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Discriminating Tensor Spectral Clustering for
High-Dimension-Low-Sample-Size Data

Yu Hu , Fei Qi , Yiu-Ming Cheung , Fellow, IEEE, and Hongmin Cai , Senior Member, IEEE

Abstract— Tensor spectral clustering (TSC) is a recently
proposed approach to robustly group data into underlying
clusters. Unlike the traditional spectral clustering (SC), which
merely uses pairwise similarities of data in an affinity matrix,
TSC aims at exploring their multiwise similarities in an affinity
tensor to achieve better performance. However, the performance
of TSC highly relies on the design of multiwise similarities,
and it remains unclear especially for high-dimension-low-sample-
size (HDLSS) data. To this end, this article has proposed a
discriminating TSC (DTSC) for HDLSS data. Specifically, DTSC
uses the proposed discriminating affinity tensor that encodes the
pair-to-pair similarities, which are particularly constructed by
the anchor-based distance. HDLSS asymptotic analysis shows
that the proposed affinity tensor can explicitly differentiate
samples from different clusters when the feature dimension is
large. This theoretical property allows DTSC to improve the
clustering performance on HDLSS data. Experimental results on
synthetic and benchmark datasets demonstrate the effectiveness
and robustness of the proposed method in comparison to several
baseline methods.

Index Terms— High-dimension-low-sample-size (HDLSS) data,
similarity measurement, spectral clustering (SC), tensor, tensor
SC (TSC).

NOMENCLATURE

T Affinity tensor.
T ⋆ Discriminating affinity tensor.
D/D⋆ Degree tensor of T /T ⋆.
L/L⋆ Laplacian tensor of T /T ⋆.
A:,r,:,s r th frontal slice of the sth subtensor

of A.
Ai, j,k,l (i, j, k, l)th element of A.
Ap,q (p, q)th element of the matrix A.
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V ⋆(i) i th eigenmatrix of Laplacian
tensor L⋆.

x(t)
i t th feature of the sample xi .

di j Pairwise Euclidean distance of xi

and x j .
φ(xi , x j , xk) Anchor-based distance between xi

and x j .
[m] Set of {1, 2, . . . , m}.
b Number of eigenmatrices.
c Number of clusters.
Fp/µp/τp Population of pth

cluster/location/overall scale.

I. INTRODUCTION

CLUSTERING aims at grouping samples into their respec-
tive clusters in an unsupervised manner and has a variety

of applications in machine learning and data mining [1],
[2], [3], [4]. Over the past decades, spectral clustering
(SC) [5] has been recognized as a representative technique
in the related literature due to its empirical performance,
simplicity, and theoretical foundations. Nevertheless, SC relies
on an affinity matrix encoding pairwise similarities, which is
noise-sensitive for clustering [6], [7], [8], [9]. Another issue
is that the pairwise similarities measured by the Euclidean
distance suffer from the concentration effect [10] when dealing
with high-dimension-low-sample-size (HDLSS) data [11].
The concentration effect is that the pairwise similarities of
two measured samples become indiscriminative when feature
dimensions are extremely large [12]. Consequently, most of
the clustering methods that rely on such pairwise similarities
fail to achieve satisfactory performance. In the literature,
a few recent works have attempted to address this issue. For
example, Sarkar and Ghosh [11] have proposed an approach
to tackle the concentration effect with a data-driven measure
of dissimilarity by the anchor-based distance, named as the
mean of absolute differences of pairwise distances (MADD).
Using MADD, they adapt the classic clustering methods such
as SC to HDLSS data. Nevertheless, MADD-based methods
still rely on pairwise similarities, which are prone to noise
contamination.

Recently, tensor SC (TSC) has been proposed to address
the noise issue and the concentration effect simultaneously.
TSC leverages an affinity tensor instead of an affinity matrix
to characterize multiwise similarities [13], [14], [15], which
are shown to be noise-robust and alleviate the concentration
effect [16]. For instance, Ghoshdastidar and Dukkipati [15]
used the affinity tensor for characterizing multiwise similarities
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and applied a multilinear singular value decomposition (SVD)
on the affinity tensor to obtain the spectral embedding for
clustering. They demonstrate the superior performance of TSC
over SC in several HDLSS datasets. Later, Ghoshdastidar
and Dukkipati [15], [17] have developed a trace optimization
on the affinity tensor and formulated a tensor sampling
strategy [18] to save the computational cost. More recently,
Peng et al. [16] proposed to construct the ratio-based pair-
to-pair similarity encoded in a fourth-order affinity tensor
and formulated a tensor decomposition on the affinity
tensor to extract the high-order affinity matrix. The obtained
high-order affinity matrix has achieved a promising clustering
performance on a few HDLSS datasets. Nevertheless, the
performance of TSC greatly depends on the construction
of the multiwise similarities in the affinity tensor and
has yet to be well-explored especially for HDLSS data.
In Section III-A, we demonstrate that the concentration
effect happens in the case of multiwise similarities proposed
in [16], where, due to the use of Euclidean distance
for constructing the multiwise similarities, the numerical
values converge a constant when the feature dimension
increases.

To this end, this article will propose a discriminating TSC
(DTSC) method for HDLSS data. The DTSC consists of two
major steps: 1) constructing a discriminating affinity tensor for
HDLSS data and 2) performing a spectral analysis on the pro-
posed affinity tensor to obtain the cluster labels. Specifically,
as illustrated in Fig. 1, the first step constructs a fourth-order
discriminating affinity tensor using the anchor-based distance
to quantify the pair-to-pair similarities. Such a discriminating
affinity tensor explicitly addresses the concentration effect via
the asymptotic analysis. In other words, the discriminating
affinity tensor can differentiate samples from distinct clusters
especially when the feature dimension is large. In the
second step, the high-order affinity matrix is extracted
from the discriminating affinity tensor based on the tensor
decomposition. Then, the cluster labels can be derived via
the standard SC on the high-order affinity matrix. Extensive
experiments on synthetic and benchmark datasets have been
conducted to verify the effectiveness of our method and its
robustness against noise compared with several recent baseline
methods.

