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A Cooperative Learning-Based Clustering
Approach to Lip Segmentation Without

Knowing Segment Number
Yiu-ming Cheung, Senior Member, IEEE, Meng Li, Qinmu Peng, and C. L. Philip Chen, Fellow, IEEE

Abstract— It is usually hard to predetermine the true number
of segments in lip segmentation. This paper, therefore, presents a
clustering-based approach to lip segmentation without knowing
the true segment number. The objective function in the proposed
approach is a variant of the partition entropy (PE) and features
that the coincident cluster centroids in pattern space can be
equivalently substituted by one centroid with the function value
unchanged. It is shown that the minimum of the proposed
objective function can be reached provided that: 1) the number
of positions occupied by cluster centroids in pattern space is
equal to the true number of clusters and 2) these positions
are coincident with the optimal cluster centroids obtained under
PE criterion. In implementation, we first randomly initialize the
clusters provided that the number of clusters is greater than or
equal to the ground truth. Then, an iterative algorithm is utilized
to minimize the proposed objective function. For each iterative
step, not only is the winner, i.e., the centroid with the maximum
membership degree, updated to adapt to the corresponding input
data, but also the other centroids are adjusted with a specific
cooperation strength, so that they are each close to the winner.
Subsequently, the initial overpartition will be gradually faded out
with the redundant centroids superposed over the convergence of
the algorithm. Based upon the proposed algorithm, we present
a lip segmentation scheme. Empirical studies have shown its
efficacy in comparison with the existing methods.

Index Terms— Clustering, cooperative learning, lip segmenta-
tion, number of clusters.

I. INTRODUCTION

SEGMENTING out person’s lip from face image has
received much attention in the past decades due
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to the wide range of possible attractive applications,
such as lip-reading, audio-visual speech recognition in noisy
environment, face detection, biometric person identification,
lip synchronization, human expression recognition, and so
forth [1]–[6]. In the past decades, a number of image segmen-
tation methods based on different theories and methodologies
have been proposed, e.g., see the surveys in [7]–[10]. However,
due to the low chromatic and luminance contrast between lip
region and skin, which make the segmentation task become
challenging, few of them have been applied to lip segmentation
successfully.

Wark et al. [11] and Zhang and Mersereau [12] utilized
some basic image process techniques, such as threshold in the
specific color channels of the input image, to obtain the lip
region. Although these methods are conducive to implement
and have low computation complexity, they are not essentially
applicable for the practical cases with complexion difference
or various illumination conditions. Pardàs and Sayrol [13],
Delmas et al. [14], and Eveno et al. [15] utilized the
gradient-based methods to extract the lip boundary, while
the input image is viewed as a vector map. However, the
accuracy of these methods is easily affected by false boundary
edges caused by shadow, skin pigmentation, and so forth.
Matthews et al. [16], Eveno [17], and Seyedarabi et al. [18]
utilized the shape template model-based methods (e.g., snake,
active shape model, and active appearance model) to obtain the
lip region and achieved the promising results. Nevertheless, the
final segmentation accuracy of such a method depends on
the initial template position. Moreover, its performance is
sensitive to the noisy boundaries brought from the segmen-
tation process.

Recently, clustering-based approach has provided a
promising way for lip segmentation. For example, fuzzy
C-means (FCM) and K-means clustering-based methods
have been employed to perform lip segmentation [19]–[21].
Moreover, the works described in [22]–[24] utilize the
statistical models, e.g., Gaussian mixture model and FCM,
to estimate the lip membership maps as well. Nevertheless,
such methods would miscalculate the membership due to
the similarity and overlap between the lip and nonlip pixels
in color space. As a result, lip segmentation methods that
solely depend on the edge or color information will not
deliver the satisfactory performance [25]. Along this category,
Liew et al. [26] have, therefore, proposed a clustering algo-
rithm by taking spatial restriction into account, which con-
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Fig. 1. (a) and (b) Relationship between position and centroid, where the
plane with grid represents the pattern space. As shown in (a), there are
six centroids (denoted by circles) with the coordinates (2, 4), (2, 4), (2, 4),
(5, 2), (5, 2), and (7, 5), but they only occupy three positions (2, 4), (5, 2),
and (7, 5), as shown in (b).

siders both of the distributions of data in feature space and
the spatial interactions between neighboring pixels during
the clustering process. In addition, Hara and Chellappa [27]
utilized Bayesian information criterion as a measure to choose
the suitable cluster number, but it heavily depends on the
distribution estimation of the samples. Cheung [28] proposed
to learn the number of clusters via maximizing a weighted
likelihood.

