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Abstract— The scene classification of remote sensing (RS)
images plays an essential role in the RS community, aiming
to assign the semantics to different RS scenes. With the
increase of spatial resolution of RS images, high-resolution
RS (HRRS) image scene classification becomes a challenging
task because the contents within HRRS images are diverse in
type, various in scale, and massive in volume. Recently, deep
convolution neural networks (DCNNs) provide the promising
results of the HRRS scene classification. Most of them regard
HRRS scene classification tasks as single-label problems. In this
way, the semantics represented by the manual annotation
decide the final classification results directly. Although it is
feasible, the various semantics hidden in HRRS images are
ignored, thus resulting in inaccurate decision. To overcome this
limitation, we propose a semantic-aware graph network (SAGN)
for HRRS images. SAGN consists of a dense feature pyramid
network (DFPN), an adaptive semantic analysis module (ASAM),
a dynamic graph feature update module, and a scene decision
module (SDM). Their function is to extract the multi-scale
information, mine the various semantics, exploit the unstructured
relations between diverse semantics, and make the decision
for HRRS scenes, respectively. Instead of transforming single-
label problems into multi-label issues, our SAGN elaborates the
proper methods to make full use of diverse semantics hidden
in HRRS images to accomplish scene classification tasks. The
extensive experiments are conducted on three popular HRRS
scene data sets. Experimental results show the effectiveness
of the proposed SAGN. Our source codes are available at
https://github.com/TangXu-Group/SAGN.

Index Terms— High resolution remote sensing image, scene
classification, deep learning.
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I. INTRODUCTION

WITH the improvement of the resolution of remote sens-
ing (RS) images, more detailed land-cover information

can be shown in the high-resolution RS (HRRS) images.
According to the different semantics of land-covers, HRRS
images can be classified into different scenes. The HRRS
image scene classification becomes important increasingly as
it can be used in many RS applications, see [1], [2], [3].
However, it is a tough and challenging task since HRRS
images are complicated in contents, diverse in semantics,
multi-scaled in targets, and huge in volume. Accordingly,
how to improve the classification accuracy of HRRS scenes
becomes a hot research topic in the RS community.

A lot of methods have been proposed to distinguish HRRS
scenes [4], [5], [6]. The two main parts, feature extractor
and classifier, play the crucial role in this task. The feature
extractor aims to map HRRS images into the proper visual
features, while the classifier focuses on grouping HRRS scenes
into different various semantic classes. Due to the favorable
stability and efficiency, the hand-crafted features (e.g., texture
features [7], [8], spectral features [9], [10], color features
[11], [12], and shape features [13], [14]) and traditional
classifiers (e.g., support vector machine [15] and decision
tree [16]) are often used. However, since the hand-crafted
features are hard to describe the information of HRRS image
comprehensively and traditional classifiers cannot match the
information distributions of hand-crafted features perfectly, the
performance of HRRS image scene classification cannot meet
what we expect. With the development of deep convolutional
neural networks (DCNNs) [17], DCNN-based classification
methods become popular increasingly. The deep features
learned by the hierarchical DCNNs can describe HRRS images
more completely in comparison to the hand-crafted features.
Furthermore, the classifiers within DCNN-based methods are
trained with feature extractors together so that they can follow
the deep feature distributions appropriately. In fact, more and
more DCNN-based methods have been proposed for HRRS
image scene classification tasks with achieving impressive
results in a variety of applications [18], [19], [20], [21], [22],
[23], [24].

Generally speaking, the HRRS image scene classification
is a single-label task. However, the pre-defined single label
is not able to fully describe the complex contents of an
HRRS scene. Let us take a “bridge” scene as an example
(see Fig. 1). Besides the “bridge”, there are still some regions
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Fig. 1. The above high-resolution remote sensing (HRRS) image is
selected from the UC Merced data set [25]. Its manual semantic scene
label is “bridge”. It can be seen that apart from the “bridge”, there are
many other distinct land-covers, including “river”, “grass-plot”, “car”, and
“dense residential”. If we only consider the “bridge” during the feature
learning, the contents corresponding to other semantics would decrease the
discrimination of learned features and impact the classification negatively.
Hence, the complex contents corresponding to diverse semantics should be
taken into account simultaneously.

covered by “river”, “car”, “grass-plot”, and even “dense
building”. Therefore, rather than only considering “bridge”,
exploring latent semantic contents and analyzing the context
relations among them are crucial for the scene classification.
The common DCNN-based methods can capture various
contents but deem them equally. This leads to information
disturbance which would decrease the discrimination of
learned features and impact the classification negatively.
To highlight important contents for the scene classification,
researchers have introduced the attention mechanism into
DCNN-based methods [26], [27], [28], which pushes the
networks to pay more attention to the essential semantics.
Although the attention mechanism can partly deal with
information disturbance, the context relations among various
latent information hidden in HRRS images cannot be
explored.

Recently, due to the solid capacity in mining relationships,
graph convolutional network (GCN) has attracted more and
more scholars’ attention [29], [30]. Apart from discovering
diverse semantics within HRRS scenes, GCNs can exploit
their intrinsic relationships at the same time. Accordingly, the
obtained features are more representative. When researchers
use GCNs to interpret HRRS images, instead of constructing a
graph at the pixel level (which is time and storage consuming),
they are accustomed to dividing an HRRS image into several
regions and constructing the initial graph at the region level.
Meanwhile, the original nodes’ representation is the average
features of their HRRS pixels. Then, the region representation
can be obtained by updating the graph nodes using the graph
convolution, which considers their neighborhoods’ information
and the intrinsic connection between them simultaneously.
After this, the high-level feature of the HRRS image can
be generated. The acquired high-level feature can reflect
the short-range semantics (local) and long-range context
information (global) of the HRRS image.

