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Federated Learning (FL) learns a global model in a distributional manner, which does not require local clients

to share private data. Such merit has drawn lots of attention in the interaction scenarios, where Federated

Reinforcement Learning (FRL) emerges as a cross-field research direction focusing on the robust training of

agents. Different from FL, the heterogeneity problem in FRL is more challenging because the data depends

on the policy of agents and the environment dynamics. FRL learns to interact under the non-stationary

environment feedback, while the typical FL methods aim at handling the constant data heterogeneity. In

this article, we are among the first attempts to analyze the heterogeneity problem in FRL and propose

an off-policy FRL framework. Specifically, a student–teacher–student model learning and fusion method,

termed as Server-Client Collaborative Distillation (SCCD), is introduced. Unlike the traditional FL, we distill

all local models on the server side for model fusion. To reduce the variance of the training, a local distillation

is also conducted every time the agent receives the global model. Experimentally, we compare SCCD with

a range of straightforward combinations between FL methods and RL. The results demonstrate that SCCD

has a superior performance in four classical continuous control tasks with non-IID environments.
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1 INTRODUCTION

Deep Reinforcement Learning (DRL) has achieved great success in video games and robotic
control recently. However, DRL always requires lots of computation resources to master one
specific task in the simulator, and there exists a huge gap between simulated environments
and practical environments. Specifically, in many real-world scenarios, data privacy and the
communication budget are usually the main concerns, which limit the application domain of
DRL. For instance, in autonomous driving, when we leverage multi-agent techniques to train the
vehicle, the agents need to share the observations with each other, which is usually disallowed
due to the intrinsic privacy limitation. Fortunately, Federated Learning (FL) techniques offer
users the ability to collaboratively train a machine learning model without frequently sending
local models or gradients to a central server, thus preserving the privacy of their data. This has
led to the development of Federated Reinforcement Learning (FRL). FL has been extensively
studied and applied in various domains, including recommendation systems [45–47] and trans-
portation [48], among others. Furthermore, the application of FL in DRL for decision-making and
industrial robotic control [36] shows great promise and is an appealing direction to explore.

Recently, numerous techniques have been proposed in FL to speed up distributed training and
tackle the issue of data heterogeneity. For example, Federated Averaging (FedAvg) [5] intends
to increase the number of local updates to reduce the computational cost. However, it usually
achieves poor performance when the local data distribution is heterogeneous. References [14, 18]
have explored the possibility of using reinforcement learning (RL) to optimize FL frameworks
and facilitate edge computing. Meanwhile, others have proposed the addition of regularization to
the objective function. For example, FedProx [23] deals with this issue with an l2-norm regularizer,
which minimizes the distance between the local and the global models in the local updates. How-
ever, FedProx has a lower convergence rate compared to FedAvg. Another approach is MOON [22],
which utilizes the similarity model representations to correct the training on the local database and
get a good performance on image datasets. FedDF [27] and FedMD [21] perform the knowledge
distillation to exchange knowledge between server and client-side through the public dataset and
demonstrate the model distillation is superior to the naive model averaging in terms of highly het-
erogeneous local data. Nevertheless, the above methods are not suitable for RL due to two reasons:
(1) there is no public dataset for RL agents to make use of for distillation; and (2) their methods
both utilize the average logits that cannot be exploited in the task with continuous action space.

On the other side, placing RL into the FL scenarios raises the intrinsic challenge from the non-
stationary environments. In the conventional simulation of RL, we always assume the training
environment of the RL agent is identical to the testing environment, and there exists a unique
state transition function across different environments. However, this assumption is not always
satisfied in real-world FL applications. For example, the local agents in autonomous driving may
face different weather conditions and different agents may have heterogeneous equipment. This
kind of heterogeneity in FRL would be different from the objective heterogeneity in supervised FL.
Hence, a more efficient and robust model fusion scheme is required to handle the non-stationary
problem in FRL. The formal analysis would be illustrated in Section 3. Figure 1 shows the perfor-
mance of FedAvg with three clients in identical local environmentsCartPole and the non-identical
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Fig. 1. A toy example to illustrate the affection of the environment heterogeneity. (a) shows the performance

of FedAvg in three identical environments. The black dashed line indicates the average reward of the global

model performed in each environment. (b) shows the distribution of the sample data from each agent’s

local replay buffer after processing by t-SNE. The experiment of (c) and (d) was conducted among three

environments with different physical coefficients (e.g., the mass and length of the pole, the mass of the cart,

and gravity). We can see that the learning curve and data distribution of the left column are more consistent.

While there would be a distribution shift of the data in the right column because the policy of each agent is

inconsistent.

ones. Apparently, the traditional model averaging has a performance degradation in terms of the
heterogeneous environment.

Although several FRL works [7, 28, 43, 49] have considered training the agents federally without
sharing the data, most of them study the data heterogeneity problem caused by the local agent’s
policy and rarely consider the different dynamics (i.e., local environments could have varied transi-
tion functions) of the local environments, which could bring the objective heterogeneity [31] issue
into the training.

The early explorations in FL cannot always perform well in the RL setting. As long as the value
network is trained on the local data, its estimation on different environments would be unreliable
and thus leading to poor performance of the actor network. Naively constraint the distribution
between the local model and global model, it is hard for the RL-based algorithm to converge in the
early stage of training, resulting in a high communication cost issue.

In this article, we proposed an FRL approach that can be aligned with traditional FL frameworks
and study how to incorporate the FL techniques to deal with the environmental heterogeneity
problem. Specifically, our goal is to train the agents locally with the aid of the server so that the
agents perform well in similar environments but with different dynamics.

Inspired by the work in [30] and [27], we utilize the knowledge distillation for the model fu-
sion, but unlike FedDF and FedMD, we make use of the representation generated from a Gaussian
distribution for distillation [30] instead of the public dataset.

Besides, we conduct distillation in both the server and client side to reduce the problem of
negative transfer [35] and remain feature extractor on the local side to obtain personalization. The
role of the transmitted model between server and client would switch from both sides in order
to deal with the dynamically changing heterogeneity. Specifically, we find such kind of iterative
model distillation could be more efficient than the traditional model aggregation and hence the
agents could learn better. Our contribution can be summarized as follows:

— We propose an FL framework for the off-policy DRL algorithm TD3 [13] named FedTD3. It
is proved that it is equivalent to the centralized TD3 under some specific conditions. With
this framework, the methods in traditional FL methods can be easily transferred to the FRL
setting. Besides, this framework could be easily transferred to the other off-policy or actor-
critic-based RL algorithm.

