k regularized problem, correspondingly. We then
showcase the usage of the operators with the ADMM [28],
[29] and universal primal dual algorithm [30], [31].

Our approach has several advantages as well as connections
compared with TNN. First, we show that the TSP-k norm is
an interpolation between the TNN and the tensor Frobenius
norm. The tensor Frobenius norm factor of TSP-k norm
contains additional global information, which can be helpful
for better capturing the intrinsic structure among the entire
tensor. Second, we derive the formulation for the TSP-k norm
in terms of the singular values of Fourier transformed tensor.
We find that rather than imposing sparsity penalties with
�1 norm on all singular values, TSP-k only sums �1 norm over
the minor singular values, which can avoid over penalizing
large singular values that tends to leading to skewed esti-
mation. The optimization algorithms also reveal new findings
for TSP-k. For example, the polar operator based optimization
for TSP-k amounts to decomposing the tensor into linear
combinations of sum of tubal multi-rank k atom tensors.
TNN exclusively decomposes with k = 1, which can lead
to inferior estimation performance, as real tensors can have
various intrinsic decomposition with k > 1. TSP-k provides
such flexible choice of k.

In summary, our contributions are as follows:
(a) Section III proposes a new tensor spectral k-support

norm for tensor tubal rank relaxation, wherein its advan-
tages and connections with existing tensor norms under
t-SVD framework are also discussed;

(b) Section IV-A and IV-B develop proximal and polar
operators for the TSP-k, based on which an ADMM
optimization for medium size data (Section V-A) and
a universal primal dual optimization for large size data
(Section V-B) are provided, correspondingly.

(c) Section VI conducts an extensive empirical study for the
new norm and the algorithms with synthetic and real
image/video datasets in both medium and large sizes.

II. NOTATION AND BACKGROUND

We summarize the frequently used notations in Table I,
where the notations for scalar, vector, matrix, tensor and
t-SVD, as well as their corresponding definitions/operations,
can be found. As for the tensor norms, �A�F , �A�1, �A�2,
�A�∞ are called tensor Frobenius, �1, tensor spectral and
tensor max norm, correspondingly. Their computations and
their connections with Fourier transformed tensors can also
be found in Table I.

We begin the introduction of the t-SVD algebraic framework
with the following tensor-tensor product (t-product) definition:

Definition 3 (t-product [14]): The t-product between tensor
A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is defined as A ∗ B =
C ∈ Rn1×n4×n3 with the (i, j)-th tube c̊i j of C computed as

c̊i j = C(i, j, :) =
n2∑

k=1

A(i, k, :) ∗ B(k, j, :), (3)

where ∗ denotes the circular convolution between two tubes
of same size.

1Matlab operation: [a↓,idx] = sort(a, ‘descend’), where a(idx) = a↓.
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TABLE I

SUMMARY OF NOTATIONS IN THIS PAPER

TABLE II

SUMMARY OF T-SVD RELATED DEFINITIONS

Fig. 1. Illustration of the t-SVD in Eq.(4) ( [1], [14]). Tensors from left to
right are A, U, S and V�.

From Def. 3, the t-product can be seen as a generalization
of the matrix product between n1 × n2 and n2 × n4 matrices
by replacing the scalar to scalar multiplication (i.e. the · in
Ci j = ∑n2

k=1 A(i, k) · B(k, j)) with fiber to fiber circulant
convolution (i.e. the ∗ in Eq.(3)).

The t-SVD definition is formalized in Def. 4 and Fig. 1 gives
an illustration of the t-SVD on an n1 × n2 × n3 tensor. The
additional definitions of identity, orthogonal and f-diagonal
tensors can be found in Table II, whose detailed definitions
are in Appendix D of the supplement.

Definition 4 (t-SVD [14]): For A ∈ R
n1×n2×n3 , the t-SVD

of A is given by

A = U ∗ S ∗ V�, (4)

where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal tensors,
and S ∈ Rn1×n2×n3 is an f-diagonal tensor.

Considering the equivalence between the t-product (essen-
tially circulant convolution) in the original domain and the
matrices multiplication in the Fourier domain, it is more
convenient to carry out the t-SVD related computation in the

Algorithm 1 t-SVD: (U,S,V) = tsvd(A)

Fourier domain, according to the well-known equivalence [14].
That is, for a third order tensor A ∈ Rn1×n2×n3 , let AF denote
the Discrete Fourier transformation (DFT) of A, which can be
computed by Matlab command fft as AF = fft(A, [ ], 3).
The block diagonal matrix organized from AF is defined
in Definition.5:

Definition 5 (Block Diagonal Matrix [1]): Define the block
diagonal operation by blockdiag and denote the computed
block diagonal matrix by AF, which are as follows,

AF : = blockdiag(AF)

: =

⎡
⎢⎢⎢⎢⎣

A(1)
F

A(2)
F

. . .

A(n3)
F

⎤
⎥⎥⎥⎥⎦ ∈ C

n1n3×n2n3 , (5)

where A(i)
F = A

(i)
F , for i = 1 to n3.

Algorithm 1 shows the algorithm for computing the
t-SVD of A, which is mainly based on the matrix SVD of
A(1)

F to A(n3)
F in eq.(5). By computing t-SVD and associated

norms based on Fourier transformed AF, the computation
is more efficient and can be further parallelized since the
matrix SVD of the n3 Fourier transformed matrices A(1)

F to

A(n3)
F are independent. We denote the vector of singular values

of A(i)
F as σA(i)

F
and let σAF

= [σA(1)
F

; ...; σ
A

(n3)
F

], which is the

concatenation of all n3 singular vectors. These definitions can
also be found in Table I for quick reference.

The tensor nuclear norm (TNN) seeks a convex surrogate to
the sum of the tensor tubal multi-rank (see Table II). There are
two existing definitions of TNN, i.e. the one in [2], [32] and
another in [1], [8], [33]. In this paper, we show both are special
cases of the general α-tensor nuclear norm in Definition. 6,
which can be derived by a unique convex relaxation of the
1
α sum of the tubal multi-rank.

Definition 6 (General α-Tensor Nuclear Norm (α-TNN)):
For a tensor A ∈ Rn1×n2×n3 , the general α-tensor nuclear
norm �A�t∗,α is defined to be 1

α of the sum of the matrix
nuclear norm of all the frontal slices of AF,

�A�t∗,α = 1

α

n3∑
i=1

�A(i)
F �∗. (6)

For α = n3, �A�t∗,n3 takes the same form as [2], [32]; for
α = 1, �A�t∗,1 becomes the one defined in [1], [8], [33]. For
easy reference, we also introduce the following two concepts:
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Definition 7: 1) α-scaled Tensor spectral norm ball con-
straint: {A : �A�2 ≤ α}; 2) α-scaled Tensor Frobenius norm
ball constraint: {A : �A�F ≤ α}.
III. A NEW CONVEX RELAXATION FOR ROBUST TENSOR

RECOVERY: TENSOR SPECTRAL k-SUPPORT NORM

In this section, we first derive the general α-TNN to
unify n3-TNN and 1-TNN. Then, we propose a new tensor
norm under the t-SVD framework through a different convex
relaxation. The new tensor norm contains n3-TNN and tensor
Frobenius norm as the special cases.

