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Abstract— Traditional clustering methods rely on pairwise
affinity to divide samples into different subgroups. However,
high-dimensional small-sample (HDLSS) data are affected by
the concentration effects, rendering traditional pairwise metrics
unable to accurately describe relationships between samples,
leading to suboptimal clustering results. This article advances
the proposition of employing high-order affinities to characterize
multiple sample relationships as a strategic means to circumnav-
igate the concentration effects. We establish a nexus between
different order affinities by constructing specialized decom-
posable high-order affinities, thereby formulating a uniform
mathematical framework. Building upon this insight, a novel
clustering method named uniform tensor clustering (UTC) is
proposed, which learns a consensus low-dimensional embedding
for clustering by the synergistic exploitation of multiple-order
affinities. Extensive experiments on synthetic and real-world
datasets demonstrate two findings: 1) high-order affinities are
better suited for characterizing sample relationships in complex
data and 2) reasonable use of different order affinities can
enhance clustering effectiveness, especially in handling high-
dimensional data.

Index Terms— Clustering, fusing affinity, high-order affinity,
spectral graph, tensor.
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NOMENCLATURE

n ∈ Z+ Number of samples.
k ∈ Z+ Number of clusters.
l ∈ Z+ Order of affinity.
S2 ∈ Rn×n Dyadic affinity matrix.
L2 ∈ Rn×n Normalized dyadic affinity matrix.
L̂2 ∈ Rn×n Laplacian matrix.
H ∈ Rn×k Indicator matrix.
V ∈ Rn×k Embedding matrix for clustering.
S3 ∈ Rn2

×n Unfolded triadic affinity.
S4 ∈ Rn2

×n2
Unfolded tetradic affinity.

L3 ∈ Rn2
×n Normalized unfolding triadic affinity.

L4 ∈ Rn2
×n2

Normalized unfolded tetradic affinity.
S3 ∈ Rn×n×n Triadic tensor affinity.
S4 ∈ Rn×n×n×n Tetradic tensor affinity.
L3 ∈ Rn×n×n Normalized triadic affinity tensor.
L4 ∈ Rn×n×n×n Normalized tetradic affinity tensor.
Tr(·) Trace operation.
⊙ Hadamard product.
∗ Khatri–Rao product.
⊗ Kronecker product.
⊗k K -mode product.

I. INTRODUCTION

CLUSTERING, as one of the key techniques in the field
of artificial intelligence, aims to partition unlabeled data

into different clusters based on sample relationships [1], [2].
Traditional clustering methods, such as K -means [3] and
spectral clustering (SC) [4], [5], [6], have been widely studied,
and diverse variants have been designed to cater to various
needs. Despite recent advancements in clustering techniques,
existing methods still face challenges when dealing with high-
dimensional small-sample (HDLSS) data. For instance, in the
field of bioinformatics, many cells are damaged during the
tissue isolation process for sequencing due to technical limi-
tations, resulting in high-dimensionality single-cell sequencing
data with a small sample size [7], [8]. Similar situations arise
in computer vision [9], [10], natural language processing [11],
and other domains.

The critical challenge in accurately clustering HDLSS data
is the concentration effect [12], [13], [14]. When the data
dimensionality is high, distance metrics between samples
become ineffective. This failure in distance measurement
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prevents an accurate description of sample relationships,
making it difficult to obtain sufficient prior information for
guiding data partitioning [15], [16], [17]. Earlier efforts [18]
focused on learning an adaptive affinity matrix for clustering
through a data-driven approach. For example, Nie et al. [19]
proposed a model to dynamically learn affinity matrix by
assigning adaptive neighborhoods to each sample. Fu et al.
[20] learned optimal projected representations to capture an
effective affinity graph within multiple subspaces. However,
a poor-quality initial affinity matrix can have an adverse
effect on the subsequent similarity learning step. To acquire
high-quality affinity matrices, some researchers proposed mea-
suring sample similarities from different kernel spaces to
obtain multiple affinity matrices [21], [22]. For instance,
Liu [23] introduced a minimax strategy to solve the kernel
coefficient and the consensus affinity matrix simultaneously.
It is essential to highlight that affinity matrices built from var-
ious kernel spaces still rely on pairwise relationships between
samples. As a result, these methods are still affected by
the concentration effect and do not fundamentally solve this
problem.

Recent studies [24], [25] have shown that utilizing sophisti-
cated sample affinity proves advantageous when dealing with
complex data characterized by high dimensionality and small
sample sizes. Many studies propose constructing high-order
affinities by measuring multiple sample relationships to mit-
igate the concentration effect. For example, Zhou et al. [26]
extended graph-based spectral methods to high-order affinity
by hypergraphs and used hypergraph embeddings for clus-
tering. Agarwal et al. [27] proposed maintaining a weighted
graph to approximate hypergraph and achieving graph par-
titioning by spectral analysis. Inspired by adaptive affinity
learning, Zhang et al. [28] first proposed a method to learn
dynamic hypergraphs for clustering. However, in these meth-
ods, high-order affinity ultimately relies on an approximate
representation of pairwise affinity matrices, limiting the poten-
tial of high-order information.

Tensor representation has recently provided a new perspec-
tive for high-order affinity-based clustering. Li et al. [29]
introduced a tensor representation of hypergraphs, using
tensors to preserve multiple samples’ natural relationships.
Ghoshdastidar and Dukkipati [30] utilized a symmetric ten-
sor to represent K -order affinity and realized clustering by
solving the multilinear singular value decomposition problem.
However, these methods are limited for utilizing specific
order affinity, restricting their ability to reveal underlying
data structures. Peng et al. [31] proposed integrating tensor
similarity and pairwise similarity (IPS2), which integrates
tetradic and pairwise affinity for clustering, offering a novel
solution to this problem. Following this investigation, this
article establishes a mathematical connection between pairwise
relationships and high-order affinity, leading to the proposal
of the unified tensor clustering model. The uniform tensor
clustering (UTC) model integrates different order affinities
to comprehensively describe data relationships from various
perspectives, ultimately generating consensus embeddings for
clustering. Extensive experiments demonstrate the outstanding
performance of this approach in handling HDLSS data.

The main advantages of the method proposed in this article
are summarized as follows.

1) We establish a connection between dyadic affinity and
decomposable triadic/tetradic tensor affinities defined
via Khatri–Rao/Kronecker products. The corresponding
indecomposable affinities are designed to provide the
proximity of multiple samples, thus supplementing the
pairwise affinity.