— We propose a model fusion method called Server-Client Collaborative Distillation

(SCCD). This method intends to solve the environment heterogeneity by distilling
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knowledge from the local critic’s output layer so that it could have a lower communication
workload while learning more local information. Besides, the critic network in each
environment would have a specific feature extractor to better identify the distribution of
the local data.

— We generate the non-identical environments for the local agents and explore how the
policies of the local agents and the varied transition functions affect the federated training.
The results show that SCCD could perform well even in some highly heterogeneous
environments.

2 RELATED WORK

2.1 Reinforcement Learning

RL is one of the basic machine learning paradigms. Generally, RL could be divided into off-policy
RL and on-policy RL. The mainstream off-policy RL is developed based on the representative al-
gorithm DQN [32], which was proposed in 2015 and achieved the human player level in the Ar-
cade Learning Environment. After that, DDPG [26] and Twined Delayed DDPG [12] have been
proposed to tackle the continuous control problem. The on-policy RL aims to update the agent’s
policy based on the real-time data collected from the environment and maximize its accumulated
reward. REINFORCE [41] is a kind of on-policy RL based on the policy gradient methods. With
this foundation, Konda et al. [19] proposed the famous Actor-Critic RL framework, which utilizes
the neural network to estimate the value function. In this work, we mainly focus on the off-policy
RL and choose TD3 as our FRL base algorithm because of its higher sampling efficiency.

2.2 Federated Learning

FL is a learning framework that requires multiple devices to perform training and simultaneously
protects the privacy of the device. FedAvg [5] has been a practical FL approach. In FedAvg, the
server sends the global model to the clients and then performs stochastic gradient descent to
update the local models. After that, the local models are sent back to the server for aggregation.
However, FedAvg is prone to falling into the local optima as the local optimums are far away
from each other. FedProx [23] tries to deal with this issue by introducing an l2 norm regularizer
which limits the difference between the local model and the global model in the local updates.
Karimireddy et al. [17] proposed that Scaffold reduces the variance caused by the local updates
and has a higher convergence rate than the former methods. MOON [22] utilizes the model repre-
sentations to correct the training on the local database and achieve a good performance on image
datasets. Luo et al. [30] proposed a post-calibration strategy CCVR to improve the classification
performance by virtual representations. Other than performing the model aggregation, Lin et
al. [27] presented the ensemble distillation (FedDF) to distill the knowledge from local models
and increase the flexibility of the model’s structure.

2.3 Knowledge Transfer MARL

Multi-Agent Reinforcement Learning (MARL) aims to organize multiple agents within a
partially observable environment and to optimize the total reward. The parameters of each
agent should be reserved and the goal of the agents maintains the same. Note that, we especially
distinguish MARL from Multi-Task Reinforcement Learning (MTRL), which could be either
multi-agent or single agent tries to learn a unique policy that could be adapted to different tasks.
There have been some works that leverage knowledge distillation to transfer the knowledge
between agents to accelerate the learning procedure of the agents. In [20], the authors introduced
a student–student framework in which two agents explore in the same environment and share
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the knowledge with each other by policy distillation [37]. Another objective is to tackle the
non-stationary environment, in which the environment dynamics are changing over time [1, 8, 29].
However, the works mentioned above do not consider protecting private data but just directly
shares the observation of each agent. The following section would introduce the works that
incorporate privacy protection into these two learning paradigms and relate them to FRL.

2.4 Federated Reinforcement Learning

In this section, we will introduce FRL techniques that allow agents to learn collectively with-
out sharing their collected data, ensuring privacy. In [36], FRL techniques are categorized as
Horizontal Federated Reinforcement Learning (HFRL) and Vertical Federated Reinforce-

ment Learning (VFRL) to maintain consistency with FL. In HFRL, the local environments of the
agents are independent, which means that the behavior of the agent would not affect the other
agents [4, 7, 33, 43]. Under this setting, Sherine et al. [4, 33] proposed to combine FL with RL from
the perspective of game personalizing. The authors defined the personalized metric as the inter-
action between the human player and the agent, that is, the different players could have different
skill levels. To protect the players’ privacy and make a better gaming experience, they built up
global models for each player group. Fan et al. [10] proposed the FedPG-BR framework by sending
the local gradients to the server and introduced a filtering method to tackle the Byzantine General
Problem. In [43], the authors have presented a model-based FRL framework based on TRPO [38]
to learn the environment model (i.e., the transition function) in a decentralized manner. In their
framework, each agent is trained according to the environment model from the server. Recently,
Jin et al. [16] proposed two algorithms, QAvg and PAvg, which are federated extensions of Q-
Learning and policy gradient, respectively. They exhaustively analyzed the convergence of these
algorithms.

In VFRL, the agents explore in the same environment but the observation space is limited, they
need to work with each other to complete the task. MARL would be more consistent with this
setting. Most other works [34, 40, 42] are related to this field. However, they intend to improve the
collaboration of each agent and did not consider privacy protection. In the work of Zhou et al. [49],
they proposed an FRL framework integrated with DQN and exploit the Gaussian differentials to
encrypt the outputs of the value network. Since there is a central Q network to distill the knowledge
of local models and the observation space of agents is limited, it can be considered as the classic
VFRL.

In addition to the HFRL and VFRL taxonomies, some research in FRL overlaps with transfer
learning, MTRL, and meta reinforcement learning. For example, Liang et al. [25] present an online
federated RL process that transfers both the local model and scaled local data to the server, tai-
lored for car steering control. Anwar et al. [2] analyze adversarial attacks in multi-task RL where
local environments have different action and observation spaces. Liu et al. [28] concurrently train
agents to obtain a universe meta-model and enhance lifelong learning adaptability. FEMRL [43]
aims to learn environment dynamic models federally and construct a federated model-based RL
framework, but the real-world domain’s dynamic model can be highly complicated and difficult
to learn. Table 1 summarizes and compares these FL and FRL research works. Note that metric
personalization considers whether the client model preserves partial original model information
rather than being directly updated from the server model. Figure 2 depicts the relationship between
different areas.