Although the regular GCNs mentioned above are available
in exploring the HRRS images’ complex and diverse contents,
they have a distinct shortcoming, i.e., the knowledge stored

in pixels may be lost when constructing the initial graph.
Also, the pixels’ information will not be considered during
the graph convolution. The above deficiency somewhat limits
GCNs’ performance in HRRS scene understanding. Therefore,
we propose a new graph node updating strategy based on the
dynamic graph theory [31] to overcome this issue. Suppose
a region-level graph has already been established for an
HRRS scene. Rather than updating a node representation
directly, the developed strategy renews the HRRS pixels
belonging to this node by the graph convolution under the
region-level adjacency matrix. Then, the node would be
updated by considering all of the renewed HRRS pixels.
The updating strategy discussed above and the difference
between it and the traditional node updating scheme are
displayed in Fig. 2. Based on this strategy, a simple yet
effective RS scene classification method named semantic-
aware graph network (SAGN) is proposed in this paper
for HRRS scene classification. First, SAGN adopts a dense
feature pyramid network (DFPN) [32] to extract representative
feature maps. Second, an adaptive semantic analysis module is
proposed to obtain the diverse semantics within HRRS images.
By analyzing the extracted feature maps, HRRS scenes can
be analyzed into various semantic regions adaptively. Third,
these regions are organized in a graph, and the introduced
graph node updating strategy is adopted to capture their
high-level information. In this way, both the pixel-level
semantics and the region-level context information within RS
scenes can be captured for classification. Finally, the final
scene category is decided according to the diverse semantic
regions.

The main contributions of this paper are summarized as
follows:

1) An end-to-end HRRS image scene classification network
(SAGN) is proposed. Not only can the diverse semantics
hidden in HRRS scenes be explored but also the
relationships among various semantics can be captured,
which is beneficial to understand the complex contents
within HRRS scenes.

2) An adaptive semantic analysis module is proposed,
which can analyze the feature maps of HRRS scenes
to different semantic regions adaptively. Accordingly,
the diverse latent semantics of HRRS scenes can be
discovered.

3) A helpful graph node updating strategy based on
dynamic GCN is proposed for HRRS scene under-
standing. The key point of our updating strategy is
to renew the HRRS pixels’ features using the region-
level adjacency relations. In this way, the pixel-level
knowledge, region-level information, and their context
connections can be captured.

The rest of this paper is organized as follows. Section II
makes an overview of deep-learning-based HRRS scene clas-
sification methods. In Section III, the proposed SAGN with
three sub-modules is introduced in detail. The experiments
and discussion are conducted in Section IV. Section V draws
a brief conclusion.
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Fig. 2. Schematic illustration of our proposed and traditional graph node updating strategy. Assume that an HRRS scene has been divided into several
regions. After the average and similarities calculation, the initial graph can be constructed (see Step1 and Step 2). Taking the region marked by the red frame
as an example, its original corresponding graph node (black star) can be produced by averaging the pixels’ features in this region (black circle). In addition,
when all graph nodes have been obtained, the edges among them can be decided by their similarities. Then, the original graph nodes would be updated
by the graph convolution. In the traditional updating strategy (top in Step 3), the graph nodes will be directly renewed by the graph convolution (see the
transformation from black star to purple star). In contrast, the graph nodes will be updated in two steps in the proposed graph node updating strategy. The
first step is to renew the features of pixels belonging to a node (region) under the region-level adjacency relations (see the transformation from black circle
to purple circle). The second step is to update the node’s representation by averaging the new pixel features. In this way, both the local semantics and the
global context information within HRRS scenes can be captured for classification.

II. RELATED WORK

This section will make an overview of the existing HRRS
image scene classification methods by dividing them into
two groups, i.e., the general and semantic-aware deep scene
classification methods.

A. General Deep Scene Classification Methods

With the vigorous development of deep learning,
deep-learning-based HRRS scene classification methods
are dominated in the RS community and achieve
impressive performance due to the strong capacity of
feature learning [33].

At first, scholars are inclined to adopt the pre-trained
DCNNs to complete HRRS scene classification. For example,
Dimitrios et al. [34] introduced the Overfeat network [35]
that is pre-trained by ImageNet data set [36] to extract visual
features from HRRS images. Then, the extracted features are
reshaped into the 2D matrixes and the final classification
results are obtained by another shallow CNN. Although this
kind of solution is feasible, the complex characteristics (e.g.,
scale variation of objects) of HRRS images are not fully
considered. To overcome this limitation, Liu et al. [37]
proposed a multi-scale convolutional neural network (MCNN)
for HRRS image scene classification. MCNN constructs dual-
branch nets to explore the multi-scale information within
HRRS images so that the scale-invariant features can be
extracted to ensure the classification results. An HRRS image
scene classification method was proposed in [38], where the
global features and rearranged local features are captured from
HRRS images respectively so that the classification results
are positive. Similar to [38], Zheng et al. [39] proposed a
deep scene representation model to learn invariance CNN
features from HRRS scenes, in which the geometric invariance
information is supplemented to the visual features so that the
discrimination of extracted features can be further improved.
Meanwhile, a novel representation based on a ConvNet with
context aggregation was proposed in [40], which adopts

two-pathway ResNet to capture local details and regional
context for improving the identifiability of features. Feature
stack strategy is also employed to obtain rich features for
classification, where multilayer stacked covariance pooling
(MSCP) is proposed to utilize the covariance matrix to stack
deep features.

Besides the mentioned deep methods which focus on
learning the visual features from HRRS images directly,
the feature aggregation scheme is also popular in this
field [41], [42]. However, the process of aggregating features
is generally unsupervised and subjective, which limits the
improvement of performance [43]. Therefore, an end-to-end
feature aggregation CNN (FACNN) was proposed in [43].
FACNN leverages the semantic label information to enrich
the visual features so that the classification results can be
improved. In [44], a local Binary Patterns (LBP) encoded
CNN model was proposed. It is trained by mapped coded
images with explicit LBP based texture information. The
additional texture features would provide complementary
information to the standard RGB deep models for better
classification performance.

The above HRRS scene classification methods assume that
the semantic labels are correct. However, it is well-known
that HRRS scene annotation is a time-consuming and tough
task. The incorrect annotation or improper semantic labels
are unavoidable. Therefore, some works aim to complete
the HRRS scene classification under the incorrect annotation
scenario. To reduce the influence from incorrect scene
annotation, an error-tolerant deep learning approach for HRRS
image scene classification was proposed in [45]. It learns
multiview CNNs and corrects error annotations alternatively
in an iterative manner so that the negative effects of incorrect
annotations can be mitigated.