2) An UTC method is developed by integrating different
order affinities into a uniform framework. The UTC
jointly learns a low-dimensional embedding based on
various order affinities. The UTC is elegantly formulated
and works on affinities of arbitrary order.

3) Extensive experiments on HDLSS data demonstrate that
the UTC achieved superior performance compared with
baseline methods. In addition, the experiments show that
using high-order affinities to characterize the sample
spatial distribution can improve clustering performance,
especially in small sample sizes.

II. NOTATIONS AND PRELIMINARIES

A. Notations

This section will provide explanations and definitions for
the mathematical symbols and relevant concepts used in this
article. Lowercase letters denote scalars, while bold lowercase
letters represent vectors, such as v ∈ Rn . Bold uppercase
letters indicate matrices, for example, X ∈ Rn×m , and bold
calligraphy letters signify tensors, like S ∈ Rn×m×l . The
expressions S(:, :, i), S(:, i, :), and S(i, :, :) correspond to
the i th frontal, lateral, and horizontal slices of a third-order
tensor S, respectively. The notation S(:, :, i) can be succinctly
as S(i). In order to facilitate the analysis of high-order
tensors, corresponding unfolding operations are commonly
employed to restructure them into matrices. For example, the
third-order and fourth-order tensor unfolding operations are as
follows.

Definition 1 (Unfolding Third-Order Tensor): Let S3 ∈

Rn1×n2×n3 be a third-order tensor. It can unfold to an
n1n3 × n2 matrix S3 as follows:

S3 = unfold(S3) =


S(1)

3
S(2)

3
...

S(n3)
3

. (1)

Definition 2 (Unfolding Fourth-Order Tensor): Let S4 ∈

Rn1×n2×n3×n4 be a fourth-order tensor. This tensor can unfold
to an n1n2 × n3n4 matrix S4, with its (r , s)th entry given by

S4rs = S4i jkl (2)

with r = n1( j − 1) + i and s = n3(l − 1) + k.
Two matrix multiplications are considered in this article,

i.e., Kronecker product and Khatri–Rao product [32].
Definition 3 (Kronecker Product): The Kronecker product

of two matrices Sa ∈ Rm1×n1 and Sb ∈ Rm2×n2 is defined
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Fig. 1. Framework of the UTC involves jointly optimizing dyadic, triadic, and tetradic affinities among multiple samples to learn a consensus embedding.
This approach allows for a comprehensive analysis of the data relationships, going beyond pairwise affinity alone.

as follows:

Sa ⊗ Sb =

 Sa11 Sb · · · Sa1n1
Sb

...
. . .

...

Sam11 Sb · · · Sam1n1
Sb

 ∈ Rm1m2×n1n2 . (3)

Definition 4 (Khatri–Rao Product): The Khatri–Rao prod-
uct of two matrices Sa ∈ Rm1×n and Sb ∈ Rm2×n is defined as
the matrix

Sa ∗ Sb =
[
Sa:1 ⊗ Sb:1 · · · Sa:n ⊗ Sb:n

]
∈ Rm1m2×n. (4)

K -mode product, as an operation between a tensor and a
matrix, is defined as follows.

Definition 5 (K-Mode Product): The K -mode product
between a mth order tensor L ∈ Rn1×n2×···×nm and a matrix
V ∈ Rnk×p, denoted by L ⊗k V ∈ Rn1×···×nk−1×p×nk+1×···×nm ,
with

(L ⊗k V )i1,...,ik−1 j ik+1,...,im =

nk∑
ik=1

Li1,...,ik−1ik ik+1,...,im V j ik . (5)

For convenience, we summarize the frequently used nota-
tions and definitions in the Nomenclature.

B. SC With Pairwise Affinity

Given a dataset with n samples, each having m features,
denoted by X = [x1, x2, . . . , xn] ∈ Rm×n . Classical SC
method [33] seeks a low-dimensional embedding by minimiz-
ing the graph cut cost. This method constructs a similarity
matrix S2 ∈ Rn×n based on samples pairwise relationships,
where each entry S2i j measures the similarity between xi and
x j . Next, the Laplacian matrix for spectral analysis can be
defined as L̂ = I − L2, where L2 is the normalized affinity
matrix given by L2 = D−(1/2)

2 S2 D−(1/2)

2 , and D2i i =
∑

i S2i j

represents the degree matrix of S2. Ultimately, SC aims to
solve the following optimization problem:

min
V

tr(V T L̂V )

s.t. V T V = I . (6)

Typically, the optimization process of this objective function
can be viewed as searching for the graph-cut strategy with
minimal cost. It can also be expressed as a maximization
problem via normalized pairwise affinity L2 [34]. By using
the tensor K -mode product, the SC in (6) can be rewritten as
follows:

max
V

k∑
j=1

L2 ⊗2 v j ⊗1 v j

s.t. V T V = I (7)

where v j is the j th column of the embedding V .

C. Tensor SC With Tetradic Affinity

Tensor SC builds upon traditional spectral methods by
incorporating high-order affinity to more accurately charac-
terize sample relationships. IPS2 [31], the representative of
these methods, introduces the use of tetradic affinities to
gauge relationships between sample pairs, aiming for more
precise analysis of complex data and improved clustering
performance. This method utilizes dyadic affinities to construct
decomposable tetradic affinities, showcasing the relationship
between the two affinities represented by matrices and tensors,
respectively. Furthermore, it builds a fourth-order tensor SC
model based on the tetradic affinity as follows:

max
v j

k∑
j=1

L4 ⊗4 v j ⊗3 v j ⊗2 v j ⊗1 v j

s.t. V T V = I (8)

where L4 denotes the normalized tetradic affinity. This method
demonstrates that tetradic affinities capture complex data struc-
tures that traditional similarities may overlook, and combining
these two affinities can further enhance clustering perfor-
mance. While IPS2 demonstrates the association between
tetradic and dyadic affinities, and how tetradic affinity can
describe additional data relationships, it lacks generalizability
to other high-order affinity.
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III. PROPOSED METHOD

This section introduces the UTC. Section III-A provides
a detailed introduction to high-order affinities. Section III-B
presents a unified representation formulation for handling mul-
tiorder affinities. The UTC model is presented in Section III-C,
while Section III-D discusses the optimization techniques
utilized in UTC. To provide a visual summary of the UTC
approach, we include an illustrative overview in Fig. 1.

