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Abstract— This article studies an emerging practical prob-
lem called heterogeneous prototype learning (HPL). Unlike the
conventional heterogeneous face synthesis (HFS) problem that
focuses on precisely translating a face image from a source
domain to another target one without removing facial variations,
HPL aims at learning the variation-free prototype of an image in
the target domain while preserving the identity characteristics.
HPL is a compounded problem involving two cross-coupled
subproblems, that is, domain transfer and prototype learn-
ing (PL), thus making most of the existing HFS methods that
simply transfer the domain style of images unsuitable for HPL.
To tackle HPL, we advocate disentangling the prototype and
domain factors in their respective latent feature spaces and then
replacing the source domain with the target one for generating a
new heterogeneous prototype. In doing so, the two subproblems
in HPL can be solved jointly in a unified manner. Based
on this, we propose a disentangled HPL framework, dubbed
DisHPL, which is composed of one encoder–decoder generator
and two discriminators. The generator and discriminators play
adversarial games such that the generator embeds contaminated
images into a prototype feature space only capturing identity
information and a domain-specific feature space, while generat-
ing realistic-looking heterogeneous prototypes. Experiments on
various heterogeneous datasets with diverse variations validate
the superiority of DisHPL.
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NOMENCLATURE
x Training image in Domain A, x ∼ PdataA.
y Training image in Domain B, y ∼ PdataB.
xrp Real prototype in Domain A, xrp

∼ PrealA.
yrp Real prototype in Domain B, yrp

∼ PrealB.
l id
x / lvar

x Identity/variation label of x.
l id
y / lvar

y Identity/variation label of y.
G Encoder–decoder generator.
GencA Encoder A of G.
GencB Encoder B of G.
Px/Vx Disentangled prototype/domain feature of x.
Py/Vy Disentangled prototype/domain feature of y.
Gdec Decoder of G.
x̂/xp Generated Domain B/A prototype of x.
ŷ/yp Generated Domain A/B prototype of y.
D, D̃ Two multitask discriminators.
Dgan, D̃gan Generative adversarial network (GAN)-

relevant subdiscriminators in D, D̃.
Did, D̃id Identity-relevant subdiscriminators in D, D̃.
xt Query image in Domain A.
yt Query image in Domain B.
x̂t/xp

t Generated Domain B/A prototype of xt .
ŷt/yp

t Generated Domain A/B prototype of yt .
Pxt /Vxt Disentangled prototype/domain feature of xt .
Pyt

/Vyt
Disentangled prototype/domain feature of yt .

I. INTRODUCTION

HETEROGENEOUS face synthesis (HFS) refers to trans-
lating a face image from a source domain to another

target one through image synthesis. In reality, the domain
style can be artistic style (e.g., sketch), light spectrum
(e.g., infrared), resolution, and so on. HFS has received
increased attention in artificial intelligence (AI) security and
can facilitate many applications in law enforcement, criminal
identification, person re-identification, digital entertainment,
and access control, to name a few [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13]. In the last decades,
a variety of deep generative model-based methods [14], [15],
[16], [17], [18] and reconstruction-based methods [19], [20],
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[21], [22], [23], [24] have been proposed for addressing
HFS. The above-mentioned methods generally hypothesize
that the source-domain image is uncontaminated and focus
on transferring the domain style, for example, from sketch
to photograph or from visible (VIS) to near-infrared (NIR),
while retaining the facial details unchanged in the target
domain.

However, in real-world face retrieval scenarios, a query face
image is probably not only inconsistent with the enrollment
face image in domain style but also contaminated by diverse
facial variations, for example, poses, expressions, misalign-
ments, and disguises/occlusions [25]. Such a combination of
domain discrepancy and intrapersonal variance would bring
uncertainty to the matching results and easily lead to mis-
matching. Therefore, it is necessary to simultaneously transfer
the domain style and decrease the facial variations of the
query face image to reconstruct the variation-free hetero-
geneous prototype for promoting more accurate matching.
This novel and practical problem is defined as heterogeneous
prototype learning (HPL). Under the circumstances, most
existing HFS methods [14], [15], [16], [17], [19], [21], [22],
[23], [24], [26] are unsuitable for addressing HPL because
these methods only transfer the domain style of images
without removing the nuisance facial variations. Moreover,
many popular prototype learning (PL)-based approaches [27],
[28], [29], [30] are also inapplicable to HPL because these
methods concentrate on learning the homogeneous prototypes
in the same domain. Based on the above consideration, the
motivation of this article is to address HPL by transforming
the query face image into the same domain of the enrollment
face image and meanwhile decreasing the nuisance facial
variations.

Technically, HPL is a compounded problem involving two
cross-coupled subproblems, that is, domain transfer and PL.
Intuitively, a straightforward idea for addressing HPL is to
execute PL and domain transfer sequentially (or vice versa)
in a two-step procedure. Nevertheless, it is argued that such a
naive two-step solution is unsatisfactory due to its suboptimal
design: any image distortion produced in the first step would
be magnified when propagating to the next step. Therefore,
it is desirable to look for a one-step solution to HPL that
addresses the above two subproblems jointly in a unified
framework.

In this article, we thus propose a novel disentangled rep-
resentation framework, namely disentangled HPL framework
(DisHPL), which disentangles and recombines the semanti-
cally meaningful prototype and domain factors of a face image
for addressing HPL. To be specific, DisHPL hypothesizes
that a face image is composed of a prototype, domain, and
variation of three main factors, in which the prototype factor
is associated with the personal identity information while
the domain factor is regarded as a kind of control code
that guides the domain direction of prototype generation.
Based on this, DisHPL, therefore, advocates disentangling
the prototype and source-domain factors from the input face
image via disentangled representation and then replacing the
source-domain factor with the target domain one to generate
the heterogeneous prototype in the target domain, as illustrated

Fig. 1. Illustration of the proposed DisHPL. Given an input sample of
identity A wearing glasses from the NIR domain, DisHPL aims to generate
its variation-free prototype in the target VIS domain. In DisHPL, the domain
and prototype features of the NIR input sample are disentangled in their
latent spaces. We replace the domain feature with the target-domain one
disentangled from the sample of identity B from the VIS domain and generate
the heterogeneous VIS prototype of identity A to approximate the ground-truth
VIS one.

in Fig. 1. In doing so, the two subproblems of PL and domain
transfer in HPL can be solved jointly in a unified manner.
DisHPL is composed of one encoder–decoder generator and
two multitask discriminators. Specifically, the generator has
two encoders, that is, one encodes the prototype feature
and the other encodes the domain-specific feature from a
contaminated input image (which could be from the source or
the target domain), and one decoder that outputs the homoge-
neous and heterogeneous prototypes of the input image. The
two discriminators contain a GAN-relevant and an identity-
relevant subdiscriminators which aim to distinguish between
real versus fake prototypes and predict face identity in the
source/target domain. The generator competes with the two
discriminators to strive for learning: 1) the heterogeneous and
homogeneous prototypes of the input image which contain no
variations and capture the identity characteristics and 2) the
domain-invariant prototype feature of the input image which
can be adopted for performing robust heterogeneous face
recognition (HFR).

It is worth noting that a recent approach [25] has been devel-
oped for addressing the HPL problem through bidirectional
prototype mapping. The proposed DisHPL can be viewed as an
extension of [25], which tackles HPL from a novel perspective
of disentangled representation. Compared to [25] specifying
a fixed target domain in PL, DisHPL is a more flexible
framework that is capable of generating prototypes of different
target domains by replacing the source-domain factor with the
corresponding target-domain ones. Furthermore, DisHPL is a
versatile framework that can learn homogeneous prototypes
within the same domain and perform HFR. We summarize
the contributions of our work in the following.