Another clustering-based lip segmentation method proposed
in [29] obtains the spatial continuity constraints by using a
dissimilarity index that allows the spatial interactions between
the image voxels. Similarly, Leung et al. [30] dealt with the
lip segmentation using fuzzy clustering with spatial restriction
as well. Although these methods have achieved the promis-
ing results, their accuracy highly depends on the predefined
number of segments, whose selection is, however, often a non-
trivial task in practice. As a variant of [30], Wang et al. [31]
have proposed a multiclass, shape-guided clustering algorithm.
This method determines the number of clusters by using the
I -index, and employs a penalty term considering the spatial
location information to differentiate the pixels that have similar
color but are located in different regions. However, the number
of clusters is determined by an individual local exhaustive
search before the segmentation, i.e., there are redundant data
traverses, whose computation is quite laborious. Moreover,
similar to the I -index, some existing cluster validity measures,
e.g., those in [32]–[37], have the same problem as well.

In this paper, we shall present a fuzzy clustering-based
segmentation method, whose objective function is derived
from the classical partition entropy (PE) and implemented
using Havrda–Charvat’s structural α-entropy. This objective
function features that the coincident cluster centroids in pattern
space (also called input space interchangeably) can be equiv-
alently substituted by one centroid with the function value
unchanged. It is shown that the minimum of the proposed
objective function can be obtained provided that: 1) the
number of positions occupied by the centroids in pattern space
is the same as the true number of clusters, as shown in Fig. 1
and 2) these positions are coincident with the optimal cluster
centroids obtained under the PE criterion. Thus, the optimal
partition can be acquired by minimizing the proposed objective
function regardless of whatever the preassigned number of

clusters is as long as it is greater than or equal to the
ground truth. From the practical viewpoint, it is generally
feasible to estimate an upper bound of the number of clusters.
In implementation, we, therefore, first assign some cluster
centroids (i.e., the learnable data points in the input space
toward the cluster centers), whose number is greater than
or equal to the ground truth, and initialize them randomly.
Subsequently, an iterative algorithm is utilized to minimize the
proposed objective function. At each iterative step, not only is
the winner, i.e., the centroid with the maximum membership
degree, updated to adapt to the corresponding input data (also
called observation hereinafter), but also the other centroids are
adjusted with a specific cooperation strength, so that they are
each closer to the winner. Subsequently, some neighboring
centroids will be gradually merged into one, so that the
overpartition caused by redundant centroids can be eventually
faded out. That is, the clustering performance of the proposed
algorithm is robust against the preassigned number of clusters.
Based upon the proposed algorithm, a lip segmentation scheme
is presented, which is robust against the visibility of mustache,
teeth, and tongue. Experiments have shown the efficacy of the
proposed approach.

The remainder of this paper is organized as follows.
Section II overviews the minimum entropy-based fuzzy clus-
tering method. Section III describes the proposed method in
detail. Section IV presents the unsupervised lip segmentation
scheme based upon the proposed method. Section V shows
the experimental results. Finally, the conclusion is drawn
in Section VI.

II. MINIMUM ENTROPY METHOD IN FUZZY CLUSTERING

Clustering is the process of assigning data elements into
classes or clusters, so that data in the same class are as similar
as possible under a certain similarity measure. In general, the
task of image segmentation can be formulated as a clustering
problem, i.e., the image segments turn into data clusters,
in which the specific property measured in feature space of
each pixel can be viewed as the data to be divided.

Fuzzy clustering [38] is a class of algorithms for cluster
analysis, in which data elements may belong to more than
one cluster, and associated with each element is a set of
membership levels. To discuss the image segmentation prob-
lem under this framework, we first suppose that the image
of interest has s pixels. For the i th pixel, the feature vector
utilized in clustering process is denoted by xi . Then, we define
m segments whose centroids are denoted by c1, c2, . . . , cm .
The purpose of fuzzy clustering algorithm is to optimize the
centroid collection, i.e., C = {c1, c2, . . . , cm}, and correspond-
ing partition matrix

U =
⎡
⎢⎣

u11 · · · u1m
...