A. Characterizing Sample’s Affinity via High-Order Tensor
Affinity

Emerging studies [27], [31] indicate that high-order affinity
can reveal complex data relationships that traditional pairwise
affinity fails to represent. However, there is limited research
exploring the connections between different order affinities.
This article introduces a specialized high-order affinity con-
structing strategy to explore the mathematical connections
between different order affinities. Third-order and fourth-order
affinities are discussed as representatives of odd and even
orders.

1) Decomposable Triadic and Tetradic Affinities: We con-
struct decomposable high-order affinity based on pairwise
relationships to explore the connections between different
order affinities. IPS2 [31] introduced decomposable tetradic
affinity S4 derived from traditional pairwise affinity, where
each element of S4 can be defined as follows:

S4i jkl = S2ik S2 jl , i, j, k, l ∈ n. (9)

It can be easily demonstrated that the relationship between
the tetradic affinity tensor S4 and the pairwise affinity matrix
S2 satisfies: S4 = fold(S2 ⊗ S2). The normalized tetradic
affinity can be denoted by L4 = fold(D−(1/2)

4 S4 D−(1/2)

4 ),
where D4 is the degree matrix of S4 with the diagonal
elements being D4i i =

∑
j S4i j . As shown in Theorem 1, the

normalization process does not affect the relationship between
normalized tetradic affinity L4 and dyadic affinity L2.

Theorem 1 (The Decomposable Fourth-Order Tensor): Let
L2 and L4 = fold(L4) be the normalized affinity matrix
and fourth-order affinity tensor with the unfolding form L4,
respectively. Then, we have the following equality:

L4 = L2 ⊗ L2. (10)

The relationship between eigenvectors v of L2 and eigen-
vectors v̂ of unfolded L4 satisfies the Kronecker product

v̂ = v ⊗ v. (11)

The decomposable triadic affinity S3 ∈ Rn×n×n can also be
constructed as the product of two pairwise affinities

S3i jk = S2i j S2k j , i, j, k ∈ n. (12)

Under this definition, the relationship between these two types
of affinities satisfies Theorem 2, as follows.

Theorem 2: Given a decomposable third-order tensor affin-
ity S3 defined in (12), S3 = S2 ∗ S2, where S3 is the matrix
unfolded by the tensor S3.

Proof: By Definition 1, the unfolded matrix S3 ∈ Rn2
×n

can be written

S3 =

S3111 · · · S31n1

...
. . .

...

S3n1n · · · S3nnn



=



S211 S211 · · · S21n S21n

...
. . .

...

S211 S2n1 · · · S21n S2nn

...
. . .

...

S2n1 S211 · · · S2nn S21n

...
. . .

...

S2n1 S2n1 · · · S2nn S2nn


=

S211 S2:1 · · · S21n S2:n

...
. . .

...

S2n1 S2:1 · · · S2nn S2:n


=

[
S2:1 ⊗ S2:1 · · · S2:n ⊗ S2:n

]
= S2 ∗ S2. (13)

The normalized form of triadic affinity tensor S3 can be
defined as L3 = fold(D−(1/2)

31
S3 D−(1/2)

32
). Diagonal matrices

D31 and D32 can be calculated as follows:{
D31 = diag(

√
d) ⊗ diag(

√
d) = D2 ⊗ D2

D32 = diag(
√

d) ⊙ diag(
√

d) = D2 ⊙ D2
(14)

where d j =
∑n2

i=1 S3i j = D2 j j D2 j j and d ∈ Rn×1, ⊙ denotes
the Hadamard product.

The relationship between the normalized decomposable
triadic affinity tensor and pairwise affinity matrix is still
preserved, as demonstrated in Theorem 3.

Theorem 3 (The Decomposable Third-Order Tensor): Let
a matrix S2 be a pairwise affinity matrix with L2 being its
normalized affinity matrix. The decomposable triadic affinity
S3, and its normalized tensor L3 are obtained as above.
We have

L3 = L2 ∗ L2 (15)

where L3 is the unfolded form of the tensor L3.
Proof: By the definitions of the normalized affinity matrix

L2 and L3, we have

L3 = D−
1
2

31
S3 D−

1
2

32

= (D2 ⊗ D2)
−

1
2 (S2 ∗ S2)(D2 ⊙ D2)

−
1
2

=

(
D−

1
2

2 S2 D−
1
2

2

)
∗

(
D−

1
2

2 S2 D−
1
2

2

)
= L2 ∗ L2. (16)

2) Nondecomposable High-Order Affinities: Now, we have
presented a unification of mathematical formalism on decom-
posable dyadic, triadic, and tetradic affinities by three algebraic
products (arithmetic, Khatri–Rao, and Kronecker products).
However, a closer examination of the decomposable triadic
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Fig. 2. Heatmap of (a) dyadic affinity, (b) decomposable triadic, and (c) tetradic affinity matrices on a synthetic dataset drawn from a normal distribution.
There are obvious block structures in the heatmap on different orders of unfolded affinity, indicating that the decomposable affinities of different orders are
consistent in terms of performance.

affinity S3 reveals an interesting observation: the sum of S3’s
lateral slices equals the traditional definition of high-order
similarity S2

2 [35]. This suggests that the traditional high-order
affinity derived from pairwise relationships does not introduce
any additional valuable information. Furthermore, as shown
in Fig. 2, the heatmaps of dyadic, decomposable triadic,
and tetradic affinities also demonstrate the similarity between
decomposable high-order affinity and pairwise relationships.
Fig. 2 further highlights that decomposable high-order affini-
ties do not provide supplementary information for pairwise
relationships. This article proposes introducing nondecompos-
able high-order affinity to address this limitation.

The nondecomposable triadic affinity S3 ∈ Rn×n×n is
defined as follows:

S3i jk = 1 −
⟨(xi − x j ), (xk − x j )⟩

∥xi − x j∥2∥xk − x j∥2
(17)

where i, j, k ∈ n. The entry S3i jk denotes the affinity between
the sample xi and the sample xk by the anchor sample x j .

The Fisher-ratio-like tensor affinity defined in IPS2 [31] is
also adopted as the nondecomposable tetradic affinity

S4i jkl = exp
(

−σ
di j + dkl

dik + d jl + ε

)
(18)

for i, j, k, l ∈ n, where di j denotes the distance between
samples xi and x j , the parameter σ is a scaling constant, and
the parameter ε is a given small constant less than 0.001 to
overcome the instability caused by a zero denominator.

