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Dimensionality Reduction in Multiple
Ordinal Regression

Jiabei Zeng, Yang Liu, Member, IEEE, Biao Leng, Zhang Xiong, and Yiu-ming Cheung, Senior Member, IEEE

Abstract— Supervised dimensionality reduction (DR) plays
an important role in learning systems with high-dimensional
data. It projects the data into a low-dimensional subspace and
keeps the projected data distinguishable in different classes.
In addition to preserving the discriminant information for
binary or multiple classes, some real-world applications also
require keeping the preference degrees of assigning the data to
multiple aspects, e.g., to keep the different intensities for co-
occurring facial expressions or the product ratings in different
aspects. To address this issue, we propose a novel supervised
DR method for DR in multiple ordinal regression (DRMOR),
whose projected subspace preserves all the ordinal information
in multiple aspects or labels. We formulate this problem as a
joint optimization framework to simultaneously perform DR and
ordinal regression. In contrast to most existing DR methods,
which are conducted independently of the subsequent classifica-
tion or ordinal regression, the proposed framework fully benefits
from both of the procedures. We experimentally demonstrate that
the proposed DRMOR method (DRMOR-M) well preserves the
ordinal information from all the aspects or labels in the learned
subspace. Moreover, DRMOR-M exhibits advantages compared
with representative DR or ordinal regression algorithms on three
standard data sets.

Index Terms— Dimensionality reduction (DR), multiple labels,
ordinal regression, supervised.

I. INTRODUCTION

D IMENSIONALITY reduction (DR) is the procedure of
mapping high-dimensional data to a lower-dimensional

subspace in which the informative characteristics of the origi-
nal data are well preserved. Since DR effectively mitigates the
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curse of dimensionality, this procedure is of great importance
and has been widely used in facilitating data compression [59],
visualization [51], clustering [37], and classification [32]
within vast domains where high-dimensional data are preva-
lent. For instance, in the field of computer vision, visual
descriptors such as scale-invariant feature transform (SIFT),
histogram of oriented gradient, and Gabor always have high
dimensionality.

An ideal DR method transforms the high-dimensional data
into a reduced representation with its intrinsic dimension-
ality, which is the minimum number of parameters needed
to account for the observed properties of the data [18].
A vast number of DR methods have been proposed over
the past decades to effectively preserve the necessary
properties of the data. According to the availability of
label/class information, DR methods can be roughly divided
into unsupervised (no label/class information), supervised
(complete label/class information), and semi-supervised (par-
tial label/class information) methods. The majority of the
unsupervised DR methods search for unrelated or indepen-
dent factors based on statistics (e.g., principal component
analysis (PCA) [25] and factor analysis [22]) or information
theory (e.g., independent component analysis [11]). However,
these unrelated or independent factors are not guaranteed
to preserve the key properties of the label information of
data from different classes. To address this issue, supervised
DR methods have been proposed to incorporate the label
information in choosing the projection of the original data.
For example, linear discriminant analysis (LDA) [17] is one
of the most representative supervised DR methods, and this
method aims to find a low-dimensional subspace to minimize
the distance between data points that have the same label and
simultaneously differentiate those data points that are unalike.

Although supervised DR preserves the key properties that
distinguish the data from different classes, one’s interests
in the data might be beyond the information for a single
two-class or multiclass classification but for classification in
multiple aspects and various degrees, namely, multiple ordinal
regression. In fact, such interests are ubiquitous in real-world
applications. To name a few, in facial expression detection,
multiple emotions [13] or facial action units (AUs) [36]
always arise simultaneously. Each emotion or AU occurs with
different intensities that indicate its subtleness or obviousness.
We expect the data in the low-dimensional space to be easily
distinguishable with respect to different expressions that have a
range of intensities. In product evaluation, a dress is rated from
several aspects. For example, a dress could be rated five stars
for comfort and only three stars for aesthetics. In this case,
the expected reduced representation is the one that faithfully
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reflects the different ratings for a number of different aspects.
To learn the low-dimensional subspace for data with different
rankings in multiple labels, we propose a new method for
DR in multiple ordinal regression (DRMOR), the projected
subspace of which preserves all the ordinal information in
multiple aspects or labels.

Despite the high dimensionality of data in many applications
of multiple ordinal regression, DRMOR remains an almost
unexplored problem. There are two key issues in DRMOR:
1) how does the learned subspace capture the ordinal informa-
tion within each individual label and 2) how does the learned
subspace preserve all the ordinal information of multiple labels
simultaneously? To address these two issues, a novel DRMOR
method (DRMOR-M) is proposed. To address the first issue,
we force the projected data to be separated by a set of
parallel hyperplanes, where the data between two contiguous
hyperplanes belong to the same rating or ordinal category.
To address the second issue, we ensure that we can find a
corresponding set of such hyperplanes for each label. Thus,
the proposed framework preserves all the ordinal information
of multiple labels. Note that the proposed learning frame-
work optimizes the projected subspace and multiple ordinal
regressors simultaneously. Rather than addressing DR and
classification/regression separately, the proposed framework
combines the two works and can, thus, fully benefit from the
merits of the two procedures. The contributions of this paper
are summarized as follows.

1) We investigate an important but relatively unex-
plored problem in learning with high-dimensional data,
i.e., DRMOR, which needs to find a low-dimensional
subspace that captures the ordinal information in multi-
ple aspects/labels.

2) We propose a novel method named DRMOR-M to
address the DRMOR problem by jointly conducting DR
and multiple ordinal regression, which takes advantage
of both procedures. To solve the problem, we propose a
simple but effective heuristic algorithm.

3) We perform extensive experiments on standard data sets
and provide a detailed analysis, showing the effective-
ness of the proposed method.

II. RELATED WORKS

The proposed DRMOR-M projects data onto a subspace
that preserves ordinal information in multiple aspects or labels.
This section, therefore, reviews some related works in ordinal
regression and multilabel dimensionality reduction.

