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Abstract— Ordinal data are common in many data mining and
machine learning tasks. Compared to nominal data, the possible
values (also called categories interchangeably) of an ordinal
attribute are naturally ordered. Nevertheless, since the data
values are not quantitative, the distance between two categories
of an ordinal attribute is generally not well defined, which
surely has a serious impact on the result of the quantitative
analysis if an inappropriate distance metric is utilized. From the
practical perspective, ordinal-and-nominal-attribute categorical
data, i.e., categorical data associated with a mixture of nominal
and ordinal attributes, is common, but the distance metric
for such data has yet to be well explored in the literature.
In this paper, within the framework of clustering analysis,
we therefore first propose an entropy-based distance metric
for ordinal attributes, which exploits the underlying order
information among categories of an ordinal attribute for the
distance measurement. Then, we generalize this distance metric
and propose a unified one accordingly, which is applicable to
ordinal-and-nominal-attribute categorical data. Compared with
the existing metrics proposed for categorical data, the proposed
metric is simple to use and nonparametric. More importantly,
it reasonably exploits the underlying order information of ordinal
attributes and statistical information of nominal attributes for
distance measurement. Extensive experiments show that the
proposed metric outperforms the existing counterparts on both
the real and benchmark data sets.

Index Terms— Categorical data, clustering algorithms, data
analysis, distance metric, entropy, order information, ordinal
attribute.

I. INTRODUCTION

IN GENERAL, the types of data attributes are composed of
two major classes, i.e., categorical and numerical attributes,

as illustrated in Fig. 1. Under the categorical class, there
are still two subclasses, i.e., nominal attributes and ordinal
attributes, where ordinal attributes inherit some properties of
nominal attributes [1], [2]. On the one hand, like nominal
attributes, the categories (i.e., the possible values) of attributes
in ordinal data, i.e., the data associated with the ordinal
attributes only, are all qualitative and unsuitable for arithmetic
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Fig. 1. Relationships among different data types.

TABLE I

FRAGMENT OF ASSISTANT DATA SET

operations such as mean, division, and summation [3]. On the
other hand, the categories of an ordinal attribute are naturally
ordered and comparable. Hereinafter, for simplicity, nominal
(ordinal) data refer to either nominal (ordinal) attribute or the
data associated with the nominal (ordinal) attributes only,
which are easy to be distinguished based on the context.

In many real categorical data analysis tasks, both nominal
and ordinal attributes exist in data sets, e.g., the data obtained
through questionnaires, evaluation system, and so on. Table I
shows a fragment of a teaching assistant evaluation data set,
where each object, i.e., each row record in the table, is an eval-
uation result in terms of four attributes: Helpful, Professional,
Course, and Type. If we treat ordinal attributes, i.e., Helpful
and Professional, as nominal ones, the preservation of their
natural order relationship may not be guaranteed. For example,
the distance between Agree and Weak-agree should be smaller
than that between Agree and Disagree. However, this order
relationship will be ignored if we treat the categories as
nominal ones. Therefore, it is more reasonable to treat ordinal
attributes differently from the nominal ones to take their order
information into account for data analysis.

In the literature, several works have been proposed for ordi-
nal data regression [4]–[6], ordinal data classification [7]–[9],
and ordinal data ranking [10]–[12]. Nevertheless, all of them
focus on ordinal data only. In fact, from the practical per-
spective, the ordinal-and-nominal-attribute categorical data
(i.e., the categorical data with a mixture of nominal and ordinal
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attributes) are common as shown in Table I. Unfortunately,
as far as we know, the distance metric for such categorical data
has yet to be well explored in the literature. Therefore, this
paper will study the metric for such data within the framework
of clustering analysis, which is generally a nontrivial task
because the heterogeneous information offered by ordinal and
nominal attributes should be simultaneously taken into account
when assigning the data objects into the proper groups (also
called clusters interchangeably).

Over the past two decades, a number of clustering algo-
rithms have been proposed for the categorical data, which are
essentially applicable to nominal data only. A typical example
is k-modes (KM) algorithm [13], which seeks for a partition
by iteratively assigning objects into their closest modes. Later,
Huang et al. [14] propose extended KM, in which the con-
tributions of different attributes are weighted during the data
clustering process. Also, another improved version of KM has
been presented in [15]. Instead of weighting the attributes for
a whole data set, this version weights the contributions of each
attribute for different clusters. Furthermore, another example
is the entropy-based clustering (EBC) algorithms [16], [17]
provided that the information entropy of a cluster will not
increase a lot after adopting an object if this object is similar
to the cluster. In addition, Jia and Cheung [18] have proposed
a clustering algorithm, namely attribute-weighted object-
cluster similarity metric-based iterative clustering learning
(weighted-OCIL), which weights the attributes on each cluster
by simultaneously considering their contributions in terms of
intracluster similarity and intercluster difference. Although
all the above-mentioned algorithms can be applied to ordinal-
and-nominal-attribute categorical data, their clustering results
will be degraded to a certain degree because the metrics
adopted by these algorithms have not taken into account the
order information of the ordinal attributes.

In fact, as far as we know, most of the existing metrics
on categorical data are essentially for nominal data only.
For example, the commonly used Hamming distance met-
ric (HDM) [19]) does not consider the inherent relation-
ships among attributes. Also, association-based distance metric
(ABDM) [20] and Ahmad’s distance metric (ADM) [21], [22]
have been proposed, provided that, for two intraattribute
categories, the distance between two categories will be shorter
if the distributions of their corresponding values from the other
attributes are similar to each other. However, both the metrics
treat each attribute equally, which is usually unreasonable.
To address this problem, a context-based distance metric
(CBDM) [23], [24] has been proposed to measure the distance
between two intraattribute categories according to the selected
relevant attributes. Furthermore, categorical data distance met-
ric (CDDM) proposed by Jia et al. [25] not only measures the
distance according to the relevant attributes but also considers
the occurrence probabilities of them. In this way, even all the
attributes are independent of each other, this metric still works.
Nevertheless, all the metrics mentioned earlier are actually
proposed for nominal data, which are surely unsuitable for
exploiting order information of ordinal attributes.