B. Unified Form of Multiorder Affinities

Traditional SC models aim to maximize the intracluster
similarity of each subgraph after graph partitioning. The
intracluster similarity is typically computed by evaluating the
pairwise affinities within the same subgraph/cluster. However,
the intracluster similarity is not solely reflected by their
pairwise relationships, it should also extend to any set of
k samples. To capture the uniform expressive patterns of
clustering structures at different order affinities, we introduce a
metric called the total normalized affinity entropy. This entropy
is used to quantify the sum of intracluster affinities based on
k samples within the same cluster:

Definition 6 (The Total N-Affinity of a Cluster): Let C i ⊆

X be a group of samples and S ∈ Rn×n···×n be the lth order

affinity tensor. The total normalized affinity of C i is defined
as follows:

Sim(C i ) =

∑
xi1 ,xi2 ,...,xil ∈C i

Lxi1 ,xi2 ,...,xil
(19)

where L is the normalized affinity tensor calculated by S.
In addition, for a partition C1, C2, . . . , Ck of X , we define
the normalized associativity of the clustering as follows:

N-Assoc(C1, C2, . . . , Ck) =

k∑
i=1

Sim(C i )

|C i |
l

(20)

where |C i | denotes the sample number of cluster C i .
In this way, the affinity among any k samples can provide

valuable information about the sample space distribution.
By maximizing the normalized affinity defined in (20), we seek
the optimal sample assignment C1, . . . , Ck . Let an indicator
matrix H = [h1, h2, . . . , hk] ∈ Rn×k be the sample assign-
ment, where H i j = |C j |

−1 if the sample xi ∈ C j ; otherwise,
H i j = 0. Therefore, the clustering problem based on K -order
affinity is as follows:

max
H

k∑
j=1

L ⊗l h j ⊗l−1 h j · · · ⊗1 h j (21)

where h j denotes the j th column of H .
However, solving this maximum normalized associativity is

NP-hard. Alternatively, one can relax the binary assignment
matrix H to the orthonormal matrix V ∈ Rn×k

: V T V = I
to simplify the solution. Therefore, the optimization problem
of (21) is equivalent to solving the following problem:

max
V

k∑
j=1

L ⊗l v j ⊗l−1 v j · · · ⊗1 v j

V T V = I (22)

where v j represents the j th column of V . It is worth noting
that the traditional SC problem corresponds to this model when
k = 2.

C. Uniform Tensor Clustering

Building upon the unified framework provided by (22) for
different order affinities, we propose the UTC model. This
model fuses those above nondecomposable triadic and tetradic
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affinities with dyadic affinity into a scalable framework that
seeks a uniform low-dimensional embedding. The proposed
model is formulated as follows:

min
V

k∑
j=1

−L2 ⊗2 v j ⊗1 v j

− λ1L3 ⊗3 v j ⊗2 v j ⊗1 v j

− λ2L4 ⊗4 v j ⊗3 v j ⊗2 v j ⊗1 v j

s.t. V T V = I (23)

where λ1 and λ2 are the two introduced hyperparameters used
to balance the weights between different order affinities. The
corresponding parameter sensitivity analysis can be found in
Appendix B.

Intuitively, the samples belonging to the same cluster should
ideally exhibit spatial proximity, regardless of which order
affinity is used for measurement. Therefore, the goal of this
model is to maximize different order intracluster affinities.
The resulting consensus embedding not only achieves consis-
tency in data representation based on different order affinities
but also captures complementary information between them.
In other words, this model can leverage various order affinities
to characterize the sample proximity from different perspec-
tives. Once we obtain the consensus embedding V , it can be
used to infer the sample assignment. The popular strategy is to
employ heuristic methods, such as K -means clustering, on the
embedding matrix V to obtain the final assignment.

D. Numerical Scheme to Solve UTC

This section provides the strategy to solve the proposed
model (23). To facilitate solving, we introduce a slack variable
V 2 to approximate the term V 1∗V 1. Through tensor unfolding
operations, this model is equivalent to the following form:

min
V 1,V 2

−tr
(
V T

1 L2V 1 + λ1V T
2 L3V 1 + λ2V T

2 L4V 2
)

s.t. V T
1 V 1 = I, V 2 = V 1 ∗ V 1. (24)

We adopt an alternating optimization strategy to solve this
problem efficiently. Its augmented Lagrangian formulation is
presented as follows:

J (V 1, V 2, Y 1, Y 2)

= −tr
(
V T

1 L2V 1
)
− λ1tr

(
V T

2 L3V 1
)
− λ2tr

(
V T

2 L4V 2
)

+ ⟨Y 1, V 1 ∗ V 1 − V 2⟩ +
〈
Y 2, V T

1 V 1 − I
〉

+
µ

2

(
∥V 1 ∗ V 1 − V 2∥

2
F + ∥V T

1 V 1 − I∥
2
F

)
(25)

where Y 1 and Y 2 are the Lagrange multipliers. The constant
µ > 0 is a penalty parameter. We then decompose the problem
into two subproblems concerning the variables V 1 and V 2.
Each variable is solved while fixing other variables. The
process is updated iteratively until convergence.

Step 1 (Solving the Subproblem V 1): By fixing the variable
V 2, the problem can be simplified as follows:

min
V 1

−tr
(
V T

1 L2V 1
)
− λ1tr

(
V T

2 L3V 1
)

+ ⟨Y 1, V 1 ∗ V 1 − V 2⟩ +
〈
Y 2, V T V − I

〉

Algorithm 1 Algorithm to Solve the Subproblem V 1

Input: The embedding matrix V 1 ∈ Rn×k .
Output: The updated embedding matrix V 1.
1: Set V 0

1 = V 1, M = 0, α = 10−3, γ = 0.9, t = 0,
ϵ = 10−3.

2: while Not Converged do
3: t = t + 1.
4: Compute the partial derivatives ∇J (V t−1

1 + γ M) by
Eq. (27).

5: Update M by M = γ M − α∇J (V t−1
1 + γ M).

6: Compute the V t
1 by V t

1 = V t−1
1 + M.

7: Update V 1 by V 1 = V t
1.

8: Check the convergence conditions: ∥V t
1 − V t−1

1 ∥∞ ≤

ϵ.
9: return V 1.

+
µ

2

(
∥V 1 ∗ V 1 − V 2∥

2
F + ∥V T V − I∥

2
F

)
. (26)

Model (26) is an unconstrained optimization problem, and
therefore, its solution can be obtained by computing partial
derivatives as follows:

∂J
∂V 1

= −2L2V 1 − λ1 LT
3 V 2 + µ

k∑
j=1

(V 1: j ⊗ I

+ I ⊗ V 1: j )
T (V 1: j ∗ V 1: j − V 2: j + Y 1: j /µ) ⊗ eT

j

+ 2µV 1
(
V T

1 V 1 − I + Y 2/µ
)
. (27)

Subsequently, we use the Nesterov accelerated gradient
method to obtain the locally optimal solution of V 1. The
specific procedure can be found in Algorithm 1.