A. Ordinal Regression

Ranking information can be used to construct models that
are more accurate than those constructed from binary yes-or-
no information. The necessity of taking ranking information
into account was evaluated in the previous works. For example,
Hühn and Hüllermeier [27] showed that ordinal metamethods
do exploit ordinal information and yield better performance by
comparing ordinal metamodels to their nominal counterparts.
The results with respect to metamodel approaches can be

further improved using specifically designed ordinal regression
methods [20].

Most existing works address ordering information in clas-
sification problems, namely, ordinal regression. The objective
of ordinal regression is to classify patterns using a categorical
scale that shows a natural order between the categories.
To rank data into discrete ordered scales, a number of ordinal
regression methods have been proposed, which can be clas-
sified into three typical approaches [20]: naive approaches
that use other standard machine learning prediction algorithms,
e.g., standard regression [23], [43], nominal classification [1],
and cost-sensitive classification [31], [52]; ordinal binary
decomposition approaches that decompose the ordinal prob-
lem into several binary problems and then separately solve
them using multiple models [6], [41], [57] or using one
multiple output model [12], [16]; and threshold approaches
that approximate a real value predictor and then divide
the real line into intervals (see [63]). Among the three
approaches, the threshold approaches are the most prevalent
approaches for solving ordinal regression, including support
vector machine (SVM) formulations [10], [24], Gaussian
processes [9], discriminant learning [34], [46], ensemble learn-
ing [15], and so forth. To achieve an incremental version of
ordinal regression, Gu et al. [19] extended the online vSVC
algorithm to a modified support vector ordinal regression.
Hamsici and Martinez [21] proposed a multiple ordinal regres-
sion method by maximizing the sum of the margins between
every consecutive class with respect to one or more rankings.

To the best of our knowledge, few works have addressed
the ranking information explicitly in dimensionality reduction.
Sun et al. [46] reformulated the discriminant analysis as a
classification technique to tackle ordinal regression, which
is known as kernel discriminant learning for ordinal regres-
sion (KDLOR). Although KDLOR is not designed to be
a DR method, it computes an optimal 1-D mapping for
the data. To maintain the projected data in order, KDLOR
imposes an ordering constraint over contiguous classes on the
averages of projected patterns of each class. In a later work,
Sun et al. [47] extended KDLOR to learn multiple orthogonal
mapping directions and then combined them into a final
decision function. Additionally, Liu et al. [34], [35] extended
KDLOR by preserving the intrinsic geometry of the data
in the embedded manifold structure. Pérez-Ortiz et al. [40]
proposed reformulating the proportional odds model to have a
low-dimensional feature space and nonlinear boundaries. They
also proposed a method to select the optimal dimensionality.
Li et al. [30] proposed an ordinal distance metric learning
method for image ranking, which preserves both the local
geometry and the ordinal relationship of the data.

B. Multilabel Dimensionality Reduction

In traditional supervised dimensionality reduction, each
labeled data sample generally belongs to only one class.
However, in many real-world applications, such as image
classification [42], emotion recognition [33], and text cate-
gorization [53], each data sample might be associated with
multiple labels. To overcome the curse of dimensionality in
such types of multilabel scenarios, multilabel DR techniques
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Fig. 1. Framework for joint DR and multiple ordinal regression. The original
data are mapped onto a reduced subspace by the projection Q. Meanwhile,
the reduced data can be separated by multiple sets of parallel hyperplanes.

have attracted considerable attention in recent years [50]. For
instance, Yu et al. [60] proposed a method called multilabel
informed latent semantic indexing to preserve the information
of data while capturing the correlations between multiple
labels. Arenas-garcía et al. [2] presented the sparse kernel
orthonormalized partial least squares approach to handle mul-
tilabel data. Zhang and Zhou [62] introduced a multilabel
DR algorithm by maximizing the dependence between data
and corresponding labels. Park and Lee [39] extended the
traditional LDA to a multilabel version by applying the copy
transformation. Furthermore, another multilabel LDA was
formulated by taking advantage of label correlations [55].
In addition, Yuan et al. [61] further extended the above
multilabel LDA by incorporating a local consistency term into
the objective function. Chang et al. [7] proposed a convex
formulation for semi-supervised multilabel feature selection.
Sun et al. [50] proposed a least squares framework to unify
several multilabel DR algorithms, including hypergraph spec-
tral learning [48], shared-subspace learning [28], and canonical
correlation analysis (CCA) [49], among others.

In addition to the above general multilabel DR algorithms,
some methods have also been introduced for more specific
applications. For instance, Wang et al. [54] presented
multilabel sparse coding for image annotation. A multilabel
feature transform algorithm was proposed for image
classification [56]. Furthermore, another algorithm called
block-row sparse multiview multilabel learning was
also proposed for the task of image classification [64].
Panagakis et al. [38] proposed a sparse multilabel linear
embedding nonnegative tensor factorization method for
music tagging. Liu et al. [33] presented an algorithm called
multiemotion similarity preserving embedding for music
emotion recognition.

III. DIMENSIONALITY REDUCTION IN MULTIPLE
ORDINAL REGRESSION

In this section, we propose a framework (DRMOR-M) to
jointly solve the problems of DR and multiple ordinal regres-
sion. Fig. 1 illustrates this joint framework. This framework
projects the original data onto a low-dimensional subspace
and forces the reduced data to be separated by several sets
of parallel hyperplanes, where each set corresponds to an
individual label or aspect.

A. Notations

Let N instances X = [x1, . . . , xN ]� ∈ R
N×D with

D-dimensional features, and the label indicator matrix
Y = [y1, . . . , yN ]� ∈ R

N×L , where yi ∈ N
L encodes

Fig. 2. Illustration of a single label ordinal regression with parallel
hyperplanes. The samples with dashed edges and light gray are penalized
by errors ξ .

information in L labels for instance xi . Each label l assigns
the samples to rl ordinal categories Cl = {1, . . . , rl}. Suppose
that there are nkl instances in category kl ∈ Cl ; thus, we have
N = ∑rl

kl=1 nkl , ∀l = 1, . . . , L. For notational convenience,

we also denote a sample xi as xkl
il

, if xi is the il th sample in
category kl ∈ Cl for il ∈ {1, . . . , nkl }.

