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Abstract— Recent studies of imbalanced data classification
have shown that the imbalance ratio (IR) is not the only cause
of performance loss in a classifier, as other data factors, such
as small disjuncts, noise, and overlapping, can also make the
problem difficult. The relationship between the IR and other data
factors has been demonstrated, but to the best of our knowledge,
there is no measurement of the extent to which class imbalance
influences the classification performance of imbalanced data.
In addition, it is also unknown which data factor serves as
the main barrier for classification in a data set. In this article,
we focus on the Bayes optimal classifier and examine the influence
of class imbalance from a theoretical perspective. We propose an
instance measure called the Individual Bayes Imbalance Impact
Index (IBI3) and a data measure called the Bayes Imbalance
Impact Index (BI3). IBI3 and BI3 reflect the extent of influence
using only the imbalance factor, in terms of each minority class
sample and the whole data set, respectively. Therefore, IBI3 can
be used as an instance complexity measure of imbalance and
BI3 as a criterion to demonstrate the degree to which imbalance
deteriorates the classification of a data set. We can, therefore,
use BI3 to access whether it is worth using imbalance recovery
methods, such as sampling or cost-sensitive methods, to recover
the performance loss of a classifier. The experiments show that
IBI3 is highly consistent with the increase of the prediction score
obtained by the imbalance recovery methods and that BI3 is
highly consistent with the improvement in the F1 score obtained
by the imbalance recovery methods on both synthetic and real
benchmark data sets.

Index Terms— Bayes classifier, class imbalance learning, data
complexity, imbalance measure, imbalance recovery methods.
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I. INTRODUCTION

THE classification of the binary imbalanced data is a
challenging problem in the field of machine learning [1].

The classification accuracy deteriorates when the number of
samples in one class overwhelms another class. Neglecting
all the minority class samples has little effect on the over-
all accuracy because the minority class only takes only a
small percentage. This problem usually occurs in detection
tasks, such as cancerous diagnosis [2], insider threats [3],
and prediction of software defects [4], where the recognition
target is the minority class, which draws more interests in
the application domain even though it has a relatively small
number of samples. Various imbalance recovery methods have
recently been proposed with the objective of improving the
accuracy of the minority class without heavily sacrificing
that of the majority class. A comprehensive review of these
imbalance recovery methods is given in [5] and [6]. These
methods attempt to recover the performance loss caused by
imbalance via preprocessing the training data or modifying
the decision-making procedure of an algorithm so that the
minority class receives the same importance as the majority
class during modeling and prediction.

However, before applying the imbalance recovery methods
on an imbalanced data set, we should first address the ques-
tions of whether the so-called “imbalanced” issue should be
considered in an imbalanced data set and whether the imbal-
anced recovery method should be used. To do so, we should
first define the specific meaning of an imbalanced data set
because perfectly balanced data sets are very rare in practice.
The imbalance ratio (IR), which is the ratio between the
number of the majority class samples and the minority class
samples, is typically used to reflect the classification difficulty
caused by class imbalance [7], and the assumption is that the
higher the IR, the more difficult it is to predict the minority
class samples. However, recent empirical studies have shown
that the IR is not the main determinant in class imbalance
learning problem [8]. A higher IR will only further deteriorate
the classification accuracy if the other data complexities have
also influenced the classification result. For example, Fig. 1
shows three imbalanced data sets with the same IR. The imbal-
ance recovery methods provide different levels of accuracy
improvement on the minority class in these data sets. The
two classes of the data set shown in Fig. 1(a) are completely
separated, so regardless of the severity of the imbalance, all of
the samples will be correctly classified. Conversely, the two
classes of the data set in Fig. 1(b) completely and uniformly
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Fig. 1. Three imbalanced data sets with the same number of majority and the minority class samples. The minority class and the majority class are
(a) separable, (b) totally overlapped, and (c) partially overlapped.

overlap. Even when imbalance recovery methods are applied,
the best result is that a maximum of half of the minority
class samples can be recovered, at the cost of reducing the
accuracy of half of the majority class samples. For the case
in Fig. 1(c), the minority class partially overlaps with the
majority class. If imbalance recovery methods are applied,
most of the minority class samples can be correctly classified
with only a small loss in the accuracy of the majority class.
In summary, if we only use IR to measure the difficulty of
an imbalanced data set, all three data sets in Fig. 1 will
be deemed to have the same difficulty for classification. The
imbalance recovery methods cannot improve the classification
of the data sets in Fig. 1(a), and the extent of improvement
also differs for the data sets in Fig. 1(b) and (c). Therefore,
if a data set cannot be improved by any imbalance recovery
method, it is not necessary to consider the imbalance issue
for this data set. Sometimes, the imbalance recovery methods
may both increase the computational burden and deteriorate
the performance if the cost of improving the minority class
accuracy is to sacrifice more majority class accuracy.

It is also worth noting that IR is not the only factor that
jeopardizes the classification accuracy [9], [19], as the poor
result can also be generated from both low IR and high
IRs. Three other data factors should be considered as well
when dealing with the imbalanced data set. Basically, there
are three data factors that are typically related to the class
imbalance problem and should, therefore, also be considered
when working with an imbalanced data set [8].

1) Small Disjuncts: When the data in the same class are
represented by different clusters, the underrepresented
small cluster will further hamper the classification if an
imbalance exists in the data set.

2) Noise: The existence of noises in either the majority
class or the minority class will bring further difficulty,
particularly for the sampling-based imbalance recovery
methods [10].

3) Overlapping: The degree of overlapping significantly
affects the accuracy of the minority class because if
the minority class samples in the overlapping region are
sacrificed, greater overall accuracy is usually obtained.