In the literature, some other measures have been presented
to measure the similarity between two value lists according

to the order of the values. For example, Kendall’s rank
correlation [26] and Spearman’s rank correlation [27]–[29]
measure the correlation degree between two variables
according to the matching degree of their ranking values.
However, most of the ordinal attributes in categorical data
sets have a small number of possible values, which cannot
provide valid ranking values for the computation of these
two measures. Another measure, called rank mutual infor-
mation (RMI), has been presented in [30] for monotonic
classification. Similar to Kendall’s and Spearman’s rank cor-
relations, RMI is designed to measure the monotonic level
between attributes and is also unsuitable for the distance
measurement of data objects. Recently, Hu et al. [30] have
shown that entropy-based measures are proper for quanti-
fying the order information of ordinal attributes. In fact,
entropy-based metrics have been successfully used for nom-
inal data clustering (see [15]–[17], [23], [24]). Therefore,
along this line, proposing an entropy-based distance metric
(EBDM) that can simultaneously exploit valuable informa-
tion of ordinal and nominal attributes will be a feasible
choice for ordinal-and-nominal-attribute categorical data
clustering.

In this paper, we will propose a new categorical data dis-
tance metric that can exploit the order information of ordinal
attributes and unify the heterogeneous information offered by
ordinal and nominal attributes for categorical data clustering.
To exploit such order information, we compute the distance
between two ordinal categories according to the entropy values
of all categories ordered between them (including themselves).
This idea is analogous to answering a questionnaire. For
example, given a multiple-choice question with the ordered
choices: {very-good, good, neutral, bad, and very-bad}. When
we are comparing two choices, i.e., “neutral” and “very-good,”
to make a final decision for this question, both of these two
choices should be considered together with another choice
“good” because “good” is an intermediate choice and cannot
be skipped.

We also generalize the proposed metric by unifying the
distance concepts of both ordinal and nominal attributes. Since
the choices of a question are unordered in a nominal case,
it is unnecessary to consider other choices when we are
deciding the final choice from the two choices. According
to this, the concept of distance has a uniform definition,
which is the so-called “thinking cost” for all the choices that
should be considered for choosing a choice from two choices,
no matter whether the choices are ordered or not. Therefore,
the information offered by ordinal and nominal attributes
can be quantified and combined for indicating the distance
between two data objects of an ordinal-and-nominal-attribute
categorical data set. Furthermore, by taking into account the
different contributions of attributes in the clustering task,
we also present a unified attributes weighting scheme to adjust
the contributions of different attributes.

Experimental results on different real and benchmark data
sets have shown the effectiveness of the proposed distance
metric for ordinal-and-nominal-attribute categorical data clus-
tering. The main contributions of this paper are summarized
into threefold.
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1) An EBDM is proposed to quantify the distance between
ordinal categories from the perspective of information
theory. Analogous to the thinking procedure of a human
being in choosing a choice from two choices, the dis-
tance between two ordinal categories is measured by
calculating the entropy values of all the categories
ordered between them (including themselves).

2) A unified metric featuring parameter-free, robust, and
easy to use is developed by further taking the nominal
case into account. It unifies the concept of distance for
both ordinal and nominal categories and can be applied
for the distance measurement of all types of categorical
data, i.e., ordinal data, nominal data, and ordinal-and-
nominal-attribute categorical data.

3) An attribute weighting scheme is designed to weight
the contributions of different ordinal attributes for the
distance measurement. It not only assigns a larger weight
to the attributes offering more information for the dis-
tance measurement but also unifies the distance scales
of different attributes. This weighting scheme is also
generalized for both ordinal and nominal attributes.

The rest of this paper is organized as follows. In Section II,
we will make an overview of some related metrics and
measures on categorical data analysis. Section III proposes
a generalized distance metric for both ordinal and nominal
attributes, in which its time complexity and limitations are also
discussed. Section IV gives the experimental results on both
real and benchmark data sets. Finally, we draw a conclusion
in Section V.

II. OVERVIEW OF RELATED WORK

This section reviews the existing related works on:
1) distance metrics proposed for categorical data clustering
and 2) measures designed for ordinal data analysis.

A. Distance Metrics for Categorical Data Clustering

Five distance metrics for categorical data clustering, includ-
ing HDM [13], ABDM [20], ADM [21], CBDM [24], and
CDDM [25], are reviewed in this section.

HDM [13] is simple and popular for categorical data analy-
sis. It uniformly assigns distance “1” to a pair of different
categories while assigns distance “0” to a pair of identical
categories. Therefore, HDM is incapable to distinguish the
distances between different pairs of categories, and will thus
completely ignore the order relationships among ordinal cate-
gories. Moreover, it treats each attribute equally and will also
ignore the relationship among attributes.

To extract valuable information from correlated attributes
for more accurate distance measurement, ABDM is proposed
in [20]. It adopts the idea that if the probability distributions
of the corresponding values from another attribute of two
categories are dissimilar to each other, the distance between
the two categories will be larger. In practice, Kullback–Leibler
divergence method [31], [32] is utilized to compute the
distance between two probability distributions. Later, ADM
proposed in [21] and [22] adopts similar idea as the ABDM.
The difference is, ADM calculates the distance between

two categories according to their separating power, which is
defined in [33].

All the above-mentioned metrics treat each attribute equally,
which is not always reasonable. Therefore, CBDM is proposed
in [23] and [24] to calculate the distance between two cate-
gories from a target attribute according to the selected relevant
attributes, which are called context. For each attribute, the rel-
evant but not redundant attributes are determined according
to the symmetrical uncertainty defined in [34] as the context.
Then, the distance between the two categories from the target
attribute is calculated according to it.

ABDM, ADM, CBDM are all indirect metrics that mea-
sure the distance between categories according to the other
attributes. Therefore, when the attributes are independent of
each other, their performance will be significantly influenced.
To solve this problem, and to further improve the distance
measurement of categorical data, CDDM is proposed in [25].
It measures the distance by simultaneously considering the
occurrence probabilities of two given categories, and their con-
ditional probabilities of their cooccurred values from the other
relevant attributes. This metric also weights the contributions
of different attributes according to the idea that uncommon
categories offer more valuable information for the distance
measurement. Moreover, it selects the attributes according
to the normalized version of mutual information [35] and
calculates the distance between two categories by simultane-
ously considering the target attribute itself and the selected
attributes.

B. Measures for Ordinal Data Analysis

Three measures, i.e., Kendall’s rank correlation [26], Spear-
man’s rank correlation [28], and RMI [30], have been proposed
for data analysis in the literature. We discuss them in the
following because they can be applied to ordinal data analysis.