B. Formulation

The proposed DRMOR-M framework projects the origi-
nal data onto a low-dimensional subspace, which removes
irrelevant and redundant information from the raw features.
On the reduced data, DRMOR-M simultaneously solves L
ordinal regression problems, each for an individual label, to
differentiate the multiple ordinal information.

Specifically, DRMOR-M projects the original data onto a
d-dimensional space by a projection matrix Q ∈ RD×d . In the
new subspace, DRMOR-M ensures that for each individual
label, the projected data can be separated by an ordinal
regressor. In our formulation, we use the support vector
ordinal regression with implicit constraints (SVORIM) [10]
as our basic ordinal regressor. In fact, the proposed learning
framework can also easily be built on other maximum-margin-
based ordinal regressors, e.g., SVOREX [10]. For label l,
it attempts to find rl−1 parallel hyperplanes to separate the rl

ordered categories. These parallel hyperplanes are described
as h j

l = {x|w�l Q�x = b j
l }, j = 1, . . . , rl − 1, where

wl is the normal vector to the hyperplanes, and thresholds
bl = [b1

l , . . . , br−1
l ] determine the locations. By introducing

two auxiliary hyperplanes h0
l and hrl

l with b0
l = −∞ and

brl
l = +∞, respectively, samples in category kl ∈ Cl should

lie between hyperplanes hkl−1
l and hkl

l . Fig. 2 illustrates an
example of the hyperplanes. In this figure, the solid black
lines are two parallel hyperplanes that separate the data into
three ordinal categories. The dashed lines denote soft margins.
We will penalize the samples within the margins (e.g., x1

3) and
the misclassified ones (e.g., x1

4). In Fig. 2, these penalized
samples have dashed edges and are filled with light gray.
We will discuss the details about the penalty later in this
section.

To simultaneously seek the projection matrix Q and L sets
of hyperplanes {h j

l }rl−1
j=1 (l = 1, . . . , L), we formulate the
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objective function of DRMOR-M as follows:

min
{wl ,bl ,ξl ,ξ

∗
l }Ll ,Q

L∑

l=1

(
1

2
w�l wl + κlCost

(
ξl, ξ

∗
l

)
)

(1)

s.t.: w�l Q�xkl
il
− bl j ≤ −1+ ξ

j
l,kl il

, ξ
j

l,kl il
≥ 0 (2)

∀kl = 1, . . . , j ; il = 1, . . . , nkl

∀l = 1, . . . , L; j = 1, . . . , rl − 1

w�l Q�xkl
il
− bl j ≥ +1− ξ

∗ j
l,kl il

, ξ
∗ j
l,kl il
≥ 0 (3)

∀kl = j + 1, . . . , rl; il = 1, . . . , nkl

∀l = 1, . . . , L; j = 1, . . . , rl − 1

Q�Q = I (4)

where ξ and ξ∗ are slack variables that represent the errors for
misclassifying the samples into higher and lower ordered cate-
gories, respectively; Cost(ξl , ξ

∗
l ) =∑

j,kl ,il ξ
j

kl il
+∑

j,kl ,il ξ
∗ j
kl il

denotes the errors on label l; and κl > 0 is the balancing
parameter.

Fig. 2 briefly illustrates the errors ξ and ξ∗ under a single
label. The red lines denote ξ , and the blue lines denote ξ∗. The
circle, rectangle, and star shapes denote samples from three
ordinal categories. Shapes in light gray and with a dashed edge
should be penalized according to constraints (13) and (14).
With the maximum-margin settings, the constraints in (13)
require that for each threshold b j

l , any sample xkl
il

should

satisfy w�l Q�xkl
il
≤ b j

l − 1 if it belongs to a lower or equally
ordered category than j ∈ Cl . For example, in Fig. 2, all the
circles x1

i , i = 1, . . . , 4, in category 1 should lie to the left
of b1 − 1, and all the circles x1

i in category 1 and rectangles
x2

i in category 2 should lie to the left of b2 − 1. We penalize
x1

3 and x1
4 with ξ1

13 and ξ1
14 for not being on the left side of

b1− 1. Similarly, we penalize x2
4 with ξ2

24 because it does not
lie to the left of b2− 1. We also penalize x1

4 with ξ2
14 because

it does not lie to the left of b2−1 as it should. The constraints
in (14) require any sample to satisfy w�l Q�xkl

il
≥ b j

l + 1, if it
has a higher ordered category than j ∈ Cl . We penalize the
samples that violate the rules. For instance, in Fig. 2, x2

1 is
penalized with ξ1∗

21 for not lying to the left of b1 + 1 because
it belongs to category 2. Similarly, x3

1 is penalized with ξ2∗
31

for not being on the left side of b2 + 1 because it belongs to
category 3.

Note that every sample has
∑L

l=1(rl − 1) inequality
constraints in total (one for each threshold b j

l ). More-
over, (15) restricts an orthonormal transformation Q to the
low-dimensional subspace shared by all the labels.

C. Optimization Procedure

The optimization problem characterized by (1)–(15) is non-
convex with respect to Q due to the nonconvex constraint
Q�Q = I. In this section, we show that this nonconvex
problem can be decomposed and be heuristically solved in two
steps: computing the projection Q and computing the ordinal
regressor wl for the reduced data.

1) Problem Reformulation: Let us define ul ∈ R
D as

follows:
ul = Qwl ∀l = 1, . . . , L . (5)

By adding (5) as a constraint, the problem in (1)–(15) can
be reformulated as follows:

min
{ul ,bl ,ξl ,ξ

∗
l }Ll ,Q

L∑

l=1

(
1

2
u�l ul + κlCost

(
ξl, ξ

∗
l

)
)

s.t.: u�l xkl
il
− bl j ≤ −1+ ξ

j
l,kl il

, ξ
j

l,kl il
≥ 0

∀kl = 1, . . . , j ; il = 1, . . . , nkl

∀l = 1, . . . , L; j = 1, . . . , rl − 1

u�l xkl
il
− bl j ≥ +1− ξ

∗ j
l,kl il

, ξ
∗ j
l,kl il
≥ 0

∀kl = j + 1, . . . , rl ; il = 1, . . . , nkl

∀l = 1, . . . , L; j = 1, . . . , rl − 1

Q�Q = I

ul = QQ�ul ∀l = 1, . . . , L . (6)

Before presenting the details of the equivalent transforma-
tion from (1)–(15) to (6), we first prove the following theorem.