B. Semantic-Aware Deep Scene Classification Methods

The methods in this group focus on mining the detailed
semantic information hidden in the HRRS images for
improving HRRS scene classification.
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As the classical method for analyzing the semantics of
images, the attention mechanism [46] is received great
attention in the computer vision as well as the RS community.
Wang et al. [27] proposed an end-to-end network named
attention recurrent convolutional network (ARCNet), which
can select key regions adaptively from high-level features
to improve the discrimination of features so that the scene
classification performance can be promoted. Although the
self-attention mechanism used in ARCNet is effective, it is
time-consuming in practical. To solve this problem, the
thrifty attention and its recurrent version were proposed [28],
which can collect the global contextual information with
low computational complexity. Also, as a general module,
they can be embedded in any CNN model. Tang et al. [47]
introduced a dual-channel network to address HRRS scene
classification. The proposed model combines the spatial
and spectral attention to capture the complex contents
of HRRS scenes. Also, an attention consistent model is
developed to mitigate the influence caused by the spatial
rotation. Apart from conventional DCNN, the attention
mechanism also can be applied in generative adversarial
networks (GANs). For instance, attention GANs [26] inte-
grate the attention to further improve the representation
power of the discriminator for enhancing the classification
accuracy.

Apart from the attention mechanism, many other well-
designed methods can be employed to assist the network to
capture the semantic information within HRRS images. For
example, the probabilistic topic model [48] was combined
with CNNs to discover more discriminative semantics
in [49], where deep features and hand-crafted features
are fused adaptively to improve the results of scene
classification. A multiple-instance densely-connected convnet
(MIDC-Net) [50] was proposed to classify HRRS scenes.
MIDC-Net transforms the HRRS image classification task
into the multiple-instance learning problem, which helps the
network explore target-level semantics. To further improve
the classification performance, Zhang et al. [51] explored
the semantic information distributions within the training
and testing data, and they proposed a correlation subspace
dynamic distribution alignment (CS-DDA) model to balance
feature distributions between the source and target domains.
Although the above HRRS scene classification methods
achieve well performance, it is worth noting that the single
scene label is hard to describe diverse semantics within HRRS
images. Therefore, to explore the various semantics within
HRRS images under the single-annotation scenario, a multi-
granularity canonical appearance pooling (MG-CAP) [4] was
proposed to capture the latent ontological structure of HRRS
image data sets. MG-CAP progressively crops the input image
to obtain multi-grained deep features, and a maxout-based
Siamese style architecture is utilized to learn each deep feature
with specific granularity. Finally, Gaussian covariance matrices
and the matrix normalization method are employed to improve
the discriminative power of features.

Due to the capacity of analyzing the unstructured
data, GCN is becoming popular in the RS community.
A growing number of GCN-based models have been

developed for different RS tasks, such as hyperspectral
image classification [52], [53] and HRRS scene classification
[29], [30]. In [29], a deep feature aggregation framework
driven by GCN was proposed. It utilizes a GCN to exploit
patch-to-patch correlations of convolutional feature maps
effectively. Thus, more refined features can be generated for
HRRS image scene classification. Gao et al. [30] applied the
high-order GCN to analyze the dependencies between different
semantic classes. Different from the traditional GCN, high-
order GCN can capture semantic dependencies at different
orders. Therefore, the obtained feature representation is
informative and discriminative, which improves classification
performance.

Although the mentioned GCN-based methods have achieved
positive classification results, two disadvantages limit their
performance distinctly. First, due to the mechanism of graph
theory, each pixel within RS images cannot be regarded as the
graph node, resulting in substantial computational and storage
costs. Second, to mitigate the above problems, researchers
always select superpixels to be the graph nodes. However,
this would lose the spatial context information, which is
essential to the RS image interpretation. To overcome the
above-mentioned limitations, our SAGN first constructs the
graph at the superpixel level. Then, based on the similarities
between different superpixels, we develop a dynamic updating
approach to learn features from RS images at the pixel level.
In this way, the time and storage costs can be reduced, and
the spatial context information hidden in RS images can be
preserved.

III. THE PROPOSED APPROACH

This paper proposes an SAGN model to deal with HRRS
scene classification tasks. The key idea of SAGN is to explore
multiple semantics hidden in HRRS scenes. Furthermore,
by mining their short-/long-range relationships the final
decision of HRRS scenes can be obtained. The framework of
SAGN is shown in Fig. 3, which consists of a dense feature
pyramid network (DFPN), an adaptive semantic analysis
module (ASAM), a dynamic graph feature update module
(DGFUM), and a scene decision module (SDM) based on
semantic regions. DFPN aims to extract the representative
visual features from HRRS scenes, ASAM pays attention to
analyze the latent and various semantics within HRRS scenes
and generate diverse semantic regions adaptively, DGFUM
updates the visual features under the paradigm of GCN to
improve their discrimination with the consideration of the
relationships between semantic regions, and SDM utilizes the
updated features and corresponding semantic regions to decide
the final semantic labels of HRRS scenes.

A. Dense Feature Pyramid Network

Feature extraction is a challenging task due to the complex
contents of HRRS scenes. To obtain the representative
features, DFPN is developed in this section, which adopts
ResNet [54] as backbone to generate multi-scale features. The
flowchart of DFPN is shown in Fig. 4.
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Fig. 3. The framework of SAGN, which consists of four parts: a dense feature pyramid network, an adaptive semantic analysis module, a dynamic graph
feature update module, and a scene decision module based on semantic regions.

Fig. 4. Flowchart of dense feature pyramid network.

When an HRRS image is input to DFPN, four feature
maps C1, C2, C3, and C4 that contain multi-scale semantic
information are generated by four residual blocks of ResNet.
Then, the bottom-up structure is applied to fuse them. We can
formulate this process as

P4 = Conv1×1(C4),

Pi = Conv3×3[

4∑
j=i+1

U psample(Pj ) ⊕ Conv1×1(Ci )],

(1)

where Convk×k(·) denotes the convolution operation with a
kernel size of k × k, U psample(·) represents the bilinear up-
sampling, and ⊕ indicates the concatenation operation. Finally,
P1 is adopted as the final visual feature F.

B. Adaptive Semantic Analysis Module

Diverse semantics always appear in an HRRS scene. The
pre-defined single semantic label can represent the main
content in this scene. However, other semantics (which
are ignored by the manual label) can also provide useful
information for distinguishing the scene. Analyzing the diverse
semantics within an HRRS scene and mining the context
relations between them are beneficial to the classification task.
Therefore, we propose ASAM to capture latent semantics and
generate diverse semantic regions adaptively such that the
various information can be explored for deciding the label of
the HRRS scene.

Fig. 5. Schematic illustration of the adaptive semantic analysis module. The
diverse semantics within an HRRS scene can be explored and represented by
different semantic regions. Here, only two feature points are analyzed and
exhibited for clear.