Most studies have used experimental methods to empirically
analyze the relationship between the three data factors and
imbalance, and as far as we are aware, no theoretical analysis
of this relationship has been conducted. The only conclusion
that has been drawn is that if other data factors, such as
overlapping, small disjuncts, and noise, are present to the same
degree, a higher IR may lead to a further deterioration in
performance [9], [19]. However, the data factors will differ
in different data sets, and thus, using IR alone to represent
the difficulty of the imbalanced data set will be insufficient
and inaccurate. Thus, given an imbalanced data set with low
performance, one has no idea whether the performance loss
is due to the imbalance or to other factors. To determine the
extent of the effect of imbalance, we propose two measures
with which we can isolate other data factors and address the
research problem of the impact of imbalance. We refer to these
as the Individual Bayes Imbalance Impact Index (IBI3) and the
Bayes Imbalance Impact Index (BI3) that estimate the degree
of deterioration caused solely by imbalance at the instance
level and the data level, respectively. IBI3 is calculated by
quantizing the difference in the prediction score of a given
minority class sample between the imbalanced and balanced
situations. BI3 is the averaged IBI3 over all minority class
samples and can, therefore, be used to describe the effect of
imbalance on the data set. For the previous example, the data
set in Fig. 1(a) will have a very small BI3 value and that
in Fig. 1(c) will have a larger BI3 value than that in Fig. 1(b).
Therefore, BI3 can be used as a judgment index, instead
of purely referring to IR, to determine whether we must
consider the imbalance issue and whether imbalance recovery
methods should be applied before training on the data set. That
is, BI3 has positive correlation with the benefit of applying
imbalance recovery methods. The higher BI3 is, the more
the performance can be improved via imbalance recovery
methods. We experimentally verify the effectiveness of IBI3

and BI3 by correlation analysis with the different standard
classifiers and imbalance recovery methods. The experimental
results show that IBI3 is highly correlated with the increase
of the prediction score on minority class samples, and BI3 is
highly correlated with the improvement in the F1 score for
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the whole data in both synthetic and real benchmark data sets.
Therefore, BI3 is a suitable measure to describe how the data
are influenced by imbalance. Our study makes the following
contributions.

1) It is the first attempt to examine the data factors of an
imbalanced data set from a theoretical perspective.

2) The proposed IBI3 is the first instance complexity mea-
sure to show how a minority class sample is influenced
by imbalance.

3) The proposed BI3 can be used as a data complexity
measure to describe the imbalance degree, instead of
referring only to IR.

4) The influence of the imbalance can be estimated without
training and testing, so it can then be determined whether
a specific imbalance recovery method should be applied.

The remainder of this article is organized as follows.
Section II lists the work related to the class imbalance prob-
lem, and the data factors related to the imbalance problem
are discussed. Section III describes the proposed method.
Section IV presents the experiments and discussions. Finally,
our concluding remarks are given in Section V.

II. RELATED WORK

Most studies of class imbalance learning propose imbal-
ance recovery methods, which can be basically categorized
into three groups [11]. First, methods on a data level aim
to manipulate the data to be balanced before training. The
best-known method in this group is the Synthetic Minority
Oversampling TEchnique (SMOTE) [12]. It synthesizes new
samples into the minority class by interpolating the existing
minority class samples with their neighbors. In addition to
data synthesis, data cleaning techniques have also been used
in data preprocessing. For example, Batista et al. [13] used
the Tomek links to clean the overlapping area between classes
to clarify the classification boundary after the introduction
of synthetic samples. The second group of methods at the
algorithm level modifies other learning methods by adapting
them to the imbalanced data. The modified algorithm typically
shifts the decision boundary to enhance the existence of
the minority class samples. For example, Hong et al. [14]
modified the kernel classifiers by orthogonal forward selection
to optimize the model generalization for imbalanced data sets.
The third group is related to the framework of cost-sensitive
learning [15]. These methods assign different costs to the
samples of different classes. The minority class samples are
usually assigned a large cost to prevent them from easily being
misclassified. The idea of cost sensitivity can also be applied
to many other algorithms to turn them into imbalance recovery
methods, such as decision tree [16] and SVM [17].

The imbalance recovery methods mentioned earlier assume
that performance deteriorates because of class imbalance,
but recent studies have shown that the imbalance is not the
only cause of the performance deterioration [8], [10], [18].
At least, three other factors can render predictions inaccurate
on imbalanced data sets. First, in a sparse minority class,
the samples are separated into small clusters. This problem is
called small disjuncts or within-class imbalance [5], which has
commonly been studied together with the imbalance problem.

Therefore, Japkowicz [19] generated synthetic data to study
the relationships among the class disjuncts, the size of the
training data, and the IR. The results show that the small
disjuncts are more responsible for the decrease in accuracy
than the IR by changing the degrees of these data factors.
Accordingly, a solution dealing with small disjuncts called
CBO has been proposed in [9]. It first conducts clustering
on each class so that the oversampling is conducted on each
disjunct instead of each class. In addition, Prati et al. [20]
studied the performance of unpruned trees by considering
the relationship between class imbalance and small disjuncts
and proposed to use SMOTE with data cleaning methods to
alleviate the performance loss from the small disjuncts.

The second data factor is noise. Noisy samples are typically
defined as those from one class located deep inside another
class [21]. The existence of noise samples in the minority
class will make blind oversampling methods, such as SMOTE,
generate more noises, so the application of oversampling on
the noisy minority class may even degrade the performance
further [10]. Therefore, data cleaning methods are typically
used to tackle noise, such as the Tomek link [13] and
ENN [22]. Collecting samples that are incorrectly classified by
the kNN classifier [23] is another straightforward method of
finding the noise. Van Hulse and Khoshgoftaar experimented
using data with artificial noises [7] in which the class noise was
injected into real data sets by randomly relabeling the samples
before training. The results of all the compared classifiers
showed that the minority class was severely affected by noises.

Finally, overlapping between the classes can affect classifi-
cation, particularly when the data are imbalanced. Napierala
and Stefanowski [18] proposed a kNN-based method to cat-
egorize the minority class examples into the four categories
of safe, border, rare, and outlier. The categories depend on
the ratio of the majority class samples in the k nearest
neighbors (kNN) of each minority class sample. For each
data set, the degree of overlap of the minority class can be
obtained by investigating the proportions of the four groups.
However, the analysis only shows the difficulty of classifying
the minority class samples, and the degree of imbalance is not
considered. García et al. [24] evaluated kNN when the local
IR was inverse to the global IR and concluded that kNN is
more dependent on the local imbalance. Anwar et al. [25] also
proposed the use of kNN to measure the data complexity for
imbalanced data with adaptively selected k. Prati et al. [26]
observed that the performance loss is related not only to class
imbalance but also to the degree of overlapping. In summary,
the previous studies empirically justified their conjectures
without any theoretical frameworks and no measure has as
yet been proposed to assess how the data set is influenced by
class imbalance, independent of other data factors.