Theorem 1: For w ∈ R
d , u ∈ R

D , and Q ∈ R
D×d , given

that u = Qw and Q�Q = I, we can have the following:

1) w = Q�u;
2) u = QQ�u;
3) w�w = u�u;

Proof: The derivation is straightforward, as follows.

1) w = Q�Qw = Q�u.
2) u = Qw = Q(Q�u) = QQ�u.
3) w�w = (Q�u)�Q�u = u�QQ�u = u�u. �
Since the solution Q to the problem (1)–(15) yields the

constraint Q�Q = I, we are free to apply Theorem 1 to
transform (1)–(15) to (6). Specifically, we first rewrite (1)
as the objective in (6) according to Theorem 1(3). Then,
we replace w�l Q� as u�l in constraints (13) and (14) according
to the add-on constraint (5). Finally, we rewrite the add-on
constraint (5) as the one in Theorem 1(2).

2) Computation of Q: We heuristically solve Q based on
the initial solutions to the ordinal regressions in the original
feature space. Specifically, we first initialize ul by solving
problem (6) without the constraint ul = QQ�ul . Then, with
the fixed ul , we solve Q according to the last two equations
in problem (6).

a) Solving ul : Without the constraints with respect to Q,
u1, . . . , uL are the solutions to L ordinal regression problems
in the original D-dimensional feature space. The ordinal
regression problem for label l is a standard SVORIM [10]

min
ul ,bl ,ξl ,ξ

∗
l

1

2
u�l ul + κlCost

(
ξl, ξ

∗
l

)

s.t.: u�l xkl
il
− bl j ≤ −1+ ξ

j
l,kl il

, ξ
j

l,kl il
≥ 0

∀ j = 1, . . . , rl − 1; kl = 1, . . . , j ; il= 1, . . . , nkl

u�l xkl
il
− bl j ≥ +1− ξ

∗ j
l,kl il

, ξ
∗ j
l,kl il
≥ 0

∀ j = 1, . . . , rl − 1; kl = j + 1, . . . , rl

il = 1, . . . , nkl . (7)

The standard SVORIM in (7) can be solved in its dual form
using the SMO algorithm [10].
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b) Solving Q: With the optimal u∗l ∈ R
D , Q ∈ R

D×d

yields the following equations:
{

Q�Q = I

u∗l = QQ�u∗l ; l = 1, . . . , L .
(8)

Equation (8) has D × d variables (the degrees of freedom
of Q) and (d × d + L × D) equations. It is not guaranteed
to have a solution if the number of variables is less than the
number of equations, say, D×d < d×d+L×D. Considering
such conditions, we require that QQ� should keep u∗l as close
as possible to its transformation QQ�u∗l . Thus, we obtain Q
by optimizing

min
Q�Q=I

L∑

l=1

∣
∣
∣
∣QQ�u∗l − u∗l

∣
∣
∣
∣2

. (9)

Following some standard operations in linear algebra,
Problem (9) can be rewritten as follows:

max
Q�Q=I

tr(Q�UU�Q) (10)

where U = [u∗1, . . . , u∗L ]. Problem (10) is a trace maximiza-
tion problem and has a closed-form solution, in which the
optimal Q∗ is the eigenvectors of matrix UU� corresponding
to the d largest eigenvalues. To avoid numerical problems,
we can also compute Q∗ as the left singular vectors of the
matrix U.

3) Computation of wl : After obtaining the approximate
optimal Q∗, we compute w1, . . . , wL in (1) with the fixed
Q = Q∗. The optimal wl (l = 1, . . . , L) is the solution
to the l-th ordinal regression problem on the projected data
x̃ = Q∗�x ∈ R

d . Specifically, the ordinal regression problem
is

min
wl ,bl ,ξl ,ξ

∗
l

1

2
w�l wl + κlCost

(
ξl , ξ

∗
l

)

s.t.: w�l x̃kl
il
− bl j ≤ −1+ ξ

j
l,kl il

, ξ
j

l,kl il
≥ 0

∀ j = 1, . . . , rl − 1; kl = 1, . . . , j ; il= 1, . . . , nkl

w�l x̃kl
il
− bl j ≥ +1− ξ

∗ j
l,kl il

, ξ
∗ j
l,kl il
≥ 0

∀ j = 1, . . . , rl − 1; kl = j + 1, . . . , rl

il = 1, . . . , nkl . (11)

The problem in (11) is also a standard SVORIM, which can
be solved in its dual form discussed in [10]. Note that we do
not compute wl as wl = Q�ul because the second equation
in (8) does not always hold.

We summarize the above optimization procedure in
Algorithm 1.

D. Nonlinear Extension

Nonlinear DRMOR-M can be obtained by replacing the
original feature x in the linear formulation, (1), with the values
of M kernel functions �(x) ∈ R

M , e.g., radial basis function
kernel, polynomial kernel, and χ square kernel. To simplify the
notation, in the kernel space, the corresponding representation
of x is denoted as k = [k1, . . . , kM ], ki = 〈x, ci 〉K, where ci

is the i th selected point, and 〈.〉K denotes the inner product

Algorithm 1 Method of DRMOR (DRMOR-M)

Input: Low dimension d , data X ∈ R
N×D and their labels

{y1 ∈ {1, . . . , rL }N , . . . , yL ∈ {1, . . . , rL}N }
Output: Projection matrix Q ∈ R

D×d , classifiers parameter
wl , and thresholds bl , l = 1, . . . , L

1: for all l = 1, . . . , L do
2: (ul , bl )← solve problem (7) with known (X, yl);
3: end for
4: U = [u1, . . . , uL ];
5: Q← left singular vectors of U with respect to the d largest

singular values;
6: X̃← XQ;
7: for all l = 1, . . . , L do
8: (wl , bl)← solve problem (11) with known (X̃, yl);
9: end for

in kernel space. Then, the D-dimensional data x are mapped
to a d-dimensional subspace by function f (x) = Q�k,
where Q ∈ R

