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Abstract— Existing transfer learning methods that focus on
problems in stationary environments are not usually applicable
to dynamic environments, where concept drift may occur. To the
best of our knowledge, the concept drift-tolerant transfer learn-
ing (CDTL), whose major challenge is the need to adapt the
target model and knowledge of source domains to the changing
environments, has yet to be well explored in the literature.
This article, therefore, proposes a hybrid ensemble approach to
deal with the CDTL problem provided that data in the target
domain are generated in a streaming chunk-by-chunk manner
from nonstationary environments. At each time step, a class-
wise weighted ensemble is presented to adapt the model of
target domains to new environments. It assigns a weight vector
for each classifier generated from the previous data chunks to
allow each class of the current data leveraging historical knowl-
edge independently. Then, a domain-wise weighted ensemble is
introduced to combine the source and target models to select
useful knowledge of each domain. The source models are updated
with the source instances performed by the proposed adaptive
weighted CORrelation ALignment (AW-CORAL). AW-CORAL
iteratively minimizes domain discrepancy meanwhile decreases
the effect of unrelated source instances. In this way, positive
knowledge of source domains can be potentially promoted while
negative knowledge is reduced. Empirical studies on synthetic
and real benchmark data sets demonstrate the effectiveness of
the proposed algorithm.

Index Terms— Concept drift, ensemble learning, negative
transfer, positive transfer, transfer learning.
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I. INTRODUCTION

TRANSFER learning aims to enhance the learning per-
formance of a model in a target domain by transferring

knowledge from source domains [1], [2]. It has been exten-
sively studied in addressing target tasks that have sparse or
no labeled data. In the past decades, efforts have been paid
to improve the performance of transfer learning along two
aspects: 1) boosting positive knowledge transfer; and 2) avoid-
ing negative knowledge transfer [3]. Because of discrepancies
between the source and target domains, approaches to improve
useful knowledge transfer focus on minimizing the domain
discrepancy across the source and target domains, such as
instance re-weighting [4], [5] and feature matching [6], [7].
On the other hand, techniques for reducing negative knowledge
transfer often try to weaken the effect of irrelevant source data
via decreasing their weights [3].

Most existing studies on transfer learning focus on station-
ary environments, assuming that the data in each domain are
generated from the same distribution. However, this assump-
tion may not be true from the practical point of view, e.g.,
financial data inferences, energy demand predictions, and
climate data analysis, where the environments are dynamic.
In case the environment of a domain changes, meaning the
distributions of the generated data evolving over time, this
domain is a concept drift problem [8], [9]. Compared with the
transfer learning in a static environment, the one in dynamic
environments require the learner to continuously adapt to the
concept drift as well as adaptively leverage useful knowledge
from source domains at each environment. The new difficul-
ties of transfer learning in dynamic environments challenge
traditional transfer learning approaches because they are not
designed to react to concept drift and track the evolving data.

This article concentrates on studying multisource concept
drift-tolerant transfer learning (CDTL), particularly for the
case that only the environment of the target domain changes
over time. Specifically, the source data are given in advance
while the target data are continuously collected from different
distributions and a chunk of data is available at each dis-
tribution. We aim to design a CDTL model that can well
adapt to concept drift and extracts knowledge from source
domains to improve its learning performance. In the liter-
ature, ensemble learning is a popular approach to concept
drift problems [10], [11]. The ensemble learning for concept
drift incorporates a set of classifiers that are learned from
previous time steps, whereby adapting to new concepts as
well as preserving the knowledge of historical classifiers. The
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most used techniques in such approaches include adding new
individual classifiers, removing old classifiers, and adjusting
weights of individual classifiers [10], [11]. Inspired by the
effectiveness of the ensemble model in addressing concept,
the proposed CDTL model uses the ensemble strategy as
the learning algorithms to deal with the concept drift of the
target domain. In other words, the CDTL model on each time
step leverages the knowledge from both source domains and
historical environments of the target domain. It should be
noted that in the concept drift problems, the data of historical
environments are not stored but the limited learned knowledge
is accessible [12], e.g., the learned classifiers. A similar idea to
CDTL has been reported in [13], named Melanie. It considers
an online problem in which the data in source and tar-
get domains are generated from non-stationary environments.
Melanie applies an online ensemble to learn models from each
of the domain and combines these models via a weighted-sum
approach. It incrementally trains the models and dynamically
adjusts their weights to handle the concept drift. Generally,
Melanie could be extended to address CDTL by replacing the
online learning ensemble with an ensemble for chunk-based
concept drift.

However, such an extension has the following two
limitations: 1) when reacting to a new concept, the existing
ensembles for concept drift often adjust the weights of his-
torical individual classifiers to preserve historical knowledge.
These weights often represent the contributions of historical
classifiers to the current learning. Weight of a historical
classifier is usually assigned according to its performance
on the current data chunk [14], [15]. Existing approaches
generally evaluate a global performance and assign a single
weight to a classifier. However, they ignore the performance
variation of a classifier at different locations of a data chunk
and the different contributions to learning the different parts
of the current data. Suppose a shift across a historical concept
and a new one occurs only in a few classes, or in different
degrees, the classifier trained on the historical concept may
perform diversely on classes of the new concept. An example
is illustrated in Fig. 1, in which Ct 1 and Ct 2 are the two
historical concepts, and CurCt is the current concept. In the
example, the drift between Ct 1 and the current concept CurCt
only occurs on Class 1 and 2. In this case, the classifier of
Ct 1 would perform well on Class 3 and 4, while worse on
Class 1 and 2. An extreme situation is across Ct 2 and CurCt,
where the concept drift only causes the labels of Class 3 and
4 swapping. In this scenario, an ideal classifier of Ct 2 would
totally misclassify the instances in Class 3 and 4, yet work
perfectly on Class 1 and 2. Therefore, it is not appropriate
to set a shared global weight for a historical classifier when
preserving its knowledge for future learning and 2) to leverage
the knowledge of source domains, a straightforward way is to
combine the learned classifiers of these domains with the target
classifier. However, combining the classifiers directly learned
from source data may hinder effective knowledge transfer due
to domain discrepancies.