Finally, the studies of data complexity should be considered
as a related area. A list of complexity measures was proposed
in [27] with different featured groups. The measures are used
to study the essential structure of data and guide the selection
of classifiers for specific problems. Recently, Smith et al. [28]
have extended the study of data complexity from data level
to the instance level. They proposed a group of complexity
measures that can be calculated for each instance, and the
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correlations among them are then analyzed. These instance-
level complexity measures can be used for data cleaning to
filter the most difficult samples in the data. However, no spe-
cific research into the data complexity for imbalanced data has
been conducted, and the existing complexity measures are not
suitable to assess the influence of imbalance on the data.

III. PROPOSED METHOD

A straightforward method of establishing the influence of
imbalance on a data set is to compare the model learned
from the imbalanced data with that learned from its balanced
case, in which the number of minority class samples equals
that of the majority class and are drawn from the underly-
ing distribution. If the distribution is known, the differences
between the models built on the imbalanced data and on the
balanced data will be clear because other data factors will be
fixed. However, the distribution is usually unknown in practice.
We can only estimate the distribution by the observed minority
class samples in the data set. Thus, we propose to use the
Bayes optimal classifier to estimate the difference because it
has the theoretical minimum classification error and takes the
class prior into account. Based on the Bayes decision theory,
the difference in the theoretical classification error between
the classifiers trained on the imbalanced and balanced data
sets can be estimated. Thus, the impact of imbalance can be
estimated while isolating other data factors that may influence
the classification. First, we decompose the problem into the
instance level and propose the IBI3, which measures how each
minority class sample is influenced by a class imbalance in
classification. We then define the data level measure as the
BI3 by averaging IBI3 over all minority class samples. BI3,
thus, represents the impact of imbalance on the whole data set.

A. Derivation in Normal Distribution

The details of the proposed measures are described as
follows. The Bayes rule denotes that the posterior probability
of a given sample x in class c is

p(y = c|x) = p(x|y = c)p(y = c)

p(x)
. (1)

The decision of the optimal Bayes classifier for the binary
classification problem is as follows:

f (x) = arg max
c={+1,−1} p(y = c|x). (2)

p(x) is the same for both classes, and in practice the prior
probability is usually estimated by the frequency of each class.
The decision can then be formulated as:

f (x) =
{
+1, f p(x) > fn(x)

−1, otherwise
(3)

where

f p(x) = Np p(x|+) (4)

fn(x) = Nn p(x|−) (5)

Np and Nn are the numbers of samples in the positive class
and negative classes, respectively, and f p(x) and fn(x) are

the posterior scores, which are proportional to the posterior
probabilities. y = +1 and y = −1 are simplified as + and −
in the conditional probability. The majority class is typically
denoted as negative and the minority class as positive. When
the class is imbalanced, namely, Np � Nn , the Bayes optimal
decision may be dominated by the frequency so that some
or even all minority class samples may be misclassified. The
optimal Bayes error is the sum of all misclassified samples
regardless of the class, so under the imbalance circumstance,
sacrificing the accuracy of the minority class samples helps
minimize the total error. However, in most of the imbalanced
data applications, a low error rate does not represent good
performance. To account for the importance of the minority
class, measurements such as the F1 score, G-mean, and
AUC are commonly used instead of the error rate [5]. Thus,
an alternative decision function that is not influenced by the
prior probability can be written as

f �(x) =
{
+1, f �p(x) > fn(x)

−1, otherwise
(6)

where

f �p(x) = Nn p(x|+). (7)

The decision function f �(x) directly compares the value
between p(x|+) and p(x|−). This is, in fact, the decision
function with minimal Bayes error when the classes are
balanced. The influence of imbalance on the data set can
be reflected by the difference between f �p and f p , where
f p is proportional to the minority class posterior probability
under the real imbalanced case and f �p is estimated under
the balanced case. However, direct comparison of f p and
f �p is meaningless because the decision hyperplane is also
determined by fn . Therefore, we define IBI3 as the differ-
ence between the normalized posterior probabilities of the
imbalanced case and the estimated balanced case

IBI3(x) = p(+|x, f �)− p(+|x, f ) (8)

= f �p(x)

fn(x)+ f �p(x)
− f p(x)

fn(x)+ f p(x)
. (9)

Fig. 2(a) shows an example of the distribution of fn(x), f p(x),
and f �p(x) on a 1-D normally distributed binary class data with
IR = 5. Fig. 2(b) shows the normalized posterior probabilities
and IBI3. The peak of IBI3 is observed in the region between
two decision hyperplanes f (x) and f �(x), which means that
the part with the most difference between the imbalanced and
balanced cases lies in the region between two hyperplanes.
The minority class samples in this region are misclassified
under the imbalanced case but correctly classified under the
balanced case, which can be regarded as the impact on the
minority class sample solely from the imbalance. If IBI3 is
low, the minority class sample x is either a noise sample,
which is deeply located in the region of the majority class
that makes both p(+|x, f �) and p(+|x, f ) close to 0, or a safe
sample that is deeply located in the region of the minority class
that makes both p(+|x, f �) and p(+|x, f ) close to 1. In both
cases, IBI3 is small, and the influence of the imbalance on
x is insignificant. Thus, even if imbalance recovery methods
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Fig. 2. Example to show the distribution of IBI3 on two classes with normal
distributions. (a) Posterior scores. (b) Normalized posterior probabilities and
IBI3. The optimal Bayes decision hyperplanes f �(x) and f (x) are shown by
the dotted lines.

are applied, the classification results for these minority class
samples with low IBI3 values are not likely to change.

IBI3 is calculated for each minority class sample, and the
averaged IBI3 over all the minority class can be used to
describe the imbalance impact of the data set. BI3 for the
whole data set D is calculated by averaging over all IBI3 on
the minority class

BI3(D) = 1

Np

∑
(xi ,yi )∈D,

yi=+1

IBI3(xi ). (10)

B. Local Approximation

If the two classes are normally distributed, the likelihood
functions p(x|+) and p(x|−) can be calculated by estimating
the mean and variance. However, the assumption usually
fails in real benchmark data sets because in addition to the
distribution not being normal, small disjuncts and noises can
be found among the classes. We can assume that the normality
with estimated mean and variance may not be accurate enough
to calculate IBI3 and BI3. Cover and Hart [29] showed
the relationship between the error bounds of the nearest
neighbor classifier and the Bayes classifier by the following
theorem.