In our work, we adopted the off-policy model-free FRL framework and tried to train the Q
network [32] from the previous experiences stored in the replay buffer, which can be less affected
by the data heterogeneity caused by the policies of different agents. Roughly speaking, the
methods proposed in this article can be categorized as the HFRL, but different from the work
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Table 1. A Summary of Related Works in FL and FRL

Methods Category Learning Type Transmission Personalization Non-stationary
Environment

FedAvg[5] H \ full network × \
FedProx[23] H \ full network × \
FedMD[21] H \ average logits × \
FedDF[27] H \ average logits × \

Dec-POMDP[34] V off-policy original experience × ×
FCRL[49] V off-policy model outputs / full network × ×
LFRL[28] H off-policy score matrix / full network × �
FTRL[25] H off-policy scaled experience / full network × �
MT-FedRL[2] H on-policy full network � ×
FRD[7] H off/on-policy proxy experience × ×
FEMRL[43] H on-policy fictitious experience / full network × ×
SCCD (ours) H off-policy statistic of representation / partial network � �
We compare our work with the others from the perspective of category, learning type, transmission, and whether

consider the local personalization and non-stationary environment with different dynamics. The first subtable contains

classic FL methods, while the second subtable lists recent works of FRL. V and H denote the approach categorized as

vertical FRL or horizontal FRL.

Fig. 2. The relationship between FL, FRL, MARL, and MTRL. Our work locates in their interaction zone.

mentioned above. We introduce a slight perturbation to the local environment to accord with the
non-stationary real-world environments. In our setting, the distribution of the data collected by
the agent would be influenced by two factors: the agent’s policy and the transition function. The
details would be discussed in the following sections.

3 PRELIMINARY

3.1 Federated Learning

FL aims to train a global model without sharing the data of local devices. The major challenges
are the data heterogeneity and the communication cost between servers and clients. Formally, the
objective function of FL is defined as

L = min
w

F (w ) �
K∑

k=1

pkFk (w ), (1)

where Fk is the loss function over the local data in the kth client, K is the client number.
pk = nk/

∑K
k=1 nk , where nk is the sample batch size of client k . By increasing the local update

iterations, FedAvg improves communication efficiency and simultaneously encourages conver-
gence. FedProx [23] introduces a normalization for the loss function to calibrate the local training.
In [44], Wang et al. proposed FedNova to normalize local model updates when averaging. Li et
al. [22] proposed MOON which combines model-contrastive learning with the training procedure
and outperforms the aforementioned FL algorithms.
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3.2 Policy Distillation

Policy distillation is proposed to solve the knowledge transfer and model compression problems in
RL. It is also used in multi-task learning where expert policies can be combined into a single multi-
task policy. Following the convention [37], DT = {si }Ni=0 is the set of observations generated by
the teacher model, whereN is the number of the samples, the objective function can be defined as

J = Es∼DT [D (Qw (·|s ),Qw̃ (·|s ))], (2)

where D (·|·) is a proper distance measure of the output between the student Q-network Qw (·|s )
and the teacher Q-network Qw̃ (·|s ), which can be the mean square error, KL divergence, or
log-likelihood. In [20], the authors introduced a dual policy distillation framework for two
independent agents explored in the same environment. The agents can perceive different aspects
of the environment such that they can complement each other by sharing knowledge, which
reveals the possibility of the knowledge transfer among multiple agents and acceleration of the
learning process by policy distillation.

3.3 Non-IID Environments

The environments vary under different spatial and temporal characteristics. Therefore, the data
collected in each environment is from a different distribution. Suppose x = (st ,a, rt , st+1) is the col-
lected state action tuple, where rt is the instant reward and st+1 is the next state. Formally we have

P (x ) = P (st ,at , rt , st+1)

= P (st ) Pϕ (at |st )︸����︷︷����︸
agent policy

Pθ (st+1 |st ,at )︸�����������︷︷�����������︸
environment dynamic

. (3)

From this equation, we can see the data collected from exploration is mainly affected by two
factors, namely, the environment dynamic and the current policy of the agent. The local agents
continuously learn from the replay buffer which contains the heterogeneous data collected by dif-
ferent policies, and thus the effect of the second term in Equation (3) can be minimized by off-policy
RL. Hence, we mainly focus on how to handle the heterogeneous environment dynamic in FRL.

4 FEDERATED OFF-POLICY REINFORCEMENT LEARNING

4.1 Problem Statement

Similar to FL, the objective of FRL is to find the optimal value estimation function Qw∗ (st ,at )
over the state action pairs that draw from the local replay buffer of the agents. The local function
Qw∗ (st ,at ) could be defined by the optimal Bellman equation:

Qw∗ (st ,at ) � ESt+1∼p ( · |st ,at )[rt + γ max
a∈A

Qw∗ (St+1,a) |St = st ,At = at ], (4)

where rt is the instant reward the agent received after taking action at at the current state st . Ran-
dom variable St+1 drawn from the state transition probability distribution function p (st+1 |st ,at ).
The local objective function Fk (w ) in (1) is formulated as follows:

Fk (w ) =
1

nk

∑
j

l (w ;xk j ),

l (w ;xk j ) =
(
Qw (sk j

t ,a
k j
t ) − (rk j

t + γ max
a

Qw (sk j
t+1,a))

)2
,

where the superscript kj denotes the jth sample collected from the kth agent. Supposing the
amount of the exploration data nk of each agent is all the same, the term pk =

1
K

can be eliminated.
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ALGORITHM 1: FedTD3 (server-side)

Input: number of clients K , total communication round R
Output: Global value model Qw̄ and policy πϕ̄

1 Server Update:

2 Initialize Q-network parameters w0, actor network parameters ϕ0

3 for r = 1:R do

4 for i = 1:K do

5 send global model w0, ϕ0 to agent Ai

6 wt
i ,ϕ

t
i ← ClientUpdate(wt ,ϕt )

7 end

8 w̄t+1, ϕ̄t+1 = aggregate(wt
i ,ϕ

t
i ), i = 1, . . . ,K

9 end

Therefore, the final objective in (1) can be rewritten as

L = E(st ,st+1 )∼D+[Qw (st ,at ) − (rt + γ max
a

Qw (st+1,a))]2, (5)

where D+ = D1 ∪ · · · ∪ DK , the union of all local agent data.

4.2 Federated Twin Delayed DDPG

In this section, we provide an instance FedTD3, an FL counterpart of TD3 which has been a state-of-
the-art off-policy RL algorithm [12] by integrating the actor-critic diagram in the traditional DQN.
TD3 is the benchmark off-policy RL algorithm to solve the continuous control task and compare
to traditional DDPG, it is more stable and overcomes the value function overestimation issue.