M×d is the projection matrix. The nonlinear
DRMOR-M is then formulated as follows:

min
{αl ,bl ,ξl ,ξ

∗
l }Ll ,Q

L∑

l=1

(
1

2
α�l αl + κlCost

(
ξl , ξ

∗
l

)
)

(12)

s.t.: α�l Q�kkl
il
− bl j ≤ −1+ ξ

j
l,kl il

, ξ
j

l,kl il
≥ 0 (13)

∀kl = 1, . . . , j ; il = 1, . . . , nkl

∀l = 1, . . . , L; j = 1, . . . , rl − 1

α�l Q�kkl
il
− bl j ≥ +1− ξ

∗ j
l,kl il

, ξ
∗ j
l,kl il
≥ 0 (14)

∀kl = j + 1, . . . , rl; il = 1, . . . , nkl

∀l = 1, . . . , L; j = 1, . . . , rl − 1

Q�Q = I. (15)

E. Discussion

In fact, several representative algorithms can be considered
as special cases of the proposed DRMOR-M. Specifically,
if we set L = 1, DRMOR-M becomes a single-label problem
that jointly performs DR and ordinal regression. It further
degenerates to SVORIM [10], if we remove the scheme of
projecting the original data to a reduced space. When r1 =
. . . = rL , DRMOR-M provides an alternative solution to the
graded multilabel classification proposed in [8]. DRMOR-M
treats the binary classification problem as a special case of
ordinal regression with r = 2. In particular, if rl = 2,∀l,
DRMOR-M reduces to DR in multilabel classification, which
is equivalent to the one discussed in [29].

IV. EXPERIMENTS

In this section, we experimentally validate the effectiveness
of the proposed DRMOR-M. First, we utilize a synthetic
example to demonstrate that DRMOR-M can preserve the
ordinal information on several aspects. Second, we show that
DRMOR-M outperforms representative DR algorithms and
competitive ordinal regression methods in terms of estima-
tion errors. Third, we investigate how the new subspace is
influenced by the dimensions and label numbers.
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Fig. 3. (a) Synthetic data and (b) 2-D projections by DRMOR-M. (c) CCA. (d) PCA. (e)–(g) LDA supervised by different labels. Each column shows the
annotation with one label. DRMOR-M preserves all the ordinal information. Best viewed in color.

A. Schematic Illustration
To show that the DRMOR-learned subspace can simultane-

ously preserve multiple ordinal information, we illustrate the
projections of synthetic examples by DRMOR-M, as well as
other typical supervised and unsupervised DR methods.

We uniformly generated 1000 data points in an 18×18×18
cube and annotated them with three labels. Under all the labels,
the points are linearly separable in the original feature space.
Fig. 3(a) presents the 3-D synthetic data with annotations
under the three labels. As shown in this figure, the points
are horizontally divided into three categories under Label#1,
obliquely divided into two categories under Label#2, and
vertically divided into four categories under Label#3.

Fig. 3(b)–(g) present the 2-D projections of the synthetic
data by DRMOR-M, CCA [49], PCA [25], and LDA [17]
under the supervision of three labels, respectively. As shown
in Fig. 3(b) and (c), the projections on both DRMOR-learned
and CCA-learned subspaces are perfectly separated into the
ordinal categories under all three labels. This result occurs
because the proposed DRMOR-M considers all the ordinal
information on different labels, which makes the learned
subspace capable of reflecting the correct rankings of the

data on each label. CCA maximizes the correlations between
the data and labels; thus, the data are projected onto a
lower-dimensional space directed by the label information.
In Fig. 3(d), the 2-D projections of PCA failed to represent
the data well in all the three labels, because the principal
components are not guaranteed to distinguish the data well
in different categories. Fig. 3(e)–(g) indicate that LDA is
competent in separating categories in one label but leaving the
categories in other labels inseparable. As shown in Fig. 3(e),
the categories in Label#1 are perfectly separated only when
LDA is supervised by Label#1. Similar observations are
obtained in Fig. 3(f) and (g) for Label#2 and Label#3,
respectively.

Second, we show how the nonlinear DR methods perform
on the synthetic data that cannot be linearly separated in the
original feature space. Fig. 4 (the first row) illustrates the
3-D synthetic data with three types of annotations. As shown,
we uniformly generated 1000 data points in a 4-radius sphere
and divided them into different categories in three ways. In the
first way (Label#1), we divided the points into concentric
spheres as four orders from inside to outside. In the second
way (Label#2), we constructed two categories: a cylinder
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Fig. 4. Synthetic data (first row) and projections by (a) nonlinear DRMOR-M, (b) KPCA, and (c)–(e) KDA supervised by different labels. In (a)–(e), each
subfigure shows the annotation with one label. Nonlinear DRMOR-M linearizes all the ordinal information. Best viewed in color.

surrounded by the other category. The third way (Label#3)
consists of three horizontal categories.

We plot the projections of the synthetic data by non-
linear DRMOR-M, kernel PCA (KPCA) [44], and kernel
discriminant analysis (KDA) [3] under the supervision of
the three labels in Fig. 4(a)–(e), respectively. In nonlinear
DRMOR-M, the radial basis function kernel was employed:
�(x) = exp((1/2)||(x − cm)/σ ||2), where σ is a predefined
parameter and cm is one of the M = 10 selected points.
We determined the centers cm using k-means on X. Both
KPCA and KDA adopted Gaussian kernels and shared the
same parameters σ with nonlinear DRMOR-M. As shown
in Fig. 4(a), the projection by nonlinear DRMOR-M is lin-
early separable under all the three labels, despite the original
data being not linearly separable on Label #1 or Label #2.
As shown in Fig. 4(b), the KPCA-projected data cannot
be linearly separated into the categories under Label #1 or
Label #2. As shown in Fig. 4(c)–(e), KDA is capable of
separating the data only with the label by which KDA is
supervised. However, KDA fails to simultaneously separate
the data linearly on all the labels.