Theorem 1 (Cover and Hart, 1967): For a sufficiently
large training set size N , the inequality of the error rate of
the nearest neighbor classifier RNN and the Bayes classifier
RBayes holds

RBayes ≤ RNN ≤ 2RBayes(1− RBayes). (11)

The upper bound of the error rate of the nearest neighbor
classifier is found to be double that of the Bayes classifier,
and the result is independent of the selection of the nearest
neighbors k. Therefore, kNN is a good substitute to estimate
the likelihood without a normality assumption. The details
are given in Algorithm 1. For each minority class sample
x, we find its kNN kNN(x) and count the number of the
majority class neighbors M . Thus, fn is set at M/k, which

Algorithm 1 BI3

Input: Dataset D = {xi ∈ X , yi ∈ Y}, the number of
positive samples Np , the number of negative samples Nn ,
the number of nearest neighbors k0.

1: r ← Nn/Np ;
2: Construct the sample set of the minority class D+ ← {x+i };
3: for i ← 1 to Np do
4: Calculate the number of the minority class neighbors:

M ← |{(x�, y �) : x� ∈ k N N(x+i ), y � = −1}|
5: if M = k0 then
6: M ← the number of the majority class samples

between x+i and the nearest the
minority class

neighbor of x+i ;
7: k← M + 1;
8: else
9: k← k0;

10: end if
11: fn ← M/k;
12: f p ← (k − M)/k;
13: f �p ← r(k − M)/k;
14: Calculate IBI3(x+i ) by (9);
15: end for
16: Calculate BI3 by (10);
Output: The indices IBI3 and BI3.

is the local probability that x is classified as negative, and f p

is correspondingly set at (k − M)/k. We assume that in the
unknown balanced situation, there will be r = Nn/Np times
more the minority class samples surrounded by x. Therefore,
f �p is set at r(k−M)/k. To prevent the case in which all of the
k neighbors of x are the majority class samples, which makes
both f p and f �p equal to zero, we adopt a flexible k that is
set at the minimal number to ensure that x has at least one
the minority class neighbor. This is shown in Lines 5–10 in
Algorithm 1.

An example with four binary class synthetic data sets drawn
from a normal distribution with different IRs is given in Fig. 3.
The IBI3 values with k0 = 5 can be visually compared
in various locations of the minority class samples and with
a different IR. Fig. 3 demonstrates that the minority class
samples with high values of IBI3 are mainly located in the
boundary between two classes. This is consistent with the
example shown in Fig. 2. The minority class samples that lie in
the deep region of the majority class receives low IBI3 because
they are regarded as noises that will still be misclassified
even if the two classes are balanced. Thus, their classification
result is not significantly related to the imbalance. In addition,
the minority class samples that are far from the majority
class also receive low IBI3 because they will be correctly
classified regardless of whether the classes are imbalanced.
Fig. 3 demonstrates that the IBI3 values of the minority class
samples on the boundary between two classes increase as
IR increases. The influence of these minority class samples
is, therefore, related to IR. The higher the IBI3 value of a
minority class sample is, the more seriously that the sample
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Fig. 3. Values of IBI3 with local probability on a binary class synthetic
data set drawn from a normal distribution with different IR s. The gray plus
symbol is the majority class, and the colored dot is the minority class.

is influenced by imbalance and the higher the probability that
the sample can be correctly classified in a balanced situation.
The values of BI3 for these four data sets are 0.0674, 0.2482,
0.3829, and 0.4588, respectively. The values of BI3 increases
as IR increases, which can be used to reflect the extent of the
effect of imbalance on the data.

Remarks:

1) The minority class samples with high IBI3 values
are mainly located in the classification borderline,
as shown in Fig. 3. The approach is similar to
those of borderline-based methods, such as borderline-
SMOTE [30], ADASYN [31], and the borderline minor-
ity class samples defined in [18]. These methods
categorize the minority class samples by the percent-
age of majority class samples in their neighborhood.
However, they do not distinguish data sets with different
IRs. For example, if a minority class sample in a data
set with IR = 3 has one majority class sample among
its five neighbors, it may not be treated as a borderline
sample. However, if the same situation occurs for a
minority class sample in a data set with IR = 10,
this sample should be treated as a borderline sample
because a high IR indicates that the minority class
sample may have more potential neighbors of its own
class if the classes are balanced based on the underlying
distribution. Therefore, the difference between IBI3 and
other borderline-based methods is that IBI3 involves the
factors of imbalance in defining the borderline minority
class samples, whereas methods such as Borderline-
SMOTE and ADASYN only consider the neighborhood
of the minority class samples.

2) The proposed indices IBI3 and BI3 may not be
suitable for estimation of the imbalance effect on
high-dimensional imbalanced data directly, which would
have intrinsic low-dimensional feature space. Under
these circumstances, simply calculating the Euclidean

distance by kNN on the original high-dimensional fea-
ture space would not be so appropriate to get an accurate
estimations of IBI3 and BI3. Instead, it is still desir-
able that an appropriate dimension reduction technique
should be applied before calculating IBI3 and BI3.

C. Guidance of Usage

In this section, we provide a guidance of how to use the
proposed measures IBI3 and BI3 to deal with imbalanced data,
while using IBI3 or BI3 to design a specific imbalance recovery
algorithm is actually beyond the scope of this article and will
be left for future studies.

The IBI3 value can be used for differentiating the minority
class samples for oversampling methods and cost-sensitive
methods. IBI3 indicates the impact caused by a minority class
sample in terms of imbalance. Therefore, the oversampling
weight can be determined by IBI3 value. In other words,
the minority class sample with a higher IBI3 value will obtain
higher probability to be oversampled. As discussed earlier,
the minority class samples with low IBI3 value are either
noises or safe samples, whose classification results are likely
to remain the same even when imbalance recovery methods
are applied. Oversampling the minority class samples with low
IBI3 values may have limited benefit to the classification result.