Kendall’s rank correlation [26] is presented to measure the
association degree between two value lists in terms of the
orders of the values. It counts the number of concordant pairs
and discordant pairs of observations. For the concordant case,
if the i th value of list A1 is larger (or smaller) than the j th
value of A1, and the i th value of list A2 is also larger (or
smaller) than the j th value of list A2, then the pair of the
i th and j th observations are judged to be concordant. For
the discordant case, if the i th value of list A1 is larger (or
smaller) than the j th value of A1, and the i th value of list A2
is smaller (or larger) than the j th value of list A2, then the pair
of the i th and the j th observations are judged to be discordant.
If two observations are completely the same, they are judged
as neither concordant nor discordant. More concordant pairs
and less discordant pairs indicate a higher order correlation
level between the two ordinal value lists.

Spearman’s rank correlation [28] measures the dependence
degree between two value lists in terms of their orders. It first
sorts the two value lists according to the order values of one
of the lists. Then, the differences between the order values of
the two lists are utilized to calculate their rank correlation.
An extremely high or low difference usually indicates that the
orders of the two value lists are completely inverse or identical
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to each other. However, both the Kendall’s and Spearman’s
rank correlations need sufficient unique order values for the
rank correlation calculation. Since there are usually a small
number of categories in an ordinal attributes, the two rank
correlation measures are unsuitable for ordinal data analysis.
Moreover, since the two measures are designed to calculate
the rank correlation degree between two value lists, they
are more likely to be utilized to measure the relevance
degree between attributes, but not the distance between data
objects.

RMI [30] is proposed for monotonic classification. It can
be viewed as the extended version of mutual information.
RMI exploits the order information of values to measure the
monotonicity relevance between two value lists. Originally,
mutual information cannot reflect the dependence in terms of
orders because it is calculated by summing up the subentropies
and subconditional entropies of different categories. RMI
extends it by summing up the subentropies and subconditional
entropies of different dominance rough sets, and therefore,
competent for indicating the dependence degree between
two value lists in terms of their orders. More details about
rough sets theory can be found in [36]–[39]. Similar to the
two above-mentioned measures, RMI is also designed to
measure the relevance between two value lists, which cannot
be utilized to measure the distance between two possible
values of an attribute.

III. PROPOSED METRIC

In this section, we first propose the EBDM to exploit
the embedded order information for ordinal data distance
measurement. Then, this metric is generalized to an ordinal-
and-nominal-attribute version. Finally, we discuss the time
complexity and limitations of the proposed metric.

A. Preliminaries

In this paper, for a data set X = {x1, x2, . . . , xN }
with N data objects represented by d attributes, it is
assumed that the former dord attributes are ordinal attributes:
{A1, A2, . . . , Adord} and the latter dnom attributes are nominal
attributes: {Adord+1, Adord +2, . . . , Ad }, where d = dord + dnom.
Ordinal data set can be viewed as a special case that dord = d
and dnom = 0, while nominal data set is another special case
that dord = 0 and dnom = d .

Possible values of an attribute Ar can be represented by
a category set Or = {Or (1), Or (2), . . . , Or (vr )}, where vr

is the number of categories of Ar . In this paper, each
category is represented in the form of Osa(sc). Here, sa
(sa ∈ {1, 2, . . . , d}) stands for the sequence number of
an attribute Asa, and sc (sc ∈ {1, 2, . . . , vsa}) stands for
the sequence number of a category belonging to Asa. The
difference between ordinal and nominal categories is that the
ordinal categories from one attribute are naturally ordered, and
their sequence numbers are also the order values of them.
Specifically, for an ordinal attribute Ar , its categories satisfy
Or (1) ≺ Or (2) ≺ ... ≺ Or (vr ) where the symbol “≺” means
that the categories on its left ranked higher than the categories
on its right. For a nominal attribute, the sequence numbers of

Fig. 2. Example of a multiple-choice question with ordered choices.

its categories do not indicate the order relationships among
the categories.

From the viewpoint of data objects, Or is the value space
of the r th value of a data object. Specifically, a data object
xi can be expressed by xi = {O1(i1), O2(i2), . . . , Odord (idord),
Odord+1(idord+1), Odord +2(idord +2), . . . , Od (id)}, where the for-
mer dord take values from the category sets of each of the dord
ordinal attributes, while the latter dnom take values from the
category sets of each of the dnom nominal attributes. For the
ordinal part of xi , the sequence numbers i1, i2, . . . , idord indi-
cate that the categories ranked i1th, i2th,…, idord th in category
sets O1, O2, . . . , Odord have been taken by the 1st, 2nd,…,
dordth values of object xi , respectively. For the nominal part
of xi , the sequence numbers idord+1, idord+2, . . . , id indicate
that the idord+1th, idord+2th,…, id th categories in category sets
Odord+1, Odord+2, . . . , Od have been taken by the dord + 1th,
dord + 2th,…, dth values of object xi , respectively.

For a reasonable ordinal data distance metric, the dis-
tances produced by it should consistent with the order
relationships among the ordered categories of an ordinal
attribute. More specifically, the produced distance values
should satisfy Dist (xi , x j ) ≤ Dist (xi , xl), if Or (ir ) �
Or ( jr ) � Or (lr ) or Or (lr ) � Or ( jr ) � Or (ir ) where
i, j, l ∈ {1, 2, . . . , N}, ir , jr , lr ∈ {1, 2, . . . , vr } and r ∈
{1, 2, . . . , dord}. Here, the symbol “�” means that the order
values of the categories on its left are not lower than that of
the categories on its right.

Frequently used symbols in this paper are sorted out
in Table II.

B. Entropy-Based Distance Metric

For an ordinal data set collected from questionnaires, each
attribute is a multiple-choice question with all its choices
naturally ordered. Ordered categories of an attribute are the
ordered choices of a question. A data object is a sample con-
taining answers to each of the questions given by a participant.
If a participant is trying to select a choice from C and E
for a question, all the choices between C and E including
themselves, i.e., C, D, and E, have been considered by him/her
as shown in Fig. 2. In other words, C, D, and E cost thinking
for a participant to choose a choice from C and E. It is
obvious that the thinking cost for choosing the choice from
two choices is not only related to the two choices themselves
but also related to the choices ordered between them, that
is, if choice D costs more thinking, it will be more difficult
for a participant to decide a final answer from C and E.
Moreover, choosing a choice from two choices by considering
more choices will cost more thinking. For instance, choosing
a choice from C and E will cost more thinking than that
from C and D. In addition, since all the choices are different
from each other, each of them costs different thinking cost.
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TABLE II

FREQUENTLY USED SYMBOLS

Thinking cost of each choice has been indicated using different
widths in Fig. 2.