B. Comparisons With Other Methods

Recall that the proposed DRMOR-M simultaneously con-
ducts DR and ordinal regression. This section demonstrates
how DRMOR-M performs in terms of classification errors

TABLE I

OVERVIEW OF THE DATA SETS IN THE EXPERIMENTS. N : NUMBER OF

INSTANCES. D: DIMENSION OF FEATURES. L : NUMBER OF LABELS

through comparisons with other DR and ordinal regression
methods. In the remainder of this section, we present the
details on the data sets, metrics, methods for comparison, and
results in our experiments.

1) Data Sets: We conducted comparisons on three data sets.
The overview of the data sets is presented in Table I. Each of
the data sets is annotated with multiple labels. Under each
label, an instance is assigned to several rating scales or a set
of discrete and ordinal categories.

The BeLa-E data set [8] records 1930 graduate students’
attitudes toward their future jobs. Each record contains
50 attributes. The first 2 attributes are the gender and the age of
the student. The remaining 48 attributes grade the importance
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TABLE II

COMPARISONS OF DRMOR-M, REPRESENTATIVE DR METHODS (PCA, KPCA, LDA, KDA, AND CCA), AND COMPETITIVE ORDINAL REGRESSION
METHODS (SVORIM AND KDLOR WITH LINEAR OR RBF KERNELS) ON THE BELA-E DATA SET. THE DOT “·” MEANS THAT ITS DIFFERENCE

FROM THE PROPOSED DRMOR-M IS SIGNIFICANT BASED ON THE PAIRED t -TEST WITH A SIGNIFICANCE LEVEL OF 0.05

of different properties of their future job, evaluated by the
students on an ordinal scale with five levels. We used 1918 of
these 1930 records (excluding 12 records with invalid ages).
We selected the first 4 attributes (Gender, Age, Prop#1, and
Prop#2) as labels and the remaining 46 properties as features.
Gender consists of two classes. DRMOR-M treats the binary
classification problem as a special case of ordinal regression
with r = 2. Age was divided into four time-ordered intervals.
Prop#1 and Prop#2 were two of the graded properties with
five levels.

The Denver Intensity of Spontaneous Facial Action (DISFA)
data set [36] records 27 subjects’ spontaneous expressions
when they are watching video clips. This data set con-
sists of 27 videos with 4845 frames each. Each frame is
encoded with 12 facial AUs [14], and each AU is annotated
by 0 (absent) or intensities A–E. Our experiments selected
eight AUs as labels, and the features were the concate-
nated SIFT descriptors around 49 landmarks detected by
active appearance model [58].

The OES10 data set [45] was collected from the
annual Occupation Employment Survey compiled by the
U.S. Bureau of Labor Statistics for the year 2010. Each
instance provides the estimated number of full-time equivalent
employees across many employment types for a specific
metropolitan area. The 298-d features were a randomly
sequenced subset of employment types, and the 16 labels were
randomly selected from the entire set of categories above the
50% threshold. OES10 was used to validate multitarget regres-
sion problems [4], [45]. To adapt OES10 to our experiments,
we divided each of the target variables into four to six ordinal
categories according to their values.

2) Metrics: We utilized two standard evaluation crite-
ria, i.e., mean zero-one error (MZE) and mean absolute
error (MAE), in our experiments. For all the methods, we also
report the average results obtained over all the labels.

MZE is the error rate of the single-label classifier,
i.e., MZE = (1/N)

∑N
i=1 1(ŷi �= yi), where yi is the ground

truth, ŷi is the predicted one, and the indicator 1(ŷi �= yi ) = 1
if the prediction conflicts with the ground truth; otherwise,
1(ŷi �= yi ) = 0. MZE reflects the global performance without
considering the order.

MAE measures the average deviation of the prediction
from the true order, i.e., MZE = (1/N)

∑N
i=1 |ŷi − yi |,

where the ordinal scales are treated as consecutive
integers.

In our experiments, each reported value was averaged
over several repeated runs, i.e., 50 runs in Bela-E, 5 runs
in DISFA, and 10 runs in OES10. During each run of
BeLa-E, 30% of the instances (approximately 570 samples)
were randomly selected as training samples, and the remainder
were used for testing. Similarly, in DISFA, 2% (approximately
2700 samples) of the instances were selected for training, and
the remainder were used for testing; in OES10, approximately
33% (130–140 samples) of the instances were for training, and
the remaining instances were used for testing. For fairness,
we fixed these training/test splits for each comparison on all
the data sets in our experiments.

3) Compared Methods: First, we compared the proposed
DRMOR-M with the typical unsupervised or supervised
dimensionality reduction as follows.

PCA/KPCA: PCA [25] is a prevalent unsupervised DR
method. It finds a new orthogonal coordinate system that
optimally describes variance for the original data. In our
experiments, we adopted PCA to reduce the data dimension
by preserving 98% of the energy. KPCA [44] extends PCA
using techniques of kernel methods.

LDA/KDA: LDA [5], [17] is a supervised DR method
that finds a linear combination of features to sepa-
rate two or more classes of data points. KDA [3]
extends LDA using kernel methods. In our experiments,
the LDA or KDA was learned and evaluated on each individual
label.

CCA: CCA [26], [49] finds correlations between two sets of
multidimensional variables. It can be applied as a multilabel
DR tool, in which the two sets of variables are derived from
the data and the class labels, respectively. By maximizing the
correlation between the data and the associated labels, the data
are projected onto a lower-dimensional space directed by the
label information.

The projected data generated by the above DR methods were
fed into an SVORIM [10]. In KPCA and KDA, a Gaussian
kernel was used.
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TABLE III

COMPARISONS OF DRMOR-M, REPRESENTATIVE DR METHODS (PCA, LDA, AND CCA), AND COMPETITIVE
ORDINAL REGRESSION METHODS (SVORIM AND KDLOR) ON THE DISFA DATA SET

TABLE IV

COMPARISONS OF DRMOR-M, REPRESENTATIVE DR METHODS (PCA, KPCA, LDA, KDA, AND CCA), AND COMPETITIVE ORDINAL REGRESSION

METHODS (SVORIM AND KDLOR WITH LINEAR OR RBF KERNELS) ON THE OES10 DATA SET. THE DOT “·” MEANS THAT ITS DIFFERENCE
FROM THE PROPOSED DRMOR-M IS SIGNIFICANT BASED ON THE PAIRED t -TEST WITH A SIGNIFICANCE LEVEL OF 0.05

We also compared the proposed method with state-of-
the-art ordinal regression algorithms using original features.