The main contributions of this article are as follows.

1) We demonstrate that the tradition affinity tensor suffers
from the concentration effect, which adversely affects
the clustering performance on HDLSS data. Then,
we theoretically demonstrate that the reason for this is
the Euclidean distance used for constructing the affinity
tensor (see Section III-A).

2) The DTSC method is proposed to address the
concentration effect brought by HDLSS data. The
method constructs the discriminating affinity tensor
with the anchor-based distance, and the asymp-
totic analysis of the discriminating affinity tensor
provides a theoretical guarantee that allows us to
improve the clustering performance of HDLSS data
(see Section III-B).

3) Extensive experiments on synthetic and benchmark
datasets, including DBWorld, COIL20, Lymphoma, and
UCI gene, are conducted to demonstrate the competitive

clustering performance of our method and its robustness
against noise (see Section IV).

II. RELATED WORKS

A. High-Dimension-Low-Sample-Size Data Clustering

Clustering HDLSS data has recently attracted increasing
research interests. HDLSS data refer to the one with the
dimension of feature n being far greater than the size
of samples m and are frequently encountered in computer
vision, text mining, and bioinformatics [19], [20]. The major
difficulty in clustering HDLSS data is that the Euclidean
distance frequently used in plenty of methods suffers from the
concentration effect [10] when the feature dimension is large
and cannot differentiate samples from distinct clusters [11].
To address this issue, Ahn et al. [21] developed the maximum
data piling (MDP) clustering that is inspired by the HDLSS
asymptotics. Recently, Sarkar and Ghosh [11] proposed an
approach to tackle HDLSS data clustering with a data-driven
measure of dissimilarity by the anchor-based distance, named
as MADD. The idea of MADD originates from the statistical
asymptotic study in [12]. It showed that under some mild
assumptions, the scaled Euclidean distance of two measured
samples tends to be a constant as dimension n goes to infinity,
which is referred to as geometric representation. MADD is
proved to be discriminating for HDLSS data clustering under
the statistical framework in [12]. Our analysis in Section III-A
is partially inspired by the work from [11] and [12].

B. Tensor Spectral Clustering

TSC has recently been proposed to address HDLSS data,
and it uses the affinity tensor to encode multiwise similarities
for a better performance than using pairwise similarities [13],
[14], [22], [23], [24], [25], [26], [27]. A series of works
applied a combination of Euclidean distances among samples
to construct the multiwise similarities encoded in the affinity
tensor, and then used high-order SVD or tensor trace norm
maximization to derive the tensor spectral embedding matrix
for clustering. For instance, Ghoshdastidar and Dukkipati [15]
proposed a multilinear SVD method to decompose the affinity
tensor and showed that this decomposition amounted to
clustering samples by maximizing the squared associativity
of the partition. Ghoshdastidar and Dukkipati [17] applied a
trace optimization on the affinity tensor and developed a tensor
sampling strategy [18] to save the computational cost.

More recently, Peng et al. [16] proposed integrating tensor
similarity and pairwise similarity (IPS2) that constructs the
ratio-based pair-to-pair similarities encoded in a fourth-order
affinity tensor and used a tensor decomposition on the affinity
tensor to extract the high-order affinity matrix. IPS2 has
shown promising performance on several HDLSS datasets
and is used as the baseline of our method to conduct the
theoretical analysis and comparison. In what follows, IPS2 will
be briefly introduced and the notations used in this manuscript
are summarized in Nomenclature. Specifically, it measures
the ratio between the intra- and interpair Euclidean distances
of samples as the fourwise similarities and has demon-
strated promising empirical performance on some benchmark
HDLSS datasets. Formally, a fourth-order affinity tensor
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Fig. 1. Workflow of our DTSC and the difference from conventional methods. Similar to conventional methods (bottom), DTSC (top) has two major steps:
constructing the affinity tensor that encodes the multiwise similarities and performing spectral analysis on the affinity tensor to obtain cluster labels. The
difference is that conventional methods (bottom) apply the Euclidean distance, whereas DTSC adopts the anchor-based distance to construct the multiwise
similarities. The former leads to the concentration effect when the feature dimension is exceptionally large, and the latter helps explicitly address the
concentration effect and improves the clustering performance.

T ∈ Rm×m×m×m for m samples is defined and visually shown
in Fig. 2, with its each entry being the following:

Definition 1 (Affinity Tensor):

T i, j,k,l = exp
(

−σ
di j + dkl + dil + d jk

dik + d jl + ε

)
(1)

for i, j, k, l ∈ [m], where di j denotes the pairwise Euclidean
distance between samples xi and x j .

The numerator, di j + dkl + dil + d jk , and the denominator,
dik + d jl , are the inter- and intrapair distances, respectively.
In general, each element of the fourth-order affinity tensor,
T i, j,k,l , characterizes the pair-to-pair similarities by the ratio
between the interpair and intrapair distances. Intuitively, if any
of the interpair distances, e.g., di j , dkl , dil , and d jk , are large,
and any of intrapair distances, dik or d jl , are small, those two
pairs come with small similarities. The parameter ε is a given
small parameter to overcome the instability caused by a zero
denominator and set to be 0.001. In contrast, σ is an empirical
parameter and set to be 1 for simplicity in this article.