A. Derivation of the General α-TNN

We propose a new tensor norm by revisiting the relationship
between the two existing different TNN notions: n3-TNN
in [2], [4], [32] and 1-TNN in [1], [8]. In [2], the authors
observe that the n3-TNN is the tightest convex relaxation of
the average of the tubal multi-rank within the unit spectral
norm ball, while the authors of [1], [8], [33] obtain the
1-TNN by relaxing the tubal multi-rank, where [1] shows that
the 1-TNN is the tightest convex relaxation to �1 norm of the
tensor multi-rank. Instead, the following Proposition 8 unifies
both exiting TNN definitions by showing that it can also be
viewed as the tightest convex relaxation of the sum of the tubal
multi-rank within the scaled tensor spectral norm ball. The
key to the unified relaxation is to relax based on C(sp)

k , which
replaces the unit tensor spectral norm ball �A�2 ≤ 1 with the
more general α-scaled tensor spectral norm ball �A�2 ≤ α.
The proof is in Appendix A1 of the supplementary material.

Proposition 8: Consider A ∈ Rn1×n2×n3 and the set

C(sp)
k = {A :

n3∑
i=1

rank(A
(i)
F ) ≤ k, �A�2 ≤ α}. (7)

Then, the convex hull conv(·) of C(sp)
k is given by

conv(C(sp)
k ) = {A : �A�t∗,α ≤ k, �A�2 ≤ α}. (8)

That is, the general α-TNN of �A�t∗,α is the convex envelop
of the sum of the tubal multi-rank within the α-scaled ten-
sor spectral norm ball, which takes the form �A�2 ≤ α.
In particular, substituting α = 1 and α = 1

n3
in, we have:

• the 1-TNN is a special case of general α-TNN with α = 1;
• the n3-TNN is a special case of general α-TNN with

α = n3.

B. The New Tensor Spectral k-Support Norm

Instead of relaxing the sum of tubal multi-rank within the
α-scaled tensor spectral norm ball C(sp)

k to obtain TNN, this
paper proposes a new tensor norm by seeking an alternative
convex relaxation within an α-scaled tensor Frobenius norm
ball:

C(Fro)
k = {A :

n3∑
i=1

rank(A
(i)
F ) ≤ k, �A�F ≤ α}. (9)

The motivation is as follows. In relaxing TNN, the ten-
sor spectral norm would mis-capture some global informa-
tion because the tensor spectral norm only contains the

Fig. 2. Illustration of unit ball of singular values on R
3 [27]. From left to

right: TNN, TSP-2 norm and Tensor Frobenius norm.

information of the maximum singular value of all frontal
slices. By contrast, our replacement with tensor Frobenius
norm can provide more information across all frontal slices
because it is computed based on all singular values. By relax-
ing on the Tensor Frobenius norm ball, we expect the TSP-
k norm to induce the low-rankness with the better capture
of global information. Figure 2 ( [27]) illustrates the unit
ball of the singular vector on R3. It shows that the singular
values of the TSP-2 norm will contain both TNN and Tensor
Frobenius norm factors, which implies that it is able to induce
the low-rankness based on the TNN factor and capture more
global correlation based on the Tensor Frobenius norm factor.
In particular, with α = √

n3, the following Definition defines
the new tensor norm.

Definition 9: The Tensor Spectral k-Support norm
(TSP-k norm) � · �t sp,k is defined to be the norm whose unit
ball is the convex hull of set C(Fro)

k (i.e. conv(C(Fro)
k )).

In a similar form like Eq.(8), the TSP-k norm satisfies

conv(C(Fro)
k ) = {A : �A�t sp,k ≤ k, �A�F ≤ √

n3}. (10)

That is, the TSP-k norm is the convex envelop of the sum of
the tubal rank within the

√
n3-scaled tensor Frobenius norm

ball. By comparing eq.(8) and eq.(10), it can be seen that the
TSP-k norm is the tightest convex relaxation on the

√
n3 ball,

while α-TNN is the tightest convex relaxation within the
α-tensor spectral norm ball. As in TNN case, TSP-k norm
can also be efficiently dealt with by taking FFT. The next
Proposition details the relation between TSP-k norm of A

with the vector k-support norm (denoted by � · �vp,k) of the
singular values of AF and the matrix spectral k-support norm
(denoted by � · �msp,k) of the block diagonal matrix AF. The
proof is in Appendix A2 of the supplementary material.

Proposition 10: For tensor A, let AF, AF and σAF

be FFT-transformed tensor, block diagonal matrix and the
singular values of AF, correspondingly. The TSP-k norm has
the following relationships with the k-support norm of σAF

and the spectral k-support norm of AF as

�A�t sp,k = 1

n3
�σAF

�vp,k = 1

n3
�AF�msp,k . (11)

Sort σAF
in non-increasing order and denote the result

vector by σ
↓
AF

. According to Proposition 10 and the com-
putation of the vector k-support norm [24] (please refer to
Proposition 2.1 and its proof for more details), TSP-k norm
has the following explicit computation as

�A�t sp,k = 1

n3

[ k−l−1∑
j=1

(σ
↓
AF

)2
j + 1

l + 1
(

D∑
j=k−l

(σ
↓
AF

) j )
2
] 1

2
,

(12)
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where l satisfies (σ
↓
AF

)k−l−1 > 1
l+1

∑D
j=k−l(σ

↓
AF

) j >

(σ
↓
AF

)k−l . By Eq.(12), the index l divides σ
↓
AF

into larger

part (σ
↓
AF

)L = (σ
↓
AF

)1:k−l−1 and smaller part (σ
↓
AF

)S =
(σ

↓
AF

)k−l:D . The TSP-k is a combination of the �2-norm of
the larger part and the �1-norm of the smaller part, i.e.

�A�t sp,k = 1

n3
(�(σ↓

AF
)L�2

2 + 1

l + 1
�(σ ↓

AF
)S�2

1)
1
2 . (13)

Hence, the TSP-k norm contains both the tensor nuclear norm
factor and the tensor Frobenius factors. Formally, the following
Proposition shows that the TSP-k norm interpolates between
the tensor nuclear norm and the tensor Frobenius norm. The
proof can be found in Appendix A3 of the supplementary
material.

Proposition 11: The tensor spectral k-support norm
becomes n3-TNN when k = 1, while becomes tensor Frobenius
norm when k = D.

By the preceding Proposition, both n3-TNN and tensor
Frobenius norm are special cases of TSP-k norm.

IV. TWO KEY OPTIMIZATION BUILDING

BLOCKS FOR TSP-k NORM

A. Dual TSP-k Norm

Definition 12: The Dual Tensor Spectral k-Support norm
(dual TSP-k norm) � · �∗

t sp,k is defined as

�A�∗
t sp,k = sup{
A,B� ∣∣ B : �B�t sp,k ≤ 1}. (14)

The dual TSP-k norm can also be computed in terms of its
singular values, which is given by the following Proposition:

Proposition 13: With the same notation as used in
Proposition 10, the dual TSP-k norm of A can be computed
as,

�A�∗
t sp,k = �σ (AF)[1:k]�2 = �σ (AF)�∗

vp,k = �AF�∗
msp,k,

(15)

where σ (AF)[1:k] are the largest k singular values of A in the
Fourier domain, � · �∗

vp,k and � · �∗
msp,k are the dual k-support

norm and matrix k-spectral norm, correspondingly.
Remark 1: According to Proposition 13, the dual TSP-k

norm is the �2 norm of the leading k singular values in the
Fourier domain, which is much simpler in the formulation and
easier in the computation than the primal TSP-k in eq.(12),
which involves sorting and searching for the dividing index l.
Intuitively, the dual TSP-k is more convenient to deal with.