Step 2 (Solving the Subproblem V 2): By fixing the variable
V 1, the augmented Lagrange function can be simplified as
follows:

min
V 2

−λ1tr
(
V T

2 L3V 1
)
− λ2tr

(
V T

2 L4V 2
)

+ Y 1(V 1 ∗ V 1 − V 2) +
µ

2
∥V 1 ∗ V 1 − V 2∥

2
F . (28)

The gradient of the objective function is

∂J
∂V 2

= −λ1 L3V 1 − 2λ2 L4V 2 + µ

(
V 2 − V 1 ∗ V 1 −

Y 1

µ

)
.

(29)

By setting the gradient to 0, one can obtain the implicit
solution as follows:

V ∗

2 = (µI − 2λ2 L4)
−1(µV 1 ∗ V 1 + λ1 L3V 1 + Y 1). (30)

Step 3 (Updating the Multipliers Y 1 and Y 2):

Y t
1 = Y t−1

1 + µ
(
V t−1

1 ∗ V t−1
1 − V t−1

2

)
(31)

Y t
2 = Y t−1

2 + µ
(

V t−1
1

T V t−1
− I

)
. (32)

The three steps are iteratively updated until convergence or
until a stopping criterion is met: max(∥V t

1 − V t−1
1 ∥

2
F , ∥V t

2 −

V t−1
2 ∥

2
F , and ∥V t

1 ∗ V t
1 − V t

2∥
2
F ) < ϵ. The alternate strategy

to solve the problem is summarized in Algorithm 2.
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Algorithm 2 High-Order Affinity Clustering
Input: Data X ∈ Rn×d , Cluster number k.
Output: The fused low-dimensional embedding V 1 and the

clustering results Y pred .
1: Set V 0

2 = Y 0
1 = 0, V 0

1 = Y 0
2 = 0, µ0

= 10−3, µmax
=

102, ε = 10−3, t = 0, ρ = 1.1, and σ = 10−6.
2: Construct dyadic affinity matrix L2 by Gaussian kernel

function.
3: Construct triadic affinity tensor L3 by Eq. (17).
4: Construct tetradic affinity tensor L4 by Eq. (18).
5: Unfold triadic affinity tensor L3 to matrix L3 by Eq. (1).
6: Unfold tetradic affinity tensor L4 to matrix L4 by Eq. (2).
7: while Not Converged do
8: t = t + 1.
9: Update V t

1 by Algorithm 1.
10: Update V t

2 by Eq. (30).
11: Update Y t

1 by Eq. (31).
12: Update Y t

2 by Eq. (32).
13: µt

= min(ρµt−1, µmax ).
14: Check the convergence conditions:

max(∥V t
1 − V t−1

1 ∥
2
F , ∥V t

2 − V t−1
2 ∥

2
F , ∥V t

1 ∗ V t
1 −

V t
2∥

2
F ) < ϵ

15: Update V 1 by V 1 = V t
1.

16: Perform SC on V 1V T
1 to obtain Y pred .

17: return V 1 and Y pred .

IV. EXPERIMENTS

In this section, we demonstrate the superiority of the
proposed UTC method on both synthetic and real datasets.
Two synthetic datasets with special structures (referred to
as Syndata1-1 and Syndata1-2) and one high-dimensional
synthetic dataset (referred to as Syndata2) are constructed for
experiments. The experiments on Syndata1-1 and Syndata1-2
demonstrate the limitations of pairwise affinities when dealing
with data of specific structures, while high-order affinity can
overcome this challenge. The comparison and visualization
results on Syndata2 with increased dimensionality validate the
robustness of our method. Finally, we conduct experiments on
six real datasets to verify the proposed UTC’s effectiveness
compared with baseline methods.

A. Experimental Settings

We employ nine popular clustering methods to benchmark
the proposed UTC. A brief introduction to these methods is
given as follows.

1) Spectral Clustering (SC) [33]: The classic SC gives a
baseline on behalf of pairwise similarity.

2) Clustering With Adaptive Neighbors (CANs) [19]:
Dynamically learning the affinity matrix by assigning
the adaptive neighbors for each data point.

3) Simple Multiple Kernel K -Means (SMKKM) [23]:
Solving the multikernel clustering problem by a
minimization–maximization strategy to obtain the
kernel coefficient and clustering partition matrix
simultaneously.

4) Clique Averaging + ncut (CAVE) [27]: Approximating
hypergraphs which represent high-order sample relation-
ships by the clique averaging to create a weighted graph
for clustering.

5) Self-Paced Active Clustering Ensemble (SPACE) [36]:
Automatically selecting and annotating significant data,
clustering ensemble is achieved through a few anno-
tations by propagating both must-link and cannot-link
constraints.

6) Adaptive Consensus Multiple K -Means (ACMK) [37]:
Integrating a set of base results into consensus learning
to obtain the final clustering result.

7) Natural Density Peaks K -Means (NDPK) [1]: Based
on the natural density peaks (NDPs), a new K -means
algorithm is proposed to identify clusters of arbitrary
shapes.

8) Pair-to-Pair Clustering (PPC) [31]: Tetradic undecom-
posable affinities are used to obtain the low-dimension
embedding as the final similarity matrix of the spectral
method.

9) Integrating Tensor Similarity and Pairwise Similarity
(IPS2) [31]: Applying the SC method on the fused
similarity that combines the pair-to-pair affinities and
pairwise similarity.

10) UTC: The proposed method.
Regarding the type of affinity, the nine methods can be

divided into three categories: pairwise affinity, high-order
affinity, and fused-order affinity.

The performance of each method is evaluated with respect
to five popular metrics: accuracy (ACC), adjusted rand index
(ARI), F-score, normalized mutual information (NMI), and
purity. The larger the value is, the better the performance is.
To standardize the experimental criteria, both the comparison
and UTC methods employed a Gaussian kernel function to
construct the dyadic affinity matrix. We executed all the
methods under the same settings 50 times and calculated the
mean of all evaluation metrics.