This article, therefore, presents a Hybrid Ensemble approach
to concept drift-tolerate transfer learning (HE-CDTL), which

Fig. 1. Illustration of different shifts among classes. Ct 1 and Ct 2 are the
two historical concepts, and CurCt is a concept at the current time step. The
drift between Ct 1 and CurCt exists in Class 1 and Class 2. The drift across
the Ct 2 and CurCt only causes the labels of Class 3 and Class 4 swapping.

consists of three main stages: 1) a class-wise weighted ensem-
ble is introduced in HE-CDTL for tackling the concept drift
of the target domain. In particular, at each arrived data
chunk, a new classifier is created and assigned a weight
vector. Each element in the weight vector is associated with
a class and initialized to 1. Then, historical classifiers are
individually evaluated on each class of the newest data chunk.
Accordingly, a weight vector of each classifier is obtained
according to the evaluated performances on the classes of
the newest data chunk. After that, the ensemble model
of target domains is formulated by a weighted combination
of these individual classifiers based on the weight vectors.
In this way, the previous knowledge can be flexibly leveraged
when a classifier predicts the different classes of the current
data; 2) a domain-wise weighted ensemble model, which aims
to select useful knowledge from source and target domains,
is created by integrating the source and target models; and
3) an adaptive weighted CORrelation alignment (AW-CORAL)
is proposed to promote the effective knowledge transfer from
source domains. Its purpose is to reduce the distribution
discrepancy across the source and target domains, as well as to
avoid transferring negative knowledge of source domains. AW-
CORAL initializes a weight vector for each source domain and
projects source domains associated with the weight vectors via
the proposed weighted CORrelation alignment (CORAL) [7].
In AW-CORAL, the weight vectors of source domains are
iteratively adjusted in order to decrease the effects of irrelevant
source instances. Consequently, the source models are updated
over the iterations.

The main contributions of this article are summarized as
follows.

1) A hybrid ensemble approach is proposed to tackle
CDTL, where data in target domains are generated from
nonstationary environments. The purpose of HE-CDTL
is to extract the historical knowledge of the target
domain and the knowledge of source domains to achieve
good performance in future time steps.
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2) A class-wise weighted ensemble is introduced to pre-
serve the useful historical knowledge in target domains.

3) An AW-CORAL is presented to promote positive knowl-
edge while reducing negative knowledge transfer from
source domains.

The rest of this article is organized as follows. Related
works consisting of transfer learning and ensemble methods
for concept drift problems are introduced in Section II. The
proposed algorithm is described in detail in Section III. Exper-
iments and discussions are presented in Section IV. Finally,
the conclusion is drawn in Section V.

II. RELATED WORK

This section makes an overview of the related research
topics, i.e., transfer learning and ensemble learning for concept
drift problems.

A. Transfer Learning

Transfer learning has been attracting increasing interest
in recent years [1], [2], [16]. In transfer learning, instances
of source and target domains are often generated from dif-
ferent distributions. Thus, the minimization of the distrib-
ution discrepancy across domains plays a crucial role in
achieving good performance in transfer learning. A variety
of approaches have been developed to reduce domain dis-
crepancy, which can be generally classified into two cate-
gories, i.e., instance re-weighting and feature matching [17].
Instance re-weighting methods decrease domain discrepancy
via adjusting the weights of source instances, so as to reuse the
source instances that are similar to the target domain. The key
feature of instance re-weighting methods is on how the weights
of instances are estimated. For example, Huang et al. [18]
proposed a kernel mean matching (KMM) approach, which
estimates the weights via minimizing the mean across the
source and target domain instances in a reproducing kernel
Hilbert space (RKHS). Sugiyama et al. [19] presented a
Kullback–Leibler importance estimation procedure (KLIEP)
which applies Kullback–Leibler distance as a domain dis-
tribution measurement. During the training process, KLIEP
not only minimizes the Kullback–Leibler distance but also
performs a model selection procedure. Based on the existing
instance re-weighting techniques, Sun et al. [20] proposed a
2-Stage weighting framework for multisource domain adaption
(2SW-MDA) to address multisource transfer learning prob-
lems. In 2SW-MDA, the source domains and their instances
are re-weighted simultaneously to reduce marginal distribution
and conditional distribution discrepancies, respectively. The
technique of weighting instances is similar to KMM and the
realization of domain weighting is based on the smoothness
assumption.

TrAdaBoost [21] is an approach based on the framework
of AdaBoost [22], which iteratively updates the weights of
training data. At each iteration, TrAdaBoost trains a classifier
on the combination of source and target data, then uses this
classifier to predict the training data. For a source instance, its
weight is reduced if it is wrongly predicted. Consequently,
its impact on the classifier is decreased. On the contrary,

the weights of misclassified target instances are increased
to have a larger impact. Multisource TrAdaBoost (MsTrAd-
aBoost) [23] is an extension of TrAdaBoost to solve multi-
source transfer learning problems. MsTrAdaBoost combines
each source and target data, and trains a classifier for each
of them. Then, MsTrAdaBoost selects the classifier that has
the minimal error on the target data to update the weights of
instances.

Feature matching aims to discover a common feature
representation space between the source and target domains.
The common space can be obtained by either a symmetric
transformation or an asymmetric transformation. The symmet-
ric transformation maps both source and target domains to a
new space while the asymmetric transformation projects one
to another domain. The transfer component analysis (TCA)
approach proposed by Pan et al. [6] is a typical symmet-
ric transformation. It employs maximum mean discrepancy
(MMD) [24]–[26] as a measurement to learn an RKHS,
where the marginal distribution discrepancy across the source
and target domains is minimized. Based on TCA, the joint
distribution adaptation (JDA) [27] has been proposed to reduce
both marginal and conditional distribution discrepancies. Con-
sidering the different importance of marginal and conditional
distribution discrepancies across problems, Wang et al. [28],
[29] presented a Balanced Distribution Adaptation (BDA)
approach, which introduces a balance factor between the
marginal and conditional distribution discrepancies to adap-
tively leverage the importance of them. Subspace alignment
(SA) [30] is an approach to aligning domain distributions in
a lower-dimensional subspace. It first selects a number of
important eigenvectors of source and target domains using
principal component analysis [31]. Then, it learns a linear
transformation matrix to minimize the eigenvectors of the
two domains. As reported in [32], SA ignores the different
distributions of domains in the subspace. For this remedy,
an approach, namely distribution alignment between two sub-
spaces (SDA-TS) [32], has been proposed to align the bases as
well as the distributions. Correlation alignment (CORAL) [7],
[33] is a well-known asymmetric transformation approach,
which also aims to align the subspace bases. Unlike SA
and SDA-TS that apply the first-order statistics to find the
sub-spaces of domains, CORAL aligns the second-order sta-
tistics. Besides, CORAL adopts the learned transformation
matrix to project source instances to the target domain.