One can note that T naturally depicts a more comprehensive
spatial structure among four samples than pairwise similarities
used in SC [5] and enables a robust similarity estimation,
alleviating noise contamination [16]. As articulated in [16], the
noise robustness may stem from the fact that the computation
of multiwise similarities serves as a natural filter against noise
corruption, as it alleviates the effects of random variations
across a larger sample set. Furthermore, it has been shown
in [16] that a high-order affinity matrix can be learned from
the Laplacian tensor of T , defined as follows.

Definition 2 (Laplacian Tensor): Let T be a fourth-order
m-dimension affinity tensor and D is its degree tensor. The
tensor L is called the Laplacian tensor of T if

L:,p,:,q = I :,p,:,q − D−
1
2

:,p,:,qT :,p,:,qD
−

1
2

:,p,:,q ∀p, q ∈ [m]. (2)

Here, the definitions of the degree tensor D and identity
tensor I are moved to Section A in the Supplementary
Material for ease of explanation. Accordingly, the high-order
affinity matrix is given as follows.

Theorem 1 (High-Order Affinity Matrix): Let L be the
Laplacian tensor, there exists a nonzero square matrix
V ∈ Rm×m , which is termed as high-order affinity matrix,

and a scalar λ ∈ R, satisfying

L · V = λV (3)

where

(L · V )i, j =

m∑
k=1

m∑
l=1

Li, j,k,l V k,l ∀i, j, k, l ∈ [m]. (4)

The numerical strategy for solving (3) is provided in
Section E in the Supplementary Material. In practice, solving
the eigenmatrix problem in (3) yields multiple eigenmatri-
ces [16]. One can average the multiple eigenmatrices to form
the high-order affinity matrix.

III. METHOD

This section details the proposed DTSC, which is
specifically tailored for HDLSS data. DTSC follows a similar
pipeline with IPS2 [16], but differs in the definition of the
pair-to-pair similarities in the affinity tensor. Section III-A
demonstrates the HDLSS asymptotic behavior of the affinity
defined in IPS2 and illustrates that it suffers from the
concentration effect and is not suitable for clustering HDLSS
data. Section III-B shows our approach can address the
concentration effect by applying the anchor-based distance
to construct the discriminating affinity tensor. Section III-C
demonstrates the sampling strategy to achieve a balance
between computational cost and clustering performance.

A. Asymptotic Behavior of Affinity Tensor
Suppose we have m samples X = [x1, x2, . . . , xm] ∈

Rn×m from c clusters, corresponding to c populations
F1,F2, . . . ,Fc. The overarching goal of the affinity tensor
for clustering is characterizing a discriminative pair-to-pair
similarities. In other words, the affinity tensor aims to compare
four samples concurrently and distinguish whether they are
from the same population or not. For the sake of convenience,
we consider a simplified case and divide four samples into
two pairs. Given any two pairs of samples (xi , xk) and
(x j , xl), ∀i, j, k, l ∈ [m], the affinity tensor T i, j,k,l should
be dependent on whether those two pairs’ samples come from
the same population. For example, T i, j,k,l should be much
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Fig. 2. Intuitive figure to explain the affinity tensor. In general, an element of
the fourth-order affinity tensor characterizes the pair-to-pair similarities, which
can be quantified by the ratio between the inter- and intrapair distances.

smaller when (xi , xk) and (x j , xl) come from two distinct
populations, compared with that when they come from the
same one.

However, such requirement is radically violated when
the affinity tensor in (1) is applied for HDLSS data, due
to the adoption of the pairwise Euclidean distance. The
critical reason is that the applied Euclidean distance suffers
from the concentration effect [10]. To demonstrate this,
we apply the clustering method on a synthetic dataset
satisfying Assumption 1. Each sample of the dataset is
independently drawing from two Gaussian distributions
N1(0n, σ 2

1 6n) and N2(µ
n, σ 2

2 6n). Herein, 0n
= (0, . . . , 0)⊤,

µn
= (1, −1, . . . , (−1)n+1)⊤, and 6n is a block-diagonal

matrix, in which 6n
i,i = 1, ∀n, 6n

2i−1,2i = 6n
2i,2i−1 = 0.98 for

i = 1, 2, . . . , ⌊n/2⌋, and 6n
i, j = 0 otherwise. For ease of

analysis, we drop the parameters ϵ and σ for simplicity.
Consequently, the concentration effect can be demonstrated
as follows.

Lemma 1 (Concentration Effect in Gaussian Distribution
Case [11]): Given xi , x j , xk ∈ Rn with xi , xk ∼ N2 and
x j ∼ N1, as n → ∞, the scaled Euclidean distance n−1/2

||xi−

x j ||2
P

→ (σ 2
1 + σ 2

2 + 1)1/2, whereas the scaled Euclidean
distance n−1/2

||xi − xk ||2
P

→ (2σ 2
2 )1/2.

Accordingly, the affinity tensor T in (1) follows.
Proposition 1: Suppose all the samples in X are indepen-

dently drawn from populations following either N1 or N2.
As n → ∞, the affinity tensor T in (1) tends to a constant
tensor where

∀i, j, k, l ∈ [m], T i, j,k,l

P
→



exp

−

2
√

σ 2
1 + σ 2

2 + 1√
2σ 2

2

, if (xi , xk) ∼ N2 and

(
x j , xl

)
∼ N1

exp(−2) ≈ 0.135, if (xi , xk) ∼ N2 and(
x j , xl

)
∼ N2.

(5)

Proof: The proof is provided in Section C in the
Supplementary Material.

Fig. 3. Affinity tensor value T i, j,k,l on SD-1 data with dimension n = 2 to
n = 900. The black, cyan, green, and blue lines denote the discriminating
affinity tensor value on (xi , xk) ∼ N1 and (x j , xl ) ∼ N1, (xi , x j ) ∼ N1 and
(xk , xl ) ∼ N2, (xi , xk , x j ) ∼ N1 and xl ∼ N2, and (xi , xk) ∼ N1 and
(x j , xl ) ∼ N2, respectively. The figure shows that as n increases, the values
of T i, j,k,l start to converge.