Both linear and nonlinear versions (with a Gaussian kernel)
of SVORIM and KDLOR were used.
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Fig. 5. Average errors of DRMOR-M under various dimensions d on (a) BeLa-E, (b) DISFA, and (c) OES10 data sets.

SVORIM: SVORIM [10] is an SVM-based algorithm that
can classify instances into ordinal categories by optimizing
some thresholds.

KDLOR: KDLOR [46] reformulates discriminant learning
to tackle ordinal regression. KDLOR introduces an ordering
constraint on the averages of projected patterns of each ordinal
category.

4) Parameter Settings: In DRMOR-M, we set the low
dimension d as 5, 400, and 10 for the Bela-E, DISFA,
and OES10 data sets, respectively. To reduce the burden of
parameter tuning, κl was set to be the same for all the
ordinal regression problems in the DRMOR-M, SVORIM,
and KDLOR methods. The optimal κl was selected from
the range of [0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1, 3, 6, 10] via
a fivefold cross-validation. For all the nonlinear methods,
we used Gaussian kernel k(x, z) = exp ((||x− z||2)/(2δ2))
with parameter δ2 as the averaged square root of
the pair-wise Euclidean distance over the training set.
In KDLOR, hyperparameter C is searched in the range of
[0.01, 0.03, 0.06, 0.08, 0.1, 0.3, 0.6, 0.8, 1, 3, 6], and k is in
the range of [10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10].

5) Results: Tables II–IV report the MZE and MAE on
the BeLa-E, DISFA, and OES10 data sets, respectively. The
nonlinear versions of the methods were not used in DISFA
(Table III) because of their computational limitations on large
data sets. The values of MZE and MAE in these three tables
are in terms of percentage. From the tables, we summarize the
following observations.

First, the proposed DRMOR-M consistently outperforms the
other methods in terms of average errors over all the labels,
although it is not the best on every individual label. This
result is reasonable because DRMOR-M aims to minimize
the overall error, as shown in its objective (1). It balances
the trade-off among the performances of different labels by
extracting a shared low-dimensional subspace. Within the
shared subspace, as will be discussed in Section IV-C2, some
but not all the labels benefit from it.

Second, DRMOR-M is good at capturing the ranking infor-
mation compared with other supervised DR methods. On the
one hand, as shown in Table IV, DRMOR-M outperforms the
other DR methods in all the individual labels in terms of MAE,
although it obtains larger MZEs than LDA in several labels.
This result indicates that, even though some predictions of

DRMOR-M are not exactly correct, DRMOR-M has less pre-
diction discrepancies from the true order than LDA does. The
reason is that DRMOR-M requires the samples to be ranked
by orders, whereas LDA merely requires them to be sepa-
rated in different categories. On the other hand, DRMOR-M
outperforms CCA on all the data sets. Compared with CCA,
DRMOR-M achieved 1.28% and 1.68% improvements in
terms of average MZE and MAE on the BeLa-E data set,
9.79% and 6.30% on the DISFA data set, and 19.14% and
33.02% on the OES10 data set. One plausible reason for
this result is that CCA does not take into consideration the
ranking information within each label, although it explores
the relationship between the data and multiple labels.

Third, as shown in Tables II–IV, DRMOR-M outperforms
the unsupervised DR methods on all the individual labels
in terms of both MZE and MAE. In the BeLa-E data set,
DRMOR-M achieves 29.58% and 46.60% reductions in MZE
and MAE compared with PCA. These values in the DISFA
and OES10 data sets are 48%, 62.85%, 22.48%, and 23.89%,
respectively. PCA has relatively high errors because it incor-
porates no labels; thus, it cannot be guaranteed to separate the
data well in different categories or those in ordered categories
with different labels. Although KPCA is also unsupervised,
KPCA achieves better performance than PCA because KPCA
is nonlinear. As shown in Table II, KPCA has the same
MZE and MAE as DRMOR-M with label Age. The average
reductions in MZE and MAE by DRMOR-M compared with
KPCA are 7.5% and 9.34% on the BeLa-E data set and 21.4%
and 20.36% on the OES10 data set.

Finally, DRMOR-M is competitive in conducting indepen-
dent ordinal regression methods on individual labels. On the
one hand, DRMOR-M slightly exceeds SVORIM with respect
to the average MZE and MAE, even though SVORIM has the
smallest errors on a few labels, e.g., Prop#1 in BeLa-E and
Labels 7, 13, and 15 in OES10. DRMOR-M achieves 0.51%
and 3.11% improvements in terms of the average MZE and
MAE on the BeLa-E data set, 13.43% and 18.98% on DISFA,
and 12.74% and 8.80% on the OES10 data set. A plausi-
ble reason for the slight error reduction is that the ordinal
regressions on some labels benefit from the shared subspace,
which implicitly incorporates the correlations among different
labels. On the other hand, DRMOR-M significantly outper-
forms KDLOR, particularly the linear version KDLOR(l).



4098 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

Compared to KDLOR(l), DRMOR-M achieved 28.08% and
38.83% improvements in terms of MZE and MAE on
BeLa-E, 68.81% and 75.52% on DISFA, and 19.52% and
30.94% on OES10. The poor performance of KDLOR(l) is
attributed to the loss of crucial information because KDLOR(l)
reduces the original data to a single dimension without suffi-
ciently capturing the rankings by a linear kernel. When replac-
ing the linear kernel with a Gaussian kernel, KDLOR(n) per-
forms much better than KDLOR(l). Compared to KDLOR(n),
DRMOR-M achieved 6.39% and 8.49% improvements in
terms of MZE and MAE on BeLa-E and 4.16% and 14.06%
on OES10.

C. Analysis
To fully understand the proposed DRMOR-M method, we

investigated how DRMOR-M is influenced by the number of
reduced dimensions and the number of labels.

1) DRMOR-M With Various Reduced Dimensions: We
investigated the performance of DRMOR-M under different
reduced dimensions on the Bela-E, DISFA, and OES10 data
sets. The original features were 46-D, 6272-D, and 298-D in
Bela-E, DISFA, and OES10, respectively.