1) A novel disentangled representation framework, dubbed
DisHPL, is proposed for addressing HPL. It can jointly
solve the two subproblems, that is, domain transfer and
PL, of HPL in a one-step procedure.

2) An encoder–decoder generator is designed, which
simultaneously disentangles the prototype and domain
features, and generates the heterogeneous and homoge-
neous prototypes from a contaminated input image.

3) Two multitask adversarial discriminators are designed,
which assist the generator in maintaining the identity
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characteristics of the input image and meanwhile remov-
ing the facial variations in both generated heterogeneous
and homogeneous prototypes.

4) Extensive experiments are conducted on various
NIR–VIS and sketch–photograph heterogeneous
datasets, which demonstrate the superiority of DisHPL
in both tasks of HPL and homogeneous PL, as well as
the promising performance for HFR.

The rest of this article is organized as follows. In Section II,
we give an overview of the related research works on HFS, PL,
and disentangled representation learning (DRL). In Section III,
we review the standard GAN. In Section IV, we detail the pro-
posed DisHPL model. Section V evaluates the performance of
DisHPL on three NIR–VIS and sketch–photograph heteroge-
neous datasets from qualitative and quantitative perspectives.
In Section VI, we conduct an in-depth discussion of DisHPL in
terms of its flexibility, generality, limitations, and comparison
with bidirectional HPL (BHPL). Finally, Section VII presents
the conclusion and future works.

II. RELATED WORK

A. Heterogeneous Face Synthesis

HFS refers to translating a face image from one domain
to another such that heterogeneous images can be evalu-
ated within the same distance space. In the real world, the
domain style can be artistic style (e.g., sketch), light spectrum
(e.g., infrared), resolution, and so on. Existing HFS methods
are roughly classified into two categories [25]: reconstruction-
based and deep generative model-based methods.

Reconstruction-based methods [19], [20], [21], [22], [23],
[24], [31] usually synthesize the target-domain image based
on a learned or predefined source-domain patch dictionary,
while preserving the local geometrical structure during face
synthesis. For example, Liu et al. [19] adopted the local linear
embedding [32] to maintain the local reconstruction structure
in the synthesized images. Wang and Tang [20] resorted to a
multiscale Markov random field (MRF) to encode smoothness
constraints on neighboring sketch patches when transforming a
photograph into a sketch. Juefei-Xu et al. [31] synthesized the
pseudo-face images across the VIS and NIR domains based
on a learned cross-spectral patch dictionary. Wang et al. [24]
constructed a simple, yet effective sketch–photograph pair
dictionary for sketch synthesis dependent on random sampling
and locality-constrained linear coding [33].

Recently, deep generative model-based methods [7], [14],
[15], [16], [17], [18] have received wide attention in
cross-domain face synthesis. For example, Lezama et al. [34]
employed a deep neural network to transfer an NIR image
into the VIS domain and then perform a low-rank embed-
ding enhancement. Moreover, benefiting from the powerful
generation capability of GAN [35], Isola et al. [15] devel-
oped a Pix2Pix package resorting to conditional GAN
to translate images across domains. Zhu et al. [14] pre-
sented a cycle-consistent GAN (cycle-GAN) to synthesize
cross-domain images based on unpaired heterogeneous train-
ing data. Fang et al. [26] proposed an identity-aware cycle-
GAN (IACycleGAN) framework to employ a new perceptual

loss to supervise the image generation network. Liu et al. [36]
presented an unsupervised image translation method based on
the hypothesis that a pair of heterogeneous images could be
mapped into the same representation within a shared-latent
space. Zhang et al. [16] developed multidomain adversarial
learning (MDAL) to synthesize sketches from photographs
by learning the reconstruction procedure from each domain.
Song et al. [17] proposed an adversarial discriminative feature
learning (ADFL) to combine HFS and feature learning into
a joint learning framework. It is worth noting that, these
above-mentioned methods treat HFS as a straightforward
image translation problem, but cannot effectively decrease
variations in the source-domain face images.

Lately, Di et al. [37] developed a domain-agnostic learning-
based GAN (DAL-GAN) to synthesize frontal faces in the
VIS domain from the thermal faces containing pose varia-
tions. Duan et al. [18] presented a pose-agnostic cross-spectral
hallucination (PACH) model to handle pose variations by
aligning input faces in an unsupervised manner and then
performing synthesis based on texture prior information. Note
that the above two HFS methods are specifically designed for
removing pose variations but cannot generalize to some other
facial variations, for example, occlusions and expressions.

B. Prototype Learning

PL is a recent hot topic that targets learning the standard
prototype from a contaminated enrollment image containing
diverse variations within the same domain. The existing PL
methods are roughly classified into two categories [30]: one is
to introduce auxiliary sets for image recovery and the other is
to train a many-to-one mapping between contaminated images
and the prototype.

In the first category, Pang et al. [27] and Gao et al. [38]
introduced the unlabeled query set into the labeled enrollment
set, thus estimating the prototypes by the clustering centroid
of the union of the above two sets through semi-supervised
low-rank representation (SSLRR) or Gaussian mixture model
(GMM) [39]. In the second category, by virtue of the good
mapping capability of GAN, a number of GAN variants [28],
[29], [30], [40] are proposed to synthesize realistic-looking
prototypes of the contaminated input images while removing
the facial variations. For instance, Chen et al. [29] presented
an occlusion-aware GAN to detect and restore missing
areas in occluded face images. Song et al. [28] proposed
a geometry-guided GAN (G2-GAN) by utilizing the fidu-
cial points to guide the facial expression normalization.
Huang et al. [40] developed a two-pathway GAN (TP-GAN)
to frontalize profile images with poses through local and
global transformations. Pang et al. [30] presented a varia-
tion disentangling GAN (VD-GAN) to deal with multiple
facial variations including expressions, occlusions, and poses.
Despite the above-mentioned PL methods having been shown
to synthesize high-quality prototypes in a single domain, they
are inapplicable to HPL as they do not take the domain
style differences into account during the prototype synthesis.
More recently, Pang et al. [25] proposed a BHPL framework,
which treats the domain discrepancy (e.g., texture difference)
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between the source- and target-domain images as a special
type of facial variations, thus converting HPL into a general-
ized PL problem. It is worth noting that, although BHPL can
be applied to handle the task of HPL, it is unable to disentangle
the domain and prototype factors in the latent space as well
and cannot simultaneously generate the heterogeneous and
homogenous prototypes for input images as DisHPL did.
Furthermore, DisHPL is more flexible in the PL process and
could have a broader application prospect compared to BHPL.
This is because BHPL specifies a fixed target domain in PL,
while DisHPL is capable of generating prototypes of different
target domains by replacing the source-domain factor with the
corresponding target-domain ones.

C. Disentangled Representation Learning

DRL refers to the learning to factorize the representation
of an object (e.g., a face image) into multiple indepen-
dent representations with each indicating a semantically
meaningful factor of the object. Thanks to the variational
autoencoder (VAE) [41] and GAN which offer effective
tools for extracting disentangled representations, a num-
ber of DRL approaches [42], [43], [44], [45], [46] have
been developed to disentangle the identity-related feature
map and facial attributes from face images for robust
face recognition. For example, Liu et al. [42] presented an
identity-distilling and dispelling autoencoder to decompose
the representation of an image into the identity-distilled
and the identity-dispelled components. Tran et al. [43] devel-
oped a DRL GAN that rotates the input face image to
a specified pose and meanwhile extracts its pose-invariant
feature. Zhao et al. [44] proposed an age-invariant model
that generates age-invariant features disentangled from the
age variations and meanwhile achieves continuous face
aging/rejuvenation. Recently, DRL has been widely applied
to style transfer, thus promoting many disentangled-based
domain transfer approaches [18], [47], [48]. For example,
Lee et al. [47] disentangled the representation of a face image
into domain-specific and domain-invariant representations to
promote learning diverse cross-domain mappings. Inspired by
the success of these DRL methods in disentangling different
independent factors, we thus introduce DRL into our DisHPL
model to disentangle the prototype and domain style factors
to perform HPL.