Although many feature matching approaches have been
developed in transfer learning, it is important to avoid a
negative transfer. The negative transfer refers to a phenomenon
that the transferred knowledge degenerates the performance
of target tasks. As pointed in [3], transferring unrelated or
harmful source samples to the target is a reason for negative
transfer. In the case where the source and target domains
are dissimilar, the unrelated source samples can still exist
after feature matching. For this reason, the negative transfer
could be overcome by reducing the impact of unrelated source
instances via weighting instances. For example, transfer joint
matching (TJM) [17] introduces a sparsity regularizer on the
feature transformation matrix to jointly match the features
and re-weight the instances. Zhong et al. [34] developed
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an adaptive mapping approach that matches features across
the source and target domains, and updates the weights of
the training instances iteratively. To address partial transfer
learning problems [35]–[37], in which the source domain
has more classes than the target one, [35]–[37] introduce
an instance-level re-weighting and class-level re-weighting
mechanisms to reduce the outlier classes of source domains.
Also, [3] employs an adversarial neural network to align
domain distribution, where lower weights are assigned to the
source samples that are far away from the discriminator since
these instances are considered to be less related to the target
domain.

B. Ensemble Learning for Concept Drift

This subsection reviews the ensemble approaches to
chunk-based concept drift problems. In general, these methods
maintain a number of classifiers learned from historical data
chunks in an archive. They react to concept drift through man-
aging the individual classifiers and their combinations [10],
[11], [38], [39]. The streaming ensemble algorithm (SEA)
proposed by Street and Kim [14] is the earliest approach to
concept drift. It creates a classifier for each newly arrived data
chunk and assigns it a weight. If the maximum size of the
archive is reached, one existing classifier that performs the
poorest on the current data chunk is removed. SEA applies
the mean square error as a performance measurement to
preserve the most accurate classifiers of the ensemble. For the
selected classifiers, SEA assigns a weight for each of them
according to their performances and uses the weighted voting
to combine the achieved and the new classifiers. Accuracy
weighted ensemble (AWE) [40] is an approach similar to
SEA, which continuously creates classifiers on the incoming
data chunks. However, AWE discards the historical classifiers
whose prediction errors are higher than the one of a ran-
domly selected classifier. Accuracy updated ensemble (AUE)
introduced by Brzezinski and Stefanowski [15], [41] aims to
improve the adaption ability of an ensemble. AUE not only
trains a new classifier on the arrived data chunk but also
incrementally updates the existing classifiers with the new data
chunk. The ensemble prediction of AUE is made according to
the weighted combination, where the weights of individual
classifiers are the evaluated performance on the newest data
chunk. Following the way of adapting classifiers in AUE,
Sun et al. [42] presented an approach, namely diversity and
transfer based ensemble learning approach (DTEL), which
employs Yules Q-statistic [43] as a quality measurement to
select individual classifiers in order to maintain the diversi-
fied ensemble components, thereby avoiding the problem of
overfitting.

Learn++ for nonstationary environments (called
Learn++.NSE) is an approach based on boosting
framework [12]. Learn++.NSE first weights each sample
of the new coming data chunk. Specifically, Learn++.NSE
initializes the weights of all samples to 1, and reduces the
weight of a sample if it is misclassified by the ensemble.
Then, it creates a new classifier on the weighted samples and
formulates the ensemble with the weighted combination. The

weights of individual classifiers are calculated based on their
prediction error on the weighted new data chunk.

It can be found from the above-mentioned methods that
most existing approaches determine the weights of classifiers
based on performance evaluations, whereby deciding which
historical classifiers can be reused and how much knowledge
from them can be preserved. However, these works simply
evaluate a classifier on the whole data chunk without consid-
ering the different performances of a classifier among classes.

III. PROPOSED METHOD

In this section, we first introduce the definitions of CDTL
and the main framework of the proposed HE-CDTL. Then,
we detail the two components of HE-CDTL, i.e., class-wise
weighted ensemble and AW-CORAL.

A. Definitions and Overall Framework

In CDTL, the training data of N source domains are
given in advance and denoted as S1 = (Xs,1, ys,1),
S2 = (Xs,2, ys,2), . . . , SN = (Xs,N , ys,N ), where Xs,n , ys,n,
n = 1, 2, . . . , N are the feature matrix and the label vector
of the nth domain, respectively. The training instances of the
target domain arrive in a streaming chunk-by-chunk manner.
In particular, a chunk of target data Dt = (Xt , yt ), where
Xt , yt are the corresponding feature matrix and label vector,
generated from an unknown distribution pt(x, y) is available
at each time step t , t = 1, 2, . . . , T . Here, T is the total
number of time steps in a learning process. Due to concept
drift, the distribution p may change over time, i.e., pt(x, y) �=
pt+1(x, y). The goal of CDTL is to learn a good prediction
function on the sequential data chunk Dt , t = 1, 2, . . . , T
of the target domain. The challenge of CDTL is on how
to effectively borrow knowledge from source domains and
historical knowledge for a learner on Dt , t = 1, 2, . . . , T ,
when there are very few data in each Dt .

The generic diagram of the proposed HE-CDTL is shown
in Fig. 2. HE-CDTL is a hybrid ensemble which contains a
class-wise weighted ensemble and a domain-wise weighted
ensemble, where the class-wise weighted ensemble leverages
knowledge from target historical time steps, the domain-
wise weighted ensemble extracts knowledge of all source
domains and the historical knowledge of the target domain.
In the class-wise weighted ensemble, at the t-th time step,
K classifiers f t

1 , f t
2 , . . . , f t

K learned from previous time steps
are stored in an achieve Bt . On the arrived data chunk Dt ,
HE-CDTL first creates a new classifier ft . Then, ft and the
selected individual classifiers from Bt are combined as Ft

via the proposed class-wise ensemble strategy (detailed in
Section III-B), which is considered to be the model of the
target domain at the t-th time step. Regarding the source
domains S1, S2, . . . , SN , AW-CORAL is presented to improve
the positive knowledge transfer meanwhile reducing the neg-
ative transfer. In particular, AW-CORAL assigns a weight
vector wn to each source domain Sn , n = 1, 2, . . . , N ,
where each element in wn represents the importance of an
instance. Then, the source domains along with the weight vec-
tors are transformed to St

1,p, St
2,p, . . . , St

N,p via transformation

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 05,2022 at 00:33:20 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: CONCEPT DRIFT-TOLERANT TRANSFER LEARNING 3861

Fig. 2. Framework of the proposed hybrid ensemble approach to a concept
drift-tolerate transfer learning problem at the t-th time step.

Algorithm 1 General Framework of HE-CDTL
1: Input: T : The total time steps in a learning system; K :

The number of historical classifier in the achieve; N : The
number of source domains; Bt = { f t

1 , f t
2 , . . . , f t

K }: A set
of preserved historical classifiers at the t-th time step;
S1, S2, . . . , SN : All the source domains;

2: Output: Ft
E ST : The generated ensemble model at the t-th

time step;
3: while t ≤ T do
4: Receive a data chunk Dt ;
5: Create the classifier Ft via the class-wise weighted

ensemble;
6: Obtain Ft

E ST via domain-wise weighted ensemble and
AW-CORAL;

7: end while

matrixes Pt
1 , Pt

2 , . . . , Pt
N to reduce the domain discrepancy.