By making an analogy between the above-discussed choice
choosing issue and the ordinal data distance measurement
problem, the distance between two ordinal categories can be
viewed as the cost for choosing a choice from two choices.
Based on this, the whole data set can be viewed as the records
of the answers given by the participants, and the distance
measurement problem can be viewed as the cost prediction
problem. Specifically, the distance between two categories
Or (ir ) and Or ( jr) from Ar with jr > ir can be measured by
estimating the cost (distance) contributions of the jr − ir + 1
categories, i.e., Or (ir ), Or (ir + 1),…, Or ( jr).

According to the above-mentioned discussions, the vital
problem in ordinal data distance measurement is how to
measure the distance contributions of different categories.
From the perspective of information theory, a higher entropy
value usually indicates a larger amount of information or more
uncertainty. A choice with more information or higher uncer-
tainty level usually costs more thinking for a participant.
Therefore, the entropy value of a category is suitable for

indicating its distance contribution. More specifically, sum of
the entropy values of categories Or (ir ), Or (ir +1),…, Or ( jr)
indicates the distance between Or (ir ) and Or ( jr).

Therefore, the distance between the r th value of two objects,
xi and x j , from an ordinal data set X with N objects
represented by dord ordinal attributes, is defined as

ϑ(Or (ir ), Or ( jr)) =

⎧⎪⎪⎨
⎪⎪⎩

max(ir , jr )∑
s=min(ir , jr )

EOr (s), if ir �= jr

0, if ir = jr

(1)

where ϑ(·, ·) stands for the distance between two categories,
and EOr (s) stands for the entropy value of category Or (s),
which can be written as

EOr (s) = −pOr (s) log pOr (s) (2)

where the item pOr (s) stands for the occurrence probability of
value Or (s) in attribute Ar , which can be written as

pOr (s) = σOr (s)

N
(3)

where σOr (s) is the number of data objects in the data set X
with their r th values equal to Or (s). Subsequently, the distance
between two ordinal data objects xi and x j can be written as

Dist (xi , x j ) =
√√√√dord∑

r=1

ϑ(Or (ir ), Or ( jr ))2. (4)

The distance between ordinal categories defined in (1) is
consistent with the order relationships among the ordinal
categories, because a pair of categories with larger order
value difference will always have a larger distance according
to (1). Since (4) is the L2-norm of the distances between
intraattribute categories defined in (1), the distance between
the ordinal objects defined in (4) is also consistent with the
order relationships among ordinal categories, that is, the dis-
tances defined in (4) satisfy Dist (xi , x j ) ≤ Dist (xi , xl),
if Or (ir ) � Or ( jr) � Or (lr ) or Or (lr ) � Or ( jr ) � Or (ir )
where i, j, l ∈ {1, 2, . . . , N}, ir , jr , lr ∈ {1, 2, . . . , vr } and
r ∈ {1, 2, . . . , dord}, as discussed in Section III-A. However,
the defined distance still has two problems.

1) The importance of attribute is not considered. The
defined distance treats each attribute equally, which is
not always reasonable in practice.

2) The distances measured for the categories from different
attributes do not have a unified scale. An attribute with
larger number of categories are more likely to produce
larger distance values, which makes the measured dis-
tance somewhat unreasonable.

To solve these two problems, we present a weighting scheme
in Section III-C.

C. Attribute Weighting

From the perspective of information theory, higher entropy
of an attribute means that this attribute offers more informa-
tion [40]. Evidently, a decision made based on larger amount
of information will be more convincible. Therefore, we weight
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the importance of the attributes according to the information
amount they offer. Specifically, the weight value for weighting
the importance of an attribute Ar is defined as

ωI
Ar

= E Ar∑dord
s=1 E As

(5)

where E Ar stands for the entropy of Ar , which is defined as

E Ar = −
vr∑

s=1

pOr (s) log pOr (s). (6)

The attributes with larger number of categories may produce
larger distance values and will contribute more to the distance
between two data objects. To avoid this, the weight value for
weighting the scale of an attribute Ar is defined as

ωS
Ar

=
1

SAr∑dord
s=1

1
SAs

(7)

where the factor SAr , called standard information, is defined
as

SAr = − log
1

vr
(8)

where SAr is the maximum entropy of an attribute. It calculates
the entropy of an attribute when the occurrence probabilities
of its categories are all the same. Here, we choose to use the
standard information instead of the attribute’s entropy E Ar

for scale weighting because the standard information makes
the distances from different attributes comparable. For exam-
ple, given ϑ(Or (ir ), Or ( jr)) = ϑ(Om (im), Om( jm)) with
vr = vm , the two distances will become unequal after the
scale weighting using the weight values defined by ωS

Ar
=

1/E Ar /
∑dord

s=1 1/E As and ωS
Am

= 1/E Am /
∑dord

s=1 1/E As if
E Ar �= E Am . By using standard information, this problem can
be avoided.

To simultaneously weight the attributes using the two above
defined weights ωI

Ar
and ωS

Ar
, the integrated weight of an

attribute Ar can be written as

ωAr = ωI
Ar

· ωS
Ar

. (9)

To explain the physical meaning of the integrated weight,
we also define another concept called reliability, which is
written as

RAr = E Ar

SAr

. (10)

The reliability indicates the percentage of the maximum
information contained by attribute Ar . The higher the RAr

is, the more convincible the distances measured according to
attribute Ar will be. Based on (10), the weight of Ar can be
rewritten as

ωAr = RAr∑dord
s=1 RAs

. (11)

Since (11) is equivalent to the weight defined in (9), it can
simultaneously weight the importance and scale of an attribute.

Fig. 3. Example of a multiple-choice question with nominal choices.
In this question, A–D stand for “English,”“Machine Learning,” “Music,” and
“Mathematics,” respectively.