Given the intuition above, we will develop two building
blocks for the TSP-k norm regularized optimization: the prox-
imal operator and polar operator, both of which make use of
the dual TSP-k norm. It turns out that the dual norm is not only
simpler, but also saves computational cost during optimization.
First, the proximal operator of the primal TSP-k norm needs an
exhaustive search step, while it uses the more efficient binary
search step [25] for the dual norm. Second, the polar operator
of the primal norm is exactly the dual norm, which suffices to
calculate the leading k singular values to facilitate the adoption
of Lanczos [34] and Power method [35] for partial SVD to
reduce computational cost.

B. Proximal Operator for TSP-k Norm-Based Regularizer

The first building block is the proximal operator for the
TSP-k norm, which can be incorporated with proximal algo-
rithms. The proximal operator solves a second-order optimiza-
tion subproblem and can be seen as a generalization to the
projection operator. It is formally defined as follows:

Definition 14 (Proximal Operator [36]): The proximal
operator of a closed proper convex function r(x) at v is

Proxr (v) = argmin
x

r(x) + 1

2
�x − v�2

2. (16)

The proximal operator of the function r and its Fenchel
conjugate r∗ has the following useful relationship [36],

v = Proxr (v) + Proxr∗(v). (17)

For TSP-k norm-based regularizer 1
2� · �2

t sp,k , the proximal
operator has the following formulation,

Prox 1
2β �·�2

tsp,k
(T) = argmin

L

[1

2
�L − T�2

F + 1

2β
�L�2

t sp,k

]
,

(18)

where β is a step-size related constant. Similar to the
TNN case, the proximal operator for the TSP-k norm can also
be converted from the tensor problem to the vector problem
of its singular values in the Fourier domain. In the vector
k-support norm case, the proximal operator for the primal
norm is more difficult to compute than for the dual norm,
because the former requires an exhaustive search sub-step
on the singular values while the latter needs a binary search
sub-step which is much more efficient. This fact affirms the
intuition that the dual norm is more convenient to handle in
the previous subsection. As a result, based on the conver-
sion in Eq.(17), we calculate the proximal operator of the
primal 1

2� · �2
t sp,k by instead computing the proximal operator

of the dual ( 1
2� · �∗

t sp,k)
2 and converting back according

to

T = Prox 1
2β �·�2

tsp,k
(T) + Prox β

2 (�·�∗
tsp,k )2(T). (19)

Definition 15: The proximal operator result of the dual
TSP-k norm L#is defined as

L# = Prox β
2 (�·�∗

tsp,k )2(T). (20)

In addition, L#
F and σL#

F
denote the Fourier transformed L#

and its singular values in the Fourier domain, correspondingly.
The following Proposition 16 describes the computation

of L#, which first reduces the proximal subproblem from
the tensor in the original domain to the vector of singular
values in the Fourier domain and second applies the proximal
operator of the dual k-support norm to the vector of singular
values. The proof is in Appendix B1 of the supplementary
material.

Proposition 16: Let TF be the FFT tensor of T

and denote all singular values of TF by σTF
=

[σ (1)
TF

, ..., σ
(i)
TF

, ..., σ
(n3)
TF

] ∈ RD, where σ
(i)
TF

∈ Rmin{n1,n2}
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are the singular values of the i -th frontal slice T
(i)
F . Let

[σ↓
T,idx] = sort(σTF

, ‘descend’). Then, σ
↓
L#

F

is

(σ
↓
L#

F

) j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
βn3

· (σ↓
TF

) j

1 + 1
βn3

, j < klow

1
βn3

∑kupp

j=klow (σ
↓
TF

) j

(1 + 1
βn3

)(k − klow + 1) + 1
βn3

(kupp − k)
, j ∈ I

∗
k

(σ
↓
TF

) j , j > kupp,

(21)

where I
∗
k = [klow, kupp] is the maximum subset containing k

such that the following conditions hold⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(σ
↓
TF

)klow <
(1 + 1

βn3
)
∑kupp

j=klow (σ
↓
TF

) j

(1 + 1
βn3

)(k − klow + 1) + 1
βn3

(kupp − k)
,

(σ
↓
TF

)kupp >

∑kupp

j=klow (σ
↓
TF

) j

(1 + 1
βn3

)(k − klow + 1) + 1
βn3

(kupp − k)
.

(22)

The maximality of I∗k means that 1) including one more

a larger (σ
↓
TF

) j (i.e. (σ↓
TF

)klow−1) then the first inequality

of eq.(22) cannot hold; 2) including one more smaller (σ
↓
TF

) j

(i.e. (σ
↓
TF

)kupp+1) then the second inequality of Eq.(22) cannot
hold. I∗k can be obtained by two repeated binary search
over [1, k] and [k, D] given the searching conditions Eq.(22).
Based on Proposition 16 and Eq.(19), the proximal operator
of 1

2� · �2
t sp,k is summarized in the following Corollary.

Corollary 17: The proximal operator of 1
2�·�2

t sp,k at T with
constant β can be computed by

Prox 1
2β �·�2

tsp,k
(T) = T − L#, (23)

where L# is obtained by Proposition 16.
Algorithm 2 summarizes the proximal operator calculation.

Its computational cost is given by the following Proposi-
tion and a step-by-step analysis is in Appendix E2:

Proposition 18: For input tensor of size n1 × n2 × n3,
Algorithm 2 has computational complexity O(n1n2n3
min{n1, n2}).

C. Polar Operator for TSP-k Norm-Based Regularizer

The second building block is the polar operator for the
TSP-k norm, which can be incorporated with a type of
“projection-free” algorithms, including the Frank-Wolfe algo-
rithm (a.k.a. conditional gradient method) [37], [38] and
generalized conditional gradient [31], [39], [40] which are
variations for specific problems. The polar operator solves a
linear subproblem as opposed to the second-order subproblem
of the proximal operator. Compared to the proximal operator,
it takes less computation but also leads to smaller per-iteration
update. It is formally defined as follows:

Algorithm 2 Proximal Operator for TSP-k Norm

Definition 19 (Polar Operator [39], [41]): For a norm r(x),
the polar operator at v is defined as

Polarr (v) = argmax
x

{
x, v� : r(x) ≤ 1}. (24)

Definition 20: The polar operator result of the TSP-k
norm A# is defined as

A# = argmax
A

{
T,A� : �A�t sp,k ≤ 1}. (25)

In addition, A#
F and σA#

F
denote the Fourier transformed A#

and its singular values in the Fourier domain, correspondingly.
It is immediate to observe from eq.(25) and Definition 12

that the polar operator of the TSP-k norm is its dual norm,
i.e., A# = �T�∗

t sp,k . The following Proposition gives the
detailed computation for the polar operator. The proof is in
Appendix B2 of the supplementary material.