In the framework of FedTD3, there is an individual state transition probability function
Pθk

(st+1 |st ,at ) for each of the local environments. Besides, there are two types of communica-
tion in FedTD3, the transmission of the policy net and that of the Q-value net, between the server
and the local agents. To maintain consistency with the single-agent TD3 framework, we have three
processes to update the models: Firstly, the Q-value net does the local updates N times based on
the current policy that is synchronized from the server and then sends it back to the server and
waits for aggregation. Every M times updates of the Q-value network, conduct the delayed policy
updates. Once the number of policy updates is achieved L, send the policy model to the server for
aggregation. Both the target Q-value network and the target policy network are updated based on
the model received from the server. Given the total exploration step T in each local update, the
communication rounds are calculated by R = T /N + T /(M × L). Algorithms 1 and 2 present the
detailed procedure of server update and client update in FedTD3. Each agent waits for the server
for the new model after sending the local one in a synchronous manner. The aддreдate function in
Algorithm 1 adopts the naive weighted aggregation method for simplicity, and the loss functions
could be constrained by different kinds of regular terms in order to deal with the heterogeneity,
namely:

L(wt
i ) = LTD (wt

i ) + βlreg (wt
i , w̄

t ),

J (ϕt
i ) = −E[Qw t

i
(s,πϕt

i
(s ))] + βlreg (ϕt

i , ϕ̄
t ).

(6)

The first term LTD (wt
i ) is the TD loss function in Equation (5) and lreg constrains the distance

between the server model and the client models during the local training. In the baseline methods,
the l2 norm would be adopted in FedProx [23] and the model contrastive loss lcon is adopted in
MOON [22] in the experiments. These terms can improve local training in a slightly heterogeneous
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ALGORITHM 2: FedTD3 (client-side)

Input: number of local exploration T , communication frequency of value model N , communication

frequency of policy model L, delayed policy updates frequency M
Output: Local model Qw t

i

and πϕt

i

1 Client Update:

2 Synchronized wt ,ϕt from server

3 Set count = 0

4 for t = 1:T do

5 Explore in the local environment to get (st ,at , rt , st+1), save to replay buffer. Sample mini-batch

data, compute gradient дt
i with respect to wt

i , update Qw t

i

.

6 if t mod N then

7 send wt
i to server.

8 w̄t ← ServerUpdate(wt
i )

9 end

10 if t mod M then

11 ϕt
i ← DelayedPolicyUpdate

12 count ← count + 1

13 if count mod L then

14 agent send ϕt
i to server.

15 ϕ̄t ← ServerUpdate(ϕt
i )

16 end

17 agent updates target net ϕt
i based on local ϕi .

18 agent updates target net wt
i based on local wi .

19 end

20 end

environment, however, as the heterogeneity increases, the performance of these methods cannot
be guaranteed. Moreover, empirically they are prone to slowing down the convergence rate in the
RL setting. The results of the baselines will be shown in Section 5.

4.3 Server-Side Distillation

Previous work [27] proposed knowledge distillation performed on the server side for the model
fusion. However, they utilized the pre-trained GAN or unlabeled data for distillation, which is im-
practical in the RL setting as it requires the agent to interact with the environment to gather the
data. In this section, we introduce our server-side distillation (SSD), which enables the local
critic models to transfer their knowledge to the central student model, thus reducing the degra-
dation caused by the previous model aggregation. On the other hand, we generate fictitious data
from the statistic of the representations in the local replay buffer, and the global model can directly
learn from these data, which allows the model to learn more information about the local critic and
in the meantime protect the privacy. Figure 3 depicts the procedure of client-side distillation

(CSD) and the details of the SSD.
Here, since the critic learned from all the environments is more reliable with the guidance of

the critic, the actor can be trained more effectively. Therefore, we only focus on the value network
distillation in this article. Inspired by the concept in multi-task RL policy distillation [37], the Q
network is constructed by a feature extractor hw (·) and a predictor fw (·), which is both imple-
mented by the fully connected multi-layer perceptron (MLP). The extractor is to find a better
representation of the input data. For the predictor, we send it to the server for model distillation
and send it back to the agents. The choice of MLPs as function approximators is quite common
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Fig. 3. The diagram of SCCD. The global server collects the actor parameters and the predictor parameters

to do the model fusion. The representations of the local data are acquired on the local side, and the statistics

are sent to the server for generating pseudo data. The local predictor would be fused as a single model based

on the data generated by local statistics and sent back to the client. Next step on the client side, the local

value models are updated via distillation from the global predictor.

in RL [12, 39] due to their sample efficiency and ease of training. And also it is worth noting that
for image data, a sophisticated CNN can also be used as the feature extractor. In order to obtain
as much global information as possible, all the agents share the parameters of the predictor of
the value network fw (·). The SSD would usually conduct a few epochs, before the distillation we
average the model parameters of the predictor to get a good initial parameter base. During each
communication round, the local agent would send either the policy network or the partial value
network to the server for model fusion.

For the data we use for the model distillation, their corresponding distribution from each local
environment follows its own transition function pθk

(st+1 |st ,at ). After extracting the representa-
tion of the observations, we calculate the statistic of the representation and send it back to the
server for generating the pseudo data. To minimize the effect of the Gaussian distribution assump-
tion, in each round, the local agents only calculate the statistic of a mini-batch of data, and the
data are randomly sampled from the local replay buffer. Before conducting the model distillation,
the server collects all the local model and do the aggregation. After obtaining the aggregated pa-
rameters, the model would do the distillation based on the parameters, in order to combine the
knowledge of each critic in different environments.

Here, we term the partial value networks of the local agents as the teacher networks and the
value network on the server side as the student network. We adopt the mean-square-error loss
function l (w ;b) to train the server student network. Assume zi is the representations of the ith
agent’s input x , it can be obtained by zi = hwi

(x ). After getting zi , the server utilizes its statistic
to generate data as the input of the teacher network, such that we can get the distillation dataset
D = {(z̃i ,qi )}Ki=0, where each sample contains the pseudo representation z̃i and the output
Q value qi as the label. The networks we use for the critic and actor are both MLP, while the
number of layers of the critic network and actor network is different. One of the advantages of
sending partial parameters of the critic network is to reduce the workload that is transferred
to the server. In the RL setting, an MLP with few layers is sufficient to learn from the state
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and action pair. Theoretically, as long as the capacity of the predictor of the critic network is
enough to learn from the representations, there is no need to send the whole Q network to the
server [15].

4.4 Client-Side Distillation

In FedDF [27], the authors claim that only performing SSD is sufficient to address the heterogeneity
problems. Nevertheless, this cannot be guaranteed in a multi-task learning framework because of
the issue of negative transfer [35]. Therefore, extra fine-tuning on the client side is necessary for
local personalizing. In our method, from the SSD, the global model can obtain knowledge from
each local environment. After that, the server sends back the model to update the local model.
Traditionally, the local model is directly updated from the global model, however in the early
stage of training, the distilled global model is not completely reliable, and the update might delay
the evolution of the critic network. Therefore in our method, two versions of the predictors would
send back to the local clients: an aggregation one and a distillation one.