...
...

us1 · · · usm

⎤
⎥⎦ (1)

with
m∑

j=1

ui j = 1, (i = 1, 2, . . . , s) (2)
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where ui j ∈ [0, 1] indicates the strength of the association
between an input data xi and cluster c j .

One of the most popular fuzzy clustering algorithms is the
FCM algorithm [39]. In this algorithm, the optimal cluster
centroids and partition can be achieved by minimizing the
following objective function:

J =
s∑

i=1

m∑
j=1

(ui j )
p‖xi − c j‖2 (3)

where p is a weighting exponent which is a real number
greater than or equal to 1.

Moreover, there are several variants of fuzzy clustering
methods. From the viewpoint of information theory, the infor-
mation entropy can be viewed as a measure of the uncertainty.
Moreover, the uncertainty of belonging of each input data is
reduced during the clustering procedure. Thus, the relationship
between clustering and entropy is naturally close. Mathemati-
cally, Shannon’s entropy [40] of a random variable x with the
probability p(x) is defined as

H (x) = −
∑

x

p(x) log p(x). (4)

Based upon Shannon’s entropy, Bezdek [39], [41] has
proposed a fuzzy clustering criterion named PE to measure
the fitness of a fuzzy partition which is shown as

H (U, m) = −1

s

s∑
i=1

m∑
j=1

ui j log ui j . (5)

Bezdek [42] indicates that the partition matrix and cluster
number (U∗, m∗) are optimal as long as

(U∗, m∗) = arg min
1<m≤mmax

{
arg min

U∈�m

{H (U, m)}
}

(6)

where mmax denotes the maximum value of the number of
clusters, and �m is the collection of partition matrices with
the cluster number m.

Furthermore, Li et al. [43] have proposed another version of
the minimum entropy criterion of fuzzy clustering, in which
the membership degree of xi in cluster c j can be measured
by the conditional probability. Thus, given s observations,
denoted by x1, x2, . . . , xs , (5) can be rewritten as

H (C|X) = −1

s

s∑
i=1

m∑
j=1

p(c j |xi ) log p(c j |xi ) (7)

where X = {x1, x2, . . . , xs}.
Moreover, for the sake of analysis, Li et al. [43] utilized

Havrda–Charvat’s structural α-entropy [44]

H α(x) = (21−α − 1)−1

[∑
x

pα(x) − 1

]
(8)

as a substitution of Shannon’s entropy, where α > 0 and
α �= 1. Evidently, different values of α can lead to different
entropy measures.

In this paper, the following quadratic entropy with α = 2
is selected:

H 2(x) = 1 −
∑

x

p2(x). (9)

Thus, similar to (4) and (7), we can let

H (C|X) = 1 − 1

s

s∑
i=1

m∑
j=1

p2(c j |xi ) (10)

based on (9). To show the validity of this criterion, we
formulate the probability of clustering error as

Pe = P(C �= C∗) (11)

where C∗ denotes the optimal cluster centroid collection.
Based on Fano’s inequality [45], we then have

H (Pe) + Pe log(m − 1) ≥ H (C|X) (12)

where H (Pe) is the Shannon’s entropy of Pe. As H (Pe) ≤ 1
and m ≥ 2, (12) can be further rewritten as

Pe ≥ H (C|X) − 1

log(m − 1)
. (13)

Equation (13) indicates that C∗ can be estimated with a low
error probability only if H (C|X) is small. This implies that
minimum H (C|X) could be an appropriate choice for fuzzy
clustering [43].

III. FUZZY CLUSTERING WITHOUT KNOWING

TRUE NUMBER OF CLUSTERS

As stated in Section II, H (C|X) is a classical criterion
for fuzzy clustering, which, however, depends on the number
of centroids. Although the optimal partition can be achieved
under this criterion, the oversegmentation or undersegmen-
tation almost always occurs if the number of centroids is
not preassigned appropriately. In this section, we propose a
variant of H (C|X) which depends on the number of positions
occupied by centroids instead of the number of centroids.
Moreover, the proposed one inherits the property of H (C|X).
That is, when the number of positions occupied by centroids
is equal to the true cluster number, the proposed objective
function reaches the minimum value. In the following, we will
present this method in detail.