Based on the distance between ordinal categories defined
in (1) and the weight defined in (11), the weighted distances
between ordinal categories can be written as

ϑ(Or (ir ), Or ( jr))

=

⎧⎪⎪⎨
⎪⎪⎩

ωAr ·
max(ir , jr )∑

s=min(ir , jr )

EOr (s), if ir �= jr

0, if ir = jr

(12)

which has the following properties when i, j, l ∈
{1, 2, . . . , N}, and r ∈ {1, 2, . . . , dord}:

1) ϑ(Or (ir ), Or ( jr)) = 0 iff Or (ir ) = Or ( jr);
2) ϑ(Or (ir ), Or ( jr)) = ϑ(Or ( jr), Or (ir ));
3) 0 ≤ ϑ(Or (ir ), Or ( jr )) ≤ 1;
4) ϑ(Or (ir ), Or (lr )) ≤ ϑ(Or (ir ), Or ( jr)) +

ϑ(Or ( jr), Or (lr ));
5) ϑ(Or (ir ), Or (lr )) = ϑ(Or (ir ), Or ( jr )) +

ϑ(Or ( jr), Or (lr )) − EOr ( jr ) · ωAr , iff Or (ir ) �
Or ( jr ) � Or (lr ) or Or (lr ) � Or ( jr ) � Or (ir ); and

6) ϑ(Or (ir ), Or ( jr)) ≤ ϑ(Or (ir ), Or (lr )), if Or (ir ) �
Or ( jr ) � Or (lr ) or Or (lr ) � Or ( jr ) � Or (ir ).

Based on (12), the distance between ordinal data objects
defined in (4) has the following properties when i, j, l ∈
{1, 2, . . . , N}.

1) Dist (xi , x j ) = 0 iff xi = x j .
2) Dist (xi , x j ) = Dist (x j , xi ).
3) 0 ≤ Dist (xi , x j ) ≤ 1.
4) Dist (xi , xl) ≤ Dist (xi , x j ) + Dist (x j , xl).
5) Dist (xi , x j ) ≤ Dist (xi , xl), if ∀r ∈

{1, 2, . . . , dord}, Or (ir ) � Or ( jr) � Or (lr ) or
Or (lr ) � Or ( jr ) � Or (ir ).

D. Generalized EBDM for Categorical Data

We generalize the EBDM to make it capable for the distance
measurement of categorical data with a mixture of nominal and
ordinal attributes. For nominal data, we still treat the attributes
as questions in a questionnaire. The difference is that the
choices are not ordered. For example, there is a question “what
is your favorite course?” in a questionnaire with four choices,
i.e., “English,” “Machine Learning,” “Music,” and “Mathe-
matics.” If a participant is trying to choose a choice from
“English” and “Mathematics” as shown in Fig. 3, he/she will
not consider the other two choices, i.e., “Machine Learning”
and “Music,” because there is no order relationship among the
choices.

Based on this, the concept of cost can be extended to a
nominal-and-ordinal case. That is, the meaning of the cost
is the thinking cost for all the choices that should be con-
sidered for choosing a choice from two choices, no matter
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the choices are ordered or not. Accordingly, the concept of
distance induced by the concept of thinking cost can be
generalized for categorical data. Specifically, given a data
set X with d attributes (d = dord + dnom, the former dord
ones are ordinal attributes, and the latter dnom are nominal
attributes), the distance between two categories Or (ir ) and
Or ( jr ) can be written as

ϑ(Or (ir ), Or ( jr))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ωAr ·
max(ir , jr )∑

s=min(ir , jr )

EOr (s), if ir �= jr , 0 < r ≤ dord

ωAr ·
∑

s=ir , jr

EOr (s), if ir �= jr , dord < r ≤ d

0, if ir = jr

(13)

and the weight is also generalized as

ωAr = RAr∑d
s=1 RAs

. (14)

The generalized distance metric defined in (13) and (14)
can be utilized for calculating the distance between
two categories, no matter they are ordinal or nominal.
Given i, j, l ∈ {1, 2, . . . , N}, and r ∈ {1, 2, . . . , d}, the gener-
alized weighted distances have the following properties.

1) ϑ(Or (ir ), Or ( jr)) = 0 iff Or (ir ) = Or ( jr).
2) ϑ(Or (ir ), Or ( jr)) = ϑ(Or ( jr ), Or (ir )).
3) 0 ≤ ϑ(Or (ir ), Or ( jr)) ≤ 1.
4) ϑ(Or (ir ), Or (lr )) ≤ ϑ(Or (ir ), Or ( jr )) +

ϑ(Or ( jr), Or (lr )).
Based on (13), the distance between categorical data objects

can be written as

Dist (xi , x j ) =
√√√√ d∑

r=1

ϑ(Or (ir ), Or ( jr ))2, (15)

which has the following properties when i, j, l ∈ {1, 2, . . . , N}.
1) Dist (xi , x j ) = 0 iff xi = x j .
2) Dist (xi , x j ) = Dist (x j , xi).
3) 0 ≤ Dist (xi , x j ) ≤ 1.
4) Dist (xi , xl) ≤ Dist (xi , x j ) + Dist (x j , xl).

E. Discussions

This section discusses: 1) how to apply EBDM for distance
measurement in clustering analysis; 2) time complexity for
clustering analysis using EBDM; and 3) limitations of EBDM.

The work flow of distance measurement by using EBDM is
shown in Fig. 4, and the corresponding distance measurement
algorithm is shown in Algorithm 1. To save computation
cost in clustering analysis, distance matrices containing the
distances between each pair of categories of each attribute
can be calculated according to lines 1–20 of Algorithm 1
in advance. Then, distances between data objects can be
easily read off from these matrices according to line 21 of
Algorithm 1.

Given a data set X with N data objects represented by d
attributes, the computation procedures of EBDM-based dis-
tance measurement consists of four parts:

Fig. 4. Work flow of EBDM.

Algorithm 1 Distance Measurement Using EBDM
Input: Data set X = {x1, x2, . . . , xn}
Output: Dist (xi , x j ) for i, j ∈ {1, 2, . . . , n}
1: for r = 1 to d do
2: RAr = E Ar

SAr
;

3: end for
4: for r = 1 to d do
5: ωAr = RAr∑d

s=1 RAs
;

6: end for
7: for r = 1 to dord do
8: if ir �= jr then
9: ϑ(Or (ir ), Or ( jr)) = ωAr · ∑max(ir , jr )

s=min(ir , jr )
EOr (s);

10: else
11: ϑ(Or (ir ), Or ( jr)) = 0;
12: end if
13: end for
14: for r = dord + 1 to d do
15: if ir �= jr then
16: ϑ(Or (ir ), Or ( jr)) = ωAr · ∑s=ir , jr EOr (s);
17: else
18: ϑ(Or (ir ), Or ( jr)) = 0;
19: end if
20: end for
21: Dist (xi , x j ) =

√∑d
r=1 ϑ(Or (ir ), Or ( jr))2;

1) calculate the vr occurrence probabilities and entropy
values of the categories from each attribute Ar ,
r ∈ {1, 2, . . . , d};

2) calculate a vr ×vr distance matrix for each Ar according
to the vr occurrence probabilities and entropy values;

3) calculate a weight value for each Ar according to the vr

entropy values; and
4) read off the distance between two data objects according

to the prepared distance matrices and the weights.