For example, let σ 2
1 = 0.5 and σ 2

2 = 2, and when
two pairs samples are drawn from the same cluster, i.e.,
(xi , xk) ∼ N2 and (x j , xl) ∼ N2, one has T i, j,k,l ≈ 0.135.
In comparison, when two pairs are drawn from distinct
clusters, i.e., (xi , xk) ∼ N2 and (x j , xl) ∼ N1, one has
T i, j,k,l ≈ 0.154. In this regard, T i, j,k,l obtains a smaller value
when (xi , xk) and (x j , xl) are drawn from distinct clusters,
compared with that when they are drawn from the same cluster.
We visually demonstrate such concentration effect in Fig. 3.
This violates the overarching goal of the fourth-order affinity
tensor, which ought to be discriminating on given sample pairs.

In what follows, we generalize the above special case and
apply the following assumptions and lemma.

Assumption 1: The collected samples are assumed to satisfy
the following statements.

1) ∀t ∈ [n], i ∈ [m], the fourth moments on each feature
x(t)

i are uniformly bounded.
2) For arbitrary two independent samples xi and x j ,

Var(
∑n

t=1(x(t)
i − x(t)

j )2) = o(n2), where o(n2) represents
an infinitesimal of n2.

3) ∀p, q ∈ [c], as n → ∞, ∃apq , τp, τq < ∞, such
that n−1

||µp − µq ||
2
2

P
→ apq , n−1tr(6 p)

P
→ τ 2

p , and

n−1tr(6q)
P

→ τ 2
q , where µp and 6 p are called the

mean vector and dispersion matrix of the population Fp,
respectively, and the notation

P
→ means converge to in

probability.
Generally, µp and τp are termed as the location and
overall scale of the population Fp, respectively. We note
that these three assumptions are commonly used in HDLSS
literature [11], [12]. In practice, those assumptions are
widely tested in the area of genome-wide association studies
(GWASs) [28]. Based on the assumptions, the concentration
effect of the Euclidean distance is formalized as follows.

Lemma 2 (Concentration Effect of Euclidean
Distance [12]): Suppose all the samples in X satisfy
Assumption 1. If xi ∼ Fp and x j ∼ Fq are two independent
samples in X , as n → ∞, the following holds:

n−1/2

√√√√ n∑
t=1

(
x(t)

i − x(t)
j

)2 P
→

(
τ 2

p + τ 2
q + apq

)1/2
. (6)
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Building upon Lemma 2, the following proposition is clear.
Proposition 2: (Concentration Effect of Affinity Tensor):

Suppose all the samples in X satisfy Assumption 1. For a
general case, i.e., i ̸= j ̸= k ̸= l, if xi ∼ Fp, x j ∼ Fq ,
xk ∼ Fr , and xl ∼ Fs are four independent samples in X , the
affinity tensor T in (1) tends to a constant tensor as n → ∞

where

T i, j,k,l
P

→ exp

−

const(p, q) + const(r, s) + const(p, s)
+ const(q, r)

const(p, r) + const(q, s)


(7)

where const(α, β) = (τ 2
α + τ 2

β + aαβ)1/2, and
α, β ∈ {p, q, r, s}.

Proof: The proof is provided in Section B in the
Supplementary Material.

B. Discriminating Affinity Tensor via Anchor-Based Distance
We note that the problem mainly stems from the adoption of

the pairwise Euclidean distance when constructing the affinity
tensor. To tackle this issue, we propose the anchor-based
distance to form a new affinity tensor. Formally, given any two
samples xi and x j with an anchor sample xk , the anchor-based
distance between xi , x j is defined by
φ
(
xi , x j , xk

)
=

∣∣dik − d jk
∣∣

=

∣∣∣∣∣∣
√√√√ n∑

t=1

(
x(t)

i − x(t)
k

)2
−

√√√√ n∑
t=1

(
x(t)

j − x(t)
k

)2

∣∣∣∣∣∣.
(8)

The main property is that for most of the anchors xk , the scaled
anchor-based distance between xi and x j , n−1/2φ(xi , x j , xk),
has a discriminating property when n → ∞. Namely,
taking the illustrative case from Section III-A as an example,
we find that n−1/2φ(xi , x j , xk)

P
→ 0 if xi and x j come

from either N1 or N2, when n → ∞. In contrast,
n−1/2φ(xi , x j , xk)

P
→ λ, where λ > 0, if xi and x j are

drawn from different populations, when n → ∞. The general
proof for the discriminating property of the anchor-based
distance is provided in Suppl. Lemma 1 in Section D in the
Supplementary Material.

The anchor-based distance in (8) is a semi-metric or pseudo-
metric, since it satisfies the rule of symmetry and triangle
inequality, but may violate the identity of indiscernible. That
means it is possible to get xi ̸= x j such that φ(xi , x j , xk) =

0. However, it is worth noting that if xi , x j , and xk
come from absolutely continuous distributions, for xi ̸= x j ,
φ(xi , x j , xk) > 0 holds with probability 1 [11]. For practical
purposes, it behaves like a metric.