Fig. 5(a)–(c) plot the average errors over all the labels
under various d for the BeLa-E, DISFA, and OES10 data
sets, respectively. Both MZE and MAE significantly decrease
when d varies from 1 to a turning point, after which the error
curves reach a plateau and remain fairly stable. The value of
V at the turning point indicates that the largest V eigenvectors
might convey most of the useful information in the original
feature space. As shown, V is not greater than the number of
labels L, e.g., in the BeLa-E and DISFA data sets, V = L;
in the OES10 data set, V (=5) < L(=16). The reason for this
result can be traced back to the computation of the projection
matrix Q in (10). Q consists of the eigenvectors of UU�, and
U is with rank V ≤ L. Therefore, the largest V eigenvectors
possess the most of the discriminant information. Large errors
and variances would be obtained if we reduce the features to
an extremely low-dimensional subspace, e.g., d = 1, where
some useful information was discarded.

Rather than the law of “the more the better,” we found
that the smallest errors were achieved with a relatively low
dimension by examining the exact values in Fig. 5(a)–(c),
i.e., the optimal d is approximately five in Bela-E, approxi-
mately 400 in DISFA, and 10 in OES10. Note that in Fig. 5(c),
the (MZE, MAE) values at 8, 20, 80, 120, 200, 300, 400,
500, and 1 k are (9.12,10.39), (9.02,10.28), (8.80,10.00),
(8.70,9.90), (8.65,9.86), (8.60,9.81), (8.58,9.81), (8.57,9.82),
and (8.65,9.99), respectively. A possible reason for this result
is that extra dimensions may not provide useful information
but introduce redundancy or even noise that might cause worse
performance.

To further investigate the effects of various d on each label,
we plot Fig. 6 to show the errors of each label on the three data
sets. As shown, all the labels share the same characteristics:
when the reduced dimension d is small, the errors significantly
decrease if we increase the dimensions and when d becomes
relatively large, the error curves change smoothly. Although

Fig. 6. Errors of DRMOR-M with each label under various dimension d.
(a) MZE and (b) MAE of each label on BeLa-E, (c) MZE and (d) MAE of
each label on DISFA, and (e) MZE and (f) MAE of each label on OES10.

the changes are not obvious, we can observe different ten-
dencies in different labels. For some of them, the errors
continue decreasing with larger d , such as AU1, AU2, AU4,
and AU9 in DISFA. For others, the errors accumulate if we
continue increasing d , such as Prop#2 in BeLa-E-diff and
AU6 in DISFA. This result indicates that, in some labels,
the label-related information is inherently complicated and
is well represented by high-dimensional features. In others,
the label-related information is in the low dimensions and is
sensitive to extra noises that are introduced by increasing the
dimensionality.

2) DRMOR-M With Various Number of Labels: We
designed experiments on the BeLa-E data set to show how L
(the number of labels) influences the prediction errors. In our
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Fig. 7. (a)–(e) MZE and (f)–(j) MAE of DRMOR-M on the BeLa-E data set with various L (number of labels). Each of the five columns is with
d = 1, 3, 5, 7, 10, respectively.

experiments, we selected 10 five-level properties as candidate
labels and the remaining 40 attributes as features. For each L,
we selected L labels from the candidate ones and performed
experiments with all the C L

10 combinations of L from the
10 candidate labels. We also prepared 10 splits of the data,
in which 50 instances are in the training set and the others
are in the test set. We repeated the experiments on 10 splits
to obtain the statistics.

Fig. 7 illustrates how the errors change over L (i.e., the num-
ber of labels) on each label. Each column corresponds to
a fixed reduced dimension d , which equals 1, 3, 5, 7, and
10 from left to right. Each point in the figure denotes the
average error of a label if L labels are involved. For example,
in Fig. 7(a), a yellow triangle pointing to the left (Lab#10)
with L = 5 means that Lab#10 achieves a MZE of 0.4,
if there are five labels in total involved. The value is averaged
over 126(=C4

9) out of the 252(=C5
10) combinations where

Lab#10 is involved, with 10 repeated trials on different splits
in each combination.

As shown in Fig. 7, the performance of DRMOR-M
becomes more diverged if we take more labels into considera-
tion. For example, the error curves of Lab#9 buildup but those
of Lab#4 shrink when L increases. The average errors over all
the labels slightly decrease as L increases when d = 5, 7, 10,
but the average curves are rapidly or slightly increasing when
d = 1 and 3. This result suggests that when d is small,

considering too many labels provide a little benefit or even
decreases the performance.

Furthermore, DRMOR-M is somewhat sensitive to L when
the reduced dimension is small. In Fig. 7(a) and (f), where
d = 1, the curves change in a larger scale than those
in Fig. 7(b) and (g), where d = 3. In the last two columns
of Fig. 7, where d = 7 and 10, most of the curves are nearly
flat, which indicates that the performance is stable.

V. CONCLUSION

In this paper, we have investigated DRMOR, an important
but relatively unexplored issue involving finding an intrin-
sic subspace that preserves ordered categories in multiple
labels. We have formulated DRMOR as a joint optimiza-
tion problem, which simultaneously takes DR and multiple
ordinal regressions into consideration. Specifically, we have
proposed DRMOR-M to solve the optimization problem. The
experimental results on synthetic examples show that the
learned subspace preserves the ordinal information on all the
labels. Moreover, empirical comparisons on three standard
data sets demonstrate the superiority of DRMOR-M over
both representative DR algorithms and competitive ordinal
regression methods. We have also investigated how DRMOR-
M is influenced by the reduced dimension and the number
of involved labels. The investigations show that an optimal
reduced dimension can be found for the overall performance
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on all the labels, but both the reduced dimension and the
number of labels have different influences on individual labels.

For the future work, we are particularly interested in explor-
ing the relations among multiple labels in DRMOR-M as
it plays an important role in learning the shared subspace.
Moreover, in multilabel scenarios, some labels might be more
important than others. How to automatically adjust the weights
of different labels in the DRMOR-M framework is another
issue worth to further study.
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