III. PRELIMINARY ON GAN

GAN was presented by Goodfellow et al. [35] for training a
generative model to synthesize realistic-looking images. GAN
is composed of a generator G and a discriminator D, which
both can be arbitrary neural networks. The usual way to train
D and G is to launch a two-player min-max game. On the
one hand, D is trained to classify the fake image generated
by G and the real image x. On the other hand, G is trained
to generate a realistic-looking image [i.e., x̂ = G(z)] using a
random noise z, that aims to fool D. x is sampled from the
data distribution pdata (i.e., x ∼ pdata), and z is sampled from
the noise distribution pz (i.e., z ∼ pz). Specifically, the GAN’s

objective is formulated as follows:

min
G

max
D

V = Ex[log D(x)] + Ez[log(1 − D(G(z)))]. (1)

According to [35], (1) obtains a global optimal solution while
the distribution of these generated images, that is, pgen, is iden-
tical to pdata. However, in practice, the loss of log(1−D(G(z)))
may saturate because these generated images from G at the
beginning of training are poor and can be easily rejected by D.
In this case, G is unable to learn anything from zero gradients.
To circumvent this issue, Goodfellow et al. advocated using
the maximization of log(D(G(z))) instead of the minimization
of log(1 − D(G(z))), to bring larger gradients early in the
learning process. Thus, (1) is rewritten as

max
G

VG = Ez[log(D(G(z)))] (2)

max
D

VD = Ex[log D(x)] + Ez[log(1 − D(G(z)))]. (3)

Subsequently, G and D will be updated iteratively by solv-
ing (2) and (3) alternatively, until reaching the maximum
number of iterations or the convergence condition.

IV. PROPOSED MODEL

We design our model in this section. We first define the
problem and objectives. Next, we describe the architecture
of DisHPL, the training algorithm, and the potential appli-
cations. The symbols used in DisHPL are summarized in
Nomenclature.

A. Problem Definition

We aim to perform: 1) HPL/homogeneous PL in the
pixel–spatial space and 2) disentangled feature learning in the
latent semantic space from contaminated face images, by using
a unified framework.

Suppose we are given a training set that contains images
of Nd identities from both Domain A and Domain B. Note
that the training set can be unpaired, that is, the images from
two domains are not to be one-to-one. In the training set,
each image x in Domain A is annotated with lx = {l id

x , lvar
x }

and is sampled from the data distribution PdataA, that is,
x ∼ PdataA, while each image y in Domain B is annotated
with ly = {l id

y , lvar
y } and is sampled from the data distribution

PdataB, that is, y ∼ PdataB. l id
x (or l id

y ) denotes the identity label
of x (or y). lvar

x (or lvar
y ) indicates whether x (or y) contains

variations or not. Take x, for instance, if x contains arbitrary
variation(s) (e.g., pose, expression, and disguise/occlusion),
then lvar

x = 1; otherwise, lvar
x = 0. Next, we select those uncon-

taminated Domain A and Domain B images in the training
set by referring to the values of lvar

x and lvar
y , to build the real

Domain A and Domain B prototype corpuses, respectively.
Each image xrp in the real Domain A prototype corpus is
sampled from the distribution PrealA, that is, xrp

∼ PrealA,
and each image yrp in the real Domain B prototype corpus
is sampled from the distribution PrealB, that is, yrp

∼ PrealB.
Given two random query images xt and yt , one from

Domain A and the other from Domain B, DisHPL achieves
two objectives as follows.
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Fig. 2. Illustration of the architecture of DisHPL. (a) G is an encoder–decoder
generator for feature disentanglement and prototype generation. (b) D and
D̃ are two multitask discriminators for identity classification and prototype
distinguishment. x (y), xrp (yrp), x̂ (or xp), and ŷ (or yp) denote the input image
from Domain A (Domain B), the real Domain A (Domain B) prototype, the
learned Domain B (or Domain A) prototype of x, and the learned Domain A
(or Domain B) prototype of y, respectively. Px and Vx (Py and Vy) denote
the disentangled prototype and domain features of x (y), respectively. We use
the same two GencB in generator G for the visualization purpose.

1) HPL: In the pixel–spatial space, DisHPL aims to recon-
struct the Domain B prototype x̂t for xt (i.e., from
Domain A) and the Domain A prototype ŷt for yt (i.e.,
from Domain B), such that x̂t (or ŷt ): a) contains no
facial variations and b) captures the individual charac-
teristics of xt (or yt ).

2) Disentangled Feature Learning: In the latent space,
DisHPL aims to disentangle: a) the prototype feature
Pxt (or Pyt

) that captures the identity information of
xt (or yt ) and b) the domain feature Vxt (or Vyt

) that
contains the Domain A (or Domain B) style information.

As a by-product, DisHPL is capable of performing homo-
geneous PL within the same domain, that is, DisHPL can
reconstruct the Domain A prototype xp

t for xt , as well as the
Domain B prototype yp

t for yt .

B. DisHPL Architecture

This section introduces the architecture of the proposed
DisHPL. As shown in Fig. 2, DisHPL is composed of three
major components, that is, one encoder–decoder generator G
and two multitask discriminators D and D̃. G competes
with D and D̃ to: 1) embed a contaminated image into a
prototype feature space and a domain-specific feature space
and 2) generate realistic-looking heterogeneous/homogeneous
prototypes in the pixel–spatial space.

1) Generator G: G consists of two encoders, that is, GencA
and GencB, and one decoder, that is, Gdec. GencA encodes
the prototype feature Px of x and the prototype feature Py
of y, while GencB encodes the domain feature Vx of x and the
domain feature Vy of y. As shown in Fig. 2(a), Gdec generates
four different prototypes as follows.

1) Gdec receives the concatenation of Px with Vx, then
generates a homogeneous Domain A prototype xp

=

Gdec(Px, Vx) for the Domain A image x (Domain
A→Domain A).

2) Gdec receives the concatenation of Px with Vy, then
generates a heterogeneous Domain B prototype x̂ =

Gdec(Px, Vy) for the Domain A image x (Domain
A→Domain B).

3) Gdec receives the concatenation of Py with Vx, then
generates a heterogeneous Domain A prototype ŷ =

Gdec(Py, Vx) for the Domain B image y (Domain
B→Domain A).

4) Gdec receives the concatenation of Py with Vy, then
generates a homogeneous Domain B prototype yp

=

Gdec(Py, Vy) for the Domain B image y (Domain
B→Domain B).

2) Discriminators D and D̃: As shown in Fig. 2(b),
D = [Did, Dgan

] is a multitask discriminator. Specifically, the
following holds.

1) Did is an identity-relevant subdiscriminator in D which
predicts face identity. It outputs an Nd -dimensional
vector in which the location of the maximum value
corresponds to the identity label.

2) Dgan is a GAN-relevant subdiscriminator that classifies
real prototypes and generates fake prototypes by G in
Domain B. It gives the real prototype a high score, and
the fake one a low score.