The BI3 value can be used for investigating an imbalanced
data set before applying imbalance recovery methods. For
researchers working on the area of imbalanced data classifica-
tion, one can select data sets with high BI3 values to conduct
experiments for testing new imbalance recovery methods.
Usually, researchers prefer to select imbalanced data sets by
referring to IR. However, as discussed in Section I, high IR
does not mean that applying imbalance recovery methods will
recover more accuracy loss. Thus, the efficacy of the proposed
imbalance recovery method may not be well evaluated and
the experimental results may be misleading if IR is used to
indicate the difficulty of imbalance. For engineers handling an
imbalanced data set, one can calculate BI3 value first to get a
glimpse of the impact of imbalance on the data set. If the BI3

value is very low (e.g., lower than 0.05 by a rule of thumb in
Section IV-B), one should focus on other data clean methods
instead of directly applying imbalance recovery methods.

IV. EXPERIMENTS

The accuracy of the proposed measure BI3 in the
experiments is mainly evaluated by correlation analysis.
We use Spearman’s rank correlation coefficient [32], which
is a nonparametric measure of the rank correlation between
two variables that assess the degree of describing the relation-
ship between two variables with a monotonic function. The
correlation ranges from −1 to 1, where 1 or −1 indicates
a perfect monotonously increasing or decreasing relationship
and 0 indicates no correlation between two variables.

We use five well-known standard classifiers: RBF kernel
support vector machine (SVM) [33], decision tree imple-
mented by CART [34], kNN with k = 5 (5NN) [35],
random forest (RF) [36], and AdaBoost [37]. We use the
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default parameter provided by sciki t-learn learning library
in Python [38]. The minimal number of nodes in each leaf
of CART and RF is set at five to produce a probability
output. We also use four imbalance recovery methods to deal
with class imbalance: random oversampling (OS), random
undersampling (US), SMOTE [12], and sample weighting
(SW). The first three are sampling methods, and the last
is a cost-sensitive method that assigns the weight of the
minority class samples as the IR and the majority class
sample as one. The above-mentioned methods are inde-
pendent of the classifier, so they can be arbitrarily com-
bined with standard classifiers to deal with class imbalance.
We use the simplest imbalance recovery methods for the
class imbalance problem because our intention is not to
select the best imbalance recovery method but to show that
the proposed measured index is generally consistent with
the improvement made by the imbalance recovery methods.
These methods are implemented by the imbalanced-learn
toolbox [39].

The proposed measures are directly calculated on the whole
data set so that each minority class sample is associated with
an IBI3 value and each data set is associated with a BI3 value.
To show the correlation with the standard classifiers using
the imbalance recovery methods, we carry out tenfold cross
validation with five different random partition runs for each
combination of classifier and the imbalance recovery method.
Thus, each minority class sample can be calculated as a test
sample in its own fold and averaged by five runs. Since the
proposed indices IBI3 and BI3 focus only on the minority
class samples, we use the F1 score as the measurement
because it is the harmonic mean of precision and recall on the
minority class. The correlation analysis is conducted at two
levels.

1) Instance-Level Correlation: All the minority class
samples in all data sets are accumulated. We calcu-
late the correlation between IBI3 and the increase in
the prediction score made by the imbalance recov-
ery methods on each classifier by (8). Here, f � is
the classifier with imbalance recovery methods, and
f is the standard classifier. Thus, we can evaluate
whether IBI3 is consistent with the improvement made
by the imbalance recovery method on minority class
samples.

2) Data-Level Correlation: All the data sets are accu-
mulated. We calculate the BI3 on each data set and
compare it with the improvement of the F1 score made
by the imbalance recovery methods. Thus, we can
evaluate whether BI3 can show the impact of imbal-
ance on the data set in terms of improvement in the
F1 score.

The number of nearest neighbors k0 is set at five for all
experiments. No adequate comparison methods are available
because this is the first study to propose a measure of the
degree of impact on an imbalanced data set. Thus, we compare
our results with three hardness measures: k DN and CL
proposed in [28] and C M proposed in [25]. These are related
to kNN and the Naive Bayes classifier but do not consider
imbalance. kDN measures the percentage of data point x’s

Fig. 4. Position of the majority class and the minority class with different
number of disjuncts.

neighbors that are not in the same class as x

k DN(x, y) = |{(x
�, y �) : x� ∈ kNN(x), y � �= y}|

k
(12)

where kNN(x) is the set of kNN of x and | · | is the size of
the set. We also set k = 5. CL measures the global overlap
between classes and the likelihood of a sample belonging to
its opposite class

CL(x, y) = 1−
d∏
i

p(xi , y) (13)

where d is the number of dimensions and p(xi , y) is the
samples’ likelihood on i th feature to its class y. It uses the
same assumption in Naive Bayes, which is that the features
are independent of each other. The original version of CL
in [28] is the likelihood that a sample belongs to its own
class. However, to be consistent with other methods in this
article, in which the measurement is positively correlated with
the instance hardness, we, therefore, use one to subtract the
original CL. We average the values of k DN and CL on all
minority class samples to obtain the data-level index. C M is
a data-level complexity measure

C M(x, y) = I

( |{(x�, y �) : x� ∈ kNN(x), y � = y}|
k

≤ 0.5

)
(14)

C M(D) = 1

N

N∑
i=1

C M(xi , yi ) (15)

where I is the indicator function. For the data-level correlation
analysis, we also performed comparison with IR because it is
usually regarded as an index for measuring the difficulty of
an imbalanced data set. In summary, we compare IBI3 with
k DN and CL for instance-level correlation and compare BI3

with k DN , CL, C M , and IR for data-level correlation.

A. Synthetic Data

We first evaluate the proposed index on synthetic binary
class data sets. Three groups of synthetic data sets are gener-
ated.

1) syn_Overlap: The between-class distance and IR are
adjusted.

2) syn_Noise: The noise level and IR are adjusted.
3) syn_Dis junct: The number of small disjuncts and IR

are adjusted.
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Fig. 5. Twelve synthetic binary class imbalanced data sets in data set group syn_overlap (top row), syn_noise (middle row), and syn_dis junct (bottom
row) with different covariance combinations.