Proposition 21: Let TF = fft(T, [ ], 3), T
(i)
F =

U
(i)
F diag(σ

(i)
TF

)(V
(i)
F )�, σTF

= [σ (1)
TF

, ..., σ
(n3)
TF

] and [σ↓
TF

,
idx] = sort(σTF

, ‘descend’). The polar operator result of
eq.(25) satisfies,

A# = ifft(A#
F, [ ], 3), (A#

F)(i) =U
(i)
F diag(σ

(i)
A#

F

)(V
(i)
F )�,

(26)

where σA#
F
(idx) = σ

↓
A#

F

and

(σ
↓
A#

F

) j =

⎧⎪⎨
⎪⎩

n3(σ
↓
TF

) j

�(σ ↓
TF

)[1:k]�2

, j ∈ [1 : k],
0, j ∈ [k : D].

(27)

Algorithm 3 summarizes the polar operator computation. Its
computational cost is given by the following Proposition and
a step-by-step analysis is in Appendix E2 of the supplement:

Proposition 22: For input tensor of size n1 × n2 × n3,
Algorithm 3 has computational complexity O(kn1n2n3).

Eq.(27) indicates that A#
F only depends on the largest k

singular values among σ (1), ..., σ (n3). Hence, it suffices to
calculate the leading k singular values of each X

(i)
F , which
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Algorithm 3 Polar Operator for TSP-k Norm

TABLE III

COMPARISON OF THE TWO PROPOSED OPTIMIZATION ALGORITHMS

contain σ #
j for j ∈ [1, k] for sure. That is, to com-

pute A#
F, we only need to calculate partial svd, by

Lanczos method [34] or Power method [35], which cost only
O(kn1n2n3) per-iteration computation and is much smaller
than O(n1n2n3 min(n1, n2)) of the proximal operator, since
in practice k is much smaller than min(n1, n2).

V. TWO OPTIMIZATION ALGORITHMS FOR

TSP-k REGULARIZED RLTM PROBLEM

In this section, we present two algorithms for solving the
TSP-k regularized RLTM problem, which utilize the proximal
operator (Subsection V-A Algorithm 4) and polar operator
(Subsection V-B Algorithm 5) as their core building blocks,
correspondingly. Due to the different operators they rely on,
there is a trade-off between convergence rate and scalability.
That is, the proximal operator-based method has larger per-
iteration progress, thus it converges faster but has higher per-
iteration complexity. On the contrary, the polar operator-based
method has better scalability because of its lower per-iteration
complexity, but converges slower due to the smaller per-
iteration progress. As a result, they suit different applications.
That is, the proximal operator-based method is suitable for
medium size problems, where faster convergence rate can
be guaranteed without worrying about the scalability issue.
By contrast, the polar operator-based method suits larger scale
problems, where scalability can be a computational bottleneck.
Table III summarizes their comparisons.

A. Proximal Operator-Based Optimization Algorithm

1) Proximal Algorithm Choosing: With proximal operator
developed in the preceding section, the TSP-k norm regular-
ization can be integrated and optimized by a popular proximal

algorithm which uses proximal operator as the core building
block. The RLTM problem is a linear constrained two variable
convex optimization problem:

min
x,y

f (x) + g(y), s.t . Ax + By = c, (28)

where f and g are TSP-k and �1 norm regularization functions.
Among many proximal algorithms, we showcase the usage of
the TSP-k norm proximal with the ADMM method (precon-
ditioned ADMM in specific) in this subsection. The ADMM
is a good candidate for the RLTM problem when compared
to the other state-of-the-art splitting proximal algorithms:
i) the primal-dual algorithm in [42] and primal-dual splitting
algorithm [43] assume c = 0 and one of the mappings A, B is
identity, which do not satisfied by RTLM, though [42] is equiv-
alent to the preconditioned ADMM when both requirements
are satisfied; ii)ADMM is a special ALM with the GaussSeidel
decomposition, which allows the separated handling of f
and g. In RTLM case, ADMM is more favored than ALM
because the proximal operators for f and g are known and it is
better to deal with them separately; iii) the Douglas-Rachford
splitting algorithm [44] is more general and ADMM applied
to eq.(28) is equivalent to the Douglas-Rachford splitting
algorithm applied to the Fenchel dual of eq.(28). Since both
methods eventually rely on the proximal operators of the
TSP-k and the �1 norm, there is no much benefits worth
of the additional conjugation transform. The ADMM applied
to eq.(28) is simpler and more explicit. Finally, since most
RTLM methods [45] are using the ADMM method, it is
more convenient and fair to adopt the same ADMM algorithm
skeleton for the TSP-k norm here when compared to the other
low-rank norm-based methods.

2) Objective Function: We incorporate the TSP-k norm into
RTLM problem:

min
L,E

1

2
�L�2

t sp,k + λ�E�1, s.t . M(X − L) = E, (29)

where M can be as general as a linear tensor operator defined
as M(A) = M ∗ A (∗ is the t-Product). Under this general
modeling, Example 1 and 2 are special cases with M being
the identity mapping and the element-wise projection P�(·),
correspondingly.

3) Algorithm Description: The ADMM based method
mainly takes alternative updating for the L and E variables.
In the following, ρ is a penalty parameter from the augmented
Lagrangian formulation and η is a constant from linearization
of the map M. We provide the update for L and E in the paper,
while the detailed derivation can be found in Appendix E1 of
the supplement. Algorithm 4 summarizes the procedure.

Update of L:

Lt = Prox 1
2ρη �·�2

tsp,k(
Lt−1+ Jt−1

ρη
+ 1

η
M�(M(X−Lt−1)−Et−1)

)
. (30)

The computation of the proximal map in Eq.(30) has
been given by Proposition 16 and detailed in Algorithm 2.
In particular, to apply the general update to Examples 1 and 2,
it suffices to set η = 1 and substitute M by identity map and
P�, correspondingly.
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Algorithm 4 Preconditioned ADMM for (29)

Update of E:

Et = Prox λ
ρ �·�1

(
M(X − Lt ) + Jt−1

ρ

)
, (31)

where the proximal operator of the �1 norm is well-known
and can be efficiently computed by the element-wise soft-
thresholding operation, i.e. with T = (M(X − Lt ) + 1

ρ Jt−1),

(Prox λ
ρ �·�1

(T))i j k = sign(T i j k) max{|Ti j k | − λ

ρ
, 0}. (32)

4) Complexity and Convergence Analysis: The dominating
per-iteration complexity comes from the proximal operator for
the TSP-k norm in Step 2, whose computational cost is given
by Proposition 18. The overall complexity is O(n1n2n3
min{n1, n2}). The high super-linear cost is attributed to the
full SVD of the n3 frontal slices in the Fourier domain, which
are indispensable for computing the proximal map since all
singular values are involved (see steps 6-8 of Algorithm 2).