In a similar fashion, D̃ = [D̃id, D̃gan
] is still a multitask

discriminator including two subdiscriminators. D̃id outputs a
Nd -dim vector to predict face identity, and D̃gan classifies
Domain A’s real and fake prototypes.

C. DisHPL Training

In DisHPL, there are two adversarial training processes
between G and D, and between G and D̃. Accordingly,
training DisHPL involves two alternate training phases as
below.

1) Phase 1: Training of D and G: In this training phase,
D and G are trained to compete with each other to force G to
generate the heterogeneous prototype x̂ in the Domain B for
the Domain A image x (Domain A→Domain B), as well as
the homogeneous Domain B prototype yp for the Domain B
image y (Domain B→Domain B).

For D = [Dgan, Did
], it has two training objectives as

follows.
1) Given the generated fake Domain B prototypes x̂ and yp

by G and the real Domain B prototype yrp, Dgan targets
to classify x̂ and yp as two fake prototypes, and yrp as
the real one.

2) Given the input image y from Domain B, Did targets to
accurately predict the identity label of y, that is, l id

y .
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Concretely, the ultimate objective function VD to train the
discriminator D is as follows:

max
D

VD = V gan
D + α1V id

D (4)

where α1 is a positive balance hyperparameter, and V gan
D and

V id
D are denoted as

V gan
D = Ex[log(1 − Dgan(̂x))] + Ey[log(1 − Dgan(yp))]

+ Eyrp [log Dgan(yrp)] (5)

V id
D = Ey[log Did

l id
y
(y)] (6)

where Did
i is the i th element of Did.

The generator G still has two training objectives as follows.
1) Fool Dgan to classify both of x̂ and yp as two real

Domain B prototypes.
2) Force Did to predict the identity label of x̂ as that of x

(i.e., l id
x ) and the label of yp as that of y (i.e., l id

y ).
Based on the above-mentioned two objectives, the ultimate

objective function VG to train the generator G is as

max
G

VG = V gan
G + λ1V id

G (7)

where λ1 is a positive balance hyperparameter, and V gan
G and

V id
G are denoted as

V gan
G = Ex,y[log Dgan(̂x) + log Dgan(yp)] (8)

V id
G ∗ = Ex,y

[
log Did

l id
x
(̂x) + log Did

l id
y
(yp)

]
. (9)

2) Phase 2: Training of D̃ and G: In this training phase,
D̃ and G are trained to compete with each other to force G
to generate the heterogeneous prototype ŷ in Domain A for
the Domain B image y (Domain B→Domain A), as well as
the homogeneous Domain A prototype xp for the Domain A
image x (Domain A→Domain A).

Similar to D, D̃ = [D̃gan, D̃id
] also has two training

objectives as follows.
1) Given the generated fake Domain A prototypes ŷ and xp

by G and the real Domain A prototype xrp, D̃gan targets
to classify ŷ and xp as two fake prototypes, and xrp as
the real one.

2) Given the input image x from Domain A, D̃id targets to
accurately predict the identity label of x, that is, l id

x .
Therefore, the ultimate objective function Ṽ D to train the
discriminator D̃ is as follows:

max
D̃

VD̃ = VD̃gan + α2VD̃id (10)

where α2 is a positive balance hyperparameter, VD̃gan and VD̃id

are denoted as

VD̃gan = Ey[log(1 − D̃gan(̂y))] + Ex[log(1 − D̃gan(xp))]

+ Exrp [log D̃gan(xrp) (11)

VD̃id = Ex[log D̃id
l id
x
(x)] (12)

where D̃id
i is the i th entry of D̃id.

The generator G also has two training objectives as follows.
1) Fool D̃gan to classify both of ŷ and xp as the real Domain

A prototypes.

Algorithm 1 DisHPL’s Training
Require: A training set consisting of Nd identities from

Domain A and Domain B, in which each image x (or
y) is annotated with lx = {l id

x , lvar
x } (or ly = {l id

y , lvar
y }); A

real Domain A prototype corpus in which each image xr p

is sampled from the distribution Preal A; A real prototype
corpus in Domain B in which each image yr p is sampled
from the distribution Preal B .

1: repeat
2: Phase 1: Fix G and solve Eqn. (4) to update D
3: Phase 1: Fix D and solve Eqn. (7) to update G
4: Phase 2: Fix G and solve Eqn. (10) to update D̃
5: Phase 2: Fix D̃ and solve Eqn. (13) to update G
6: until the predefined maximum #iterations is reached or

convergence is achieved
Ensure: G, D, D̃

2) Force D̃id to predict the identity of ŷ as that of y (i.e., l id
y )

and the label of xp as that of x (i.e., l id
x ).

In light of the above-mentioned two objectives, the ultimate
objective function Ṽ G to train the generator G is as

max
G

Ṽ G = Ṽ gan
G + λ2Ṽ id

G (13)

where λ2 is a positive hyperparameter, Ṽ gan
G and Ṽ id

G are
denoted as

Ṽ gan
G = Ex,y[log D̃gan(̂y) + log D̃gan(xp)] (14)

Ṽ id
G = Ex,y

[
log D̃id

l id
y
(̂y) + log D̃id

l id
x
(xp)

]
. (15)

3) Alternate Training of Phases 1 and 2: To update the two
discriminators D and D̃ and the generator G, we alternate run
the training of Phases 1 and 2. For clarity, we summarize the
alternate training process of DisHPL in Algorithm 1. During
the alternate training, the following holds.

1) With Dgan and D̃gan becoming increasing powerful in
classifying real and fake prototypes, G makes an effort
to generate the realistic-looking Domain B prototypes x̂
and yp to fool Dgan, as well as the Domain A prototypes
ŷ and xp to fool D̃gan.

2) With Did and D̃id being more powerful in predicting face
identity, they force the generated x̂ and xp to capture the
identity characteristics of x, and the generated ŷ and yp

to capture the identity characteristics of y.
3) Moreover, Did and D̃id force GencA to encode as much

identity information as possible in the learned discrimi-
native prototype features Px and Py.

D. DisHPL Applications

After training, we can employ the trained generator
G in DisHPL to disentangle the prototype and domain
features as well as generate heterogeneous/homogeneous pro-
totypes. Accordingly, DisHPL can handle the following three
applications.

1) HPL: Generating the Domain A (or Domain B) pro-
totype for a Domain B (or Domain A) image across
heterogeneous domains.
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Fig. 3. Illustration of some face examples on (a) CASIA NIR-VIS v2.0, (b) BUAA NIR-VIS, and (c) CUFSF three heterogeneous face datasets.

2) Homogeneous PL: Generating the Domain A
(or Domain B) prototype for a Domain A (or Domain B)
image within the same domain.

3) HFR: Given a Domain A (or Domain B) enrollment
set and a new Domain B (or Domain A) query image,
we could acquire their identity-relevant prototype fea-
tures in the latent spaces and then perform feature
classification.

V. EXPERIMENTAL RESULTS

Section V-A introduces three heterogeneous face datasets
to be evaluated followed by the implementation details and
parameter settings of DisHPL. In the following, we conduct
four experiments to evaluate DisHPL.

1) Section V-B: We both qualitatively and quantitatively
evaluate the learned heterogeneous/homogeneous proto-
types by DisHPL on two NIR–VIS face datasets, that
is, CASIA NIR-VIS v2.0 and BUAA NIR-VIS, and on
one sketch–photograph face dataset CUFSF.

2) Section V-C: We evaluate the proposed DisHPL for HFR
on the three heterogeneous face datasets.