B. Experiment on Syndata1 to Validate the Potential of
High-Order Affinity

To verify that high-order affinity can capture special data
structures that pairwise affinity fails to recognize, we applied
the pairwise relationship-based SC method and the UTC
method, which incorporates third-order affinity, testing on
Syndata1-1 and Syndata1-2 datasets. Syndata1-1 comprises
three intersecting lines, while Syndata1-2 consists of a straight
line intersecting a plane. The experimental results in Fig. 3
demonstrate that traditional pairwise affinities fail to accu-
rately reflect the data relationships in these datasets. On the
other hand, UTC with triadic affinities achieves 100% ACC,
perfectly assigning samples. These observations show that
methods based on pairwise relationships can only detect
local neighborhood relationships of samples and perform
poorly when handling data with special structures. Conversely,
high-order affinities can extend the scope of measuring data
relationships and accurately capturing complex data structures.
Therefore, by integrating high-order affinities, clustering per-
formance is enhanced.



8706 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 3. Clustering comparisons between SC and UTC. (a) Result on Syndata1-1 by SC. (b) Result on Syndata1-1 by UTC. (c) Result on Syndata1-2 by SC.
(d) Result on Syndata1-2 by UTC.

Fig. 4. Experiment to demonstrate the stability of UTC when dealing with
high-dimensional feature corruption.

C. Experiment on Syndata2 to Validate the Stability of UTC

Syndata2 consists of three subgroups, each derived from
independent and identically distributed normal distributions
with an equal standard deviation of 0.5 and a mean of 2.
The data from different groups are orthogonal and each group
contains 30–40 samples.

We applied the proposed UTC on Syndata2 to validate
its stability in handling high-dimensional data by comparison
with six benchmark methods. As shown in Fig. 4, when the
feature dimension varies from 10 to 10 000, pairwise affinities
tend to be ambiguous with expanding feature dimensionality,
limiting the clustering performance. However, UTC, which
incorporates high-order affinities, maintains robustness and
achieves accurate clustering.

Moreover, when the data dimension reaches 10 000, Table I
shows that our proposed UTC methods, including fusing
pairwise with triadic affinity, tetradic affinity, and both, sub-
stantially outperform all nine methods. The clustering results
of fusing triadic affinity and fusing tetradic affinity are higher
than those of the second-highest baseline method by 14% and
5% in terms of ACC, demonstrating the effectiveness of fusing
high-order affinity with pairwise relation under HDLSS data.
In addition, the ACC achieves 100% when utilizing both high-
order affinities, proving that fusing different order affinities
is more helpful in fully explaining the data structure than
merging only a single high-order affinity.

We evaluated the quality of embeddings learned by the
UTC method via plotting t-distributed stochastic neighbor
embedding (t-SNE) scatter plots and heatmaps of the affinity
matrix on Syndata2, as shown in Fig. 5. When visualizing
the raw data by t-SNE, most samples are mixed together.
On the other hand, the heatmap of the pairwise affinity matrix

has no clear-cut structure. In contrast, when fusing triadic
or tetradic affinities in UTC, both visualization results reveal
that these high-order affinities can accurately identify one
of the clusters but struggle to differentiate samples in the
remaining two clusters effectively. These two high-order affini-
ties each identify completely different clusters, indicating that
different high-order affinities can provide distinct information
for clustering. Finally, from the visualization results of UTC
incorporating triadic and tetradic affinities, we observe that
the learned embeddings exhibit perfect separation in the t-SNE
scatter plot, and the heatmap of the affinity matrix also reveals
clear block structures. In summary, the above experimental
results validate that the high-order tensor affinities make up for
the insufficiency of the pairwise affinity matrix when corrupted
by high-dimensional features.

D. Experiments on Real Datasets

We validated the power of UTC by applying it to six
public benchmark datasets. The six datasets are chosen to
be representative of various sources, including facial images,
object images, and bioinformatics data. The statistics for the
six datasets are summarized in Table II. In addition, the
detailed descriptions of these datasets are as follows.

1) Yale dataset has 165 grayscale images covering 15 dif-
ferent individuals. Each individual has 11 different facial
and configuration images. We extracted 4096 dimen-
sional raw pixel values of every image in five classes
for our experiment.

2) Coil20 dataset contains 1440 images of 20 categories
of objects. Each category has 72 images from different
views. We sample 20 samples from five classes, and all
images have a size of 128 × 128.

3) Lymphoma dataset, one of the most common subtypes of
non-Hodgkin’s Lymphoma has two molecularly different
forms of diffuse large B-cell Lymphoma (DLBCL),
which have gene expression patterns that indicate differ-
ent stages of B-cell differentiation. The dataset contains
a total of 62 samples. Each sample has 4702 expression
fragments.

4) DriveFace dataset contains image sequences of sub-
jects while driving in real scenarios. It is composed
of 606 samples of 6400 features each, acquired over
different days from three drivers with various facial
features, such as glasses and beards. For each type,
we pick 26 samples for the experiment.
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TABLE I
CLUSTERING RESULTS ON SYNDATA-2 WHEN THE DIMENSIONALITY REACHES 10 000

Fig. 5. Visualization of the uniform embeddings from Syndata2 with a feature dimensionality of 10 000 by t-SNE. Most of the samples are mixed together
when applying t-SNE to (a) raw data and (b) corresponding affinity matrix has no clear-cut structure. In compassion, when fusing the triadic affinity with
dyadic affinity, (c) samples in group A are well-segmented, while the other groups remain undistinguished. For example, (d) corresponding affinity matrix
has blocky structures in the upper left. When fusing the tetradic affinity with pairwise affinity, (e) group C can be identified accurately while the remaining
two types are merged, resulting in (f) less distinguished affinity. Finally, by fusing the triadic, tetradic, and dyadic affinities jointly, (g) each group can be
perfectly identified, resulting in (h) three distinct blocks on the diagonal of the corresponding affinity matrix.

TABLE II
STATISTICS ON SIX TESTED REAL-WORLD DATASETS

5) Lung dataset contains a total of 203 samples that can
be divided into five classes, with 149, 21, 20, 6, and
17 samples, respectively. Each sample has 12 600 genes.
We selected 40 samples of the first category and all sam-
ples of the remaining four categories for experiments.

6) GLI-85 dataset consists of the transcriptional data of
85 diffuse infiltrating gliomas from 74 patients. Those
gliomas can be divided into two kinds of tumor sub-
classes. Each instance has 22 283 features.