Subsequently, source models Ft
1,s , Ft

2,s , . . . , Ft
N,s are created

on the projected source data St
1,p, St

2,p, . . . , St
N,p . Each source

model Ft
n,s ,is evaluated on the current data chunk Dt and

assigned a weight dwt
n , n = 1, 2, . . . , N . After that, all source

models, the model of the target domain, and their corre-
sponding weights are integrated as the domain-wise weighted
ensemble, Ft

E ST . To reduce the negative transfer, AW-CORAL
applies Ft

E ST to adjust the weights of source instances. Accord-
ingly, the transformation matrixes, the projected source data,
the source classifiers and the domain-wise weighted ensemble
are updated. In AW-CORAL, the above procedures are iterated
until a termination criterion, defined as the maximum iteration
I termax in this article, is reached. The pseudocode of the
HE-CDTL is presented in Algorithm 1.

B. Class-Wise Weighted Ensemble for Concept Drift

The main feature of the proposed class-wise weighted
ensemble technique is that it evaluates the performance of
a classifier on each class instead of the whole data. Gen-
erally, the class-wise weighted ensemble technique can be
implemented in any ensemble approach to concept drift,
such as SEA [14], AUE2 [15], and Lear++.NSE [12]. This
article incorporates it in SEA and denotes it as class-wise
weighted SEA (C-SEA). Similar to SEA, C-SEA includes
three components to handle new concepts, i.e., train a new
classifier on the most current data chunk, remove the worst
classifier when the maximum size is reached, and update the
weights of classifiers. The pseudocode of C-SEA at a certain
time step t is shown in Algorithm 2.

Algorithm 2 Training Process of C-SEA at Time Step t
1: Input: K : The number of archived classifiers; Bt =

{ f t
1 , f t

2 , . . . f t
K }: The existing classifiers at the t-th time

step; Dt : The training data chunk at the t-th time step; C:
The number of classes of Dt ; Kmax : The maximum size of
the archive;

2: Output: Ft : The created ensemble model at time step t;
3: Create a new classifier ft on Dt ;
4: Set a weight vector cwt for ft , cwt,c = 1, c = 1, 2, . . . , C;
5: for k = 1: K do
6: Calculate the accuracy of f t

k on each class of Dt accord-
ing to Eq. (1);

7: Calculated the weight vectors cwt
1, cwt

2, . . . , cwt
K for

historical classifiers f t
1 , f t

2 , . . . f t
K according to Eq. (2);

8: end for
9: if K >= Kmax then

10: Remove the classifier with the smallest cwt
k,c, c =

1, 2, .., C;
11: end if
12: Normalize the weights of individual classifiers according

to Eq. (3) and Eq. (4);
13: Construct the ensemble Ft according to Eq. (5);
14: Add the new classifier ft to Bt and denoted as Bt+1;

Given the data chunk Dt , C-SEA learns a new classifier
from Dt , which is denoted as ft . Then, C-SEA assigns a
weight vector cwt = (cwt,1, cwt,2, . . . , cwt,C) for ft , C is the
number of classes of Dt . Each element in cwt is associated
with a class and is set to 1. Meanwhile, C-SEA evaluates
the archived K classifiers f t

1 , f t
2 , . . . , f t

K on each class of Dt .
We use the prediction accuracy as the performance measure-
ment, and the accuracy of a classifier fk , k = 1, 2, . . . , K is
calculated according to the following:

Auct
k,c =

�
i∈Uc

ŷi
k == c

|Uc| , c = 1, 2, . . . , C (1)

where ŷi
k is the predicted label of fk on the i th instance, Uc

contains the indices of instances whose labels are c, |Uc| is
the cardinality of Uc, and C is the number of classes of Dt .

Once the performances of the existing classifiers are
obtained, C-SEA assigns each classifier f t

k a weight vector
cwt

k according to the evaluated performance. In particular,
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the weight vector of a classifier on each class is set to the
estimated accuracy

cwt
k,c = Auct

k,c, k = 1, 2, . . . , K , c = 1, 2, . . . , C. (2)

If K is smaller than the maximum size of the archive Kmax,
the new trained classifier ft is simply added in the archive.
Otherwise, one archived classifier with the smallest weight
element will be discarded and removed from the archive

After the individual classifiers of the ensemble are selected,
the weight vectors of these classifiers are normalized before
they are combined. Specially, the weight vectors of the
old classifiers and the new created classifier are normalized
according to the following:

Ncwt
k,c = cwt

k,c

(
�K

k=1 cwt
k,c + cwt,c)

, k = 1, 2, . . . , K ,

c = 1, 2, . . . , C. (3)

Ncwt,c = cwt,c

(
�K

k=1 cwt
k,c + cwt,c)

, k = 1, 2, . . . , K ,

c = 1, 2, . . . , C. (4)

Finally, the class-wise weighted ensemble Ft at time step t
can be formulated according to the following:

Ft =
C�

c=1

K�
k=1

Ncwt
k,c × f t

k + Ncwt,c × ft . (5)

It can be seen that C-SEA assigns each class a specific
weight instead of a single weight. In the situation where all
elements in the weight vector of a classifier are equal, C-SEA
is the same as SEA. Consequently, SEA can be regarded
as a special case of C-SEA. Compared with SEA, C-SEA
allows each class to flexibly select positive knowledge from
a classifier, whereby improving the prediction accuracy of the
ensemble.

C. AW-CORAL

As described in Section III-A, a data chunk can be achieved
at each time step of the target domain in CDTL. Thus,
CDTL can be regarded as a traditional multisource transfer
learning problem at a certain time step. A common way of
leveraging knowledge from source domains is to integrate
all source models as an ensemble [44], [45]. Inspired by the
multisource transfer learning, this article adopts an ensemble
to preserve the knowledge of source domain. In particular,
we use a domain-wise weighted ensemble to combine each
source models and the class-wise weighted ensemble model.
In this way, the useful knowledge of source domains and the
historical knowledge of the target domain can be selected
and reused. Suppose the weights for N source classifiers
Ft

1,s , Ft
2,s , . . . , Ft

N,s and the class-wise weighted ensemble
Ft are dwt

1,s, dwt
2,s , . . . , dwt

N,s and dwt , the domain-wise
weighted ensemble can be denoted as

Ft
EST =

N�
n=1

dwt
n,s × Ft

n,s + dwt × Ft . (6)

In Ft
EST, the weights of source classifiers are set to their

prediction accuracy on the latest data chunk Dt . The weight
for Ft is defined in the following:

dwt =
K�

k=1

�C
c=1 cwt

k,c

C
+

�C
c=1 cwt,c

C
(7)

which represents the sum weights of each individual classifier.
To promote the positive knowledge transfer, a feature match-

ing approach is often performed to transform domains to new
spaces, where the distributions of source and target domains
are close. Since there is a small number of labeled data
and no unlabeled data in each Dt , we use feature matching
techniques to minimize the marginal distributions across the
source and target domains. CORAL [7] is a simple yet efficient
feature matching method, which attempts to project the data
of source domains to the target space. Given a source domain
DS = (XS, yS) and a target domain DT = (XT , yT ), where
XS and XT are the feature matrixes, and yS and yT are the
label vectors. CORAL first extracts the second-order statistics,
i.e., the covariance of the source and target features according
to the following:

CS = cov(XS) + eye(size(XS, 2)) (8)

CT = cov(XT ) + eye(size(XT , 2)). (9)

In CS and CT , the first component is the covariance matrix of
XS and XT , and the second component is a unit matrix that
has the same size as XS and XT , respectively.