Here, the number of semantic regions Nr needs to be set
in advance for ASAM. In this paper, its value is up to the
class number of the data set. To capture the latent semantics of
HRRS image efficiently, ASAM adopts a simple structure that
contains one convolution layer with the kernel size of 5 × 5.
Note that the outputting channel number of convolution layer
equals Nr . The schematic illustration of semantics analysis is
shown in Fig. 5. Specifically, F is first convoluted to F′ by the
first convolution layer with the kernel size of 5 × 5. Here, the
channel number of F′ is equal to Nr . Second, for each feature
point of F′, the channel-wise position with the maximal value
is recorded as the ID of semantic regions. Finally, the semantic
regions of F can be obtained according to each point’s ID
index adaptively.

C. Dynamic Graph Feature Update Module

Before introducing our DGFUM, the preliminaries of
GCN will be discussed. GCN is a popular tool for
processing unstructured data, which aims to extract advanced
features by aggregating the information from graph nodes’
neighborhoods. Suppose there is a set of graph nodes Xg =

{x1, x2, x3, . . . , xng }, where xi denotes the i-th graph node,
and ng equals the number of graph nodes. To describe the
interrelationship between graph nodes (i.e., the edges between
graph nodes), the adjacency matrix A is defined as,

Ai j =

{
e−γ ||xi −x j ||

2
, if xi ∈ N (x j ) or x j ∈ N (xi )

0, otherwise,
(2)

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 01,2023 at 08:00:47 UTC from IEEE Xplore.  Restrictions apply. 



1016 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fig. 6. Schematic illustration of the dynamic graph feature update module. In this example, visual feature map F contains n feature pixels and is analyzed
into ten semantics, where n equals W × H . Therefore, feature F can be regionally averaged to ten graph nodes x1 to x10 and flatted to n feature pixels
f1 to fn . The edges of graph (i.e., the regional adjacency matrix) can be generated by measuring the similarity relationships between different nodes. Then,
each feature pixel f can be updated to f∗ by the graph convolution with the proposed graph node updating strategy with the region-level adjacency relations.
Finally, after a convolution layer, all the updated feature pixels f∗ compose the updated visual feature F∗.

where γ is a hyper-parameter, xi and x j denote two graph
nodes, N (xi ) indicates the neighbor set of xi . To update the
nodes’ representation, the learnable weight W is introduced,
and the process of graph convolution of the l-th layer can be
defined as,

X(l)
g = σ(A(l)

· X(l−1)
g · W(l)), (3)

where X(l)
g and X(l−1)

g are the output and input of the l-th
layer, σ(·) denotes the activation function, and A(l) and W(l)

denote the adjacency matrix and trainable matrix of the l-th
layer, respectively.

Now, let us explain DGFUM in detail. Under the GCN
framework, our DGFUM is developed for the specific
scenario, i.e., HRRS scene understanding. As mentioned in
Section III-B, an HRRS scene has been analyzed into several
semantic regions. Thus, we regard those regions as the nodes
to construct a graph. Specifically, suppose the visual features
F ∈ RW×H×C have been divided into Nr semantic regions
adaptively, where F = {f1, f2, f3, . . . , fn}, fi ∈ RC and n =

W × H . We use the center feature to represent each region,
which can be calculated by averaging the features (in the
channel dimension) within a region. Then, a set of graph nodes
Xg = {x1, x2, x3, . . . , xNr } can be obtained, where xi ∈ RC

and C is the channel number of the visual features F. To deeply
capture their interrelationship, a trainable adjacency matrix A
is adopted, whose definition is

Ai j = e−γ ·(D(xi ,x j ))
2
, (4)

where γ is a hyper-parameter, xi and x j denote two graph
node features, D(·) means the distance metric. In this paper,
instead of using the Euclidean distance metric, we adopt
the Mahalanobis distance metric to measure the resemblance
between nodes which can be learned during the graph

convolutional process. Its definition is

D(xi , x j ) =

√
(xi − x j )⊤M(xi − x j ), (5)

where M can be decomposed as WdW⊤

d and Wd is a trainable
weight matrix.

Next, different from the conventional GCN model that
focuses on updating nodes’ features, our DGFUM aims to
update the feature points within F with the new graph
node updating strategy. In other words, DGFUM aims at
transforming F to F* through the graph convolution with the
region-level adjacency relations decided by

{
x1, x2, · · · , xNr

}
.

In detail, for one feature point fi of F, if it belongs to the j-th
semantic region, its renewing process can be formulated as,

f∗i = σ(A j ·



1 : x1
2 : x2
3 : x3

. . .
j : fi

. . .
n : xNr


), (6)

where fi and f∗i are the original and updated features, σ(·)

denotes the activation function, A j represents the j-th row
of adjacency matrix A, xi means the i-th graph node, and
j : · denotes the j-th row of matrix. After all the feature
points are updated by this update strategy, a convolution layer
with the kernel size of 3 × 3 is applied to the updated
F for the final feature F∗. The schematic illustration of
update process is shown in Fig. 6. The reason why we add
a convolution operation for updated features is inspired by
the second matrix multiplication of traditional GCN (i.e.,
F(l−1)

g · W(l) of Eq. 3). This operation of traditional GCN is
the same as the convolution operation with the kernel size of
1×1, which can capture the relationship between the different
channels. Furthermore, in addition to the channel relationship,
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the convolution layer with the kernel size of 3 × 3 can also
capture the local information, which can complement the
global information of GCN.

On the one hand, in comparison with CNN, DGFUM can
capture global and local information within HRRS scenes by
utilizing GCN to fuse all the region features with different
semantics. This could increase the discrimination of learned
features. On the other hand, rather than update the regional
feature representation Fg , we learn the point features F with
the assistance of the regional adjacency matrix. To sum up,
DGFUM can learn the feature point approximately with the
low computational costs. Therefore, the semantic labels of
HRRS scenes can be predicted rapidly and accurately.

D. Scene Decision Based on Semantic Regions

The updated visual features F∗ contain discriminative
information so that HRRS scenes can be distinguished
accurately. To obtain the semantic labels of HRRS scenes
rapidly and precisely, a convolution layer with the kernel of
1 × 1 is adopted to process F∗. The output channel equals the
number of semantic classes in the HRRS scene data set. Then,
the softmax function is added to normalize the output in the
channel dimension. Finally, the scene class corresponding to
the channel-wise position with the maximal value is selected
as the final label of an HRRS scene. It is worth noting that
only the cross-entropy is employed as the loss function to train
the network in the training stage.