A. Proposed Objective Function for Fuzzy Clustering

Given an observation data xi and the centroid collection C ,
by adjusting the order of the elements in C , we can obtain

C̃i = {
c̃i

1, c̃i
2, . . . , c̃i

m

}
(14)

satisfying p(c̃i
k |xi , C̄i

k) ≤ p(c̃i
j |xi , C̄i

j ) if and only if k < j ,

where j, k = 1, 2, . . . , m, and C̄i
j = C̃i − {c̃i

j }.
Similar to (10), we propose a new objective function

δH (C | X)

= 1− 1

s

s∑
i=1

m∑
j=1

[
p
(
c̃i

j |xi , C̄i
j

) − p
(
c̃i

j−1|xi , C̄i
j−1

)

p
(
c̃m |xi , C̄i

m

)
]2

(15)

with p(c̃i
0|xi , C̄i

0) = 0. For simplicity, we will denote

p(c̃i
j |xi , C̄i

j ) as p(c̃i
j |xi) without ambiguity. Here, we utilize

the difference of conditional probability between adjacent
clusters that are two neighboring clusters in C̃i (e.g., c̃i

j−1 and
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c̃i
j in C̃i ), i.e., p(c̃i

j |xi , C̄i
j ) − p(c̃i

j−1|xi , C̄i
j−1) = p(c̃i

j |xi ) −
p(c̃i

j−1|xi ), to measure the membership degree of xi to the
cluster with the centroid c̃i

j . Such membership degree depends
not only on the distance between xi and c̃i

j , but also on the

distance between xi and the other clusters. The learning toward
maximizing such membership degree can make the similar
centroids speedup approaching the same position, meanwhile
forcing other centroids to move away from it.

We define p(c̃i
j |xi ) as

p
(
c̃i

j |xi
) = 1

∑m
k=1

(∥∥xi−c̃i
j

∥∥∥∥xi−c̃i
k

∥∥
)2 . (16)

Singularity in p(c̃i
j |xi ) occurs when one or more of the

distances ‖xi − c̃i
k‖ is equal to zero. In this case, p(c̃i

j |xi)
of (16) will be calculated in the sense of a limit. Similar
to [46], we assign zeros to each nonsingular class and dis-
tribute memberships equally to the singular classes. Note that,
(15) is responsible only for cluster center updating, and the
membership in (16) is not necessarily optimized by (15).

Equation (15) can be further rewritten as

δH (C | X) = 1− 1

s

s∑
i=1

m∑
j=1

⎡
⎣
∥∥xi − c̃i

m

∥∥2

∥∥xi − c̃i
j

∥∥2 −
∥∥xi − c̃i

m

∥∥2

‖xi − c̃i
j−1

∥∥2

⎤
⎦

2

.

(17)

The basic property of this objective function is shown as
follows.

Theorem 1: Given a centroid collection C =
{c1, c2, . . . , cm}, a new centroid collection obtained by adding
an element c′ into C is denoted by C ′ = {c1, c2, . . . , cm , c′}.
We have δH (C | X) = δH (C ′ | X) if there exists c j ∈ C
( j ∈ [1, m]) satisfying c j = c′.

Proof: For specific xi , C and C ′ can be written as
the ordered forms [see (14)], i.e., C̃i = {c̃i

1, . . . , c̃i
m} and

C̃ ′
i = {c̃′i

1, . . . , c̃′i
m+1}, respectively.

In C̃ ′
i , we assume the corresponding element of c j is c̃′i

k
(k ∈ [1, m]). Since c j = c′, the corresponding element of c′

can be written by c̃′i
k+1.