3) Section V-D: We compare the differences between the
synthesized heterogeneous images by two representative
HFS techniques, that is, random sampling with locality
constraint (RSLCR) and cycle-GAN, and the learned
heterogeneous prototypes by DisHPL on the three het-
erogeneous face datasets.

4) Section V-E: We conduct an ablation study to explore the
importance of the identity-relevant and GAN-relevant
two subdiscriminators on the performance of DisHPL
in terms of PL.

A. Experimental Setting

1) Dataset Description: The CASIA NIR–VIS v2.0 [49] is
the current largest public and most challenging NIR–VIS face
dataset. It contains 725 identities with each having 1–22 VIS
and 5–50 NIR images. These involved face images contain
diverse facial variations including pose, expression, lighting,
and disguises/occlusions (wearing glasses). In the experiment,
we adopt the standard evaluation protocol [50] to choose
about 6100 NIR and 2500 VIS images of 360 identities as
the training set and another 358 identities for testing.

The BUAA NIR–VIS dataset [51] is commonly used
for heterogeneous face evaluations across imaging sensors.
It includes 150 identities with each possessing nine NIR
images and nine VIS images. Each identity’s nine NIR
(or VIS) images imply nine different variations, that is,
happiness, sorrow, anger, surprise, neutral-frontal, tilt-down,
tilt-up, right-rotation, and left-rotation. In the experiment,
we randomly choose a total of 900 images from 50 identities

for training, while the rest 1800 images from 100 identities
for testing.

The CUFSF dataset [52] is a commonly used viewed
sketch–photograph dataset, which contains 1194 photographs
from the FERET dataset [53] and the corresponding
1194 sketches were drawn by the artist. In the experiment,
we use two different settings for evaluating the learned het-
erogeneous/homogeneous prototype and the learned prototype
feature, respectively. In the first setting, we randomly select
200 identities for evaluation and then borrow the images with
expressions and poses from the five subsets of FERET, namely
“bd,” “bf,” “bg,” “bj,” and “bk,” to expand the photograph
size, thus making each identity have one sketch and six
photographs. Subsequently, the first 100 identities are used
for training, and the remaining 100 are used for testing.
In the second setting, we follow the standard evaluation
setting in [24] to choose 550 photograph–sketch pairs from
550 identities at random as the training set, and the remaining
644 identities are used for testing.

The above three datasets are publicly available and can
only be used for academic research purposes according to the
release agreements. Example face images on CASIA NIR–VIS
v2.0, BUAA NIR–VIS, and CUFSF datasets are shown in
Fig. 3. All face images in these datasets are converted to gray
images and center cropped to 128 × 128 pixels.

2) Implementation Details: For the encoder GencA, the
Lightened convolutional neural network (CNN) [54] pretrained
on the MS-Celeb-1M dataset [55] is employed as the back-
bone for prototype feature extraction. For the encoder GencB,
a different deep neural network, that is, CASIA-Net [56],
is adopted as the backbone for extracting the domain features.
GencA encodes a 256-D prototype feature while GencB encodes
a 50-D domain feature. For the decoder Gdec, it takes a 306-
D feature vector as the input and outputs a face image of
128 × 128 pixels. For the discriminators D and D̃, they have
the same network structure whose input is a face image of
128 × 128 pixels while the output is an (Nd + 1)-dim feature
vector. The networks of Gdec and D (or D̃) are presented
in Table I. It is worth mentioning that, the design of the
network structures for G, and D (or D̃) in the DisHPL model
is flexible, that is, one can customize the design when handling
the specific tasks.

We optimize DisHPL by using the stochastic gradient
descent with a mini-batch size of 5 and initialize weights of the
DisHPL network from a 0-centered Gaussian distribution with
a standard deviation of 0.02. As suggested in [56], we adopt
Adam [57] as the optimizer, in which the learning rate and
momentum values are set to be 0.0002 and 0.5, respectively.

3) Parameter Setting: Nd denotes the total number of the
training identities. The four balance hyperparameters, that is,
α1 in (4), λ1 in (7), α2 in (10), and λ2 in (13), are tuned via
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TABLE I

NETWORKS OF Gdec AND D (OR D̃)

TABLE II
PARAMETER SETTINGS OF DISHPL

grid search. Empirically, we notice that our DisHPL obtains
promising performance when these parameters are all set to
be 2 and fix the value across the three evaluated datasets.
In Table II, we summarize the parameters’ settings on each
dataset for clarity.

B. Evaluation of DisHPL for Prototype Learning

This section evaluates the learned heterogeneous and homo-
geneous prototypes by DisHPL on two NIR–VIS face datasets,
that is, CASIA NIR–VIS v2.0 and BUAA NIR–VIS, and a
sketch–photograph CUFSF dataset. In the following, we qual-
itatively and quantitatively evaluate the quality of these learned
prototypes.

1) Qualitative Analysis Results: In the first, we qualitatively
measure the learned prototypes by DisHPL on the three
datasets. On the two NIR–VIS datasets, we treat the NIR
domain as Domain A, and the VIS domain as Domain B.
On the CUFSF dataset, we treat the sketch domain as
Domain A, and the photograph domain as Domain B. Given a
random query image from Domain A, that is, x, and a random
query image from Domain B, that is, y, DisHPL can gener-
ate four different prototypes: 1) the homogeneous prototype
of x in Domain A, that is, xp; 2) the heterogeneous prototype
of x in Domain B, that is, x̂; 3) the heterogeneous prototype of
y in Domain A, that is, ŷ; and 4) the homogeneous prototype
of y in Domain B, that is, yp. In Fig. 4, we illustrate six
random PL examples of DisHPL on the above three datasets.
It can be observed that the following holds.

1) DisHPL successfully learns the variation-free hetero-
geneous prototypes across the VIS-to-NIR, NIR-to-
VIS, photograph-to-sketch, and sketch-to-photograph
domains, as well as the homogeneous prototypes within
the same VIS, NIR, sketch, and photograph domains.

Fig. 4. Six randomly selected PL examples (a)–(f) of DisHPL on BUAA
NIR–VIS, CASIA NIR–VIS v2.0, and CUFSF datasets. In each row, figures
from left to right are: the input query image x and y from two different
domains, the four learned prototypes by DisHPL, that is, xp (the learned
homogeneous prototype of x), x̂ (the learned heterogeneous prototype of x), ŷ
(the learned heterogeneous prototype of y), and yp (the learned homogeneous
prototype of y), and the corresponding ground-truth prototypes for reference.

Intuitively, for these contaminated input images contain-
ing variations of different facial expressions (e.g., hap-
piness and surprise), occlusions of different types of
glasses, slight left/right head posture, and misalignment,
DisHPL is capable of simultaneously transferring the
domain styles and removing the facial variations.

2) From a visual perspective, most of the learned heteroge-
neous and homogeneous prototypes by DisHPL preserve
the personal identity characteristics of the contaminated
input images well and look similar to the reference
ground-truth prototypes.

3) There exist a few artifacts and slight deformations on the
generated photograph (or sketch) prototypes on CUFSF,
which leads to a lower image quality compared to
that of the generated VIS (or NIR) prototypes on the
other two NIR–VIS datasets. This is because the artistic
styles of the sketch and photographs are very different,
and the only decoder in DisHPL is not amenable to
producing two images of such different styles at the
same time. In addition, the image quality of the gen-
erated photograph prototypes from sketches seems not
as good as that of the generated sketch prototypes from
photographs. The plausible reason could be that the
input sketches generally provide very few facial details
compared to the input photographs during prototype
generation.