Therefore, we use the anchor-based distance to define the
affinity tensor T ⋆

= [T ⋆
i, j,k,l]. Formally

T ⋆
i, j,k,l = exp

(
−σ

ζi jkl

ηi jkl + ε

)
(9)

where

ζi jkl = φ2(xi , x j , xk
)
+ φ2(xi , x j , xl

)
+ φ2(xi , xl , xk) + φ2(xi , xl , x j

)

+ φ2(xk, x j , xi
)
+ φ2(xk, x j , xl

)
+ φ2(xk, xl , xi ) + φ2(xk, xl , x j

)
(10)

ηi jkl =
√

n
{
φ
(
xi , xk, x j

)
+ φ

(
xi , xk, x j

)
+ φ

(
x j , xl , xk

)
+ φ

(
x j , xl , xi

)}
. (11)

As detailed in Suppl. Lemma 2 in Section D in the
Supplementary Material, the mathematical properties of the
anchor-based distance ensure that its discriminating capability
is invariant with respect to the choice of anchor. Since in most
cases, the choice of the anchor makes no significant difference,
when computing the distance of two samples, we use the
rest two samples as the anchors as in (10) and (11). For
example, when computing the anchor-based distance of xi and
x j , we use xk and xl as the two anchors.

Regarding (9), we note that such an affinity tensor comes
with a desirable property for tackling HDLSS data. For
example in early synthetic dataset, when (xi , xk) ∼ N2 and
(x j , xl) ∼ N2, we note T ⋆

i, j,k,l
P

→ 1, as n → ∞.
In comparison, when (xi , xk) ∼ N2 and (x j , xl) ∼ N1,
we note T ⋆

i, j,k,l
P

→ 0, as n → ∞. Thus, we term the proposed
one in (9) as discriminating affinity tensor.

A general analysis of the proposed discriminating affinity
tensor is given as follows.

Theorem 2: Suppose all the samples in X satisfy Assump-
tion 1. For a general case, i.e., i ̸= j ̸= k ̸= l, if xi ∼ Fp,
x j ∼ Fq , xk ∼ Fr , and xl ∼ Fs are four independent samples
in X , as n → ∞, the affinity tensor T ⋆ in (9) has the following
property:

∀i, j, k, l ∈ [m]

T ⋆
i, j,k,l

P
→


0, if and only if p = r, q = s, and p ̸= q
1, if and only if p = r = q = s
λ, where 0 < λ < 1, otherwise.

(12)

Proof: The proof is provided in Section D in the
Supplementary Material.

Compared with the affinity tensor defined in (1), the
discriminating one defined in (9) enables separating samples
from different clusters. The conventional affinity tensor fails
to distinguish HDLSS samples from different clusters. The
reason is that when n → ∞, it converges to indiscriminating
constants as proved in Proposition 2. In contrast, Theorem 2
shows that the redefined affinity tensor in (9) explicitly
addresses such limitation. When n → ∞, the pair-to-pair
similarities converge to 1 when four samples belong to the
same cluster, and 0 when two pairs come from distinct clusters.
This property allows us to improve the clustering performance
when dealing with HDLSS data. We perform an experiment
in a synthetic dataset in Section IV-B1 to demonstrate that
asymptotic behavior of the affinity tensor. One can observe
from Fig. 4 that the affinity keeps discriminating especially
when the feature dimension is large (n > 400).

With such discriminating affinity tensor, the associated
high-order affinity matrix is expected to perform accurate
clustering for HDLSS data. The associated Laplacian tensor
is computed by [16]

L⋆
:,p,:,q = I :,p,:,q − D⋆−

1
2

:,p,:,qT ⋆
:,p,:,qD⋆−

1
2

:,p,:,q ∀p, q ∈ [m]

(13)
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Fig. 4. Discriminating affinity tensor value T ⋆
i, j,k,l on SD-1 data with

dimension n = 2 to n = 900. The black, cyan, green, and blue lines denote
the discriminating affinity tensor value on (xi , xk) ∼ N1 and (x j , xl ) ∼ N1,
(xi , x j ) ∼ N1 and (xk , xl ) ∼ N2, (xi , xk , x j ) ∼ N1 and xl ∼ N2, and
(xi , xk) ∼ N1 and (x j , xl ) ∼ N2, respectively. The figure shows that when
n > 400, the values of T ⋆

i, j,k,l start to approximate the theoretical results in
Theorem 2.

where D⋆ is the associated degree tensor. Afterward, we solve
the high-order affinity matrix via

L⋆
· V ⋆

= λV ⋆. (14)

Upon having the eigenmatrices and then averaging them to
have a high-order affinity matrix, the cluster labels can be
obtained by performing a popular clustering method, such as
standard SC, on it. We summarize the clustering procedures
in Algorithm 1 and term the method as DTSC.

Algorithm 1 DTSC
Input:

Dataset with m samples X = [x1, x2, . . . , xm];
Number of eigenmatrices b;
Number of nearest neighbors k for constructing T ⋆.

Output:
The clustering labels;

Step 1: Constructing the discriminating affinity tensor
T ⋆ under the k nearest neighbor sampling strategy, and
computing its corresponding Laplacian tensor L⋆.
Step 2: Solving (14) and obtaining eigen-matrices V ⋆(i)

for i = 1, 2, . . . , b;
Step 3: Averaging those eigenmatrices into a high-order
affinity matrix: V̄ ⋆

=
1
b

∑b
i=1 V ⋆(i);

Step 4: Conducting spectral clustering on V̄ ⋆ to obtain the
cluster labels.

C. Sampling Strategy and Complexity Analysis

The major computational cost in our method lies in
constructing the discriminating affinity tensor T ⋆. We propose
to use a sampling strategy that selectively calculates T ⋆ to
save computational cost. Using Euclidean distance as the
measurement, we only choose the top k nearest neighbors of
xi and generate k(k − 1)/2 pairs to form the group Gi , for
∀i ∈ [m]. Afterward, we calculate the pair-to-pair similarity
using (9) among m groups, i.e., Gi , for ∀i ∈ [m]. The
remaining entries of T ⋆ are set to 0. A similar scheme has

Fig. 5. ACC and NMI performance comparison of DTSC, IPS2, MADD,
SC-MSVD, TMM, and SC on SD-1 with increasing dimensions and uniform
noise. As can be seen, with the increasing dimension, IPS2, SC-MSVD and SC
fail to obtain precise clustering, whereas DTSC keeps performing an accurate
clustering.

been used by IPS2 [16] and achieved balanced performance.
We will further examine the selection of the optimal parameter
k in Section IV-D.