The local predictor would be updated based on the aggregated predictor and then distill the
knowledge from the distillation predictor. To stabilize the local training process, the distillation
loss function consists of two parts: the first part is the TD loss of the local replay buffer; and the
second part is the distillation loss function between the local Q network and the distilled global
predictor:

L (wi , w̄ ) = αLTD (wi ) + (1 − α )J (wi , w̃ ), (7)

where wi , w̄ are the parameters of the local critic network and server critic network. Loss func-
tion J can be referred to Equation (2). Note that the hyper-parameter α can be varied in different
experiments. Algorithm 3 describes the procedure of SCCD, which is based on the FedTD3 frame-
work in Algorithms 1 and 2 and only the model fusion and the transmission are changed. Besides,
there is another way to conduct the CSD in Equation (7), which is regarding the second term as
the regularizer. This leads to no extra local update when the client side receives the model from
the server if we choose the second type of distillation.

4.5 Theoretical Analysis

In this section, we are going to analyze the convergence of our proposed method and compare it
with FedAvg by exploring the upper bound. We begin with two standard assumptions:

Assumption 1. There exists an optimal value functionQw∗ (s,a) to estimate the value of the state-

action pair from environments with heterogeneous transition dynamic.

Assumption 2. The local TD loss function Fk and server-side distillation loss L are L-smooth and

μ-strongly convex.

We can define the degree of heterogeneity Γ as follows:

Γ =
�
�
�
�
�
�

Fw∗ −
∑

k

pkFw∗n

�
�
�
�
�
�

(8)

to describe the Non-IID characteristics of the environments, where Fw∗ is the global minimum of
the TD loss function over all the environments and Fw∗n is the local minimum of the nth environ-
ment. When Γ falls within an acceptable range, i.e., 0 < Γ < ϵ , Assumption 1 holds. It is worth
noting that this index is commonly used to describe the Non-IID characteristics of environments
[43]. Regarding Assumption 2, we follow the general spirit of [24], and consider both the TD loss
and distillation loss functions as the mean square error, which satisfies the practical hypothesis on
the loss space and is appropriate in designing SCCD. We now need to verify two key aspects:
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ALGORITHM 3: SCCD

Input: number of global distillation epochs N , local distillation iteration M , communication round R,

number of agents K
Output: parameters of the global actor ϕ̄ and predictor w̄

1 Initialize w0, ϕ0

2 for r = 1:R do

3 for i = 1:K do

4 send global model w0, ϕ0 to agent Ai

5 wt
i ,ϕ

t
i , μi ,σi ← ClientUpdate(wt ,ϕt )

6 end

7 w̄t+1,ϕt+1 = aggregate(wt
i ,ϕ

t
i ), i = 1, . . . ,K

8 generate data D based on μi and σi

9 w̄t+1 ← SSD(D, w̄t+1)

10 clients conduct CSD based on w̄t+1.

11 agents explore the local environments.

12 sending local predictor wi or actor ϕi to server for model fusion.

13 end

14 SSD:

15 for each epoch from 1 to N do

16 for each batch b ∈ D do

17 L(w̄ ;b) = 1
|b |
∑

z̃∈b �
�fw̄ (z̃) − qi )�

�

2
2

18 w̄ ← w̄ − η∇L(w̄ ;b)

19 end

20 end

21 CSD:

22 for j = 1:M do

23 Sample a batch of data b from the local replay buffer

24 L (wi , w̄ ;b) = αLTD (wi ;b) + (1 − α )J (wi , w̃ ;b)

25 wi ← wi − η∇L (wi , w̄ ;b)

26 end

— If Qw∗ exists, the local Q function Qwn
could finally converges to Qw∗ .

— The global policy πдlob can be improved monotonically.

Suppose wn is the local parameters and w∗ is the optimal global parameters. According to the
Bellman Optimality Equation [3], in each round of local update, the local value function should be
closer to the optimal value function, i.e.,

�
�
�
wt+E

n −w∗��
�
≤ �

�
�
wt

n −w∗
�
�
�
. (9)

In our method, both the global predictor and the actor network are the aggregation of the local
models:

f t =
1

N

∑
n

f t
n ,

πдlob =
1

N

∑
n

π t
n ,

(10)

where f t is the predictor on the server side and πдlob is the estimated global policy based on
each local agent policy πn . Following the proof in [24], the convergence of the actor model can be
guaranteed by the following theorem.
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Theorem 4.1. If Assumtions 1 and 2 hold and the learning rate η ≤ 1
4L

, we have the following

convergence analysis for FedAvg:

E �
�w̄t+1 −w∗��2 ≤ (1 − ημ )E �

�w̄t −w∗��2
+ η2B. (11)

Based on this theorem in [24], we compare the bound of FedAvg with SSD in the following.
Suppose w̃t is the distillation result of w̄t . If Assumption 2 holds, the distillation loss function is
strongly convex, and the global minimum of the distillation lossL can be obtained by the sufficient

update of SGD. Thus, w̃t can be obtained by w̃t = w̄t −
∑T

i=1 αiд
(i ) , where T is the total steps

for SGD optimization, д(i ) is the gradient over all the fictitious data at iteration step i , and αi is

the learning rate. When i = 1, д(1) = ∇L (w̄t ;Dt ), suppose the learning rate is fixed, we have

‖∑T
i=1 αд

(i ) ‖ ≤ ∑T
i=1 α

2‖д(i ) ‖ ≤ α2T ‖д(1) ‖. Then, by applying the Triangle inequality, we obtain
the following upper bound for SSD:

E �
�w̃t −w∗��2

= E �
�w̃t − w̄t + w̄t −w∗��2

≤ E �
�w̄t −w∗��2

+ E ‖w̃t − w̄t ‖2

≤ E �
�w̄t −w∗��2

+ E

�
�
�
�
�
�

T∑
i=1

αiд
(i )

�
�
�
�
�
�

2

≤ E �
�w̄t −w∗��2︸����������︷︷����������︸

B

+α2TE ‖∇L (w̄t ;Dt )‖2

(12)

Remark. The inequality above introduces B as the bound of FedAvg, the details can be found in
the lemma 1 of [24]. The second term in the inequality is influenced by the distillation training
steps T and the gradient of w̄t . This suggests that the upper bound of our algorithm would be
affected by the shape of the distillation loss function and the distribution of the fictitious data.
Ideally, as the value function of the agent progresses, the norm of the gradient in the second term
could gradually decrease. This implies that with sufficient optimization to approach the optimum
w∗ on the server side, our method with SSD can converge and be bounded similarly to FedAvg.