The proposed UTC and nine comparative methods are
applied to these six datasets, and the results are summarized
in Table III. The bold value represents the best result. It can

be observed from Table III that our proposed method signif-
icantly outperforms the other nine methods across all types
of datasets. In terms of NMI, our method outperforms SC by
over 25% on the Yale datasets, surpassing the second-highest
SMKKM by more than 12%. On the GLI-85 dataset, our
results are more than 20% and 10% higher than those of the
baseline and second-highest IPS2 methods. There are also 5%,
12%, and 3% improvements compared with the second-best
performance on the Coil, DriveFace, and Lung datasets. Fur-
thermore, our method correctly assigns all samples to their
clusters in the Coil and Lymphoma datasets.

We also visualized the sample spatial distribution after
t-SNE and the heatmap of the affinity matrix on the Yale,
Coil, and DriveFace datasets in Fig. 6 and the Lymphoma,
Lung, and GLI-85 datasets in Fig. 7, respectively. As shown
in these figures, embeddings based on pairwise affinity mostly
mix together, making it difficult to distinguish between dif-
ferent subgroups. The affinity matrix constructed from such
embeddings also fails to capture relationships between sam-
ples. In contrast, the t-SNE obtained by the UTC method
reveals samples from the same cluster clustering together,
and the heatmap also displays a clear block structure. These
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TABLE III
CLUSTERING PERFORMANCE ON SIX REAL DATASETS

Fig. 6. Visualization of the latent representations with t-SNE and corresponding affinity heatmaps of (a) Yale, (b) Coil, and (c) DriveFace datasets. The first
and second columns are the visualizations of the embedding by t-SNE on the raw data and the samples’ affinity heatmap. The third and fourth columns are
the visualization results of the obtained uniform embedding by UTC and the samples’ affinity heatmap, respectively.

observations affirm that UTC can better reflect the true struc-
ture of the data compared with single-order methods.

In summary, the reason for the superior performance of UTC
is that it utilizes the complementarity of high- and low-order
affinities to comprehensively capture the spatial structure of
data, thereby leading to a decisive effect on the clustering
performance.

E. Computational Complexity Study
1) Computational Complexity Analysis: The UTC consists

of two major computational components: affinity construction
and the optimization of UTC. In the affinity construction step,
we adopt the K -nearest neighbors (KNN) strategy to calculate
the triadic and tetradic affinities. KNN strategy can reduce the
reduce the time complexity from O(n4) to O(nk4). Thus, the
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Fig. 7. Visualization of the latent representations with t-SNE and corresponding affinity heatmaps of (a) Lung, (b) Lymphoma, and (c) GLI-85 datasets. The
first and second columns are the visualization by t-SNE of the raw data and the samples’ affinity heatmap. The third and fourth columns are the visualization
results of the obtained uniform embedding by UTC and the samples’ affinity heatmap, respectively.

two affinity tensors are sparse, with the number of nonzero
elements being s. For the latter, we solve the model using an
iterative strategy. The subproblem of V 1 based on the gradient
descent strategy has a computational complexity of O(mcsn2),
where c denotes the number of clusters, and the maximum
iteration number is m. Solving the other subproblem V 2 takes
O(csn2) by the Germs algorithm. Thus, each iteration has a
total computational cost of O(mcsn2) + O(csn2) = O((m +

1)csn2). In total, the complexity of learning the uniform
embedding in Algorithm 2 is O[nk4

+ K ((m + 1)csn2)], with
K being the number of iterations.

2) Running Time Comparison: To further validate the effi-
ciency of UTC, we tested the running time together with
the clustering performance of different methods on various
datasets, including Syndata2, Lymphoma, GLI-85, and Drive-
Face datasets. Fig. 8 illustrates a scatter plot depicting the
relationship between running time (x-axis) and NMI (y-axis).
It can be observed that pairwise-affinity-based methods such
as SC, CAN, and SMKKM are less time-consuming but result
in suboptimal clustering performance. Conversely, methods
based on high-order affinity generally require more time but
achieve superior performance. This result suggests a sig-
nificant improvement in clustering performance relative to
the increase in computation time. In practical applications,
the increased computational cost is entirely acceptable when
dealing with HDLSS data.

In addition, we examined the running time and performance
of UTC when incorporating different orders, including triadic
affinity with dyadic affinity, tetradic affinity with dyadic affin-
ity, and dyadic with both two high-order affinities. As shown
in Fig. 8(a), (b), and (d), the method only fusing triadic
or tetradic affinity with dyadic affinity is inferior to the

Fig. 8. Scatter plot between running time (x-axis) and NMI (y-axis)
on four different datasets. (a) Syndata2, (b) Lymphoma, (c) GLI-85, and
(d) DriveFace.

UTC that combines all three types of affinities, while also
incurring additional time consumption. This demonstrates that
introducing other high-order affinities provides supplementary
information and accelerates UTC’s learning efficiency, leading
to faster convergence.

In summary, the integration of different high-order affinities
can significantly enhance the clustering performance and boost
convergence in most cases.

F. Robustness of UTC on Noisy Datasets

To evaluate the robustness of the proposed UTC, we tested
the clustering performance of UTC under different types of



8710 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 9. Clustering results ACC on (a) Lymphoma corrupted by salt and pepper
noise, (b) Lymphoma corrupted by Gaussian noise, (c) DriveFace corrupted
by salt and pepper noise, and (d) DriveFace corrupted by Gaussian noise.

noise interference. Specifically, six noisy datasets were gener-
ated by adding 10%, 30%, and 50% Gaussian noise and salt
and pepper noise to the Lymphoma and DriveFace datasets.
The bar graphs of these noise datasets are shown in Fig. 9. It is
evident that high-order affinity-based methods, such as IPS2
and UTC, exhibited superior robustness compared with other
pairwise-based methods under both types of noise influence.
Furthermore, UTC demonstrated excellent effectiveness on
all noisy datasets, indicating that the embeddings learned by
jointly incorporating multiorder affinity are more resilient to
noise.

Overall, our experiments highlight the ability of UTC
to handle noise interference and provide robust clustering
performance. The incorporation of multiple order affinities
in UTC proves to be advantageous, making it a promising
approach for real-world scenarios where noise is present in
high-dimensional datasets.