IV. EXPERIMENTAL RESULTS

A. Data Set Introduction

Three public data sets are employed to evaluate our SAGN,
including UC Merced (UCM) data set [25], AID data set [55],
and NWPU-RESISC45 data set [56].

1) UC Merced Data Set: UCM contains 2100 HRRS
images with diverse land-use patterns which are obtained from
United States Geological Survey National Map of several U.S.
regions, and they are divided into 21 semantic classes equally.
The size and spatial resolution are 256 × 256 × 3 and 0.3m.
The examples are shown in Fig. 7, which are selected from
each class randomly.

2) AID Data Set: AID contains 10000 HRRS images
which are collected from the Google Earth Imagery. There
are 30 scene classes and the sample number of each class
varies from 220 to 420. The size and spatial resolution are
600 × 600 and from 0.5m to approximate 8m. The image
examples of data set are shown in Fig. 8.

3) NWPU-RESISC45 Data Set: There are 31500 HRRS
images in this data set which are divided into 45 scene
classes equally. The size and spatial resolution of each HRRS
image are 256 × 256 and 30-0.2m per pixel, respectively. The
examples are shown in Fig. 9.

B. Implementation Details

The training and inference are conducted by pytorch [57]
on a high performance computer with GeForce RTX 3090 of
24G memory and Inter Xenon Silver 4214R. In the training

Fig. 7. Examples in the UCM data set: (1) Agricultural ∼ 100, (2) Airplane
∼ 100, (3) Baseball Diamond ∼ 100, (4) Beach ∼ 100, (5) Buildings
∼ 100, (6) Chaparral ∼ 100, (7) Dense Residential ∼ 100, (8) Forest ∼

100, (9) Freeway ∼ 100, (10) Golfcourse ∼ 100, (11) Harbor ∼ 100,
(12) Intersection ∼ 100, (13) Medium Residential ∼ 100, (14) Overpass
∼ 100, (15) Parking Lot ∼ 100, (16) River ∼ 100, (17) Runway ∼ 100,
(18) Sparse Residential ∼ 100, (19) Storage Tanks ∼ 100, (20) Tennis Court
∼ 100, (21) Mobile Home Park ∼ 100. (Semantic category ∼ Number of
images.)

Fig. 8. Examples in the AID data set: (1) Airport ∼ 360, (2) Bare Land ∼

310, (3) Baseball Field ∼ 220, (4) Beach ∼ 400, (5) Bridge ∼ 360, (6) Center
∼ 260, (7) Church ∼ 240, (8) Commercial ∼ 350, (9) Dense Residential
∼ 410, (10) Desert ∼ 300, (11) Farmland ∼ 370, (12) Forest ∼ 250,
(13) Industrial ∼ 390, (14) Meadow ∼ 280, (15) Medium Residential ∼ 290,
(16) Mountain ∼ 340, (17) Park ∼ 350, (18) Parking ∼ 390, (19) Playground
∼ 370, (20) Pond ∼ 420, (21) Port ∼ 380, (22) Railway Station ∼ 260,
(23) Resort ∼ 290, (24) River ∼ 410, (25) School ∼ 300, (26) Sparse
Residential ∼ 300, (27) Square ∼ 330, (28) Stadium ∼ 290, (29) Storage
Tanks ∼ 360, (30) Viaduct ∼ 420. (Semantic category ∼ Number of images.)

stage, the ResNet of DFPN are initialized by the pre-trained
parameters (using ImageNet data set [36]) and the rest parts
of SAGN are initialized by a set of random parameters
which follow a normal distribution with a standard deviation
of 0.1. To train SAGN, we employ the Adam optimizer
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Fig. 9. Examples in the NWPU data set: (1) Airplane ∼ 700, (2) Airport ∼

700, (3) Baseball Diamond ∼ 700, (4) Basketball Court ∼ 700, (5) Beach ∼

700, (6) Bridge ∼ 700, (7) Chaparral ∼ 700, (8) Church ∼ 700, (9) Circular
Farmland ∼ 700, (10) Cloud ∼ 700, (11) Commercial Area ∼ 700, (12) Dense
Residential ∼ 700, (13) Desert ∼ 700, (14) Forest ∼ 700, (15) Freeway ∼

700, (16) Golf Course ∼ 700, (17) Ground Track Field ∼ 700, (18) Harbor
∼ 700, (19) Industrial Area ∼ 700, (20) Intersection ∼ 700, (21) Island
∼ 700, (22) Lake ∼ 700, (23) Meadow ∼ 700, (24) Medium Residential ∼

700, (25) Mobile Home Park ∼ 700, (26) Mountain ∼ 700, (27) Overpass
∼ 700, (28) Palace ∼ 700, (29) Parking lot ∼ 700, (30) Railway ∼ 700,
(31) Railway Station ∼ 700, (32) Rectangular Farmland ∼ 700, (33) River
∼ 700, (34) Roundabout ∼ 700, (35) Runway ∼ 700, (36) Sea Ice ∼ 700,
(37) Ship ∼ 700, (38) Snow Berg ∼ 700, (39) Sparse Residential ∼ 700,
(40) Stadium ∼ 700, (41) Storage Tank ∼ 700, (42) Tennis Court ∼ 700,
(43) Terrace ∼ 700, (44) Thermal Power Station ∼ 700, (45) Wetland ∼

700. (Semantic category ∼ Number of images.)

with 32 images per minibatch and train the network with
1000 epochs. The initial learning rate of network is 4 × 10-5,
and it is divided by 10 after each 200 epochs.

In addition, the data augmentation is employed to enhance
the robustness of the model. First, the short side length
of the HRRS image is resized to 256 while the ratio of
width and height is kept. Second, the resized image is
randomly rotated within the angle range of [−5, +5]. Third,
the rotated image would be randomly horizontally flipped
with a probability of 0.5. Fourth, we randomly crop 256 ×

256 patches from the resized image. Finally, the cropped
image would be normalized by subtracting mean and dividing
standard deviation. Similar to the papers [4], [29], [30], [58],
the ratios of training set of UCM, AID and NWPU data sets
are 80%, 20% and 50%, and 10% and 20%, respectively.