Then, CORAL applies a linear transformation matrix A
to align the covariances of source and target domains. The
transformation matrix can be obtained via solving

CORAL(DS, DT ) = min
A

��A�CSA − CT

��2
F

(10)

where A� is the transposed matrix of A, and �·�2
F is the matrix

Frobenius norm. Subsequently, the original source features are
projected by A.

Similar to other discrepancy methods, standard CORAL
may fail to discover source instances that are not relevant to
the target in case the domain shifts are very large. As analyzed
in [3] and [34], transferring these irrelevant source data may
reduce the learning performance, thus causing negative trans-
fer. To reduce the negative transfer, the proposed AW-CORAL
aims to decrease the weights of unrelated source data, thus
weakening the impact of those potentially harmful instances.

AW-CORAL adopts the scheme of TrAdaBoost [21] to
iteratively re-weight the instances. In particular, AW-CORAL
initializes a weight vector wn of each source domain Sn ,
n = 1, 2, . . . , N . The element in each weight vector is set to 1.
At each iteration, AW-CORAL transforms source domains
along with weight vectors to the target domain, denoted as
St

n,p, n = 1, 2, . . . , N , via a modified weighted CORAL.
Suppose a source domain is DS = (XS, yS), the correspond-
ing instance weight vector is wS, and a target domain is
DT = (XT , yT ). Compared with TrAdaBoost, AW-CORAL
employs the weighted CORAL alignment strategy to reduce
the distance between source and target, which will facilitate
knowledge transfer [6]. The complete process of the modified
weighted CORAL is presented in Algorithm 3.
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Algorithm 3 Process of Modified Weighted CORAL
1: Input: DS = (XS, yS): The source domain; wS : The

instance weight vector of source domain; DT = (XT , yT ):
The target domain;

2: Output: DS,p: The transformed source data;
3: CS = cov(XS) + eye(size(XS, 2));
4: CT = cov(XT ) + eye(size(XT , 2));

5: XS = wSXSC
− 1

2
S ;

6: XS = XSC
1
2
T ;

7: DS,p = (XS, yS)

Based on the transformed source domains, a source model
Ft

n,s is learned from each projected source domain St
n,p, n =

1, 2, . . . , N . Accordingly, the weight of each source model
is re-calculated and updated. After that, the domain-wise
ensemble Ft

E ST is generated via the weighted combination
of the source models Ft

1,s , Ft
2,s , . . . , Ft

N,s and the class-wise
weighted ensemble model Ft by (6).

Once Ft
E ST is obtained, it is adopted to estimate the

weights of source instances because it is more reliable on
Dt . Similar to TrAdaBoost, the weights of incorrect predicted
source instances are reduced because they are considered to
be dissimilar to the target data. In other words, the instance
weight vector wn of a source domain Sn , n = 1, 2, . . . , N is
updated according to the following:

wi
n = wi

n · e−βn | ŷi==yi | (11)

where ŷi is the predicted label of the i -th instance in the source
domain, βn is a parameter defined as

0.5 ln

�
1 +

�
2 ln

Ln

Itermax

�
Ln is the number of instances of Sn , and Itermax is the
maximum iterations for termination defined in AW-CORAL.

In this way, the weights of the misclassified source instances
are decreased and effects of these instances on the model Ft

EST
become weaker. The detailed description of AW-CORAL is
presented in Algorithm 4.

IV. EXPERIMENTS AND ANALYSIS

To evaluate the performance of the proposed HE-CDTL,
we conduct extensive experiments to compare HE-CDTL
with the existing methods on several synthetic and real-world
benchmark data sets. We also investigate the effectiveness of
the two components of HE-CDTL, i.e., class-wise weighted
ensemble and AW-CORAL. Finally, we discuss the influence
of the achieved size.

A. Experimental Settings

We compare the proposed HE-CDTL with three state-of-the-
art baselines, i.e., SEA [14], CORAL [7], and Melanie [13].
In particular, we employ performance-based weight strategy
for SEA [14] and implement the class-wise weighted strategy
in the framework of SEA. We also compare HE-CDTL with

Algorithm 4 Process of AW-CORAL
1: Input: Sn = (Xn

s , yn
s ), n = 1, 2, . . . , N : The N Source

domains; K : The number of existing classifiers; Ln , n =
1, 2, . . . , N : The number of instances of each source
domain; I termax : The maximum number of iterations;
Dt = (Xt , yt): The training data chunk at time step t;
Lt : The number of instances in Dt ; Ft : The class-wise
weighted ensemble classifier of target domain;

2: Output: Ft
E ST : The created domain-wise ensemble model

at time step t ;

3: Set βn = 0.5 ln(1 +
�

2 ln Ln
I termax

), n = 1, 2, . . . , N ;
4: Initialize the weight vector wn , n = 1, 2, . . . , N , each

element is set to 1;
5: for i ter = 1 : I termax do
6: for n = 1 : N do
7: Obtain the projected data of each source domain

St
n,p,n = 1, 2, . . . , N according to Algorithm 3;

8: Create a classifier Ft
n,s on St

n,p, n = 1, 2, . . . , N ;
9: Evaluate the prediction accuracy of Fs

n on Dt and set
its weight to the evaluated accuracy;

10: end for
11: Generate domain-wise ensemble Ft

E ST according to
Eq. (6);

12: for n = 1 : N do
13: Use Ft

E ST to predict the instance in St
n,p , n =

1, 2, . . . , N ;
14: Adjust the weight vector of each source domain wn ,

n = 1, 2, . . . , N using Eq. (11);
15: end for
16: end for

CORAL [7], which is a feature mapping approach to transfer
learning in order to access the performance of AW-CORAL
strategy. We implement CORAL in CDTL by splitting each
time step in the target domain as a series of traditional transfer
learning problems. Melanie [13], an algorithm for transfer
learning in nonstationary environments, is also selected for
comparison.