Since we only use k-nearest-neighbor of each sample to
build the affinity tensor, the computational cost is thereby
O(m2k4). Furthermore, according to [16], we solve the sparse
eigenvalue problem in (3) with computational time complexity
bounded by O(m2k4). Finally, the computational cost of the
standard SC is bounded by O(m3). In all, the total cost is
O(m2k4

+ m2k4
+ m3) = O(m3

+ m2k4).

IV. EXPERIMENTS AND RESULTS

This section demonstrates the effectiveness of our method
by comparing it with several state-of-the-art methods on syn-
thetic and benchmark (HDLSS) datasets. All our experiments
were performed on a desktop computer with a 3.70-GHz Intel1

Core2 i7-8700K CPU, 32.0 GB of RAM, and conducted by
MATLAB R2016a (x64).

A. Experimental Settings
1) Performance Measurements: Throughout all the exper-

iments, we use three widely accepted measurements to
quantify clustering performance: accuracy (ACC), F-score
(F-SCORE), and normalized mutual information (NMI).
The detailed definitions are provided in Section F in the
Supplementary Material.

2) Methods for Comparison: As baselines to our method,
the competitors are: SC [5] (NIPS-2002), SC using multi-
linear SVD (SC-MSVD, AAAI-2015), uniform hypergraph
partitioning: provable tensor methods and sampling techniques
(TMM, JMLR-2017), MADD [11] (TPAMI-2019), IPS2 [16]
(TPAMI-2020), robust matrix factorization with spectral
embedding [29] (RMS, TNNLS-2020), and convex subspace
clustering by adaptive block diagonal representation [30]
(ABDR, TNNLS-2022).

3) Hyperparameter Setting and Computational Protocols:
During the experiment, we empirically set the number of
eigenmatrices b to be same with c, the number of clusters,
and set the number of the nearest neighbor k = 9 for both
DTSC and IPS2, as suggested in [16]. Regarding SC, SC-
MSVD, TMM, and MADD, we adopted their default setting

1Registered trademark.
2Trademarked.
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Fig. 6. T-SNE visualization comparison on SD-1 with uniform noise and varying dimensions (a) n = 10, (b) n = 100, (c) n = 1000, and (d) n = 10 000.
The first, second, and third lines correspond MADD, IPS2, and DTSC, respectively. Here, “o” and “+” denote different classes.

from the original articles. In terms of a fair comparison, we ran
each method 50 times for a fair comparison and calculated
their mean values of the corresponding metrics. To further
understand such behavior, we visualize their clustering results.
To be specific, we used t-distributed stochastic neighbor
embedding (T-SNE) to extract 2-D representations from the
spectral embedding of the respective methods and then visually
demonstrated their clustering behaviors.

B. Evaluation on Synthetic Dataset
We conducted three experiments on synthetic datasets to

validate the performance of the proposed method. In the
first example, we shall show that the proposed discriminating
affinity tensor induced by the anchor-based distance preserves
asymptotic behavior with the increase in the feature dimension
n. The second and third examples are to test the robustness
of the proposed method over noise contamination and
concentration effect caused by the increase in feature
dimension n.

1) Discriminating Affinity Tensor Converges Asymptotically
to Discriminative Constants: We generated a synthetic dataset
called SD-1, which consists of 100 samples drawing from
two Gaussian distributions N1(0d , σ 2

1 6d) and N2(µ
d , σ 2

2 6d),
with 50 samples for each. Herein, 0d

= (0, . . . , 0)⊤, µd
=

(1, −1, . . . , (−1)d+1)⊤, and 6d is a block-diagonal matrix,
in which 6d

i,i = 1, ∀d, 6d
2i−1,2i = 6d

2i,2i−1 = 0.98 for i =

1, 2, . . . , ⌊d/2⌋, and 6d
i, j = 0 otherwise. We then computed

the discriminating affinity tensor defined in (9). The similarity
for the i, j, k, lth samples can be divided into four cases: 1)
(xi , xk, x j , xl) ∼ N1; 2) (xi , x j ) ∼ N1 and (xk, xl) ∼ N2;
3) (xi , xk, x j ) ∼ N1 and xl ∼ N2; and 4) (xi , xk) ∼ N1 and
(x j , xl) ∼ N2. For each case, we computed the similarity

value versus the increase in the feature dimension n. The
similarity T ⋆

i, j,k,l is plotted in Fig. 4. It shows that when
n > 400, the values of T ⋆

i, j,k,l start to approximate the
theoretical results in Theorem 2.

2) DTSC Is Robust Against Concentration Effect: To
demonstrate the clustering performance on HDLSS data,
we tested the clustering behaviors of each method on SD-
1, by expanding the feature dimension with n being 10, 100,
1000, and 10 000, and we further added uniform noise to SD-1
with the lower and upper bounds being 0 and 0.2, consistently.

The results of ACC and NMI are shown in Fig. 5. In brief,
DTSC comes at the top in ACC and NMI, showing its
better ability to tackle HDLSS data with underlying noise.
We further draw the following observations. First, comparing
with IPS2 and DTSC, we can see that they both achieve
satisfactory results when n = 10 with noise. However, the
ACC and NMI of IPS2 gradually decrease when the dimension
increases, whereas DTSC keeps its ability to clustering.
To be specific, the ACC differences between DTSC and IPS2
are 2%, 6%, 14%, and 31%, when dimension equals 10,
100, 1000, and 10 000, respectively. Then, we performed T-
SNE on the corresponding spectral embedding to obtain the
low-dimensional representations and visual results. As can be
seen in Fig. 6, the visual results are consistent with the ACC
and NMI performance. In particular, IPS2 can learn a separable
low-dimensional representation when n = 10, whereas it
fails to maintain such separability when n approaches 1000.
In contrast, DTSC keeps its ability of learning discriminating
low-dimensional representations from n = 10 to 10 000.
Second, DTSC, MADD, and TMM see their performance
decrease from n = 10 to 10 000, with the decrease in ACC
being 5%, 12%, and 10%, respectively. Third, all the pairwise
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distance-based methods, including SC, SC-MSVD, and IPS2,
receive a striking performance drop when feature dimensions
increase, with their declines in ACC being 27%, 34%, and
34%, respectively.