5 EXPERIMENTS

In this section, we first introduce the heterogeneous environments used in our FRL experiments
and then compare the FRL methods that incorporate different FL methods to overcome the hetero-
geneity under the FedTD3 framework.1 Finally, we analyze the results and discuss the advantages
and disadvantages of the current methods.

5.1 Experimental Setup

5.1.1 Dataset and Model Structure. In our experiments, we build a four-layer MLP with 256
hidden neurons and ReLU activation to represent the value network and the policy network,
respectively. During the training, the Adam optimizer is applied. The smoothing factor τ involved
in the target network update is set at 0.01, noise clipping threshold is 0.5. Four environments devel-
oped by Open-AI are used in the experiments. The first two environments are the classic control
taskCartPole and Pendulum and the other two are BipedalWalkerHardcore and LunarLander [6].
In all experiments, we explore K = 5 agents for all algorithms. To fairly compare each method,
the hyper-parameters, e.g., the capacity of the replay buffer, and the distillation learning rate
are shown in Table 2. The standard deviation of the noisy action keeps the same in each task.
For the parameter β of the regular term and penalty α in the CSD loss function, we set them to

1The source codes are available at https://github.com/tmlr-group/SCCD.
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Table 2. The Setting of the Key Hyper-Parameters of SCCD

distill lr server epochs client epochs replay buffer size

CartPole 1 e-02 10 40 1 e+04
Pendulum 1 e-02 20 20 1 e+04
Walker 1 e-02 20 40 1 e+06
Lunar 1 e-02 40 10 3.2 e+04

Server epochs and client epochs represent the number of distillation epochs on the server and client side.

be 0.01 and 0.1 in each task. The learning rate of the critic and actor is set to be 2e-3 for each
task.

5.1.2 Baselines. We compare SCCD with the following baselines, where each method is con-
ducted based on the FedTD3 framework:

— FedAvg: Naively aggregate the local actor-critic models into a global model. The averaging
weights are calculated based on the local training batch size.

— FedProx: Adding an l2 norm to the local training objective.
— MOON: Leveraging the concept of contrastive learning [9] in FL and propose a new loss

function that considers the global and local model parameters as a pair of samples. This loss
function measures the contrast between the global and local models:

lcon = − log
exp(z�zglob/τ )

exp(z�zglob)/τ ) + exp(z�zprev/τ )
,

where z is the representation before the output layer of the network, zglob is the representa-
tion of the aggregated global model, zprev is the last round global model.

— Scaffold: Construct the variance reduction to correct the client shift in the local updates.
— FedDF: Ensemble the local networks as the teacher networks and leverage the synthesis data

to conduct the model distillation.
— MTFRL: Similar to FedAvg, but there are two parameters to control the model averaging

which make it more smooth and more stable.
— FRD: The local experiences are clustered and sent to the server to construct global proxy

states. The agents receive the global proxy states and perform policy distillation.

5.1.3 Environment Heterogeneity. In CartPole, the pendulum starts upright and the goal is to
prevent it from falling over. The agent gets a −1 score punishment once the pole cannot remain
vertical and the angle of the pole is more than 15 degrees. We set the length of each episode as 300,
so the maximum score would be no more than 300. In Pendulum, the pendulum starts in a random
position and the goal is to swing it up so it could stay upright. The episode length is set to be
200, and the closer the score approaches 0 the better. To generate the heterogeneous environment,
we introduce Gaussian noise to the physical coefficient of the environment, namely, the mass of
the cart in CartPole, the length of the pole in Pendulum, and so on. For the BipedalWalkerHardcore

environment, we aim to study how the data imbalance issue in the FRL setting affects the training.
In this environment, the goal of the robot is to go as far as possible. The reward is given for

moving forward and totaling 300+ points up to the far end. The robot gets punished when it falls
to the ground. The state consists of the hull angle speed, the angular velocity, the horizontal speed,
the vertical speed, the position of joints, the joints’ angular speed, and a boolean indicator of
whether the legs contact with the ground and the measurements of 10 lidar range finder. There
are three kinds of obstacles in this environment, normally in the original environment setting, the
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Fig. 4. (a) and (e) Cartpole; (b) and (f) Pendulum; (c) and (g) BipedalWalkerHardcore; (d) and (h) Lunar

Lander. For CartPole and Pendulum, the length of the pole and other physical parameters, e.g., gravity and

mass are different. For BipedalWalkerHardcore, the agent interacts with the environment with three kinds

of obstacles, and the appearance probability is variant across the local environments. For Lunar Lander, the

regularity of the surface of the moon and the height of the landing pad in different environments vary.

occurrence of each kind of obstacle is the same probability. We skew the probability so that the
data collected by each agent would be imbalanced in the local replay buffers. In Lunar Lander, the
agent perceives the coordinate of the landing pad and its own velocity, and the goal is to land on
the pad safely. The initial random force perturbation applies to the rocket and the smoothness of
the land is set to be different. Figure 4 shows some exemplary local environments.

5.1.4 Metrics. In our experiments, we evaluate all algorithms from the perspective of the overall
performance and stability in each local environment. For the classical control environment, we set
the different seeds to generate different environmental parameters and report the average reward
of different seeds. For BipedalWalkerHardcore and Lunar Lander, the local environment parameters
are fixed, because empirically the variance of the final result can be very large even if we set it to
be fixed. We run multiple times for each method and report their final average reward.

5.2 Evaluation with Different Heterogeneity

We evaluate the aforementioned baseline methods and SCCD under different environment hetero-
geneity. For the classic control tasks, the standard deviation σ of the Gaussian noise added to the
environment parameters would be varied, the bigger the σ the more heterogeneous the environ-
ments. For the BipedalWalkerHardcore environment, in each local environment, the probability of
each obstacle is generated by the Dirichlet distribution. However, it is not like supervised FL, as the
probability is generated within each environment so that the probability of each obstacle would
sum to one. Therefore, the heterogeneity of the environments is evaluated by the Jensen–Shannon
divergence [11] of each environmental probability.

DJS (p | |q) =
1

2
DKL

(
p | |p + q

2

)
+

1

2
DKL

(
q | |p + q

2

)
.