Algorithm 4 is a two-block preconditioned ADMM algo-
rithm applied to the linear constrained two variable convex
optimization Problem (29). The convergence analysis of the
ADMM-type algorithms is extensively studied. For example,
paper [29], [42] are comprehensive and general references.
For our specific Algorithm 4 with a linearized quadratic term
in updating L, it is an instance of the algorithm coming
with guaranteed convergence in eq.(1.4) of paper [28]. The
following Proposition is a paraphrase of Theorem 4.1 in [28]:

Proposition 23: Algorithm 4 is guaranteed to converge to
the global optimum with 	 precision in O( 1

	 ) iterations.

B. Polar Operator-Based Optimization Algorithm

1) “Projection-Free” Algorithm Choosing: The polar
operator-based methods are considered “projection-free” as
opposed to proximal methods which use the “generalized”
projection operator. We showcase the usage of the TSP-k polar
operator with the recent universal primal dual
method [30], [31]. Compared to the other polar operator-
based methods, it provides the explicit handling of the linear
constraint and explores the smoothness of the problem, which
may partially resolve the slower convergence weakness.
To this end, we show that the developed method is in essence
greedy by adding one atom at one iteration. It not only
provides a scalable optimization, but also shows that the
low-rank tensor can be viewed as a linear combination of

sum of tubal multi-rank k-tensors. From this perspective,
TNN is a special case that builds a low-rank tensor exclusively
by k = 1 combinations, which can be suboptimal for some
applications, where the intrinsic low rank tensor is a k > 1
combination of atoms.

2) Objective Function: To utilize the polar operator, instead
of the regularized form in eq.(29), we consider the �1-norm
constrained form:

argmin
L,E

1

2
�L�2

t sp,k, s.t . �E�1 ≤ τ and M(X − L) = E,

(33)

which is equivalent to the regularized form in eq.(29)
with proper pair of τ and λ. The constraints amounts to
�M(X − L)�1 ≤ τ . By directly signifying the tolerance on
the misfit, it is considered more natural than regularization
formulation [46]. Also, for some applications where the misfit
can be estimated, the constrained form eq.(33) can better
utilize it as a priori.

Following the universal primal dual method [30], [31],
we first convert eq.(33) to a dual TSP-k norm related equiva-
lence by Fenchel conjugation as in the next Proposition. The
proof is in Appendix C1 of the supplement.

Proposition 24: Let J denote the dual variable. The primal
formulation in Eq.(33) has the following equivalent dual form,

min
J

D(J) = min
J

f(J) + h(J), (34)

where f(J) = 1

2
(� − M�(J)�∗

t sp,k)
2 + 
J,M(X)�, (35)

and h(J) = τ� − J�∞. (36)

In the following, we call f as the dual loss function and
h as the dual regularizer. To solve the dual objective with
gradient descent based methods, the next Proposition reveals
a particular choice of the (sub)gradient of f(J). The proof is
in Appendix C2 of the supplement.

Proposition 25: The (sub)gradient of the dual loss function f
at J, denoted by g(J), can be computed as

g(J) = −M(L#) + M(X), (37)
where L# = (� − M�(J)�∗

t sp,k) · A#, (38)

and A# = argmax
�A�tsp,k ≤1


−M�(J),A�. (39)

The core part for computing g(J) is to compute A#, which
is the polar operator of TSP-k norm in Definition 20. Based
on A#, the computation for L# in eq.(39), referred as the atom
of TSP-k hereafter in brief, is summarized in the following
Corollary 26. The proof is in Appendix C3 of the supplement.

Corollary 26: Let T = −M�(J) and TF, σTF
, σ

↓
TF

,

idx, U
(i)
F and V

(i)
F be the same notation as defined in

Proposition 21. Then L# = ifft(L#
F, [ ], 3), where

∀i ∈ [n3],
(L#

F)(i) = U
(i)
F diag(σ

(i)

L#
F

)(V
(i)
F )�, and (40)

(σL#
F
(idx))j =

{
n3(σ

↓
TF

) j , j ∈ [1 : k],
0, j ∈ [k : D]. (41)
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3) Algorithm Description: Equipped with the (sub)gradient
in the preceding subsections, we elaborate the univer-
sal primal-dual optimization [31] for the TSP-k regular-
ized RTLM. The algorithm is summarized in Algorithm 5,
where each iteration is composed by two ingredients:

Update of J: An accelerated proximal gradient descent
(APG) is used for updating the Lagrangian dual variable Jt :

Jt+1 = arg min
J

f(J̆t ) + 
gt ,J − J̆t � + Ht

2
�J − J̆t�2

F + h(J);
(42)

J̆t+1 = Jt+1 + θt − 1

θt+1
(Jt+1 − Jt ), (43)

where θt+1 is a constant sequence updated according to

θt+1 = 1+
√

1+4θ2
t

2 with initialization θ1 = 1, and J̆ is an
acceleration sequence kept by the APG method. Ht can be
a constant parameter such that the R.H.S. of Eq.(42) is an
upper estimation of the dual objective, which is also the
reciprocal of the step size. A better choice of Ht that enables
the algorithm to adapt to both the degree ν and magnitude
of the Hölder smoothness notion of the dual loss function
is provided in Appendix C1 of the supplement. Eq.(42) is
the proximal mapping of the dual regularizer of �1 norm, i.e.
h(J) = τ�J�∞, as

Jt+1 = Prox τ
Ht

�·�∞
(
J̆t − 1

Ht
g(J̆t )

)
. (44)

The proximal mapping of the dual norm can be performed by
the projection on the unit ball of the original primal norm, as

Jt+1 = (
J̆t − (1/Ht)g(J̆t )

)
− τ

Ht
Proj�·�1

( 1

τ/Ht
(J̆t − (1/Ht)g(J̆t ))

)
. (45)

Update of L: Alongside the dual variable updating, a linear
combination step is used for updating the primal variable Lt :

Lt+1 = (1 − γ t )Lt + γ tL#
t , (46)

where the weighting sequence is γ t = θt/Ht∑t
j=1 θ j /Hj

. The update

of Eq.(46) is by nature greedy as it combines one atom to
the low rank estimation at one time. Thus, we can observe
from Eq.(46) that the low rank tensor induced by TSP-k norm
is a linear combination of sum of tubal multi-rank k tensors.
By Proposition 11, TNN is limited to k = 1 combination of
atoms, which can be suboptimal for modeling tensors with
intrinsic k > 1 combination of atoms.

The update of Eq.(46) is also closely related to the
conditional gradient [39] (or called Frank-Wolfe method
[38]). A key difference between Eq.(46) and the conditional
gradient update is that the weight γ t takes into consideration
the smoothness Ht of the dual loss function when the
linear-search subroutine in Algorithm 1 in Appendix E3 of
the supplement is adopted.

4) Complexity and Convergence Analysis: One of the
dominating per-iteration complexity comes from the polar
operator in Step 2, whose computational cost is given by
Proposition 22. Unlike proximal algorithms for TNN and
TSP-k which take O(n1n2n3 min(n1, n2)) for proximal oper-
ator, ours costs only O(kn1n2n3). Note that for some real

Algorithm 5 Scalable Tensor Spectral k-Support Norm
Regularized Robust Low-Rank Tensor Minimization

problems, where the underlying tensor is of very low-rank,
k here can be a very small constant. Considering another dom-
inant computational costs of fft and ifft steps which are
shared by all tensor SVD methods, our polar operator-based
method effectively reduces the complexity from the super-
linear complexity to nearly linear of O((k + log n3)n1n2n3).