G. Convergence Analysis

As shown in Fig. 10, we plotted the corresponding conver-
gence curves on datasets Syndata2, Lymphoma, DriveFace,
and Coil20 to demonstrate the convergence of the proposed
method. The convergence curve is obtained by calculating the
total error after each iteration. We computed the constraint
error ∥V t

2 − V t
1 ∗ V t

1∥
2
F and the variable changes ∥V t

1 −

V t−1
1 ∥

2
F and ∥V t

2 − V t−1
2 ∥

2
F at each iteration, using the

maximum value of these quantities as the total error: Error =

max(∥V t
2 − V t

1 ∗ V t
1∥

2
F , ∥V t

1 − V t−1
1 ∥

2
F , ∥V t

2 − V t−1
2 ∥

2
F ).

The experimental results show that the total error on all four
datasets rapidly decreases and reaches a stable state within
20 iterations. Taking advantage of the efficient solving of each
subproblem, our method achieves high efficiency. Detailed
convergence analysis of the UTC can be found in Appendix A.

V. CONCLUSION

Popular unsupervised learning heavily pins on the accu-
rate sample-to-sample affinity, which, unfortunately, is easily

Fig. 10. Convergence curve on (a) Syndata2, (b) Lymphoma, (c) Driveface,
and (d) Coil20 datasets.

broken down by noises or large feature dimensions. Such
a notoriously “curse of the dimension” limits the learning
capability of popular schemes. The current study demonstrates
that high-order affinities, which describe relationships among
multiple samples, exhibit significant advantages in handling
data with complex structures. One can use multiple order
affinities to characterize the samples’ proximity, other than
merely using dyadic affinity. In elaborating the unified tensor
SC model, tensor–vector products, including Arithmetical,
Khatri–Rao, and Kronecker products, are used to formulate
sample affinities uniformly for all orders, which opens a new
way to study multiple samples. These operations organize the
high-order decomposable affinity with popular affinity in a
uniform form. On this basis, we have designed corresponding
nondecomposable triadic and tetradic affinities to supplement
dyadic affinity and proposed a unified learning model to
effectively fuse multiple samples’ affinities of different orders
to obtain uniform low-dimensional embedding. Experiments
on synthetic data have demonstrated the power of fusing
different order affinities. Furthermore, experiments on several
real datasets with small sample sizes yet large feature dimen-
sionality have shown the effectiveness and superiority of the
method over other popular approaches.

APPENDIX A
CONVERGENCE ANALYSIS OF UTC

We utilize the alternating iterative algorithm shown in
Algorithm 2 to solve the minimizing optimization solutions
of UTC as indicated in (24). When solving for a variable,
we fix the remaining variables as constants. By iteratively
solving the subproblems alternately, the objective function of
UTC eventually converges to a local solution. We first analyze
each term of the primal objective function (23) is bounded.
Specifically, the proof that each term is bounded is as follows.

1) The first term −tr(V T
1 L3V 1) of the objective function

is bounded, as proven in the following equation:

− tr
(
V T

1 L2V 1
)

= −tr
(
V 1V T

1 L2
)

≥ −
1
2

(
∥V 1V T

1 ∥
2
F + ∥L2∥

2
F

)
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Fig. 11. Sensitivity of our proposed MKCTM method to fixed parameters λ1 and λ2 on Syndata2, Lymphoma, DriveFace, and Coil20 datasets. (a) Syndata2
with fixed λ2. (b) Syndata2 with fixed λ1. (c) Lymphoma with fixed λ2. (d) Lymphoma with fixed λ1. (e) DriveFace with fixed λ2. (f) DriveFace with fixed
λ1. (g) Coil20 with fixed λ2. (h) Coil20 with fixed λ1.

= −
1
2

(
tr
(
V 1V T

1 V 1V T
1

)
+ ∥L2∥

2
F

)
= −

1
2

(
tr(I k) + ∥L2∥

2
F

)
= −

1
2
(k + c1) (33)

where I k ∈ Rk×k is the identity matrix and c1 =

∥L2∥
2
F is a constant.

2) To prove the boundedness of the second term of UTC,
we first provide the following property.
Property 1: Let V 2 = V 1 ∗ V 1 and V T

1 V 1 = I k ,
we have V T

2 V 2 = I k .
Proof: Since the Khatri–Rao product is the colum-

nwise Kronecker product, we analyze V T
2 V 2 column by

column. For the i th column of V T
2 V 2, we have

V T
2i

V 2 j = (V 1i ⊗ V 1i )
T (V 1 j ⊗ V 1 j )

=
(
V T

i V j
)
⊗

(
V T

i V j
)

=

{
1, if i = j
0, otherwise.

(34)

Based on Property 1, the second term −tr(V T
2 L3V 1) can

be deduced as follows:
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where c2 = ∥LT
3 L3∥

2
F is a constant.

3) Similarly, based on Property 1, from the third term
−tr(V T

2 L4V 2), we can obtain
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where c3 = ∥L4∥
2
F is a constant. Therefore, the objective

function is bounded with a lower bound c = −(1/4)(2+

λ1 + 2λ2)k − (1/2)c1 − (1/4)λ1c2 − (1/2)λ2c3. During
the iterative optimization process, J (V k

1, V k
2, Y k

1, Y k
2)

represents the augmented Lagrangian multiplier form
of (7) at the kth iteration. As each subproblem can find
the current local solution during the iteration, the update
for the (k + 1)th iteration is

J
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1, Y k
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Therefore, the iterative solving process of Algorithm 2 can
monotonically reduce the value of J (V k

1, V k
2, Y k

1, Y k
2). Com-

bining this with the fact that J (V k
1, V k

2, Y k
1, Y k

2) is bounded
below, Algorithm 2 can obtain a convergent solution for UTC
based on the monotone convergence theorem.
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APPENDIX B
PARAMETER SENSITIVITY ANALYSIS

The UTC method includes two hyperparameters: λ1 and λ2.
These parameters control the weights of different order affini-
ties. By adjusting one of these parameters, we can investigate
the impact on model performance under different parameter
settings. Fig. 11 shows the effects of variations in λ1 and λ2 on
ACC through line graphs on Syndata2, Lymphoma, DriveFace,
and Coil20 datasets.

From Fig. 11(a) and (b), it can be observed that complex
metrics, i.e., high-order affinities, can better describe complex
data structures. The sensitivity to parameters was not evident
on the synthetic dataset, as good performance was achieved
under different parameter settings. Analyzing the experimental
results on real datasets as shown in Fig. 11(c)–(h), the follow-
ing observations were made: when λ1 or λ2 is too small or
too large, the clustering performance shows a certain degree
of decline and instability. However, the model can achieve
the best performance under appropriate parameter settings.
These observations support two conclusions: 1) different order
affinities play important roles in guiding embedding learning
and 2) different order similarities complement each other, and
only by combining multiple order similarities can the model
learn the best embeddings to enhance clustering performance.
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