In the above equation, p and q refer to probabilistic vectors of each environment, and we sum
up the paired Jensen–Shannon divergence as the overall heterogeneity of the Bipedal–Walker–
Hardcore problem. Similarly in the classic control problem, the higher value of DJS means that
the distributions of each environment are more dispersed. The heterogeneity is defined as three
levels: h1 : (σ = 0.05,DJS = 0), h2 : (σ = 1,DJS = 2.43), h3 : (σ = 2,DJS = 4.7). For the classical
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Table 3. Average Reward of Different FL Methods in Four Environments with Heterogeneity

h1 : (σ = 0.05,DJS = 0), h2 : (σ = 1,DJS = 2.43), h3 : (σ = 2,DJS = 4.7)

Datasets FedAvg MOON FedProx Scaffold FedDF MTFRL FRD SCCD (ours)

CartPole
h1 289.15 ± 21.69 295.13 ± 9.73 294.58 ± 10.75 248.85 ± 54.97 135.08 ± 120.19 234.68 ± 43.7 240.13 ± 77.57 294.77 ± 11.9
h2 220.94 ± 46.46 216.57 ± 36.56 243.30 ± 60.57 182.53 ± 53.94 12.58 ± 6.03 196.87 ± 34.19 215.18 ± 67.22 254.31 ± 32.09
h3 233.16 ± 46.67 207.88 ± 43.51 193.35 ± 37.72 231.4 ± 44.17 24.42 ± 13.68 218.19 ± 41.75 115.92 ± 38.56 252.39 ± 10.74

Pendulum
h1 −148.54 ± 5.64 −207.35 ± 110.28 −146.65 ± 4.13 −157.61 ± 5.69 −149.90 ± 5.11 −150.08 ± 0.96 −154.74 ± 21.29 −147.22 ± 4.35
h2 −364.30 ± 90.24 −364.87 ± 49.97 −301.66 ± 97.45 −388.76 ± 41.29 −511.45 ± 161.91 −380.78 ± 135.32 −528.88 ± 68.93 −221.94 ± 76.98
h3 −537.14 ± 121.62 −522.14 ± 183.05 −518.56 ± 218.37 −577.81 ± 339.88 −533.29 ± 169.94 −537.01 ± 134.93 −730.01 ± 260.31 −342.93 ± 114.49

BipedalWalker
h1 263.91 ± 7.34 247.71 ± 15.90 186.24 ± 20.97 232.24 ± 11.44 −10.76 ± 7.19 −72.85 ± 15.08 229.08 ± 25.09 266.44 ± 13.46
h2 247.45 ± 3.12 233.14 ± 266.66 206.13 ± 31.6 181.58 ± 45.7 −57.62 ± 19.13 −70.86 ± 10.06 223.92 ± 10.06 261.90 ± 11.39
h3 232.31 ± 23.32 227.35 ± 18.91 196.17 ± 14.84 130.82 ± 24.71 −34.81 ± 48.50 −86.02 ± 3.23 213.33 ± 12.4 271.33 ± 14.62

Lunar Lander
h1 212.91 ± 16.35 227.19 ± 3.29 227.79 ± 6.72 218.96 ± 16.87 115.23 ± 144.27 131.01 ± 14.19 125.45 ± 51.49 221.72 ± 18.13
h2 196.47 ± 17.18 205.62 ± 17.04 214.18 ± 16.16 152.87 ± 12.63 196.46 ± 13.51 124.81 ± 11.43 140.98 ± 47.16 220.02 ± 0.84
h3 178.59 ± 27.50 202.69 ± 16.30 218.02 ± 2.49 173.83 ± 26.22 184.05 ± 17.31 115.97 ± 6.84 163.21 ± 61.09 219.18 ± 13.97

control tasks, we run 4 times with different random seeds, each time the environment parameter
would be different. In the testing period, each agent would be tested in the local environment
for 100 episodes, and the average reward over all the local environments is reported as the final
performance.

Table 3 shows the overall performance of the baselines and SCCD. By comparing FedAvg, Fed-
Prox, and MOON, we can see that both MOON and FedProx cannot always improve the perfor-
mance in the former three environments and sometimes even get a lower reward than FedAvg,
which indicates that by adding a regular term to constraint the model is not always suitable in
the FRL setting. However, SCCD utilizes the distillation technique to overcome the heterogeneity
issue and gets the best result in a highly heterogeneous environment. We can also observe that,
generally, the average reward of each method decreases with the increasing heterogeneity. SCCD
could perform well in these four heterogeneous environments and it is more robust to high-level
heterogeneity than the other methods. We plot training curves of each baseline method and SCCD
in a specific heterogeneity level in Figure 5. The x-axis represents the actor communication times
(1 round as a unit in CartPole and Pendulum, 3 rounds as a unit in BipedalWalkerHardcore and Lunar

Lander). Compared to the other methods, most of the time SCCD converges faster than the other
methods in the early training stage, which means the SSD can effectively enhance the evolution of
the critic model by distilling knowledge from local models. Besides, the smaller standard deviation
suggests the potential stabilization ability of the CSD.

5.3 Generalization and Personalization

In this section, we analyze the generalization performance across the local environments of each
method. For CartPole and Pendulum, we draw the error bar of the average test score with different
random seeds. For the BipedalWalkerHardcore and Lunar Lander, we choose one of the best test
results of each method and plot the agent’s performance in five local environments. Based on the
results, from Figure 6(a) and (b), we can observe that SCCD is more robust to different environment
parameters (the dashed line of SCCD is straighter than the others). The changing random seed does
not bring a huge influence on SCCD compared to the other methods.

Figure 6(c) and (d) reflects the performance of the agent in the local environments. In Figure 6(c),
the BipedalWalkerHardcore local environment 2 (the second bar) only appears the stump, which is
a much more difficult environment than the other local ones. We can observe that the performance
of SCCD can still exceed the others, which indicates its better generalization and personalization
ability.

To analyze the reliability of each method, we roll out a trajectory in BipedalWalkerHard-

core (about 776 state-action pairs within one episode) from a pre-trained policy π ′ and plot the
Q-value of three methods in Figure 7(a). We can observe that the baseline methods tend to have
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Fig. 5. The validation curves during training were chosen from different heterogeneity levels. Each point

value is the mean over four learning curves and then smoothed by a sliding window with a fixed window

width. The shadow is the standard deviation of each trial on a particular point.

Fig. 6. The error bar of each dataset in different local environmental parameters. For the classical control

datasets CartPole and Pendulumn, the x-axis represents four experiments with a different random seed. For

BipedalWalkerHardcore and Lunar Lander, the x-axis represents five local environments. We choose the best

performance of each method among different trials.

a higher Q-value which means the actor may select overestimated actions that could lead to poor
performance.