Algorithm 5 applies the accelerated universal primal-
dual algorithm [31] to the constrained convex optimization
Problem (33), which is guaranteed to converge to the
global optimum. The following Proposition paraphrases
Theorem 4.2 in [31]:

Proposition 27: Algorithm 5 is guaranteed to converge to
the global optimum. For the primal variable LT to achieve
	 precision, Algorithm 5 takes the number of iterations by
O(infν∈[0,1]( Hν

	 )
2

1+3ν ) in the worst case.
In above, ν is the degree of the Hölder smoothness. For

example, for smooth objective, ν = 1 and the worst case
iteration number is of order O( 1

	1/2 ), which is as fast as APG
for regularized smooth primal loss problems.

VI. EXPERIMENT

A. Experiments on Medium Size Datasets
1) Synthetic Dataset: We first compare the proposed

TSP-k norm with TNN norm on synthetic dataset. To generate
the low-rank ground truth tensor Xgt , we uniformly sample
from [0, 1] an n×n×n tensor and then truncate it to Ranktubal

by t-SVD. We then add arbitrary corruption by randomly
sampling 10% of the n3 entries and set them to −20 or 20 with
equal probability. For fairness of comparison, we use the same
ADMM optimization algorithm for both methods. We also
use the same stopping criterion for TNN and TSP-k norm,
which is also used by [2], [20]: max{�Lt+1 −Lt�∞, �Et+1 −
Et�∞, �Lt+1 + Et − X�∞} ≤ tol. In the paper, we have
reported the results under tol = 1e − 5. We choose α = √

n3
for our TSP-k norm and choose α = 1 for the TNN (i.e. we
compare with n3-TNN). We take two steps for this experiment:
i) study the impact and choice for the balancing parameter λ;
ii) the recovery performance after deciding the λ.
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Fig. 3. Comparison of TNN and TSP-k under varying λ on synthetic data.

Fig. 4. Comparison of TNN and TSP-k under varying λ on BSD.

TABLE IV

RECOVERY RESULTS ON n × n × n RANDOM DATA

WITH DIFFERENT TUBAL RANKS

First, to study the effect of λ for TNN and TSP-k norms,
we test a series of factors and run experiments on the random
tensor of size 100 × 100 × 100, 200 × 200 × 200 and
300 × 300 × 300 with tubal rank 20. We plot the PSNR
versus the ratio of λ in Figure 3, which shows that the TSP-k
outperforms the TNN in a wider range and the best achievable
recovery performance is also better.

Second, fixing the λ at the best achievable PSNR, Table IV
reports the recovery results with different n in terms of PSNR
(relative to the ground truth), where the results are based on
20 times random realizations. As can be seen, TSP-k achieves
higher PSNR with varying tensor sizes.

2) Image Denoising: We consider the image denoising task
with the entire 200 images from the Berkeley Segmentation
Database (BSD) [47]. The BSD dataset contains 200 color
images of medium size (e.g. 321 × 481 × 3) and the content
spans a wide variety of natural scenes and objects. Please
note that nature color images are often considered to be
approximately low-rank, since their leading singular values of
a small number dominate the main information and a large
number of singular values are very close to zero. We generate
random corruptions by randomly sampling 10% of the 3-way
tensor entries and set them to random values in [0, 255], which
results up to 30% of the pixels to be randomly corrupted.

First, we study the effect of λ for TNN and TSP-k by plot-
ting the PSNR versus a series λ. We conduct the experiment
on 50 images randomly chosen from the 140 images whose
k is set at 5 in the BSD dataset. Figure.4 reports the averaged
PSNR on images 1 to 25, and 26 to 50. The TSP-k outperforms
the TNN in a wider range and the best achievable PSNR is
also higher.

Second, on the entire 200 images, we compare our method
with tensor low-rank inducing norms TNN and SNN. Also,
we compare it with the matrix low-rank inducing norm based
methods: RPCA (matrix NN), PSSV [48], and CBD3M [49],

Fig. 5. Comparison of PSNR value for the image denoising experiment on
all images of Berkeley Segmentation Database.

where PSSV is a nonconvex relaxation of the nuclear norm
by discarding top singular values out of the nuclear norm,
and CBD3M is a popular denoising method based on block-
matching and collaborative filtering. For fair of comparison,
we again use ADMM-type methods for optimizing all tensor
and matrix-based norms. We set tol = 10−5 for tensor based
methods (we also test 10−7, but the results barely change) and
tol = 10−7 for matrix based methods, which are default values
chosen by the corresponding authors. As for λ, we follow [2]
for the compared methods. For our TSP-k norm, we find that
with the parameter pair [k, λ] = [5, 20], TSP-k is superior
than all compared low-rank inducing norms on 140 images
of the entire 200 images. While for the remaining 60 cases,
TSP-k achieves the best performance by slightly adjusting the
choice to pairs like [3, 20] (for 43 images) and [7, 15] (for
13 images) and the remaining three also use k = 5 but set λ to
10 or 15. In terms of parameter setting, we can see that: 1) the
λ parameter is not difficult to tune to get superior performance,
since TSP-k norm performance much better than all compared
norms on 183 of 200 images (over 90%) with a single λ = 20;
2) the setting of k = 3, 5, 7 indicates that natural images have
different underlying linear combination of rank k sum of tubal
multi-rank and k = 1 (choice of TNN) is not optimal.

The recovery performance is summarized in Fig. 5, which
reports the PSNR values on all 200 images in BSD. Fig.5
exhibits recovered images on example images. Table V shows
the PSNR values of the example images and the average
PSNR value on the entire BSD dataset. From both the visual
and quantitative experiment results, we summarize that 1) the
t-SVD methods (TNN and TSP-k) are better than matrix-based
norms (RPCA and PSSV), the block-matching and collabora-
tive filtering based method CBM3D and Tucker model based
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Fig. 6. Example images and recovery results of the image denoising experiment on Berkeley Segmentation Database. The indices of selected images from
top to bottom are 006,020,087,144,193, where 020,087,144 and 193 are popularly demonstrated by previous related work.

Fig. 7. Large size image recovery with 20% missing and 20% corruption. Recovery results of compared methods at CPU time 1000, 1500 and 2000 seconds.

Fig. 8. Comparison of large size image recovery with 20% missing and 20% corruption: PSNR versus CPU time.

norm (SNN); 2) TSP-k norm is a better convex relaxation
than TNN for the sum of tubal multi-rank; 3) to achieve the
superior performance, the choice of parameters for TSP-k is
not difficult.

3) Video Recovery From Observation With Simultaneous
Corrupted and Missing Entries: We consider the video recov-
ery task, where the video frames are corrupted by random
noise and some values in the RGB channels are missing.

We consider three video subsequences with different char-
acteristics: 1) the Bike clip where the camera is moving to
chase the moving bike, so that the background is gradually
changing and a single object in the foreground is moving;
2) the Basketball clip where the camera chasing the players,
so that the background is gradually changing and multiple
objects in the foreground is moving; 3) the Walking clip where
a steady surveillance camera captures a walking human, so that
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TABLE V

COMPARISON OF PSNR VALUES ON EXAMPLE IMAGES FROM BSD

Fig. 9. Comparison of PSNR of each frame for the simultaneous video
completion and denoising experiment.