To make the comparisons consistent, we use the Support
Vector Machine (SVM) [46] with a cubic polynomial kernel
as the base learner for the compared algorithms on CIR and
SIN data sets, and the SVM with linear kernel for other data
sets. We use the toolboxes [47] to train the SVM with a cubic
polynomial kernel. For the SVM with linear kernel, the hinge
loss is applied as a loss function and the learning rate is set
to 0.001. The maximum iteration for training SVM is set to
100. The maximum size of the archive that stores historical
classifiers is set to Kmax = 15 for SEA and HE-CDTL. The
maximum iteration for AW-CORAL is set to itermax = 10.
The parameters of SEA and Melanie are the same to HE-
CDTL. CORAL is a parameter-free algorithms. To access
performances of the compared algorithms, the widely used
prediction accuracy [17], [27], [42] is applied as the perfor-
mance metric. The prediction accuracy at the t th time step is
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TABLE I

PARAMETERS OF ROT

calculated via the following:

Prediction Accuracy =
�

i∈Dt
	yi == yi

|Dt | (12)

where Dt is the test data at the tth time step, 	yi is the predicted
label of the i th test data, yi is the true label of the i -th test
data, and |Dt | is the cardinality of Dt .

B. Benchmark Data Sets

SEA moving hyperplane concepts (SEA) [14], [42], Rotat-
ing concepts (ROT) [12], [15], Circle concepts (CIR) [42],
[48], and Sine concepts (SIN) [42], [48] are the widely
used synthetic benchmark generators for concept drift prob-
lems. The real benchmark data sets are generated from
Office-31 [49], Caltech-256 [50] and PIE [27], which are
popular real benchmark data sets for transfer learning.

1) Synthetic Benchmark Data Sets:
1) SEA: SEA generates three features for each data point

(x1, x2, x3), where the value of each feature is randomly
sampled between 0 and 10. It is a two class classification
problem and only the first two features x1 and x2 are
relevant to the classifier hyperplane. The labels of the
two classes C1 and C2 are defined as


C1 : x1 + x2 ≤ θ

C2 : x1 + x2 > θ
(13)

where the value of θ changes during the learning process
to simulate concept drift. Similar to [42], the value of θ
changes among 10, 7, 3, 10, 13, 16, 13. To extend SEA
as a CDTL, we generate two source data sets at two
randomly time steps with each containing 500 samples.
We denote the generated data set as T-SEA. Based on
T-SEA, we propose a multiclass SEA (M-SEA) and

define the class labels in the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1 : x1 + x2 ≤ θ1

C2 : θ1 < x1 + x2 ≤ θ2

C3 : x1 + x2 > θ2&x1 − x2 > 0

C4 : x1 + x2 > θ2&x1 − x2 < 0.

(14)

We sample each feature of the data between 0 and 15.
Similar to T-SEA, the values of θ1 and θ2 vary with
time, where θ1 ∈ {5, 5, 7, 7, 10, 10, 13, 13, 16, 16}, and
θ2 ∈ {7, 7, 10, 10, 13, 13, 16, 16, 20, 20}. We also swap
the label of class 3 and class 4 between each contiguous
two time steps. The two source data sets are generated
in a similar way to T-SEA. For both T-SEA and M-SEA,
60 chunks with 10% noise introduced are generated for
each target domain.

2) ROT : ROT generates a more difficult data set with class
removing or addition in the learning process. It generates
the samples of each class using a two-dimensional
Gaussian Function. The distribution of each class
changes independently according to the class means
(μx , μy) and variances (σx , σy), which vary with a
parameter θ given in Table I. A total number of 100 time
steps are evenly sampled during θ = [0, 1], and
each data chunk is induced to 10% noise. Two source
domains are generated at 0.4 < θ ≤ 0.6 and 0.8 <
θ ≤ 1.0, respectively. Each source domain consists
of 500 samples.

3) CIR: CIR generates two features, x1, x2, for each the
data, where the value of each feature is sampled between
−5 and 5. It is a two class problem and employs a circle
as the decision boundary. The labels of the two classes
C1 and C2 are defined as


C1 : x2
1 + x2

2 ≤ θ

C2 : x2
1 + x2

2 > θ
(15)

where θ ∈ {3, 2, 1, 2, 3, 4, 5, 4} to simulate the concept
drift problems. The data of the two source domains are
generated with θ = 2 and θ = 4 separately.

4) SIN: SIN is also a two-dimensional problem, where the
data are located in [−5, 5]. It contains two classes and
defines the label using a sine curve


C1 : sin(x1 + tθ) ≤ x2

C2 : sin(x1 + tθ) > x2
(16)

where θ = π/3. We set x1 + tθ = π/6 and x1 + tθ =
2π/3 to generate the data of the two source domains.

2) Real Benchmark Data Sets:
1) Office-10+Caltech-10: Office-10+Caltech-10 is com-

posed of the overlapping ten classes of two data
sets, Office-31 [49], [51] and Caltech-256 [50]. Office-
31 consists of three domains: Amazon (A), Webcam (W)
and DSLR (D). It has 4652 object images clas-
sified into 31 categories. Caltech-256 (C) contains
958, 295, 157 images with 256 categories. This experi-
ment uses the shallow features (SURF) of each domain,
which are encoded and normalized to 800-bin his-
tograms with bag-of-words. To extend it as a CDTL
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TABLE II

STATISTICAL AVERAGED PREDICTION ACCURACY (%)(± THE STANDARD DEVIATION) OF THE COMPARED ALGORITHMS OVER 20 RUNS
ON SYNTHETIC DATA SETS, WHERE THE BEST RESULT ON EACH DATA SET IS HIGHLIGHTED

problem, we select two domains among the four in
Office-10+Caltech-10 to construct the target domain and
the remaining two as two source domains. In this way,
six cross domain tasks can be generated (W, A →
(C, D), W, C → (D, A), W, D → (C, A),
C, A → (W, D), D, A → (C, W), C, D → (W, A) ),
where → refers to transfer knowledge from the former
domains (i.e. the source tasks) to the later domains (i.e.
the target task). To make the target domain as a concept
drift problem, we separate the data in each domain into
data chunks, and introduce two methods to manipulate
these data chunks. The first method randomly disturbs
the order of generated data chunks. Consequently, two
concepts, sampled from the two domains of the target
task, are randomly appeared along with the time steps.
In the second method, we randomly select two classes
in each data chunk and swap their labels. Data sets
generated in this way have a number of various concepts.
We denote the two data sets generated from the above
methods as ROff+Cal and SOff+Cal, respectively.