2) Quantitative Analysis Results: Note that many exist-
ing evaluation metrics such as L1/L2 distance or structural
similarity index metric (SSIM) [58] are actually designed
to measure the pixel/structure similarity between synthesized
image and the input, while DisHPL has altered the facial
structure (e.g., frontalizing a face with large pose) during
the face synthesis. Therefore, we follow the work in [47]
and conduct a user study that asks volunteers to artificially
judge the quality of the learned prototypes by DisHPL through
pairwise verification. In each dataset, we sample multiple pairs
of query images randomly in the source domain and their
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Fig. 5. Average precisions (%) of three different verification strategies, that
is, “Direct match,” DisHPL, and “Direct match + DisHPL,” on (a) CASIA
NIR–VIS v2.0, (b) BUAA NIR–VIS, and (c) CUFSF datasets.

ground-truth prototypes in the target domain and then use
the learned prototype of each query image to match with the
ground-truth prototype for verification. For reference, we also
directly use the original query images for matching and denote
the strategy as “Direct match.” Furthermore, we take both of
the above two strategies into consideration and propose a new
verification strategy denoted as “Direct match + DisHPL.”
Specifically, we assume the identities of the pair of query
images and ground-truth prototype match if either of the two
strategies gives a matching decision. The purpose of “Direct
match + DisHPL” is to test whether the learned prototypes by
DisHPL can assist volunteers in recognizing the contaminated
query images from different domains (e.g., NIR images or
hand-drawn sketches) more accurately. The average precisions
of different strategies are shown in Fig. 5.

As shown in Fig. 5, DisHPL achieves relatively good
precisions (60%–85%) in the six cases we have tried across
the three datasets, which indicates that the majority of the
learned prototypes by DisHPL capture the personal identity
characteristics well. Besides, the precisions of DisHPL also
exceed that of the “Direct match” in half the cases. Further-
more, we observe that the fusion strategy of “Direct match +

DisHPL” significantly improves the verification performance
compared to either DisHPL or “Direct match,” which shows
the complementarity of the above two verification strategies as
well as demonstrates that the learned prototypes by DisHPL
could assist verification/recognition in practice.

C. Evaluation of DisHPL for HFR

This section evaluates the HFR performance of the pro-
posed DisHPL on CASIA NIR–VIS v2.0, BUAA NIR–VIS,
and CUFSF datasets. For DisHPL, we acquire the identity
prototype features for both VIS (or photograph) enrollment
and NIR (or sketch) query images through the encoder of the
trained DisHPL model and then use a cosine similarity-based
nearest neighbor (NN) classifier to conduct prediction.

In the NIR–VIS HFR experiment, we select 12 NIR–VIS
feature learning-based methods, involving four handcrafted
feature learning-based kernelized discriminative spectral
regression (KDSR) [59], kernelized margin-based cross-
modality metric learning (KMCM2L) [60], common encod-
ing feature discriminant (CEFD) [61], and hierarchical
hyperlingual-words local binary pattern (H2-LBP3) [62],

TABLE III
RECOGNITION RATES (%) OF DISHPL AND THE NIR–VIS FEATURE

LEARNING-BASED METHODS ON CASIA NIR–VIS V2.0 AND
BUAA NIR–VIS FACE DATASETS

TABLE IV
RECOGNITION RATES (%) OF DISHPL AND THE OTHER
SKETCH–PHOTOGRAPH SYNTHESIS-BASED METHODS

ON THE CUFSF DATASET

and eight deep-learning-based transfer NIR–VIS HFR net-
work (TRIVET) [50], domain-specific units nets (DSU-
Nets) [63], ADFL [17], relational deep feature learning
(RGM) [64], channel augmented joint learning (CAJL) [65],
heterogeneous face interpretable disentangled representation
(HFIDR) [7], invariant deep representation (IDR) [66], and
PACH [18]. Table III shows the rank-1 recognition rates of
DisHPL and the comparing feature learning-based methods
on the two NIR–VIS datasets.

In sketch–photograph HFR experiment, we use eight
sketch–photograph synthesis-based methods for comparison.
They are three reconstruction-based methods including spa-
tial sketch denoising (SSD) [67], Markov weight fields
(MWF) [22], and RSLCR [24], and five GAN-based meth-
ods including Pix2Pix [15], MDAL [16], IACycleGAN [26],
edge-aware enhancement spatially adaptive denormalization
(eaeSPADE) [68], and semi-cycle-GAN (SCG) [69]. In accor-
dance with [24], 250 sketch–photograph pairs from 250 ran-
dom identities in the training set are used to construct the
representation dictionary for the three reconstruction-based
methods. Subsequently, the remaining 300 identities contain-
ing 300 synthesized sketches and the ground-truth sketches
are used for training a null-space linear discriminant analysis
(NLDA) [70] classifier for all the synthesis-based methods
to perform HFR. Table IV lists the rank-1 recognition rates
of DisHPL and the comparing sketch–photograph synthesis-
based methods on the CUFSF dataset.

From Tables III and IV, we can observe that the following
holds.

1) Although DisHPL is not specifically designed for
HFR, it still achieves promising performance in both
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NIR–VIS and sketch–photograph HFR tasks. For exam-
ple, DisHPL performs the best on the CUFSF and
BUAA NIR-VIS datasets and obtains slightly infe-
rior results compared to the state-of-the-art PACH
on the CASIA NIR–VIS v2.0 dataset. This indicates that
the learned prototype features by DisHPL capture well
the identity information across domains. The promising
performance of DisHPL in HFR owes to its two major
advantages: 1) the Max-Feature-Map-based Lightened
CNN in GencA is adaptive to different appearances in
different modalities [54] and 2) the two identity-relevant
subdiscriminators, that is, Did and D̃id, trained in the
source and target domains explicitly preserve the identity
in the learned prototype features across domains.

2) On the two NIR–VIS datasets, the deep-learning-based
methods usually obtain higher recognition rates com-
pared to the conventional handcrafted feature learning-
based methods, which verifies the good representation
learning capability of deep neural networks in HFR.

3) PACH achieves an improvement of 1.4% over our pro-
posed DisHPL on the CASIA NIR–VIS v2.0 dataset,
while the results are comparable on the BUAA NIR–VIS
dataset. The effectiveness of PACH in HFR lies in
its design of an unsupervised face alignment (UFA)
module to align the facial shape of the input NIR or
VIS image, thus enabling more accurate extraction of
identity information. However, it needs to be noted
that, unlike DisHPL which can directly generate face
prototypes in an end-to-end manner, PACH requires first
executing UFA and then texture prior synthesis (TPS).
Furthermore, since the facial shape in the UFA module
generally only considers pose variations or misalign-
ment, it cannot handle some other facial variations like
expressions and disguises/occlusions, as DisHPL can.

4) On the sketch–photograph CUFSF dataset, the recog-
nition rates of all synthesis-based methods with the
trained NLDA classifier are not competitive with that
of DisHPL (prototype feature + NN classifier). The
results imply that the learned prototype features by
DisHPL may be more suitable for HFR than the synthe-
sized sketches (or photographs) by these synthesis-based
methods, thus verifying the rationality of the joint fea-
ture and PL in DisHPL. Besides, we are interested
to find that while Pix2Pix, MDAL, and eaeSPADE
synthesize sketches/photographs with more stylization
than the reconstruction-based RSLCR in terms of tex-
ture, the three GAN-based methods perform worse than
RSLCR for HFR. The possible reason lies in that
GAN-based MDAL, Pix2Pix, and eaeSPADE would
produce distortions when synthesizing sketches/photos
because they lack restrictions on local structures, which
would adversely affect identity preservation. In contrast,
RSLCR introduces an effective local constraint using
local linear coding (LLC) [33], which can maintain
local geometric structures. SCG achieves better HFR
results compared to RSLCR and other GAN-based
methods. This is because it constructs pseudo-photo-
sketch pairs to supervise the generators and introduces a

cycle-consistent loss with noise injection to mitigate the
steganography effect during photo or sketch synthesis.