Fig. 10. Sample frames of simultaneous video completion and denoising
experiment on videos: bike, basketball, and walking (from top to bottom).

the background is still and a main object in the foreground
is moving. All three videos are of medium sizes with frame
dimensions 640×360, 576×432 and 384×288. We randomly
selects 30 consecutive frames for the experiment. With each
frame being one frontal slice of the tensor, we reshape the
video data into tensors of corresponding sizes 640×1080×30,
576×1296×30 and 384×864×30, by vertically concatenating
the RGB channel of each color frame into a frontal slice.
We add 10% of all tensor values in [0, 255] randomly as the
corruption and set 20% tensor values as random missing. Fig. 9
presents the PSNR values of every frame in all video clips.
Our method achieves better recovery results on all frames of
the three video clips. Fig. 10 shows the sample frames and
our method is also better by visual comparison.

B. Experiments on Larger Size Datasets

In this part, we consider the large size observation tensor
setting as in Section V, where the existing proximal ADMM
based t-SVD methods have scalability problem. Please note
that there is no existing work has ever studied the t-SVD based
low-rank tensor method under this larger scale robust low-rank
tensor completion setting. We show that our TSP-k norm with
the proposed universal primal dual method in Algorithm 5 is
able to get better recovery result on large size color images
and high resolution videos in much less CPU time.

1) Large Size Image Recovery From Observation With
Simultaneous Missing Entries and Random Corruption: We
utilize large size color images collected from Flickr as shown

Fig. 11. Comparison of simultaneous large scale video completion and
denoising experiment: PSNR versus CPU time.

Fig. 12. Sample frames of simultaneous high resolution video (Airport and
Bridge) completion and denoising experiment.

Fig. 13. Recovered frames, from top to bottom: airport by TNN, airport by
TSP-k with Alg.5; bridge by TNN, bridge by TSP-k with Alg.5.

in the first column of Fig. 7, which have different content
including: bird, ancient architecture, flower, human and Eiffel
Tower. All images have frame sizes exceeding 3000 × 3000,
which is much larger than the images in BSD. The second
column of 7 shows the observation images, which are gen-
erated by setting 20% of the corresponding original image
tensor entries with random corruption in [0, 255] and ran-
domly selecting 20% entries as missing. We compare with
the ADMM-based TNN method as well as matrix NN method
solved by a mixed Frank-Wolfe method called FWT in [40]
which is a variant of conditional gradient and greedy in nature.
As shown in the third column of Fig. 7, the matrix NN has
unsatisfiable recovery performance visually even at CPU time
2000s. From the 4th to 9th column of Fig. 7, we present
the recovery output of TNN and our TSP-k method at CPU
time 1000s, 1500s and 2000s. Our method has better recovery
result by using same CPU time. In addition, visually, our
output at 1000s CPU time is better than the output of TNN
at 2000s CPU time, which indicates our method can have
better performance by using less than half of the time. Fig. 8
shows the quantitative comparison by plotting �1 and �2 error
versus the CPU time, from which we can see that our method
decreases the misfit much faster.

2) High Resolution Video Recovery From Observation With
Simultaneous Missing Entries and Random Corruption: We
consider video recovery from random corruption and missing
entries on two 1440p resolution video clips with randomly
selected 10 consecutive frames, which are of frame size 2560×
1440 and of reshaped tensor size 2560×4320×10. It is much
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larger than the videos considered in the preceding section and
presents great scalability issue for proximal ADMM based
methods due to the full SVD per-iteration. The first is an
airport video shot by hand held camera, where the whole
image is slightly shaken and the plane in the center of the
frame is pushing back. The second is a still camera capturing
a bridge, where the water and people on the bridge are
moving. Fig. 12 presents the sample frames of the original and
corrupted and missing entries observation video. Fig. 13 shows
the output sample frame recovered by proximal ADMM-based
TNN and our greedy dual based TSP-k at 2000s,3000s,4000s
and 5000s CPU time. Visually, our method has much better
recovery performance at every reported time. Also, our output
at 2000s is better than the output at 5000s returned by TNN.
Fig. 11, by plotting �1 and �2 relative error against the ground-
truth original video, also confirms that our method recovers
low-rank video more efficiently and more accurately.

VII. CONCLUSION

In this paper, we have studied the robust low-rank tensor
minimization problem under the t-SVD framework. We have
derived an alternative relaxation to the sum of tubal multi-
rank by providing a novel tensor spectral k-support norm.
In particular, we have shown that TSP-k norm interpolates
between TNN and TFN, which is helpful for preserving more
global information of the intrinsic low-rank tensor. We provide
two optimization methods for dealing with both medium and
larger scale data, based on the proximal operator and the polar
operator, correspondingly. Experiments on synthetic, image
and video datasets with medium and larger-scale dimensions
verified the superiority of TSP-k over TNN for low rank tensor
modeling as well as the effectiveness of the two proposed
optimization methods for their targeted data scales.

REFERENCES

[1] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods
for multilinear data completion and de-noising based on tensor-SVD,”
in Proc. CVPR, Jun. 2014, pp. 3842–3849.

[2] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor
robust principal component analysis: Exact recovery of corrupted low-
rank tensors via convex optimization,” in Proc. CVPR, Jun. 2016,
pp. 5249–5257.

[3] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 1, pp. 208–220, Jan. 2013.

[4] P. Zhou and J. Feng, “Outlier-robust tensor PCA,” in Proc. CVPR,
Jul. 2017, pp. 3938–3946.

[5] N. Boumal and P.-A. Absil, “RTRMC: A Riemannian trust-region
method for low-rank matrix completion,” in Proc. NIPS, 2011,
pp. 406–414.

[6] J. Sun, S. Papadimitriou, C.-Y. Lin, N. Cao, S. Liu, and W. Qian,
“MultiVis: Content-based social network exploration through multi-way
visual analysis,” in Proc. SIAM Int. Conf. Data Mining. Philadelphia,
PA, USA: SIAM, 2009, pp. 1064–1075.

[7] X. Li, M. K. Ng, and Y. Ye, “MultiComm: Finding community structure
in multi-dimensional networks,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 4, pp. 929–941, Apr. 2014.

[8] Z. Zhang and S. Aeron, “Exact tensor completion using t-SVD,” IEEE
Trans. Signal Process., vol. 65, no. 6, pp. 1511–1526, Mar. 2015.

[9] D. Goldfarb and Z. Qin, “Robust low-rank tensor recovery: Models and
algorithms,” SIAM J. Matrix Anal. Appl., vol. 35, no. 1, pp. 225–253,
2014.

[10] L. Omberg, G. H. Golub, and O. Alter, “A tensor higher-order singular
value decomposition for integrative analysis of DNA microarray data
from different studies,” Proc. Nat. Acad. Sci. USA, vol. 104, no. 47,
pp. 18371–18376, 2007.

[11] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of ‘Eckart–Young’
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[12] A. H. Kiers, “Towards a standardized notation and terminology in
multiway analysis,” J. Chemometrics, vol. 14, no. 3, pp. 105–122,
2000.