All data sets have two classes that are generated from a
normal distribution with two dimensions. The number of
samples in the minority class Np is fixed at 100, and the
number of samples in the majority class Nn varies in the set
{500, 1000, 5000}, where IRs are 5, 10, and 50, respectively.
For data set group syn_overlap, the distance between two
classes dist varies in the set {0, 1, 2, 3}, and there is no noise.
For data set group syn_noise, the noise level noise varies
in the set {0, 0.1, 0.2, 0.3}, where 0.1 means that 10% of
the minority class samples are labeled as the majority class
and that the same number of the majority class samples are
labeled as the minority class. The distance between the two
classes for data set group syn_noise is fixed at two. For data
set group syn_dis junct , the number of small disjuncts of
each class dis junct varies in the set {1, 2, 4, 8}. For example,
disjunct = 2 means that each class has two disjuncts. The
distance between adjacent disjuncts is set at two. The position
of the majority class and the minority class with the different
numbers of disjuncts is shown in Fig. 4. For all synthetic data
sets, the covariance matrix for each class is set to

� =
[

σ11 σ12
σ21 σ22

]
+ 0.1I (16)

where σ11, σ22 ∈ [0, 1] and σ12, σ21 ∈ [−1, 1] are uniformly
random numbers. The extra term 0.1I ensures that the covari-
ance matrix is positive semidefinite. The covariance matrix
for the positive and negative classes is set differently, and
the covariance matrix is drawn ten times to produce different
combinations. Therefore, totally, there are three groups of

3 × 4 × 10 = 120 data sets with various degrees of over-
lap, IRs, noise levels, number of disjuncts, and covariance.
Four of the data sets in each data set group are shown
in Fig. 5.

1) Results on Data Set Group syn_overlap: The instance-
level correlation is shown in Table I. Generally, IBI3 shows
higher correlations than k DN and CL. IBI3 shows the highest
correlations on SVM with OS, US, and SMOTE, which are
generally more than 0.85. A high correlation means that if the
prediction score of a minority class sample can be increased
by SVM with the imbalance recovery methods, its IBI3 value
is also high. Both IBI3 and k DN use the nearest neighbors
to calculate the measure. k DN has a much lower correlation
than IBI3 because the imbalance factor is not considered
in k DN . The correlation of CART with OS is not high
for all indices although IBI3 achieves the highest at 0.1105,
whereas the other two methods have negative correlations.
Random oversampling may simply duplicate the minority class
samples so that the leaf node of the decision tree is full of
the duplicated the minority class samples after oversampling,
which does not increase the prediction score of the minority
class samples. In addition, CART with US has high correlation
with IBI3, which may suggest that US is a more effective way
of increasing the minority class prediction score with CART.
On 5NN, the correlations of IBI3 of OS and SW are seen to be
lower than those of US and SMOTE. OS and SW only work if
the training the minority class samples are in the neighborhood
of the testing minority class sample. If the testing minority
class sample is surrounded by the training majority class
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TABLE I

INSTANCE-LEVEL SPEARMAN RANKED CORRELATION BETWEEN THE
INDICES AND THE INCREASE OF PREDICTION SCORE OF MINORITY

CLASS SAMPLES ON DATA SETS GROUP syn_overlap

samples, it will still be misclassified because OS and SW
only duplicate and increase the weight of the training minority
class samples. For RF, the correlation of IBI3 is higher than
CART because the ensemble of trees is more robust and will
increase the prediction score, particularly for US, which shows
a correlation of 0.8531 correlation with IBI3. For AdaBoost,
the correlation is low for all indices with all imbalance
recovery methods. Our investigation found that the minority
class prediction score of AdaBoost is very close to 0.5 and that
the imbalance recovery methods only increase the score a little,
to make it just over 0.5, which would change the classification
result. Therefore, AdaBoost has a low correlation with the
indices.

The data-level correlation is shown in Table II. BI3 shows
the highest correlation with the improvement in the F1 score
for all classifiers and all imbalance recovery methods, where
the correlations are generally greater than 0.5. For SVM, BI3

shows high correlations with all imbalance recovery methods.
All the correlations are greater than 0.77. CART, 5NN, and
RF also show higher correlations than other indices. It is
interesting to notice that AdaBoost generally has the second-
highest correlation over all the imbalance recovery methods;
however, its instance-level correlation is very low, as shown
in Table I. As explained, the increase in the prediction score
of AdaBoost is slight, but it changes the prediction and thus
influences the F1 score. The correlations of kDN and CL
are generally 0.1 less than those of BI3 because they do
not consider the imbalance in the index. They use pure data
complexity to describe the effect caused by imbalance and
are thus less accurate than BI3. C M shows low correlations
because it combines the neighborhood indicator values of all
the majority and minority class samples. It can be used to
represent the overall classification complexity of a data set
but cannot show the impact of imbalance on it. IR is also
compared, as an index for data-level correlation. However,
most correlations between IR and the imbalance recovery
methods are lower than 0.4. Thus, IR is not effective as
an index for describing the influence of the class imbalance
problem.

TABLE II

DATA-LEVEL SPEARMAN RANKED CORRELATION BETWEEN THE INDICES
AND THE IMPROVEMENT IN THE F1 SCORE BY DIFFERENT IMBALANCE

RECOVERY METHODS ON DATA SETS GROUP syn_overlap

TABLE III

BI3 VALUES ON DATA SET GROUP syn_overlap
AVERAGED OVER TEN DIFFERENT VARIANCES

In summary, on data set group syn_overlap, BI3 has a high
correlation with the improvement of the F1 score by imbalance
recovery methods on all classifiers. BI3 is, therefore, a proper
index to describe the possible level of improvement in the
F1 score by applying imbalance recovery methods. Thus, if a
data set has a low BI3 value, careful consideration should be
given before applying imbalance recovery methods because
any improvement may be limited or even negative. Table III
shows the BI3 values averaged over ten different variances on
data set group syn_overlap. When the overlapping region is
reduced, BI3 decreases as the distance between two classes
increases. In addition, when IR is increasing, BI3 is also
increased. It is interesting to notice that when dist = 3 and
IR = 50, where the two classes seldom overlap, the BI3 value
is comparable with dist = 2 and IR = 5. This again confirms
that IR is not the only cause of classification performance
degeneration and that BI3 can more properly describe the
impact brought by imbalance.