2) PIE: PIE is short for “Pose, Illumination, Expression,”
is a data set contains 41 368 face images of 68 indi-
viduals. We choose five subsets, (C05, left pose), PIE2
(C07, upward pose), PIE3 (C09, downward pose), PIE4
(C27, frontal pose), PIE5 (C29, right pose) and the first
ten classes of each subset for experiments. The face
images in each subset differ in lighting, illumination, and
expression conditions. The dimension of SURF features
of each image is 1024. We randomly select two subsets
as two source domains, and the remaining three subsets
to construct the target domain. Accordingly, ten cross
domain tasks are formulated, i.e., C05, C07 → (C09,
C27, C29), C09, C07 → (C05, C27, C29). Two versions
of PIE, RPIE and SPIE, are generated, where the target
domain is manipulated in the same way as in Office-
10+Caltech-10.

In all the data sets, each class in a data chunk contains ten
instances for training data, and five data for testing data.

C. Comparison Results on Benchmark Data Sets

1) Results on Synthetic Benchmark Data Sets: To assess the
performance of the compared algorithms, the results of aver-
aged prediction accuracy of all data chunks over 20 indepen-
dent runs are presented in Table II. The Wilcoxon’s rank sum
test at 0.05 significance level is conducted to check whether the
differences among SEA, CORAL, Melanie, and HE-CDTL are
statistically significant, whose results are shown in Table II as
well. In the table, the best metric values are in bold. Symbols

Fig. 3. Averaged prediction accuracy over 20 independent runs of Melanie,
CORAL, SEA, and HE-CDTL on three synthetic data sets.

“+ ”, “− ”, and “ = ” indicate the corresponding algorithm
performs significantly better than, worse than, and similar to
the proposed HE-CDTL, respectively.

It is clear from Table II that the five synthetic benchmark
data sets in the experiments are in favor of the proposed
HE-CDTL. In particular, the experimental results show that
HE-CDTL achieves similar performance with Melanie and
SEA, and they all outperform CORAL on T-SEA data set.
On the CIR data set, CORAL and HE-CDTL perform best
compared with other two algorithms. HE-CDTL obtains the
best performance over the baselines on M-SEA, ROT, and
SIN data sets. The reasons for the superior performance of
HE-CDTL are not difficult to understand. On the one hand,
the class-wise weighted ensemble in HE-CDTL enhances the
historical knowledge of the target domain transfer. On the
other hand, the use of adaptive weighted CORAL leads
HE-CDTL to increase positive knowledge of source domain
transfer as well as avoid harmful knowledge transfer.

To visualize the quality of compared algorithms on each
time step, we also list averaged prediction accuracy of T-SEA,
M-SEA, and ROT along with the time steps in Fig. 3. It can
be seen that: 1) the prediction accuracy of SEA is steadily
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TABLE III

STATISTICAL AVERAGED PREDICTION ACCURACY(%) (± THE STANDARD DEVIATION) OF THE COMPARED ALGORITHMS OVER 20 RUNS ON REAL
BENCHMARK DATA SETS, WHERE THE BEST RESULT ON EACH DATA SET IS HIGHLIGHTED

higher than CORAL on each time step on T-SEA, showing that
the knowledge of the previous time step in the target domain
contributes more to the learning performance than the source
domains. On the contrary, for M-SEA, the source domain
knowledge is more helpful than historical knowledge of the
target domain since CORAL outperforms SEA. However,
the performance of HE-CDTL is better than CORAL and SEA
on both of these two data sets. This observation confirms that
for the given knowledge, HE-CDTL is able to automatically
select helpful knowledge for learning; 2) the four compared
algorithms show a very different behavior on ROT with the
one on T-SEA and M-SEA. This is because the concepts in
ROT data set are very complex, which is unlike T-SEA and
M-SEA with rotated drifts. Such characters of ROT cause the
performance to degrade at time steps of removing classes,
adding new classes, or overlapping classes, i.e., t = 21,
t = 41, t = 61, t = 81. An interesting observation can also
be found in the figure, i.e., the behavior of HE-CDTL is very
distinct and the accuracy dramatically increases at t = 61
and t = 81. The underlying reason may be attributed to the
class-wise weighted ensemble technique; and 3) HE-CDTL
achieves superior performance than Melanie at most time steps
of the three data sets. It shows that the benefit knowledge of
source domains can be increased after the adaptive weighted
CORAL has been performed.

Fig. 4. Averaged prediction accuracy(%) over 20 independent runs of
Melanie, CORAL, SEA, and HE-CDTL on ROff+Cal, SOff+Cal data sets.

2) Results on Real Benchmark Data Sets: The statistical
classification accuracies over 20 independent runs of the
four compared algorithms on 32 cross-domain (ROff+Cal,
SOff+Cal, RPIE, SPIE) real benchmark data sets are listed
in Table III. The results of ROff+Cal, SOff+Cal, RPIE, and
SPIE are plotted in Figs. 4 and 5 for better visualization.
It can be observed that HE-CDTL achieves the highest accu-
racy as compared to Melanie, CORAL, and SEA on most
cross-domain tasks (24 out of 32). The averaged predic-
tion accuracy of HE-CDTL over 32 cross-domain data sets
is 45.037%, gaining a significant performance improvement
of 2.437% compared to Melanie. This result indicates that,
without feature matching and controlling of negative transfer,
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Fig. 5. Averaged prediction accuracy(%) over 20 independent runs of Melanie, CORAL, SEA, and HE-CDTL on RPIE, SPIE data sets.

Fig. 6. Averaged prediction accuracy over 20 independent runs of Class-wise
weighted ensemble and weighted ensemble on M-SEA and ROT data sets.

Melanie is not efficient in transferring knowledge in compar-
ison with HE-CDTL.

Also, it can be observed that COARL performs better than
SEA on SOff+Cal and SPIE data sets that are generated by
switching class labels, while performs poorly on ROff+Cal
and RPIE that are generated by disturbing the order of data
chunks. A plausible reason is that the concepts on SOff+Cal,
SPIE data sets are randomly drift, leading to less knowledge of
historical time steps to be used. In this case, SEA can leverage
little knowledge, while COARL is able to preserve a stable
knowledge from source domains via domain discrepancy.
On the contrary, in the target domain of ROff+Cal and RPIE
data sets, a large number of previous data chunks are similar
to the one in the current time step because only two concepts
are rotated. The similar data chunks provide more helpful
knowledge than source domains, thus leading SEA to achieve
better performance.