The foregoing results can be explained in the following.
First, the drops of ACC and NMI performance are mainly due
to the so-called concentration effect of the pairwise Euclidean
distance. IPS2 adopts the Euclidean distance to characterize
the multiwise similarities of samples, and SC-MSVD uses it
to construct hypergraphs for clustering, achieving satisfactory
performance when the dimension is 10. However, as the
dimension increases, the concentration effect of Euclidean
distance misleads IPS2 and SC-MSVD. The multiwise
similarities captured by them start to lose discriminability,
as analyzed in Section III-A. It is no wonder that IPS2,
even with multiwise similarities, fails to clustering HDLSS
data accurately. Second, DTSC, on the other hand, adopts the
anchor-based distance to delineate the multiwise similarities,
obtaining improved clustering across different dimensions.
The anchor-based distance used in the discriminating affinity
tensor allows our method to handle HDLSS data clustering.
Third, despite the ability to mitigate the concentration effect,
DTSC, MADD, and TMM receive a performance drop due
to underlying noise. However, DTSC performs more stably
than others as it characterizes a more comprehensive spatial
structure and enables a stable similarity estimation for defying
noise contamination. More noise contamination studies will be
seen in what follows.

3) DTSC Is Robust Against Noise Contamination: To
comprehensively evaluate the clustering behavior of the
tested methods, the synthetic data, termed SD-2, were
constructed. The SD-2 consists of three classes of samples,
with each comprising 20 samples, independently drawing
from multivariate Gaussian distribution with an equal standard
deviation of 0.5 and different mean values of 0.1, 0.5, and 1.
The feature dimensions vary from 500 to 10 000. SD-2 was
further contaminated by uniform noise with varying levels.
The lower bound of noise is set to 0 consistently, while the
upper bound varies from 0.1 to 0.4.

In Fig. 7, we reported the ACC of the methods as mentioned
earlier on SD-2 with varying noise levels and increasing
dimensions. From Fig. 7, we underscore the following
observations.

1) The curves corresponding to the proposed DTSC,
denoted by the blue solid line with triangular, are
located at the top in all the figures, indicating its
best overall performance. These results demonstrate that
DTSC is capable of dealing with HDLSS data and noise
contamination simultaneously.

2) The DTSC is more noise-robust to other methods.
Although all the methods face a performance decrease
with the increasing noise levels, DTSC obtains a
less performance decrease. For example, with noise
level from 0.1 to 0.4, the ACC decrease in DTSC
is 15.4%, 13.6%, 13.6%, and 10.1% for n = 500,

1000, 5000, 10 000, whereas the ACC decrease
in MADD is 20.2%, 18.3%, 20.1%, and 19.6%,
respectively. Furthermore, TMM and SC-MSVD
received a striking performance decrease. For
n = 500, 1000, 5000, 10 000, the ACC decrease in

Fig. 7. ACC performance comparison of DTSC, IPS2, MADD, SC-MSVD,
TMM, and SC on SD-2 with varying noise levels ranging from 0.1 to 0.4 and
dimensions (a) n = 500, (b) n = 1000, (c) n = 5000, and (d) n = 10 000.

TMM is 23.3%, 18.4%, 22.5%, and 19.4%, respectively,
while the one of SC-MSVD is 18.4%, 16.5%, 16.9%,
and 25.8%, respectively. This implies that DTSC is
relatively more stable against noise contamination.

3) The DTSC achieves superior clustering performance
than IPS2 under all levels of noise. Notably, as the
dimension increases, the performance improvement of
DTSC becomes more striking. For example, the ACC
gap between DTSC and IPS2 is 2.7% when n = 500 and
the noise level = 0.4, whereas the gap rises to 9.8%
when n = 10 000 with the same noise level.

We attribute the superiority of the proposed DTSC to the
anchor-based distance underlying the discriminating multiwise
similarities. In detail, first, DTSC leverages multiwise
similarities for clustering, which is less susceptible to
underlying noise. In contrast, MADD leverages the pairwise
similarities, which are sensitive to noise even with a small
one. In addition, since SC-MSVD depends on the pairwise
distance to construct the multiwise similarities, it faces a
significant performance drop when either feature dimension
or noise increases. Second, DTSC adopts the anchor-based
distance to build up multiwise similarities, while IPS2 still
pins on the pairwise Euclidean distance. IPS2 faces a
performance decrease when the dimensions increase due to
the similar concentration effect. In contrast, DTSC keeps its
discriminability for better clustering behavior, as validated by
the experiment.

C. Evaluation on Benchmark HDLSS Dataset
Benchmark Data: In total, we included four publicly

available benchmark datasets, all of which exhibit high
dimensionality. Among them, DBWorld3 is a text dataset,

3https://archive.ics.uci.edu/ml/datasets/DBWorld+e-mails
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Fig. 8. T-SNE visualization of SC-MSVD, TMM, MADD, IPS2, and DTSC on UCI-gene, indicating the performance of different clustering methods. Here
different shapes denote different classes. As can be seen, DTSC can learn a more separable representation with clear class boundaries.