2) Results on Data Set Group syn_noise: The instance-
level correlation is shown in Table IV. As the same as
syn_overlap, the results for IBI3 also show the highest
correlations. However, the correlations of SVM, CART, RF,
and AdaBoost are generally lower than those of syn_overlap
shown in Table I. The correlations of 5NN of syn_noise
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TABLE IV

INSTANCE-LEVEL SPEARMAN RANKED CORRELATION BETWEEN THE
INDICES AND THE INCREASE OF PREDICTION SCORE OF MINORITY

CLASS SAMPLES ON DATA SETS GROUP syn_noise

TABLE V

DATA-LEVEL SPEARMAN RANKED CORRELATION BETWEEN THE INDICES

AND THE IMPROVEMENT IN THE F1 SCORE BY DIFFERENT IMBALANCE

RECOVERY METHODS ON DATA SETS GROUP syn_noise

are comparable with those of syn_overlap because IBI3 is
based on kNN and some minority class noise in the deep
region of the majority class receives low IBI3 value according
to (8). However, the prediction score of classifiers, such as
SVM and RF, on these noised points will differ significantly
if imbalance recovery methods are applied. Therefore, it makes
the correlations lower than those of syn_overlap. Similarly,
k DN has lower correlations than those of syn_overlap.
The correlations of CL are low because it is based on the
Naive Bayes. When a data set has noise, the mean and
variance cannot be well estimated, so the correlations are
also low.

The data-level correlation is shown in Table V. Most of
the correlations of BI3 are greater than 0.6. CL has very low
correlations with the improvement in the F1 score because it is

TABLE VI

BI3 VALUES ON DATA SET GROUP syn_noise
AVERAGED OVER TEN DIFFERENT VARIANCES

TABLE VII

INSTANCE-LEVEL SPEARMAN RANKED CORRELATION BETWEEN THE

INDICES AND THE INCREASE OF PREDICTION SCORE OF MINORITY

CLASS SAMPLES ON DATA SETS GROUP syn_dis junct

sensitive to the noise. CM even generates negative correlations,
which means that it is not a proper index for a description
of the extent of imbalance of a noisy data set. Surprisingly,
IR shows comparable correlations with k DN , which means
that if the factor of overlapping is fixed, IR can still partially
represent the impact of imbalance to the data set although
noise exists.

Table VI shows the BI3 values averaged over ten different
variances on data set group syn_noise. As the noise level
increases or IR increases, the index value also increases. Both
IR and the noise level affect BI3, and this again confirms that
the performance of a classifier on the imbalanced data set does
not depend only on IR.

3) Results on Data Set Group syn_dis junct: The instance-
level correlation is shown in Table VII. It can be seen that
IBI3 shows the highest correlation among all indices. CL
shows several negative correlations because the classes in data
set group syn_dis junct are not normally distributed if the
number of disjuncts is greater than one. Among the imbalance
recovery methods, US shows the highest correlation because
the classes can be easily separated after US is adopted even if
there are many disjuncts. For the classifiers, SVM and 5NN
generally have higher correlations than the tree-based methods.

The data-level correlation is shown in Table VIII, where the
correlations in syn_dis junct is generally higher than those
in syn_overlap and syn_noise. BI3 can, therefore, better
reflect the data complexity caused by small disjuncts. kDN
and BI3 show almost the same correlations among various
combinations of classifier and imbalance recovery methods,
possibly because little overlap occurs between the classes
in syn_dis junct and no noise is present. As a result, few
minority class samples are located in the deep region of the
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TABLE VIII

DATA-LEVEL SPEARMAN RANKED CORRELATION BETWEEN THE INDICES
AND THE IMPROVEMENT IN THE F1 SCORE BY DIFFERENT IMBALANCE

RECOVERY METHODS ON DATA SETS GROUP syn_dis junct

TABLE IX

BI3 VALUES ON DATA SET GROUP syn_dis junct
AVERAGED OVER TEN DIFFERENT VARIANCES

majority class, where these samples have high k DN values,
which makes the correlation different.

Table IX shows the BI3 values averaged over ten different
variances on data set group syn_dis junct . BI3 increases as
the number of disjuncts and IR increase. For IR = 50 with
disjunct = 2, 4, 8, the values of BI3 are almost the same.
Thus, when the classes are highly imbalanced, IR dominates
the data complexity, and increasing the number of disjuncts
does not further deteriorate the classification performance of
the minority class.

B. Real Benchmark Data

We use 80 real data sets from the KEEL data set reposi-
tory [40]. The details of the data sets are given in Table X.
The IR ranges from 1.86 to 129.44 over all 80 data sets. For
real benchmark data, we also compare the proposed IBI3 and
BI3 with k DN , CL, C M , and IR, in the instance and data
levels, respectively.

The instance-level correlation is shown in Table XI. IBI3

shows greater correlations than k DN and CL because it con-
siders the imbalance factor into the index. 5NN achieves the
greatest correlation of all imbalance recovery methods because
BI3 is based on kNN and RF achieves the second-highest

Fig. 6. BI3, k DN , and IR over 80 KEEL real benchmark imbalanced datasets
sorted along the improvement of F1 score of AdaBoost classifier with (a) OS,
(b) US, (c) SMOTE, and (d) SW.

correlation. In terms of the imbalance recovery methods, US
achieves the greatest correlation, where the correlations are
greater than 0.5, except with AdaBoost.

The data-level correlation is shown in Table XII. BI3

achieves the highest correlation, and most of the correlations
are greater than 0.5, which indicates a strong correlation.
Thus, given a real data set, we can calculate BI3 without
training and testing to estimate the extent of improvement
by using imbalance recovery methods. kDN shows greater
correlation than IR in general, which means that the data
complexity using the nearest neighbor can still better represent
the imbalance impact on imbalanced data than referring to the
IR. CM achieves low correlation, which means that CM may
be a good data complex measurement for imbalanced data
but not a proper index for describing the imbalance impact.
5NN achieves a high correlation at the instance level but low
correlation at the data level, possibly because the imbalance
recovery methods applied to 5NN simply change the prediction
score but do not effectively improve the F1 score. As in the
synthetic data situation, AdaBoost shows a low correlation at
the instance level but a high correlation at the data level. The
averaged correlation of AdaBoost over all imbalance recovery
methods is higher than other classifiers, and thus, BI3 can
properly reflect the extent of improvement in the F1 score
when applying imbalance recovery methods to AdaBoost.