In Figure 7(b), we sample one state from the replay buffer and plot the Q value of the actions
sample from the action space. The red line shows the Q value of the random actions and the blue
line is the Q value of the action chosen by the agent during training. While the orange line is
the value of the action chosen by the agent during testing. From the result, we can see that the
agent would not always choose the action with a high value given a state in the testing period,
this phenomenon appears in all methods. With this, we want to further explore whether there is
still room to improve the actor by performing one policy optimization step according to the value
network learned by the agents. Specifically, we use the well-trained agent to play one episode
game and collect the trajectory data, later on, the agent’s actor network would be updated based
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Fig. 7. (a) The Q-value of FedAvg, MOON, and SCCD. We can see that FedAvg and MOON would have an

overestimation issue. (b) We sample one state from the replay buffer and concatenate it with 300 continuous

actions sampled from the action space as the input, and plot the output Q value of SCCD.

Table 4. T-test for the Difference between the Reward of Origin Policy and

Updated Policy

Methods Original Updated Difference Statistic P-val

FedAvg 261.77 259.92 −1.85 −0.16 0.87

Moon 266.49 275.70 +9.2 0.82 0.41

FedProx 206.91 192.97 −13.93 −0.91 0.36

MTFRL −57.95 −58.48 −0.53 −0.19 0.84

FRD 256.39 244.97 −11.42 −0.84 0.39

SCCD 269.11 281.34 +12.22 0.99 0.32

“Original” represents the mean reward of the original policy, the same for “Updated”.

The improvement of the updated policy may indicate that the Q network learned by

the agents is trustworthy and reliable. If the statistic is positive, the lower the P-value

represents the higher confidence for the improvement of the policy.

on these station–action pairs by the policy gradient, which means we enforce the agent to act
with a higher Q value. Theoretically, the agent could enhance its performance as long as the value
function is accurate enough. We run 100 trials of one-step policy updates of each method. Table 4
shows the results of the single sample T-test for the difference between the reward of the original
policy and the updated policy. We can see the mean reward of the original policy of SCCD and
MOON can still be enhanced, especially SCCD has a large improvement space, while the others
decline to different degrees.

5.4 Ablation Study

In this section, we target to answer the following questions:

— Can local agents benefit from SSD?
— Is the superior performance of SCCD caused by the extra local training?

For question 1, we can compare the results of SCCD and FRD. SCCD involves both CSD and SSD,
while FRD only involves CSD. As shown in Table 3, FRD tends to perform well when the local
environments are complementary, such as in the case of BipedalWalker. However, without a fused
Q network on the server side, the aggregated actor in FRD may not be able to effectively handle
diverse local environment dynamics in other datasets. This limitation of FRD is one reason why
SCCD is a more robust choice in certain situations.
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Fig. 8. (a) and (b) The average score of one of the local environments during the training period in Pendulum

and CartPole. (c) The learning curve of FedAvg, FedAvg+, and SCCD in BipedalWalker.

Table 5. The Effect of Extra Local Training

Dataset Method trial 1 trial 2 trial 3 trial 4 overall

FedAvg+ 174.26 243 294.33 238.46 237.51 ± 49.19
FedAvg 226.67 204.55 170.96 281.58 220.94 ± 46.46CartPole
SCCD 209.62 253.2367 281.8733 272.52 254.31 ± 32.09

FedAvg+ −384.59 −747.28 −625.35 −670.51 −606.933 ± 184.56
FedAvg −379 −621.85 −512.63 −635.08 −537.14 ± 121.63Pendulum
SCCD −239.23 −461.38 −398.42 −272.72 −342.938 ± 114.50

FedAvg+ 229.61 198.14 218.14 247.56 225.50 ± 20.72
FedAvg 240.75 204.90 251.29 205.08 225.51 ± 24.07BipedalWalker
SCCD 260.96 264.94 288.04 272.27 271.55 ± 11.95

FedAvg+ means more local training iterations than FedAvg.

Furthermore, we decompose SCCD and compare the performance of its two components indi-
vidually with a baseline method that does not involve either CSD or SSD (FedAvg). Figure 8 shows
the learning curve in Pendulum (Figure 8(a)) and CartPole (Figure 8(b)), where the blue line de-
notes the training curve without SCCD, i.e., the FedAvg. We can see that with the assistance of
the SSD, the training could converge faster. From Figure 8(c), the learning curve of the SSD could
achieve the highest score, but it also becomes very unstable and has dropped down lately. The
negative transfer probably causes this during the late stage. The final score it gets is even worse
than the FedAvg. In comparison, with CSD, the agent performance could remain at a relatively
high score, which means the CSD could stabilize the training.

Question 2 can be verified by increasing the local training steps in FedAvg. Each round the client
receives the global predictor from the server and then we can perform an extra TD update as the
same as SCCD. Table 5 shows the testing results in four random seeds with the same heterogeneity.
In CartPole, the performance of FedAvg is increased modestly but still cannot exceed SCCD. How-
ever, in Pendulum, the extra training would even spoil the correctness of the critic model and lead
to worse performance. Figure 8(d) shows the learning curve of FedAvg+, extra training does not
change the convergence rate and improve FedAvg. Therefore, the benefit is not due to the extra
training steps, but because CSD is more effective than the naive model aggregation.

6 CONCLUSION AND FUTURE WORK

In this article, we have proposed an FRL framework FedTD3, which is designed on top of the state-
of-the-art RL algorithm TD3 to federally train a robust intelligent agent. On the basis of FedTD3,
we have presented a server-client side model update procedure termed SCCD to overcome the
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non-stationary heterogeneity issue that occurred in FRL. By conducting a range of experiments,
the results have shown that the proposed method has superior performance, in terms of general-
ization ability and communication efficiency, in comparison with the other FL counterparts.

In the future, we will further explore the generalization of SCCD by integrating it into other
off-policy RL frameworks like SAC. On the other hand, it is crucial to explore a more accurate
distribution generation method for the local representations. Additionally, it is worth noting that
fairness is also an important issue in FRL. While our proposed SCCD approach in FRL does not
directly tackle fairness, it does offer a framework for integrating fairness considerations into the
development of distributed RL systems. For example, the SCCD approach can be extended to in-
corporate fairness constraints or objectives during the training process, such as ensuring that the
learned policies do not discriminate against certain groups of agents. Another point is while de-
signing the local reward function, make sure the distribution of rewards is equitable across all
agents. We encourage future research in FRL to consider fairness as an important aspect of the
design and evaluation of distributed RL systems.
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