Fig. 9. T-SNE visualization of SC-MSVD, TMM, MADD, IPS2, and DTSC on Lymphoma, indicating the performance of different clustering methods. Here,
different shapes denote different classes. As can be seen, DTSC can also learn a more separable representation with clear class boundaries.

TABLE I
STATISTICS OF DATASETS

COIL204 is image dataset, and the rest, i.e., Lymphoma [31]
and UCI gene,5 are bioinformatics datasets. We chose those
datasets for two main reasons: 1) they are all from real-
world scenarios, naturally exhibiting high-dimensionality and
2) they cover a wide range of applications, ideal for testing
the performance of clustering methods. Statistics about this
dataset are shown in Table I. The performance results are
shown in Tables II and III. For ease of display, the best results
are boldfaced and the second-best ones are underlined.

As can be seen in Tables II and III, DTSC consistently
outperforms peer methods in terms of three metrics on all
the datasets. In particular, our approach gains 8.9%, 5.3%,
7.7%, and 7.3% improvement over the second-best method
in terms of ACC on DBWorld, COIL20, Lymphoma, and
UCI gene, respectively. The striking results demonstrate the
effectiveness of our proposed method, indicating its potential
for dealing with a wide range of real-world clustering tasks
with high dimensionality. Furthermore, we draw the following
observations.

First, DTSC uniformly outperforms IPS2 and SC-MSVD on
all the datasets. To be specific, DTSC is consistently superior
to IPS2 in terms of all the three metrics on DBWorld, COIL20,
Lymphoma, and UCI gene. Such consistent improvement
arises from the difference between the anchor-based distance
used in DTSC and the pairwise distance used in IPS2 and

4http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
5https://archive.ics.uci.edu

TABLE II
PERFORMANCE COMPARISON ON DBWORLD AND COIL-20 (MEAN ±

STANDARD DEVIATION, %). THE BEST RESULTS ARE BOLDFACED
AND THE SECOND BEST ONES ARE UNDERLINED

SC-MSVD. Because of the adoption of the pairwise distance,
IPS2 and SC-MSVD suffer from the concentration effect
for high-dimensional data, making it challenging to group
samples accurately. In contrast, DTSC presents favorable
discriminability for HDLSS data, leading to desirable
clustering performance. In addition, from Figs. 8 and 9, we can
note that DTSC learns a more discriminating cluster boundary
than IPS2 and HSCs. That is to say, the low-dimensional
embedding learned by DTSC scatters and gathers more
distinctly, indicating a better clustering performance.

Second, DTSC exceeds MADD with a large margin on
all the datasets across different metrics. For instance, the
ACC gap is 17.8% and 22.4%, respectively, on Lymphoma
and UCI gene. In addition, we can see from Figs. 8 and 9
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TABLE III
PERFORMANCE COMPARISON ON LYMPHOMA AND UCI-GENE (MEAN ±

STANDARD DEVIATION, %). THE BEST RESULTS ARE BOLDFACED
AND THE SECOND BEST ONES ARE UNDERLINED

Fig. 10. Clustering ACC by the proposed method with a varying k nearest
neighbors on SD-1 without noise with dimension n = 1000. This figure shows
that as k increases both clustering ACC and running time increase, suggesting
that the range [5, 15] can be appropriate to meet the balance between efficiency
and effectiveness.

that visual results of MADD have vague boundaries among
different classes of samples. MADD obtains intertwined
samples across distinct classes. Combining the results from
Fig. 7, we infer that the unsatisfactory performance of
MADD stems from its pairwise similarity matrix. The pairwise
similarity is susceptible to noise contamination, especially
when facing real-world HDLSS data. Confronting HDLSS
data with underlying noise, MADD can hardly preserve
accurate clustering. At the same time, DTSC, which rests on
affinity tensor, has shown its robustness against noise and thus
achieves desirable clustering performance.

D. Hyperparameter Sensitivity and Running Time Analysis

We are also interested in how the number of nearest
neighbors k of DTSC affects its clustering performance.
We constructed synthetic data similar to SD-1, but with

300 rather 100 samples. The dimensions n were set to 1000.
The results are shown in Fig. 10. Fig. 10 shows that TSC
performs stably in terms of ACC for k > 9. In contrast,
the running time increases rapidly as k goes from 11 to 15.
Choosing a small value of k remarkably saves computational
time. Yet, too small k impedes the performance. Therefore,
we choose the range [5, 15] for tuning k to meet the balance
between efficiency and effectiveness.

V. CONCLUSION

This article has proposed a TSC method to address the
HDLSS data clustering problem. In particular, an anchor-
based distance is introduced to form the discriminating affinity
tensor that copes with the concentration effect raised by the
HDLSS data. It is proved that under some mild conditions,
the proposed method can differentiate samples from distinct
clusters, addressing the concentration effect and improving
clustering performance. Meanwhile, the discriminating affinity
tensor is enabled to mitigate noise contamination by
characterizing a comprehensive spatial structure of multiple
samples and allows for a stable similarity estimation. Apart
from theoretical analysis, extensive experiments have been
conducted on synthetic and benchmark datasets to verify the
promising performance of our method in comparison to the
recent methods.

Overall, our approach demonstrates competitive clustering
performance on HDLSS data, and there are a poten-
tial directions for improvement. Although our proposed
method can effectively address the concentration effect in
high-dimensional data clustering and outperforms several
baseline methods on the benchmark dataset, it still confronts
two limitations. One is that the proposed method needs to
construct an affinity tensor, which requires high memory cost.
The other is that this method is not able to perform feature
learning and clustering jointly. To further address these two
limitations, we consider incorporating a deep neural network
to perform tensor-based deep learning. On one side, the deep
neural network enables learning with stochastic optimization
to reduce memory cost, and on the other side, it allows us to
update deep feature learning with clustering.
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