C. Evaluation Metrics

To evaluate the performance of our SAGN, four assessment
criteria are utilized, including the overall accuracy (OA) [29],
average accuracy (AA) [29], Kappa coefficient (Kappa) [29],
and the confusion matrix (CM) [59]. Here, OA is defined as the
number of correctly classified images divided by the number
of total testing images. AA is the average of the precision of all
classes. Kappa is defined to measure the consistency between
the prediction results and ground truth. CM is a detailed table

in which the column indicates the ground truth and the row
denotes the prediction. According to the CM, we can easily
find if the predicted labels of the test data are correct or not.

D. Analysis of SAGN

1) The Influence of Nr to SAGN: As mentioned in
Section III-B, there is a hyper-parameter Nr in SAGN, which
controls the number of semantic regions for HRRS images.
To study its influence on our model, we change its values
and review the performance of SAGNs. In particular, we vary
Nr from 1 to the number of classes in the data set with the
approximate exponential interval. Taking the UCM data set as
an example, we set Nr = 1, 8, 16, 21, respectively. Here, other
experimental settings are the same as the contents mentioned
in Section IV-B. The results of different SAGNs counted on
three data sets are summarized in Table I, and the optimal OA
values are marked in bold. Note that if the highest OA value
corresponding to different Nr values, the minimum Nr value
would be selected as the optimal Nr with the consideration of
computational costs.

From the observation of the results, the performance of our
model is varied within an acceptable range based on different
Nr , and the optimal value of Nr is directly proportional to the
complexity of the data set. In particular, for UCM, when Nr =8,
our model achieves the highest OA value (i.e., 99.76%). Then,
with the increase of Nr , the OA values are kept. Therefore,
the optimal Nr value is equal to 8. For the AID data set,
when Nr =16, SAGNs perform the best in all cases we have
tried thus far. It is worth noting that OA values decrease when
Nr increases from 16 to 30, which indicates that the behavior
of SAGNs does not get better with the larger Nr . For the
NWPU data set, like AID, when Nr =16, SAGNs reach the
highest accuracy in two scenarios, i.e., 91.75% and 93.53%.
Accordingly, the optimal value of semantic region number Nr
is set at 8, 16, and 16 for UCM, AID, and NWPU in the
following experiments unless otherwise specified.

We want to touch on another point, i.e., when the number of
semantic regions Nr equals 1, ASAM and DGFUM would be
invalid. In other words, when Nr increases, the contributions
of the two mentioned modules can be explored. From the
above discussion, we can easily find that all optimal OA
values (for three data sets) are obtained when Nr > 1.
It means the usefulness of ASAM and DGFUM to HRRS
scene classification tasks modules distinctly.

2) Performance of SAGN: To study the performance of
SAGN, we count its OA, AA, and Kappa values on three
data sets. The results are exhibited in Table II. For UCM,
we find that the values of OA and AA are the same, and
Kappa is high (0.9975). This is because only one image is
mispredicted. It demonstrates that SAGN performs well for
the UCM data set. For AID, when the training ratio equals
20%, OA, AA, and Kappa of SAGN equal 95.35%, 94.98%,
and 0.9507, respectively. This is because the numbers of
RS images corresponding to different categories are different.
Furthermore, the distinct numerical gap between OA and AA
indicates that the behavior of our model is not strong for
each category. When the training ratio is equal to 50%, the
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TABLE I
THE OA CORRESPONDING TO DIFFERENT Nr VALUE ON UCM, AID, NWPU DATA SETS (%)

TABLE II
THE EVALUATION FOR UCM, AID, NWPU DATA SETS (%)

Fig. 10. The confusion matrix of SAGN on UCM data set when the train
ratio equals 80% and OA equals 99.76%. The semantic names corresponding
to different numbers can be found in Fig. 7.

gap between assessment criteria is reduced. This implies that
more training data can improve the SAGN’s performance for
different categories. For NWPU, when the training ratio equals
10% and 20%, our model’s OA and AA values are the same.
It confirms that SAGN has stable performance in each class of
the NWPU data set, which is also demonstrated by the high
Kappa.

To study the behavior of SAGN for different semantic
categories, we count its CMs on the UCM, AID, and NWPU
data sets, which are displayed in Figs. 10, 11, and 12,
respectively. For UCM, according to Fig. 10, it is easily find
that only 5% HRRS scenes which belong to “Storage Tanks”
are classified to “Moblie Home Park” incorrectly. For the rest
scenes, SAGN has the stable and accurate performance.

For AID, the CM of SAGN counted by the results
with different proportions of training samples are shown
in Fig. 11. According to the figures, when there are
20% training samples, SAGN reaches the 100% (in OA)

on the following five scenes, including “Beach”, “Forest”,
“Meadow”, “Mountain”, and “Viaduct”. This confirms the
usefulness of our method. However, its OA values on
“Resort” and “Square” are relatively low, which are only
81%. For the “Resort” scene, SAGN groups 10% samples
into “Park” incorrectly because “Resort” and “Park” scenes
have similar semantic distributions, which would mislead
our model. For the “Square” scene, its diverse semantic
contents disturb SAGN so that some samples are divided
into various scenes, such as “Airport”, “Center”, “Industrial”,
etc. When the ratio of training set increases to 50%, SAGN
can achieve 100% (in OA) on more scenes, including
“Beach”, “Farmland”, “Medium Residential”, “Mountain”,
“Parking”, “Sparse Residential”, and “Viaduct”. However, the
performance of SAGN on the “Resort” scene is still not as
good as we expect due to the high semantic similarity between
“Resort” and “Park” scenes.

For NWPU, CM corresponding to different training sets are
counted and shown in Fig. 12. According to Fig. 12a, when
10% data set are utilized to be training set, SAGN achieves
the highest accuracy 100% on “Chaparral” and “Snow Berg”
scenes. Similarly, when the training set ratio is set to be 20%
(see Fig. 12b), SAGN obtains the best accuracy (100%) on
“Chaparral” scene. It benefits from the semantic mining and
short-/long-range context exploration of our model. However,
SAGN is not good at distinguishing the “Palace” scene, where
the OA values are 68% and 71% in two cases, and the most
incorrect predicted samples appear in “Church”. It is because
that the contents within these two scenes are similar in type
and distribution, which prevents our model from dividing them
successfully.