D. Discussions and Analysis

1) Effectiveness of Class-Wise Weighted Ensemble: To
access the effectiveness of the proposed class-wise weighted
ensemble strategy, we apply the class-wise weighted ensemble
to handle the concept drift problems and compare it with
the corresponding weighted ensemble approach. We conduct
the experiments on the two synthetic data sets: M-SEA and
ROT, without considering the source domains. The averaged
prediction accuracies of the two algorithms on each data chunk
are plotted in Fig. 6. It can be observed that the class-wise
weighted ensemble performs much better than the weighted
ensemble on M-SEA. This is because the distributions of
two classes in M-SEA are rotated at two continuous time
steps, while the other two classes gradually change with

Fig. 7. Weights of historical classifiers on each class and the whole data
chunk when t = 31 and t = 61.

a parameter θ . A classifier learned from a historical data
chunk may perform well or poorly on the two rotated classes,
and performs averagely on the other two classes. In such a
situation, it is difficult for the weighted ensemble to balance
the transferred historical knowledge among the four classes
with a single global weight. However, the class-wise weighted
ensemble allows each class to obtain historical knowledge
independently via different weights, hence achieving superior
performance.

On the ROT data set, the class-wise weighted ensemble
and the weighted ensemble show a similar performance before
t = 60. However, the accuracy of class-wise weighted ensem-
ble is significantly higher than that of weighted ensemble after
t = 60, especially when 61 ≤ t ≤ 70, 81 ≤ t ≤ 90. To analyze
the behavior of weighted ensemble on ROT, we list the values
of weight vectors of the class-wise weighted ensembles and
the global weights of weighted ensembles of each archived
classifier at t = 31 and t = 61 in Fig. 7. We can see that,
given a historical classifier, its global weight (the weight is
equal to the prediction accuracy) is generally equal to the
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TABLE IV

STATISTICAL PREDICTION ACCURACY (%) OF AW-CORAL AND TRADABOOT ON THREE SYNTHETIC DATA SETS AND 32 REAL-WORLD DATA SETS

averaged value of the weight vector. When t = 31, the values
in a weight vector are relatively similar and they are around
the global weight. This means that each previous classifier
contributes about equally to the three classes of the current
time. However, when t = 61, the elements in a weight vector
are very different. In particular, the element associated with
class 4 is zero because it is a new added class, while the one
with class 3 is relatively higher. In such a situation, in the
weighted ensemble, the knowledge of an archived classifier
cannot sufficiently be explored for class 3, while it may induce
negative knowledge for class 4.

We also complementary compare the proposed C-SEA with
Learn++.NSE [12] and DTEL [42] on the synthetic concept
drift benchmark data sets to demonstrate the superiority of
C-SEA. In this experiment, we use the gradual and sudden
drift of T-SEA, CIR, and SIN as the test benchmark data sets,
denoted as T-SEAG, T-SEAA, M-SEAG, M-SEAA, ROTG,
ROTA, CIRG, CIRA, SING, and SINA. The settings of the
gradual and sudden drift of T-SEA, CIR, and SIN are the
same as SEA, CIR, and SIN in [42]. M-SEA and ROT are also
applied as test data sets, the settings of which are the same as
in Section IV. Similar to [12], [42], we set two different sizes
of data chunks, 80 and 200, for each data set. We employ
the Iterative Dichotomiser 3 (ID3) [52] from MATLAB 2019a
as the base learner for the three compared algorithm. The

TABLE V

STATISTICAL AVERAGED PREDICTION ACCURACY (%)(± THE STANDARD
DEVIATION) OF THE COMPARED ALGORITHMS OVER 20 RUNS

ON SYNTHETIC DATA SETS, WHERE THE BEST RESULT ON

EACH DATA SET IS HIGHLIGHTED

compared results in Table V show that C-SEA wins 8 to the
other two algorithms among 13 data sets.

2) Effectiveness of AW-CORAL: We first investigate the
effectiveness of AW-CORAL in comparison with TrAdaBoost
on both Synthetic and real data sets. The compared results
in Table IV show that AW-CORAL wins 24 times, ties 8 times,
and losses three times to Tradaboot among 35 data sets.
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Fig. 8. Prediction accuracy(%) along with the iteration of AW-CORAL.

Fig. 9. Averaged prediction accuracy over 20 independent runs of HE-CDTL
with different Kmax on five cross-domain tasks.

We further evaluate the proposed HE-CDTL on SOFF+Cor
(A, D → (W, C)), ROFF+Cor (A, D → (W, C)) to investigate
the effectiveness of the AW-CORAL. We set the maximum
iteration of AW-CORAL to 15 and record the averaged
accuracy for each source domain at every iteration. The
accuracy for each source domain is evaluated by the weighted
combination of source and target models. The prediction
accuracies along with the iterations are plotted in Fig. 8. It can
be observed that the accuracies of the two source domains
generally improve with the increasing of iterations. In other
words, after the third iteration, the accuracy at each iteration
is higher than the first iteration. This observation justifies
that AW-CORAL can gradually weaken the importance of
irrelevant source instances via adaptive instance re-weighting.
Besides, it can be seen that the maximum adaptive iteration is
recommended to be larger than 10 in order to obtain a robust
and good performance.

3) Influence of the Archive Size: The parameter Kmax in
HE-CDTL determines the number of historical classifiers, thus
influencing the stored historical knowledge and the perfor-
mance of HE-CDTL. Here, we study the influence of Kmax

on five data sets, M-SEA, SOFF+Cor (A, D → (W, C)),
ROFF+Cor(A, D → (W, C)), SPIE (C05, C09 → (C07, C27,
C29)), RPIE (C05, C09 → (C07, C27, C29)). The prediction
accuracies of HE-CDTL with Kmax = 3, 5, 10, 15, 20 are
presented in Fig. 9. It shows that when Kmax is smaller than
10, the averaged accuracies of the five data sets generally
improve as Kmax is increased. However, the accuracies on
M-SEA, ROFF+Cor, and RPIE do not much change after
Kmax = 10. A plausible reason is that these three data sets
contain only very few concepts, thus a small number of

historical classifiers can afford enough historical knowledge.
However, on the SOFF+Cor and SPIE data sets, HE-CDTL
achieves the highest accuracy around Kmax = 15. Hence, by a
rule of thumb, we recommend the maximum size of achieve
as 15.

V. CONCLUSION

This article has proposed the HE-CDTL approach to CDTL.
It aims to leverage knowledge from both source domains and
historical time steps in the target domain to enhance the learn-
ing performance in the learning process. The advantages of
HE-CDTL lie in two aspects, i.e. class-wise weighted ensem-
ble for leveraging historical knowledge, and AW-CORAL for
extracting knowledge from source domains. The class-wise
weighted ensemble enables each class in the current learn-
ing to select historical knowledge independently. The pro-
posed AW-CORAL can minimize domain discrepancy across
source and target domains, meanwhile reducing the negative
knowledge transfer. Extensive experimental results have shown
that the proposed HE-CDTL significantly outperforms the
baselines for handling transfer learning under concept drift
problems.

In the future, we would like to conduct a theoretical analysis
of HE-CDTL. Furthermore, the proposed class-wise weighted
ensemble strategy is one way of locally preserving historical
knowledge. Other methods for leveraging previous knowledge
in a local manner can be explored as well.
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