D. Comparison With Representative HFS Approaches

HPL and HFS handle different applications: HFS focuses
on translating images across domains, while HPL aims to
preserve personal identity as well as remove the existing
facial variations during domain transferring. To better illus-
trate the differences between the classic HFS and new HPL
problems, this section compares the differences between the
synthesized heterogeneous images via the representative HFS
methods and learned heterogeneous prototypes by DisHPL
on the three NIR–VIS and sketch–photograph face datasets.
Accordingly, on CASIA NIV–VIS v2.0 and BUAA NIR–
VIS, we choose the typical GAN-based Cycle-GAN [14]
for comparison; while on CUFSF, we adopt the popu-
lar reconstruction-based RSLCR [24], which is specifically
designed for sketch–photograph synthesis, as the comparing
method. In Fig. 6(a), we illustrate the synthesized images by
cycle-GAN or RSLCR and the cross-domain prototypes by
DisHPL from six random contaminated input images on the
three datasets. The key observations and the corresponding
analysis are as follows.

1) For cycle-GAN or RSLCR, they are still unable to
effectively remove the facial variations, for example,
poses and expressions, in their synthesized heteroge-
neous images. By contrast, the learned cross-domain
prototypes by DisHPL are standardized and contain
almost no variations, which are visually similar to the
ground truth face prototypes.

2) On the two NIR–VIS datasets, DisHPL usually gener-
ates higher-quality learned cross-domain prototypes with
fewer artifacts and noises, compared to the synthesized
heterogeneous images by cycle-GAN. This is because,
cycle-GAN and many other existing GAN-based HFS
methods usually try to approximate the target distribu-
tion of the original face data including diverse facial
variations, which may easily cause over-fitting lim-
ited by the small-scale training data. By contrast, our
DisHPL targets to approximate a shrunken distribution
of standard face prototypes, which could mitigate the
over-fitting of the variations.

3) On the sketch–photograph CUFSF dataset, although
the reconstruction-based RSLCR retains the local facial
details (e.g., fringe and hair style) to some extent in its
synthesized sketch and photograph, we note that there
exist serious distortions in the synthesized sketch from
the photograph with profile posture. The reason is that
the performance of RSLCR depends on the richness
of the representation dictionary but the CUFSF dataset
cannot provide the corresponding sketch–photograph
pairs that possess the pose variations.

Subsequently, we compare the image quality of the syn-
thesized heterogeneous images by cycle-GAN or RSLCR,
and the learned cross-domain prototypes by DisHPL from
the quantitative perspective. Following the strategy in [47],
we perform a user study to invite multiple volunteers to choose
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Fig. 6. (a) Comparison between the synthesized heterogeneous images by
cycle-GAN or RSLCR and learned heterogeneous prototypes by DisHPL on
CASIA NIR–VIS v2.0, BUAA NIR–VIS, and CUFSF. From top to bottom
rows: the input images, the synthesized images by cycle-GAN (or RSLCR),
the learned prototypes by DisHPL, and the ground-truth prototypes. (b) Pref-
erence results that answer the question “which image is more similar to
the ground truth?” The number in the bar chart indicates the percentage of
preference on that comparison pair.

the synthesized image or learned prototype that represents
the identity of the target person more accurately through
pairwise comparisons. In Fig. 6(b), we show the preference
results of six cross-domain cases on the above three evalu-
ated datasets. It can be seen that DisHPL always achieves
higher preference scores than RSLCR and cycle-GAN in all
six cases. The inspiring results indicate that, compared to
these direct-translated images by RSLCR or cycle-GAN, the
learned prototypes by DisHPL could be much more easily
recognized by humans. Generally speaking, the qualitative
and quantitative comparison results in Fig. 6 indicate that the
existing reconstruction-based and GAN-based HFS methods
may be unsuitable for tackling the new HPL problem, as well
as verify the effectiveness of DisHPL for HPL.

E. Ablation Study

In DisHPL, there exist two subdiscriminators: one is the
GAN-relevant subdiscriminator (Dgan & D̃gan) and the other
is the identity-relevant subdiscriminator (Did & D̃id). This
section studies the importance of the two subdiscriminators
on the performance of DisHPL in terms of PL. Subsequently,
we construct two DisHPL’s variants, that is, DisHPL w/o gan
and DisHPL w/o id, by removing Dgan & D̃gan and Did & D̃id,
respectively, and then evaluate their performance in PL.

Figs. 7 and 8 illustrate the learned prototypes by the
two DisHPL variants on CASIA NIR–VIS v2.0 and BUAA
NIR–VIS datasets, respectively. It can be seen that, when
removing Dgan & D̃gan, DisHPL w/o gan cannot even generate
visually effective homogeneous and heterogeneous prototypes;
when removing Did & D̃id, DisHPL w/o id still generates
the variation-free prototypes in the correct target domains
but fail to preserve the identity. The results demonstrate
that the GAN-relevant subdiscriminator is more important
compared to the identity-relevant subdiscriminator in homoge-
neous and HPL. Furthermore, we explore the importance of the
aforementioned GAN-relevant and identity-relevant subdis-
criminators in identity prototype feature learning. On BUAA

Fig. 7. PL examples of (a) DisHPL w/o gan and (b) DisHPL w/o id on
CASIA NIR–VIS v2.0. Left to right columns: the input image x from the NIR
domain, the input image y from the VIS domain, the learned NIR prototype
xp of x, the learned VIS prototype x̂ of x, the learned NIR prototype ŷ of y,
and the learned VIS prototype yp of y.

Fig. 8. PL examples of (a) DisHPL w/o gan and (b) DisHPL w/o id on
the BUAA NIR-VIS dataset. Left to right columns: the input image x from
the NIR domain, the input image y from the VIS domain, the learned NIR
prototype xp of x, the learned VIS prototype x̂ of x, the learned NIR prototype
ŷ of y, and the learned VIS prototype yp of y.

NIR–VIS, DisHPL w/o gan achieves a much higher recog-
nition rate (74.6%) than that of DisHPL w/o gan (41.8%),
indicating that the identity-relevant subdiscriminator plays a
more important role than the GAN-relevant subdiscriminator
in identity prototype feature learning.

VI. DISCUSSION

A. Flexibility of DisHPL

Given a contaminated face image from a source domain
(e.g., Domain A), DisHPL can reconstruct its homogeneous
prototype in the same domain as well as the heterogeneous
prototype in the target domain (e.g., Domain B). When gener-
ating the heterogeneous prototype, it is flexible for DisHPL to
replace the source-domain feature with the target-domain one
disentangled from any arbitrary random image in the target
domain. Take the CAISA NIR–VIS v2.0 dataset, for example,
we randomly choose four VIS images in the training set
to disentangle four target-domain features and then illustrate
the corresponding learned VIS prototypes by DisHPL from a
testing-contaminated NIR image in Fig. 9. From Fig. 9, it can
be seen that these four learned VIS prototypes from the NIR
testing image look almost the same. This implies that DisHPL
would not leak identity information when disentangling the
domain from the prototype.