3) Analysis of ASAM: As discussed in Section III, an RS
scene always contains complex contents that include semantics
corresponding to the pre-defined label and various types of
land-covers. Considering them and their context information
simultaneously would be beneficial to feature learning and
classification. To this end, we propose ASAM to discover
the possible semantics hidden in an RS scene. ASAM is a
simple model, which only contains a convolution and channel-
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Fig. 11. The confusion matrix of SAGN on AID data set. The semantic names corresponding to different numbers can be found in Fig. 8. (a) The ratio of
training set equals 20% and OA is equal to 95.21%. (b) The ratio of training set equals 50% and OA is equal to 96.90%.

Fig. 12. The confusion matrix of SAGN on NWPU data set. The semantic names corresponding to different numbers can be found in Fig. 9. (a) The ratio
of training set equals 10% and OA is equal to 91.75%. (b) The ratio of training set equals 20% and OA is equal to 93.53%.

wise position selection operations (see Fig. 5). To study its
usefulness, we do the following experiments.

In the first place, we visualize the result of ASAM to study
if the possible semantics can be explored or not. Specifically,
we randomly select a “Dense Residential” RS scene from the
UCM data set (Fig. 13a). Then, we pass it through a simple
network (i.e., three convolution layers) and ASAM to get the
semantic exploration result, as shown in Fig. 13b. At the same
time, the k-means result based on the features obtained after
5 × 5 convolution is also exhibited for reference. It can be
seen that: (1) ASAM can capture various semantics within
the RS scene. In Fig. 13b, apart from “Dense Residential”
(cyan), many other semantics have been captured, such as

“Freeway” (blue), “Forest” (green), and “Buildings” (red).
(2) The obtained semantic regions are similar to the results
obtained by k-means (Fig. 13c), which confirms the reliability
of our semantic exploration result. Not that, the reason why
we do not embed the k-means algorithm here is our ASAM
should be as simple as possible. In other words, ASAM should
be efficient because it is only a part of SAGN.

In the second place, we study the influence of different
kernels on ASAM. Particularly, we select 1 × 1 and 5 × 5
convolution kernels to complete ASAM, and the results are
exhibited in Fig. 14. From the observation of them, we can
find that the semantic regions of ASAM with 5×5 convolution
(Fig. 14a) are more clear than that of ASAM with 1 × 1
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Fig. 13. Visual results of semantic analysis obtained by ASAM. (a) A
“Dense Residential” RS scene from the UCM data set. (b) The analyzed
result generated by ASAM. (c) The clustering result generated by k-means.

Fig. 14. Visual results of semantic analysis obtained by ASAM with different
convolutional kernels. (a) The kernel size is 1 × 1. (b) The kernel size
is 5 ×5.

(Fig. 14b). Besides the uniform local information, smooth
edges can also be discovered. This is because convolutional
kernels with a size of 5 × 5 are aware of the spatial
neighborhood relationships. Thus, in our ASAM, we set the
convolutional kernel size at 5 × 5.

Last but not least, we study the influence of Nr on the
model consisting of DFPN and ASAM visually. In particular,
we select two RS scenes from the UCM data set randomly,
which are from “River” and “Parking Lot” categories
(Fig. 15a). Then, we set Nr at 8, 16, and 21 to get ASAM
results, respectively, which are shown in Figs. 15b, 15c,
and 15d. According to the results, we can find that when Nr
is varied, the number of possible semantics is increased. Let
us take “River” as an example. When Nr equals 8, “River,”
“Forest,” and other semantic regions can be discovered
(see Fig. 15b). However, when Nr increases, the obtained
regions are fragmented, and their discriminative information
is reduced. Thus, the value of Nr should be tuned carefully.
How to decide an appropriate value of Nr adaptively is one
of our future works.

4) Study of Distance Metric: As mentioned in
Section III-C, since the Mahalanobis distance metric
can be transformed into the learnable version (see Eq. 5), it is
selected to measure the resemblance between graph nodes
in our DGFUM. In this section, we study its usefulness.
In particular, we construct two SAGNs. One is embedded
with the Mahalanobis distance metric, and the other is
embedded with the Euclidean distance metric. They are
recorded SAGN-M and SAGN-E, respectively. Then, two
models are trained and testified by three data sets. Here,
we randomly choose 80%, 50%, and 20% RS images from
UCM, AID, and NWPU as the training data. The OAs of
two SAGNs counted on different data sets are shown in
Table III. After studying the results, SAGN embedded by

Fig. 15. Visual results of semantic analysis obtained by ASAM with
different Nr . (a) The original images (Top: “River”, Bottom: “Parking Lot”).
(b) Analysis result with Nr equals 8. (c) Analysis result with Nr equals 16.
(d) Analysis result with Nr equals 21 (the class number of UCM data set).

TABLE III
OVERALL ACCURACY OF SAGNS WITH THE LEARNABLE MAHALANOBIS

DISTANCE AND THE EUCLIDEAN DISTANCE. ALL RESULTS ARE
COUNTED ON THE UCM, AID, NWPU DATA SETS (%)

TABLE IV
OVERALL ACCURACY OF SAGNS WITH THE PROPOSED AND TRADI-

TIONAL GRAPH NODE UPDATING STRATEGIES ON THE UCM, AID,
NWPU DATA SETS (%)

the learnable Mahalanobis distance achieves the stronger
behavior. It illustrates the superiority of the selected learnable
distance metric.

5) Analysis of the Proposed Graph Node Updating Strategy:
In this section, we study if the proposed graph node
updating strategy is good for our scene classification tasks
or not. Particularly, two SAGNs are constructed with the
proposed and traditional graph node updating strategies to
complete the HRRS scene classification. We use SAGN-P
to SAGN-T to denote them for short. Their results on three
data sets are summarized in Table IV, in which the 80%,
50%, and 20% samples are chosen randomly to train two
SAGNs. From observing the results, we find that SAGN-P
outperforms SAGN-T in all cases. The improvements obtained
by SAGN-P compared to SAGN-T are 2.02%, 1.83%, and
0.9%, respectively. The positive results imply that the proposed
graph node updating strategy is helpful to our tasks.

E. Comparison With Some State-of-the-Art Methods

To study the performance of SAGN, fifteen models (eight
deep-based methods, five their variants, and two graph-based
methods) are employed, including AlexNet+SVM [59],
MSCP1 [58], MSCP+MRA1 [58], DCNN1 [59],
GoogleNet+SVM [59], DCNN2 [59], MSCP2 [58], VGG-
D+SVM [59], MSCP+MRA2 [58], RTN [28], MG-CAP
with Sqrt-E [4], Context aggregation [40], Binary pattern
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TABLE V
THE FEATURE EXTRACTOR OF ALL METHODS IN OUR EXPERIMENT.