Fig. 6 shows BI3, k DN , and IR over 80 real benchmark
data sets on the AdaBoost classifier with various imbalance
recovery methods. IR is normalized to [0,1] to fit in the
figure. Most of the IR points are located at the bottom,
which means that the same level of IR leads to different
levels of F1 score improvement. Conversely, most of the
k DN points are scattered at the top, which means that
k DN tends to overestimate the improvement in the F1 score
because it only counts the number of neighbors with different
class labels for the minority class samples. In comparison,
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TABLE X

INFORMATION OF 80 IMBALANCED DATA SETS

TABLE XI

INSTANCE-LEVEL SPEARMAN RANKED CORRELATION BETWEEN THE

INDICES AND THE PREDICTION SCORE INCREASE OF MINORITY CLASS

SAMPLE OVER 80 REAL DATA SETS

BI3 generally increases as the improvement in the F1 score
increases, as shown in Fig. 6. Only a few points lie on the
region so that the improvement in the F1 score is close to 0,
but BI3 has high values. The selected imbalance recovery
methods are the simplest ones found in the literature and, thus,
may not be effective in improving the F1 score for all the
data sets.

We specifically studied two real benchmark data sets from
Table X: kddcup-land_vs_satan and haberman. The data set
kddcup-land_vs_satan has IR = 75.67, which is highly imbal-
anced, but BI3 = 0.02, which means that the imbalance impact
on this data set is low. Table XIII shows the F1 scores of
different classifiers and the improvement in the F1 scores from
the imbalance recovery methods. The F1 scores for classifiers
without imbalance recovery are already very high. Therefore,
the improvements from the imbalance recovery methods are
very limited. Most are near or equals to 0. US even deteriorates
the F1 scores for all classifiers and shows negative improve-
ment, possibly because there is a greater decrease in precision
than an increase in recall as the F1 score is the harmonic
mean between precision and recall. The result obtained from
data set kddcup-land_vs_satan shows that the minority class in
the data set itself is not very difficult to classify although it is
significantly outnumbered by the majority class. In contrast,
the data set haberman has IR = 2.78, which is not highly
imbalanced compared with data set kddcup-land_vs_satan,
but its BI3 value is 0.2. Table XIV shows the F1 scores
and the improvements of various classifiers and imbalance
recovery methods. Most of the imbalance recovery methods
can, therefore, make obvious improvements on all classifiers.
Most improvements in the F1 scores are greater than 0.1.
In general, imbalance recovery methods should be applied
to data set haberman because the F1 score can be actually
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TABLE XII

THE DATA-LEVEL SPEARMAN RANKED CORRELATION BETWEEN THE
INDICES AND THE IMPROVEMENT IN THE F1 SCORE BY DIFFERENT

IMBALANCE RECOVERY METHODS ON DATA LEVEL OVER

80 REAL DATA SETS

TABLE XIII

IMPROVEMENT IN THE F1 SCORE ON THE DATA SET kddcup-land_vs_satan.
THE COLUMN NONE IS THE F1 SCORE OF THE CLASSIFIER WITHOUT

IMBALANCE RECOVERY METHODS

TABLE XIV

IMPROVEMENT IN THE F1 SCORE ON THE DATA SET Haberman. THE

COLUMN NONE IS THE F1 SCORE OF THE CLASSIFIER WITHOUT

IMBALANCE RECOVERY METHODS

improved although its IR is not very high. This example again
confirms that IR is not the only cause of the performance
degeneration of an imbalanced data set. In empirical terms,
we, therefore, suggest that the focus should be on other data
factors in an imbalanced data set if its BI3 value is lower
than 0.05.

C. Parameter Sensitivity

The number of nearest neighbors, k0, used in the calculation
of BI3 is set at five for all experiments. In this experiment,
we compare the averaged correlation of BI3 with different
settings of k0. We also verify the effectiveness of the flexible

Fig. 7. Change of correlation of BI3 and BI3
f averaged over all classi-

fiers and imbalance recovery methods as increasing the number of nearest
neighbors k0.

k0 used in Algorithm 1, compared with that only using the
fixed number of k0, which is denoted as BI3

f . Fig. 7 shows the
correlation of BI3 averaged over all classifiers and imbalance
recovery methods increases the number of nearest neighbors
k0 from 2 to 50. Both instance- and data-level correlations
have the highest values of around k = 5. As k0 increases
from 2 to 5, the averaged correlation increases and then
decreases. Thus, k = 5 appears to be a proper selection for
BI3. In addition, the averaged correlation of BI3 is higher
than BI3

f over all settings of k0 for both data- and instance-
level correlations, which confirms the effectiveness of the
flexible k0.

V. CONCLUSION

Most studies of class imbalance learning attempt to recover
the accuracy loss caused by the IR. However, the accuracy
loss is not only related to imbalance but also to many other
data factors. Using IR to describe the classification difficulty
of imbalanced data is inaccurate and misleading. In this article,
we have proposed two measures IBI3 and BI3 to estimate the
impact that is solely caused by imbalance at the instance and
data levels, respectively. IBI3 measures how much a single
minority class sample is influenced by the imbalance. BI3,
which is the average over IBI3, can be used as a measure of the
degree of degradation in an imbalanced data set, and one can
determine whether or not to apply imbalance recovery methods
by referring to the BI3 value instead of IR. The experiments
on synthetic and real benchmark data sets have shown high
correlations at both the instance and data levels with the
improvements in the F1 score made by various imbalance
recovery methods.

In addition to this work, there is still room for future
research. For example, a classifier-oriented index can be
proposed, which shows exactly how much the imbalance
influences a specific classifier because each type of classifier
has a different level of sensitivity to imbalance. Furthermore,
IBI3 can be incorporated into imbalance recovery methods,
such as sampling or cost-sensitive methods, to help recover the
loss caused by imbalance. In addition, taking advantage of BI3

can guide the selection of a proper imbalance recovery method
for a specific imbalanced data set. Because the recovery
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methods developed from the various theories and method-
ologies complement each other to some degree, their selec-
tion becomes particularly important as given an imbalanced
data set.
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