In clustering analysis, the computation in parts 1–3 should be
executed once, and then being exploited in part 4 for distance
reading off.

We analyze the time complexity of each of the four parts
as follows.

1) For a data set X with N data objects represented by d
attributes, time complexity for calculating the occurrence
probabilities and entropy values of vr categories from
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an attribute Ar is O(N + vr ). For d attributes, the time
complexity is O(Nd + ∑d

r=1 vr ).
2) To calculate the distance between each pair of

the vr categories of an ordinal attribute Ar , r ∈
{1, 2, . . . , dord} according to (13), we first calculate the
distances between vr − 1 pairs of adjacent categories,
e.g., A and B, B and C, C and D, D and E shown
in Fig. 2. Then, the distances between vr − 2 pairs of
categories, i.e., A and C, B and D, C and E, can be
calculated by simply adding the entropy values of C,
D, and E to the distances between A and B, B and C,
C and D, respectively. Therefore, the time complexity
for producing the distance matrix of an ordinal attribute
Ar is O(vr (vr − 1)/2). If Ar is a nominal attribute,
distances of vr (vr − 1)/2 pairs of its categories can
be directly calculated using (13) by adding up the two
entropy values of each pair. This procedure has the same
time complexity as calculating a distance matrix for an
ordinal attribute. Therefore, for d attributes, the time
complexity is O(

∑d
r=1 vr (vr − 1)/2).

3) To calculate the weight value of Ar , we should first
add up the vr entropy values of Ar ’s categories and
divide it by the standard information of Ar according
to (8) and (10) to obtain the reliability RAr of Ar . Then,
the weight value of Ar can be obtained by dividing the
reliability of Ar by the summation of the reliability of
all the d attributes according to (11). Therefore, the time
complexity for calculating the weight values of all the d
attributes is O(

∑d
r=1 vr ).

4) Time complexity for reading off the distance between
two data objects according to the distance matrices and
the weight values is O(d).

According to the above-mentioned analysis, we will further
discuss if the time complexity of EBDM will influence the
time complexity of clustering analysis. Time complexity for
calculating the distance matrices and weight values of all the d
attributes is O(Nd + ∑d

r=1(2vr + vr (vr − 1)/2)). Since the
value of vr is different for each attribute, we use V = max(vr ),
r ∈ {1, 2, . . . , d} instead of vr in the following analysis. Based
on V , the time complexity can be rewritten as O(Nd + V d +
V 2d). Since V is usually a small constant, and V 2 < N in
most of the real categorical data sets, the time complexity for
calculating the distance matrices using EBDM can be written
as O(Nd). If the distance matrices of all the attributes are
given, the time complexity for partitioning the data objects
into k groups in clustering analysis is at least O(kd N I ),
where I is the number of iterations. Therefore, EBDM will
not increase the overall time complexity of clustering analysis.
In other words, even taking the time complexity of calculating
the distance matrices for all the attributes using EBDM into
account, the overall time complexity of clustering analysis is
still O(kd N I ).

Since we focus on solving the most vital and fundamen-
tal problems in ordinal-and-nominal-attribute categorical data
distance measurement, three limitations still exist in EBDM,
which are discussed as follows.

1) Relationships among attributes have not been considered
yet. Relevance between attributes, e.g., order correlation

between ordinal attributes, and dependence between
nominal attributes, may offer valuable information for
distance measurement. To further exploit this kind of
information, the clustering performance of EBDM could
be improved.

2) Higher computation cost for analyzing streaming data.
In this section, the time complexity is analyzed under the
situation that the whole data set is known in advance.
To cluster streaming data, the distance matrices and
weight values should be updated dynamically, which
may influence the clustering efficiency.

3) Attribute types should be specified in advance. EBDM
does not have the ability to automatically detect which
attribute is ordinal and which is nominal. For the cat-
egorical data sets with a large number of attributes,
manually marking the type of each attribute will be
laborious.

IV. EXPERIMENTS

We embed the proposed EBDM and its counterparts into
different representative clustering algorithms. Their perfor-
mance on different real and benchmark data sets is evaluated
using several popular validity indices. Various experiments are
conducted to illustrate the efficacy of EBDM in clustering
analysis.

A. Data Sets and Experimental Settings

Twelve data sets, including five real data sets, i.e., Intern-
ship, Photo, Assistant, Fruit, Pillow, and seven benchmark data
sets, i.e., Employee, Lecturer, Hayth, Nursery, Solar, Voting,
Tictac, are collected for the experiments. Among the twelve
data sets, four of them, i.e., Internship, Photo, Employee,
and Lecturer, are ordinal data sets. Another four of them,
i.e., Assistant, Fruit, Hayth, and Nursery, are categorical data
sets with a mixture of ordinal and nominal attributes. The
remainder four, i.e., Pillow, Solar, Voting, and Tictac, are
nominal data sets. Employee and Lecturer are collected from
Weka web site [41]. Hayth, Nursery, Solar, Voting, and Tictac
are collected from the UCI Machine Learning Repository [42].
Internship is collected from the students’ questionnaires of
the Education University of Hong Kong. Photo and Assistant
are collected from the student questionnaires of the College
of International Exchange of Shenzhen University. Fruit and
Pillow are collected from the business survey of an advertising
company. Statistics of the 12 data sets are shown in Table III.
“Att.(O)” and “Att.(N)” indicate ordinal and nominal attributes,
respectively.

To compare the metrics, we embed them into different
distance-based clustering algorithms and then evaluate their
clustering performance. The metrics, clustering algorithms,
and validity indices are described as follows.

The commonly used HDM [13] is selected as a baseline.
In addition, ADM [21], ABDM [20], CBDM [23], [24] and
CDDM [25] are selected as state-of-the-art counterparts in the
experiments.