(*: CNN-BASED METHOD; †: GCN-BASED METHOD)

encoded CNNs [44], DFGCN [29], and H-GCN [30]. The
feature extractor of these models are different. We summarize
them and corresponding base type in Table V.

1) Results on UCM: The OA values of all models are
summarized in Table VI. It is obvious that our model SAGN
has the best performance. In comparison with the other
models, the improvements of OA values achieved by SAGN
are 5.72% (over AlexNet+SVM), 3.26% (over DCNN1),
3.1% (over GoogleNet+SVM), 2.83% (over DCNN2), 2.76%
(over VGG-D+SVM), 2.6% (over MSCP1), 2.57% (over
MSCP+MRA1), 2.15% (over Binary pattern encoded CNNs),
1.48% (over MSCP2), 1.44% (over MSCP+MRA2), 1.27%
(over Context aggregation), 0.87% (over RTN), 0.83% (over
MG-CAP with Sqrt-E), 1.36% (over DFGCN), and 0.83%
(over H-GCN). The reasons why SAGN has the superior
performance are two folds. First, the introduced dense feature
pyramid network fuses multi-scale features, which could
increase the discrimination of visual representation. Second,
by using the adaptive semantic analysis and dynamic graph
convolution modules, the short-/long-range semantic context
information hidden in HRRS scenes can be exploited. In other
words, the global and local contents of HRRS scenes can be
fully captured.

2) Results on AID: The performance of all models is
summarized in Table VII, and the behavior of our SAGN
is the strongest in all cases. For example, when the
ratio of training set equals 20%, compared with the other
models, the performance enhancements achieved by SAGN
are 12.99% (over AlexNet+SVM), 11.15% (over DCNN1),
8.75% (over GoogleNet+SVM), 7.19% (over DCNN2),
6.94% (over MSCP1), 6.54% (over VGG-D+SVM), 4.99%
(over MSCP+MRA1), 3.99% (over MSCP2), 3.21% (over
MSCP+MRA2), 1.96% (over MG-CAP with Sqrt-E), 1.45%
(over Binary parttern encoded CNNs), 5.20% (over DFGCN),
and 2.25% (over H-GCN). When the ratio of training set
equals 50%, the performance of SAGN is still the best.

3) Results on NWPU: We list the OA values of compared
methods and SAGN in Table VIII, which contains two columns
corresponding to the training ratio with 10% and 20%. When
the training set ratio equals 10%, SAGN achieves the highest
performance. In comparison with the second model MG-

TABLE VI
OVERALL ACCURACY AND STANDARD DEVIATIONS OF THE PROPOSED

SAGN AND THE COMPARED METHODS ON THE UCM DATA SET (%).
THE ENTRY WITH THE HIGHEST VALUE IS SHOWN IN BOLD. (*:

CNN-BASED METHOD; †: GCN-BASED METHOD)

TABLE VII
OVERALL ACCURACY AND STANDARD DEVIATIONS OF THE PROPOSED

SAGN AND THE COMPARED METHODS ON THE AID DATA SET (%).
THE ENTRY WITH THE HIGHEST VALUE IS SHOWN IN BOLD. (*:

CNN-BASED METHOD; †: GCN-BASED METHOD)

CAP with Sqrt-E, the accuracy improvement achieves 0.99%.
When the training set ratio is equal to 20%, the accuracy of
SAGN obviously exceeds the listed methods (except H-GCN).
H-GCN achieve the first accuracy (93.62%), which also
demonstrates the superiority of GCN. By observing Table VIII,
we can find that there is a distinct performance gap between
two SAGNs (up to 1.76%). It means more diverse training
samples the better performance, especially to the complex data
set.

There are two GCN-based models in the compared methods,
i.e., DFGCN [29] and H-GCN [30]. To further study
the performance of our SAGN in comparison with them,
we choose the other three assessment criteria, including preci-
sion, sensitivity, and specificity [60]. Also, the t-distributed
stochastic neighbor embedding (t-SNE) algorithm [61] is
selected to investigate the structure of features obtained by
three GCN-based models. The detailed results and related
discussion can be found in the supplementary material.
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TABLE VIII
OVERALL ACCURACY AND STANDARD DEVIATIONS OF THE PROPOSED

SAGN AND THE COMPARED METHODS ON THE NWPU DATA SET (%).
THE ENTRY WITH THE HIGHEST VALUE IS SHOWN IN BOLD. (*:

CNN-BASED METHOD; †: GCN-BASED METHOD)

TABLE IX
THE OA AND TC (MILLISECOND) OF THE PROPOSED SAGN AND THE

COMPARED METHODS ON THE UCM AND AID DATA SET

F. Time Consumption

In this section, we study the efficiency of our model. To this
end, we record its inference time for a single HRRS image.
Also, the inference time costs of two GCN-based methods,
DFGCN [29] and H-GCN [30], are counted for reference. The
results are listed in Table IX, which consists of OA and time
costs (TC). Here, the higher OA is (↑) and the fewer TC is (↓),
the better performance. As shown in Table IX, SAGN achieves
the highest accuracy with the lowest time consumption, which
shows the superiorities of our model again.

V. CONCLUSION

In this paper, an end-to-end HRRS image scene clas-
sification network (SAGN) has been proposed with the
consideration of complex contents within HRRS images.
Instead of only taking the single semantic label into account,
SAGN exploits various semantics from HRRS scenes and
mines their unstructured relations to decide the final semantic
categories. For an HRRS scene, it is mapped into feature
maps by a dense feature pyramid network first. This step
helps capture the multi-scale information from the HRRS
scene. Second, an adaptive semantic analysis module has been
conducted to analyze the HRRS scene into different regions
using multi-scale feature maps. These regions correspond
to diverse semantics so that the contents that are not
described by the manual annotation can be explored. Third,
to study the relationships between different semantic regions,
a learnable adjacency matrix construction method has been
developed. Then, under the GCN paradigm, a dynamic

graph feature update module has been established to learn
the pixel-level features using the regional adjacency matrix.
Therefore, the representation of semantic regions and the
pixels can be updated simultaneously, which helps improve
the discrimination of the learned features. Finally, the category
of the HRRS scene is decided by all of the semantic regions.
The positive experimental results on three public data sets (i.e.,
NWPU, AID, and UCM) have demonstrated the efficacy of
SAGN on HRRS image scene classification tasks.
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