Thus, we have

δH (C ′ | X)

= 1 − 1

s

s∑
i=1

⎧⎪⎨
⎪⎩

⎡
⎣

∥∥xi − c̃′i
m+1

∥∥2

∥∥xi − c̃′i
1

∥∥2

⎤
⎦

2

+ · · · +
⎡
⎣

∥∥xi − c̃′i
m+1

∥∥2

∥∥xi − c̃′i
k+1

∥∥2
−

∥∥xi − c̃′i
m+1

∥∥2

∥∥xi − c̃′i
k

∥∥2

⎤
⎦

2

+ · · · +
⎡
⎣

∥∥xi − c̃′i
m+1

∥∥2

∥∥xi − c̃′i
m+1

∥∥2
−

∥∥xi − c̃′i
m+1

∥∥2

∥∥xi − c̃′i
m

∥∥2

⎤
⎦

2
⎫⎪⎬
⎪⎭

. (18)

As c̃′i
k = c̃′i

k+1, we have
⎡
⎣

∥∥xi − c̃′i
m+1

∥∥2

∥∥xi − c̃′i
k+1

∥∥2
−

∥∥xi − c̃′i
m+1

∥∥2

∥∥xi − c̃′i
k

∥∥2

⎤
⎦

2

= 0. (19)

Moreover, as C̃ ′
i\C̃i = c̃′i

k+1, we have

c̃′i
l =

{
c̃i

l , l = 1, 2, . . . , j

c̃i
l−1, l = k + 2, k + 3, . . . , m + 1.

(20)

Thus, (18) can be written as

δH (C ′ | X) = 1− 1

s

s∑
i=1

m∑
j=1

⎡
⎣
∥∥xi − c̃i

m

∥∥2

∥∥xi − c̃i
j

∥∥2 −
∥∥xi − c̃i

m

∥∥2

∥∥xi − c̃i
j−1

∥∥2

⎤
⎦

2

= δH (C | X). (21)

According to Theorem 1, the value of (15) depends on
the number of the positions of centroids in pattern space but
not the number m of centroids. For the sake of description,
we define two functions named P Num(C) and E Num(C).
The former one returns the number of positions of the cen-
troids in C , and the latter one returns the number of centroids
in C . Moreover, we employ Pos(C) to obtain a collection
composed by the positions of the centroids in C , where
Pos(C) = {p1, p2, . . . , pP Num(C)}. Furthermore, we let

H (C | xi ) = 1 −
m∑

j=1

p2(c j | xi ) (22)

and

δH (C | xi) = 1 −
m∑

j=1

[
p
(
c̃i

j | xi
) − p

(
c̃i

j−1 | xi
)

p
(
c̃i

m | xi
)

]2

. (23)

Then, we have the following lemma.
Lemma 1: Given an input x and a constant ηm ∈

(0, (m − 1)/m], the minimum of H (C | x) is approximately
equal to ηm subject to δH (C | x) = ηm , where P Num(C) =
E Num(C) = m.

The detailed proof of Lemma 1 is given in Appendix I, and
the experimental justification is shown in Appendix II.

Based on Lemma 1, we have the result as follows.
Theorem 2: Given an input x , there exist two centroid

collections C1 and C2 satisfying C1 = Pos(C2), such that
H (C1 | x) reaches the minimum value approximately when
δH (C2 | x) reaches the minimum.

Proof: We utilize the notation C to represent the solution
space of δH (C | x) = ϑ , where ϑ denotes the global
minimum value of δH (C | x).

According to Lemma 1, the minimum value of H (C | x)
with C ∈ C is approximately equal to ϑ as well. The
corresponding centroid collection is denoted by C1 with
E Num(C1) = P Num(C1).

According to Theorem 1, there exists the centroid col-
lection C2 with C1 = Pos(C2), such that δH (C2 | x) =
δH (C1 | x).
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Recalling the property of PE presented in [42],
i.e., see (6), the proposed objective function
δH (C | X) will reach the minimum value provided
that:

1) The number of centroid positions in pattern space is
equal to the true cluster number, i.e., P Num(C) =
E Num(C∗).

2) The positions are coincident with the optimal centroids
under the PE criterion, i.e., Pos(C) = C∗, where C∗ is
the centroid collection obtained by minimizing (7) with
m = m∗.

Please note that we construct (15) inspired by (10).
Both (10) and (15) can obtain similar results if the number
of clusters is appropriately determined. The main difference is
that (10) only works well when choosing an appropriate cluster
number. Under the circumstances, the cluster centroids will
move to the appropriate position, and H in (10) could reach
the minimum. By contrast, (15) can work well as long as the
assigned number of clusters is greater than or equal to the true
one. When the assigned number of cluster is greater than the
true one, optimizing (15) can make the redundant cluster cen-
troids superimposed, thus resulting in the number of positions
occupied by the cluster centroids is exactly the true number of
clusters.