KM clustering algorithm [13], [43], which is the most
commonly used one for categorical data clustering, is selected
as a baseline. The attribute weighted version of KM,
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TABLE III

STATISTICS OF THE 12 DATA SETS

i.e., WKM [14], which can automatically weight the con-
tributions of attributes for clustering, is also selected.
In general, a subspace clustering algorithm can achieve
better performance than the conventional ones. Therefore,
the representative subspace clustering algorithm, i.e., entropy
weighting (EW) k-means [15], and the state-of-the-art sub-
space clustering algorithm, i.e., weighted OCIL (WOC) [18],
are also selected. Besides the above-mentioned four distance-
based clustering algorithms, a representative evaluation-based
clustering algorithm, i.e., EBC algorithm [17], is also selected.

For each data set, the performance of different metrics
embedded in different clustering algorithms is averaged on
ten runs. The clustering performance is evaluated using three
powerful and popular validity indices, i.e., clustering accu-
racy (CA) [44], [45], adjusted rand index (ARI) [46], and
normalized mutual information (NMI) [47].

CA measures the percentage of the data objects that
can be correctly clustered, which is defined as CA =∑n

i=1 δ(ci , map(li ))/n, where ci is the true label of the i th
object, and the function map(li ) indicates the mapped label
of i th object after mapping the obtained clusters to the true
clusters [48]. If the mapped label and the true label of i th
object are the same, δ(ci , map(li )) = 1, otherwise 0.

ARI is a more powerful version of Rand index (RI), which
measures the agreement between the true labels and the
obtained labels according to their expected agreement. ARI
is defined as ARI = (RI − E(RI)) ÷ (max(RI) − E(RI)),
where E(RI), and max(RI) stand for expected value of RI
and maximum value of RI, respectively. More details about
ARI and RI can be found in [44].

NMI measures the agreement between the
true labels and the obtained labels from the
perspective of information theory, which is defined
as NMI = (

∑k
r=1

∑k
t=1 cr,t log(n · cr,t/cr · ct )) ÷

((
∑k

r=1 cr log cr/N)(
∑k

t=1 ct log ct/N)), where k, cr,t ,
cr and ct stand for the number of clusters, the number of
data objects that are simultaneously assigned into the r th
cluster by the obtained labels and the tth cluster by the true
labels, the number of data objects that are assigned into
the r th cluster by the obtained labels, and the number of
data objects that are assigned into the tth cluster by the true
labels, respectively.

For all these three indices, a larger value indicates better
clustering performance. Both the CA and NMI have values

TABLE IV

AVERAGED CA ON FOUR ORDINAL DATA SETS

from interval [0,1], while ARI has values from interval [-1,1].
If ARI value is less than 0, it indicates that the performance
is lower than the expectation.

B. Clustering Performance on Ordinal and Categorical Data

To prove the superiority of the proposed EBDM in clus-
tering categorical data sets with ordinal attributes, we embed
EBDM and all its counterparts, i.e., HDM, ADM, ABDM,
CBDM, and CDDM, into the four selected clustering algo-
rithms, i.e., KM, WKM, EW, and WOC, and compare the clus-
tering performance of them and the EBC clustering algorithm
on the four ordinal data sets, i.e., Internship, Photo, Employee,
and Lecturer, and the four categorical data sets, i.e., Assistant,
Fruit, Hayth, and Nursery. In WKM, EW, and WOC clustering
algorithms, distance between intraattribute categories should
be calculated to update the weights of attributes. Because
CDDM directly calculates the distance between objects, and
cannot calculate the distance between intraattribute categories,
CDDM is not embedded into them. WOC with its original
object-cluster similarity measure is also compared in this
experiment. In addition, since EBC is not a distance-based
algorithm, we directly compare it with the other algorithms
without embedding metrics into it.

Clustering performance in terms of CA, ARI, and NMI
on the four ordinal data sets are compared in Tables IV–VI.
Hereinafter, the experimental results highlighted by boldface
and underline indicate the best and the second best results,
respectively.

It can be observed that the performance of EBDM is the
best on almost all the ordinal data sets, no matter which
clustering algorithm is utilized. Only its CA performance
on Employee data set and NMI performance on Internship
data set by using WKM is not the best. However, it is still
the second best, and the gap between it and the best result is
very tiny, i.e., 0.005 for CA on Employee and 0.003 for NMI
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TABLE V

AVERAGED ARI ON FOUR ORDINAL DATA SETS

TABLE VI

AVERAGED NMI ON FOUR ORDINAL DATA SETS

on Internship. Among all the compared metrics, only EBDM
has the mechanism to especially exploit the order information
of ordinal attributes. This is the reason why EBDM is superior
to the other counterparts in ordinal data clustering.

To further evaluate the performance of EBDM on ordinal-
and-nominal-attribute data, clustering performance in terms
of CA, ARI, and NMI on the four categorical data sets are
compared in Tables VII–IX.

According to the results, it can be found that EBDM
is still competitive for categorical data clustering, because
most of the best and second best results are achieved by

TABLE VII

AVERAGED CA ON FOUR CATEGORICAL DATA SETS

TABLE VIII

AVERAGED ARI ON FOUR CATEGORICAL DATA SETS

EBDM-based clustering algorithms. However, the superiority
of EBDM in clustering categorical data is not as significant
as its superiority in clustering ordinal data. This is because all
the other compared metrics are actually designed for nominal
attributes. A data set with more nominal attributes will,
therefore, shorten the performance gap between a nominal
data distance metric and EBDM. In addition, performance
of ADM, ABDM and CBDM based algorithms on Nursery
data set is not reported, because Nursery data set has very
low inter-attribute dependence degree, which makes the ADM,
ABDM, and CBDM metrics completely fail to measure the



ZHANG et al.: UNIFIED EBDM FOR ORDINAL-AND-NOMINAL-ATTRIBUTE DATA CLUSTERING 49

TABLE IX

AVERAGED NMI ON FOUR CATEGORICAL DATA SETS

distances among categories. However, since EBDM exploits
intra-attribute information for distance measurement, EBDM-
based clustering algorithms are still workable on Nursery
data set.

It has been pointed out in [49] and [50] that distance
metric is data-sensitive and cannot always outperform the
others on different data sets. Therefore, although the clustering
performance of EBDM is not always the best on the above-
mentioned eight data sets, the above experimental results are
still sufficient to prove the effectiveness and robustness of
EBDM in clustering analysis.