[13] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[14] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third-order
tensors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM J. Matrix Anal. Appl.,
vol. 34, no. 1, pp. 148–172, 2013.

[15] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM,
vol. 60, no. 6, p. 45, Nov. 2009.

[16] C. Mu, B. Huang, J. Wright, and D. Goldfarb, “Square deal: Lower
bounds and improved relaxations for tensor recovery,” in Proc. Int. Conf.
Mach. Learn., 2014, pp. 73–81.

[17] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[18] M. Signoretto, Q. T. Dinh, L. De Lathauwer, and J. A. K. Suykens,
“Learning with tensors: A framework based on convex optimization and
spectral regularization,” Mach. Learn., vol. 94, no. 3, pp. 303–351, 2014.

[19] B. Romera-Paredes and M. Pontil, “A new convex relaxation for tensor
completion,” in Proc. NIPS, 2013, pp. 2967–2975.

[20] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysis with a new tensor nuclear norm,” 2018,
arXiv:1804.03728. [Online]. Available: https://arxiv.org/abs/1804.03728

[21] W. Hu, D. Tao, W. Zhang, Y. Xie, and Y. Yang, “The twist tensor nuclear
norm for video completion,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 12, pp. 2961–2973, Dec. 2016.

[22] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Joint reconstruction and anom-
aly detection from compressive hyperspectral images using Mahalanobis
distance-regularized tensor RPCA,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 5, pp. 2919–2930, May 2018.

[23] W. Hu, Y. Yang, W. Zhang, and Y. Xie, “Moving object detection using
tensor-based low-rank and saliently fused-sparse decomposition,” IEEE
Trans. Image Process., vol. 26, no. 2, pp. 724–737, Feb. 2017.

[24] A. Argyriou, R. Foygel, and N. Srebro, “Sparse prediction with the
κ-support norm,” in Proc. NIPS, 2012, pp. 1457–1465.

[25] A. Eriksson, T. T. Pham, T.-J. Chin, and I. Reid, “The κ-support
norm and convex envelopes of cardinality and rank,” in Proc. CVPR,
Jun. 2015, pp. 3349–3357.

[26] A. M. McDonald, M. Pontil, and D. Stamos, “Spectral κ-support norm
regularization,” in Proc. NIPS, 2014, pp. 3644–3652.

[27] A. M. McDonald, M. Pontil, and D. Stamos, “New perspectives on
κ-support and cluster norms,” J. Mach. Learn. Res., vol. 17, no. 155,
pp. 1–38, 2016.

[28] B. He and X. Yuan, “On the o(1/n) convergence rate of the
Douglas–Rachford alternating direction method,” SIAM J. Numer. Anal.,
vol. 50, no. 2, pp. 700–709, 2012.

[29] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[30] Y. Nesterov, “Universal gradient methods for convex optimization prob-
lems,” Math. Program., vol. 152, nos. 1–2, pp. 381–404, 2015.

[31] A. Yurtsever, Q. T. Dinh, and V. Cevher, “A universal primal-dual convex
optimization framework,” in Proc. NIPS, 2015, pp. 3150–3158.

[32] J. Q. Jiang and M. K. Ng, “Exact tensor completion from sparsely cor-
rupted observations via convex optimization,” 2017, arXiv:1708.00601.
[Online]. Available: https://arxiv.org/abs/1708.00601

[33] O. Semerci, N. Hao, M. E. Kilmer, and E. L. Miller, “Tensor-
based formulation and nuclear norm regularization for multienergy
computed tomography,” IEEE Trans. Image Process., vol. 23, no. 4,
pp. 1678–1693, Apr. 2014.

[34] R. M. Larsen, “Lanczos bidiagonalization with partial reorthogonaliza-
tion,” DAIMI Rep. Ser., vol. 27, no. 537, p PB-537, 1998.

[35] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure
with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217–288, 2011.

[36] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, Jan. 2014.

[37] M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval Res. Logistics Quart., vol. 3, nos. 1–2, pp. 95–110, 1956.

[38] M. Jaggi, “Revisiting Frank–Wolfe: Projection-free sparse convex opti-
mization,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 427–435.



LOU AND CHEUNG: ROBUST LOW-RANK TENSOR MINIMIZATION VIA A NEW TENSOR SPECTRAL k-SUPPORT NORM 2327

[39] Y. Yu, X. Zhang, and D. Schuurmans, “Generalized conditional gra-
dient for sparse estimation,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 5279–5324, 2017.

[40] C. Mu, Y. Zhang, J. Wright, and D. Goldfarb, “Scalable robust matrix
recovery: Frank–Wolfe meets proximal methods,” SIAM J. Sci. Comput.,
vol. 38, no. 5, pp. A3291–A3317, 2016.

[41] R. T. Rockafellar, Convex Analysis, vol. 28. Princeton, NJ, USA:
Princeton Univ. Press, 1970.

[42] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imag. Vis.,
vol. 40, no. 1, pp. 120–145, 2011.

[43] L. Condat, “A primal–dual splitting method for convex optimization
involving lipschitzian, proximable and linear composite terms,” J. Optim.
Theory Appl., vol. 158, no. 2, pp. 460–479, 2013.

[44] P. L. Lions and B. Mercier, “Splitting algorithms for the sum of two
nonlinear operators,” SIAM J. Numer. Anal., vol. 16, no. 6, pp. 964–979,
1979.

[45] C. Lu, J. Feng, S. Yan, and Z. Lin, “A unified alternating direction
method of multipliers by majorization minimization,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 527–541, Mar. 2018.

[46] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander,
and S. Roy, “Level-set methods for convex optimization,” 2016,
arXiv:1602.01506. [Online]. Available: https://arxiv.org/abs/1602.01506

[47] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2. Jul. 2001, pp. 416–423.

[48] T.-H. Oh, Y.-W. Tai, J.-C. Bazin, H. Kim, and I. S. Kweon, “Partial
sum minimization of singular values in robust PCA: Algorithm and
applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 4,
pp. 744–758, Apr. 2016.

[49] K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse
3d transform-domain collaborative filtering,” in Proc. 15th Eur. Signal
Process. Conf., Sep. 2007, pp. 145–149.

Jian Lou received the Ph.D. degree from the Depart-
ment of Computer Science, Hong Kong Baptist
University. His research interests include statisti-
cal learning, numerical optimization, and privacy-
preserving for machine learning.

Yiu-Ming Cheung (SM’06–F’18) received the
Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong.

He is currently a Full Professor with the Depart-
ment of Computer Science, Hong Kong Baptist Uni-
versity, Hong Kong. His current research interests
include machine learning, pattern recognition, visual
computing, and optimization.

Prof. Cheung is an IET Fellow, a BCS Fellow,
an RSA Fellow, and a Distinguished Fellow of the

IETI. He is the Founding Chair of the Computational Intelligence Chapter,
IEEE Hong Kong Section, and the Chair of the Technical Committee on
Intelligent Informatics, IEEE Computer Society. He serves as an Asso-
ciate Editor for the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS, the IEEE TRANSACTIONS ON CYBERNETICS, Pattern
Recognition, Knowledge and Information Systems, and Neurocomputing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