B. Iterative Algorithm

This section presents an iterative algorithm to perform
fuzzy clustering by minimizing the proposed objective func-
tion shown in (15). At each iterative step, based upon the
idea of cooperative learning initially proposed in [47], this
algorithm not only updates the winner centroid in terms
of membership degree to adapt to the corresponding input
data, but also the other centroids are adjusted with a specific
cooperation strength, so that they are each close to the winner.
Subsequently, the initial overpartition will be gradually faded
out with the redundant centroids superposed over the conver-
gence of the algorithm.

Specifically, we first preassign the segment number m,
a value which is greater than or equal to the ground truth,
and initialize the centroid collection C randomly. Then, the
subsequent implementation is given as follows.

Step 1: Fixing C , we calculate p(c j | xi ) and obtain the
collection C̃i by (16) for each input data xi .

Step 2: For each xi , we update C via

c(new)
jw
i

= c(old)
jw
i

− ηw · ∂δH (C|xi)

∂c jw
i

∣∣∣∣∣
c(old)

jwi

(24)

and

c(new)
j r
i

= c(old)
j r
i

− ηr · ∂δH (C|xi)

∂c jr
i

∣∣∣∣∣
c(old)

jri

(25)

where c jw
i

is the winner centroid in terms
of membership degree with jw

i = arg max j
(p(c̃i

j | xi) − p(c̃i
j−1 | xi )), j r

i = 1, 2, . . . , m but
j r
i �= jw

i , and ηw and ηr are the positive learning

Fig. 2. (a) Initial positions of centroids marked by “∗.” (b) Demonstrate that
the FCM method cannot learn an appropriate cluster number as the number
of centroids obtained by it is always equal to the preassigned one. (c) Indicate
that the proposed approach can superpose redundant centroids and learn an
appropriate number and positions of the centroids automatically.

rates. Actually, ηr is also the specific cooperation
strength.

The above two steps are processed iteratively. When the
number of positions occupied by centroids is equal to the
true cluster number, the proposed objective function reaches
the minimum value; for more details, refer to [47]. Fig. 2 is
to compare the performance of FCM [i.e., use (24) only in
Step 2] and the proposed method when redundant centroids
exist.

IV. LIP SEGMENTATION AND POSTPROCESSING

In this section, we apply the proposed method in Section III
to the unsupervised lip segmentation problem. The task is to
extract the lip boundary from a color image consisting of a
part of face between nostril and chin. A sample of original
image is shown in Fig. 3(a).

A. Pattern Space

In general, the image segmentation methods are based
on color space rather than gray level because color
image can provide more useful clue for segmentation. Fur-
thermore, since hue, saturation, and value (HSV) color
space is similar to the way human being perceives [48],
we utilize a modified HSV color space as our pattern
space.

In HSV color space, the S–H space is represented by polar
coordinate system. The distance utilized in our method is
Euclidean distance. Thus, a polar-Descartes coordinate trans-
formation is required. We first transform the original image
into the HSV color space, in which the HSV components for
site i (i.e., pixel i ) are denoted by Hi , Si , and Vi , respectively.
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Fig. 3. Segmentation (clustering) results with m = 9. (a) Source image.
(b)–(j) White pixels represent the pixels falling into clusters 1–9.

For each site, we then perform the following transform to get
the pattern vector:

xi = [Hi · cos(2π · Si ), Hi · sin(2π · Si )]T , i ∈ S. (26)

Fig. 4. Lip segmentation results shown in (a)–(d) after the redundant cluster
centroids have been merged.

B. Segmentation and Binarization

Subsequently, the centroid collection C is calculated via the
proposed method as introduced in Section III. We utilize the
following equation to obtain the hard segmentation result:

S( j ) = {
i | j = arg max

j

(
p
(
c̃i

j | xi
) − p

(
c̃i

j−1 | xi
))

,

1 ≤ i ≤ n, 1 ≤ j ≤ m
}

(27)

where S( j ) denotes the set of data falling into cluster j .
A sample of S( j )s with m = 9 is shown in Fig. 3(b)–(j).