According to the comparison of the clustering performance
of different clustering algorithms, EBC performs slightly better
than the traditional KM in general. The other three state-of-
the-art algorithms, i.e., WKM, EW, and WOC, are obviously
more powerful because the best clustering results of each
distance metric on different data sets are usually produced
by one of them. Due to the space limitation, all the metrics
are embedded into WOC for comparison in the following
experiments.

C. Clustering Performance on Nominal Data

To illustrate that the proposed metric is also competent
in clustering nominal data, we compare the clustering per-
formance of EBDM with the other counterparts on the four
nominal data sets, i.e., Pillow, Solar, Voting, and Tictac.
Corresponding clustering performance is shown in Fig. 5.
In this experiment, the original object-cluster similarity mea-
sure of WOC (denoted by MWOC) is also compared for
completeness.

According to the results, we can find that even all the
four data sets are nominal data, and all the other compared
metrics are originally designed for nominal data, EBDM is
still competitive. The performance of EBDM is always in the

Fig. 5. Performance of EBDM, HDM, ADM, ABDM, CBDM, and the
original MWOC under WOC clustering algorithm on Pillow (row 1), Solar
(row 2), Voting (row 3), and Tictac (row 4) data sets.

top 3, and it even outperforms the other counterparts on Solar
and Tictac data sets.

D. EBDM and EBDMnom Evaluation

The core idea of the proposed EBDM is to exploit the
order information of ordinal attributes in categorical data for
distance measurement. To verify the reasonableness of the
order information exploiting mechanism, we compare the clus-
tering performance of EBDM with EBDMnom, which is the
nominal version of EBDM. EBDM treats ordinal and nominal
attributes differently according to (13), while EBDMnom treats
all types of attributes as nominal one. If performance of EBDM
outperforms EBDMnom, effectiveness of the order information
exploiting mechanism can be proved. Since clustering perfor-
mance of EBDM and EBDMnom on nominal data sets are
identical, experimental results on the four nominal data sets
are omitted. Clustering performance of EBDM and EBDMnom

on the eight data sets with ordinal attributes are compared
in Figs. 6–8.

It can be observed from the histograms that EBDM
outperforms EBDMnom on all the eight data sets. This indi-
cates that EBDM is effective in exploiting the order informa-
tion of ordinal attributes for more accurate clustering analysis.
Since EBDMnom treats all the attributes as nominal ones,
order information is completely ignored by it. Results of this
experiment also once again proved the reasonableness of our
core idea, i.e., ordinal attributes should be treated differently
to exploit more valuable information for clustering analysis.
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Fig. 6. Averaged CA of EBDM and EBDMnom on four ordinal (row 1) and
four categorical (row 2) data sets.

Fig. 7. Averaged ARI of EBDM and EBDMnom on four ordinal (row 1)
and four categorical (row 2) data sets.

E. Weighting Scheme Evaluation

To illustrate the effectiveness of the attribute weighting
scheme in EBDM, we compare the clustering performance
of EBDM and its no-weighting version (denoted by EBDM◦)
on all the twelve data sets. Their performance are compared
in Tables X–XII. The best results are highlighted using
boldface.

It can be observed that the clustering performance of EBDM
with attribute weighting outperforms the version without
attribute weighting on most of the data sets, which indicates
that the attribute weighting scheme can effectively weight
the contributions of different attributes during the distance
measurement.

Fig. 8. Averaged NMI of EBDM and EBDMnom on four ordinal (row 1)
and four categorical (row 2) data sets.

TABLE X

PERFORMANCE OF EBDM AND EBDM◦ ON FOUR ORDINAL DATA SETS

TABLE XI

PERFORMANCE OF EBDM AND EBDM◦ ON

FOUR CATEGORICAL DATA SETS

TABLE XII

PERFORMANCE OF EBDM AND EBDM◦ ON FOUR NOMINAL DATA SETS

F. Distance Matrices Demonstration

To intuitively observe if the distances produced by different
metrics are consistent with the natural distance structure of
the data sets, we compare the distance matrices produced by
different metrics. All the distance values are normalized into
the interval [0,1], and the distance matrices are converted into
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Fig. 9. Distance matrices produced by EBDM (row 1), HDM (row 2), ADM
(row 3), ABDM (row 4), and CBDM (row 5) for each attribute of Assistant
data set.

gray-scale maps accordingly. Lighter pixels indicate larger
distance and vice versa. Therefore, for the distance matrix
of an ordinal attribute, pixels on the diagonal from left-
top corner to the right-bottom corner should be pure black,
while the pixels locate toward the right-top and left-bottom
corners should be lighter. Distance matrices of Assistant data
set are demonstrated in Fig. 9. “(O)” and “(N)” indicate
ordinal and nominal attributes, respectively. CDDM metric is
not compared in this experiment because it cannot directly
compute the distance between intraattribute categories.

It can be observed that only the distance matrices pro-
duced by EBDM are completely consistent with the order
relationship among the categories of the two ordinal attributes.
Since HDM assigns distances “0” and “1” to all the pairs of
identical and different categories, it is incapable to indicate
the distance structures of ordinal attributes. The distance
matrices produced by ADM, ABDM, and CBDM can roughly
indicate the distance structures of the two ordinal attributes,
but a certain amount of distances produced by them are still
disordered, i.e., the pixels are not gradually lighter toward the
right-top and left-bottom corners from the diagonal. This is
also the reason why their performance is superior to HDM,
but is inferior to EBDM as shown in the experimental results
in Section IV-B. For the other two nominal attributes, it is
reasonable that their distance matrices produced by all the
compared metrics are unordered.

V. CONCLUSION

In this paper, we have proposed a distance metric for
categorical data clustering, called EBDM, from the perspective
of information entropy. In contrast with the existing categorical
data metrics, the proposed one treats ordinal attributes and
nominal attributes differently but unifies the concept of the
distance and importance of them, which avoids information
loss during the distance measurement. For ordinal attributes,
the order information is taken into account for the distance

measurement, while for the nominal attributes, statistical infor-
mation is exploited. Since the distance concepts of ordinal and
nominal attributes are unified, it is unnecessary to separately
compute the distances on ordinal and nominal attributes, and
then weight and combine them to produce the final distances.
Moreover, the proposed metric is easy to use and nonparamet-
ric, which can be easily applied for the clustering analysis of
different types of categorical data. Experiments have shown
that the proposed EBDM metric outperforms its counterparts
on different real and benchmark categorical data sets.
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