B. Generality of DisHPL

Despite some recent methods [18], [37] attempting to
perform cross-domain pose frontalization or face alignment
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Fig. 9. Comparison of four learned VIS prototypes by DisHPL from an NIR
input image on CASIA NIR–VIS v2.0 dataset. Figures in the first low are the
four randomly chosen VIS images that provide the target-domain features.
Figures in the second row are the NIR input image and the corresponding
four learned VIS prototypes.

during face synthesis, they are ad hoc methods specifically
designed to handle pose variations or misalignments but
unable to generalize to other variations such as occlusions
and expressions. In contrast, DisHPL is a generic PL frame-
work that can be applied to universal variations, including
(but not limited to) expressions, poses, misalignments, and
occlusions/disguises. This is because DisHPL only constrains
the variation-free and identity-preserving properties of the
learned prototypes but has no prior assumption about the
type(s) of the input variations. In fact, DisHPL focuses on
learning a straightforward end-to-end transformation between
contaminated images and the standard prototypes. Therefore,
it is expected that our proposed DisHPL can be easily extended
to other NIR–VIS and sketch–photograph heterogeneous face
datasets containing diverse variations.

C. Comparison With BHPL

In this section, we compare the performance of our DisHPL
with the closely related BHPL on the HPL task from both qual-
itative and quantitative perspectives. We randomly selected
eight input images, four from the NIR domain of the BUAA
NIR–VIS dataset and four from the VIS domain of the CASIA
NIR–VIS dataset. In Fig. 10(a), we show the target-domain
heterogeneous prototypes generated by BHPL and DisHPL,
along with the GT prototypes. It can be observed that the
majority of the prototypes generated by BHPL and DisHPL
are of good quality. Furthermore, from a visual perspective,
the generated prototypes by DisHPL appear to be of better
quality and closer to the GT for the input samples A, D, E,
and G compared to those generated by BHPL. Additionally,
in the cases of input samples B, F, and H, the quality of the
prototypes generated by DisHPL and BHPL is comparable.

Subsequently, we employ two analytical-based quantitative
metrics, namely image sharpness and perceptual difference,
to measure the image clarity and identity preservation of the
generated prototypes, respectively. The image sharpness [71] is
measured using the Brenner algorithm, which accumulates the
squares of the differences between horizontally neighboring
pixels. The perceptual difference [72] is measured by calcu-
lating the L1-distance between the identity features extracted
from the learned prototype and its GT prototype within the
same domain. Note that a higher value of image sharpness
indicates higher image clarity, whereas a smaller value of
perceptual difference indicates that the identity of the learned
prototype is closer to that of the input. As shown in Fig. 10(b),

Fig. 10. (a) Qualitative and (b) quantitative comparison results of BHPL
and our DisHPL for HPL. (a) Figures from top to bottom rows are the input
images from the NIR (or VIS) domain, the learned VIS (or NIR) prototypes
by BHPL, the learned VIS (or NIR) prototypes by DisHPL, and the reference
VIS (or NIR) GT prototypes. The figures in red boxes indicate the generated
unsatisfactory prototypes. (b) Comparison of the values of the two quantitative
metrics, that is, image sharpness and perceptual difference, between BHPL
and DisHPL.

out of the 16 metric values for the eight images, 11 metric
values favor DisHPL over BHPL, indicating that DisHPL has
certain advantages in terms of prototype generation quality and
identity preservation. This may be attributed to the successful
disentanglement of identity-related information from domain-
related information in our model. Additionally, we observe that
the quantitative comparison results in Fig. 10(b) align closely
with the qualitative analysis results in Fig. 10(a), thus vali-
dating the rationality and effectiveness of the aforementioned
two quantitative metrics.

In addition to the slight improvement in HPL performance,
we emphasize that DisHPL has two important advantages over
BHPL. First, DisHPL is a powerful framework that can simul-
taneously perform HPL across domains and homogeneous PL
within the same domain. Second, DisHPL is more flexible than
BHPL because it decouples prototype and domain factors. This
enables DisHPL to potentially handle prototype reconstruction
in different target domains by replacing the source-domain
factor with different target-domain ones.

D. Limitations of DisHPL

Despite DisHPL has shown to obtain promising heteroge-
neous and homogeneous prototypes across the VIS-to-NIR,
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NIR-to-VIS, sketch-to-photograph, and photograph-to-sketch
domains, DisHPL still suffers from three following limitations.

First, through the experiments, it is observed that DisHPL
usually generates almost the same prototypes for a few similar
input images with different identities, especially on BUAA
NIR–VIS and CUFSF datasets. The plausible reasons are
twofold: 1) the training sets of the two evaluated datasets
are small,1 which are unable to provide sufficient identity
label information for training the identity-relevant discrimina-
tors in DisHPL and can easily lead to over-fitting problem
and 2) DisHPL concentrates on learning global consistent
prototypes without constraints on the local structure. Under
the circumstances, some local facial characteristics that can
distinguish two similar persons may be lost during the proto-
type generation. To alleviate the over-fitting problem caused
by the small training data, one possible solution is to gener-
ate massive paired heterogeneous images by virtue of some
powerful generative models, for example, DVG-Face [8], and
then screen out high-quality ones to augment the training set.
Furthermore, to enhance identity preservation during prototype
generation, it may be feasible to introduce the attention
mechanism [73] into our DisHPL model to better capture the
local facial characteristics with identity-distinguishing effects.

Second, the proposed DisHPL relies on a single decoder,
which may not be amenable to generating paired heteroge-
neous images with very different artistic styles simultaneously.
As a result, the generated prototypes by DisHPL may have
low image quality in specific image transformation situations
(e.g., the transformation between the photograph and the
sketch). To tackle this issue, it may be feasible to design
a more flexible decoder by adding the adaptive instance
normalization (AdaIN) [74] layers which adapt the decoder
to arbitrary domain styles by changing the affine parameters
of the layers accordingly, or just replacing the single decoder
with dual decoders in DisHPL to generate images of different
styles, respectively.

Third, in practice, it is difficult to achieve arbitrary
target-domain prototype reconstruction with DisHPL. This is
because it requires a prerequisite of having samples with
multiple domains in the training set to learn different domain
factors for replacing the source domain. However, existing
publicly available datasets typically only have two domains
(such as NIR–VIS and photograph–sketch). To address this
issue, we also provide a potentially viable solution by further
improving the DisHPL model into a multidirectional mapping
model similar to StarGAN [75], followed by training on
multiple bidomain datasets and utilizing mask vector to control
the model’s learning of target-domain factors from different
datasets. We will leave the interesting study as the future
research directions.

VII. CONCLUSION AND FUTURE WORKS

This article has studied an emerging challenging HPL
problem, which involves two coupled subproblems of domain
transfer and PL. To tackle HPL, we have proposed the

1Limited by the acquisition condition, the current public heterogeneous face
datasets are small and usually contain dozens or hundreds of identities.

DisHPL to jointly address the above two subproblems in
a unified disentangled representation framework. Given a
contaminated face image from the source domain, DisHPL
can simultaneously: 1) disentangle its domain and prototype
features and 2) generate proper heterogeneous and homoge-
neous prototypes. Empirically studies on various NIR–VIS
and sketch–photograph datasets have verified the superiority
of DisHPL in both HPL and HFR tasks.

In the future study, we plan to impose the local atten-
tion module on DisHPL to better preserve the local facial
characteristics with identity-distinguishing effects during PL.
Besides, we attempt to develop a more flexible decoder by
introducing the AdaIN layers to enable DisHPL to simulta-
neously generate higher-quality paired prototypes with very
different artistic styles. Moreover, inspired by the success
of DisHPL in disentangling prototype and domain factors,
we will try to further disentangle the variation factor for
facial variation manipulation, thus extending the proposed
DisHPL to the interesting application of heterogeneous face
editing/interpolation.
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