Obviously, the site sets: {S(1), S(2), S(3)}, {S(4), S(5), S(6)}, and
{S(7), S(8)} are similar because the corresponding redundant
centroids are coincident in pattern space.

Then, for any two centroids c j and ck in pattern space, if

‖c j − ck‖ ≤ ε (28)

where ε is a small threshold value, they can be replaced by a
new centroid cl

cl = c j + ck

2
. (29)

Thus, in the example shown in Fig. 3, the number of
centroids is reduced from 9 to 4. The new clustering result
after the merger of centroids is shown in Fig. 4.

C. Lip Segment Selection

We utilize the method proposed in [24] to extract a patch
of lip region. Then, the mean of xi s restricted by the patch
is calculated and denoted by μ̂. It is regarded as an estimate
of the mean of xi s that fall into the true lip region. To save
space, interested readers may refer to [24] for more details
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about this method. In the following, we summarize the major
steps of this method as follows.

Step 1: We transform the source lip image into
1976 CIELAB color space. a∗ component for
site i is mapped into the range of [0, 255] via
the histogram equalization and denoted by a∗

i .
Meanwhile, we utilize the equation

Ui =
⎧⎨
⎩

256 × Gi

Ri
, Ri > Gi

255, otherwise
(30)

proposed in [2] to calculate U component for each
pixel, where Ri and Gi denote the red and green
component, respectively, for site i in a source lip
image.

Step 2: Let Bi = a∗
i − Ui , we establish a Gaussian model

for the positive Bi s with the mean μB and the
standard deviation σB . The following equation is
employed to binarize the source lip image:

B̂i =
{

0, Bi ≤ μB − 2σB

1, otherwise.
(31)

Step 3: Considering the site set Ŝ = {i | B̂i = 1,
1 ≤ i ≤ n} as a lip patch, as shown in Fig. 5(a),
μ̂ can be calculated by

μ̂ = 1

s

∑

i∈Ŝ

xi (32)

where s denotes the number of elements in the
set Ŝ.

Thus, the index of lip segment layer can be determined by

j lip = arg min
j

‖c j − μ̂‖, 1 ≤ j ≤ m. (33)

The site set corresponding to lip segment is denoted
by S( j lip).

D. Postprocessing

Suppose S( j lip) can be viewed as a binary image with
c columns and r rows in pixel. For the sake of description,
we map the index i into a 2-D coordinate {(p, q) | 1 < p ≤ c,
1 < q ≤ r} by i = (q − 1) · r + p. We hereby represent the
binary image as

B(p, q) =
{

1, (q − 1) · r + p ∈ S( j lip)

0, otherwise.
(34)

Suppose the lip region is not connected to the border
of image. The morphological reconstruction-based method
in [49] is, therefore, employed to clear border connected noisy
structures, as shown in Fig. 5(b). Furthermore, we utilize the
morphological close operation with 5 × 5 structuring element
and open operation with 3 × 3 structuring element, respec-
tively. The result is denoted by Bm , as shown in Fig. 5(c). For
the foreground elements in Bm , the corresponding positions

{(p, q) | Bm(p, q) = 1, 1 < p ≤ c, 1 < q ≤ r} (35)

Fig. 5. (a) Lip patch which is used to estimate the mean of xi s falling into
the true lip region. (b) Result of clearing border connected noisy structures.
(c) Result of morphological filter (closing with 5 × 5 structuring element and
opening with 3×3 structuring element). (d) Shape of gray ellipse is defined as
the eigenvectors and eigenvalues of the covariance matrix of P . The continued
objects on the outside of this ellipse are viewed as noises and masked out.
(e) Final extraction result obtained via the quickhull algorithm.

are recorded and compose a matrix P as follows:

P =

⎡
⎢⎢⎢⎣

q1 p1
q2 p2
...

...
qr pr

⎤
⎥⎥⎥⎦ (36)

where r is the number of foreground elements in Bm .
Then, the eigenvectors and eigenvalues of the covariance

matrix of P are calculated. We can further obtain an ellipse,
whose position and inclination are defined as the eigenvectors
with the length of major and minor axis defined as 1.5 times
the square root of eigenvalues, respectively. The continued
objects on the outside of this ellipse are masked out, as shown
in Fig. 5(d).

Finally, given the prior knowledge of human mouth shape,
the quickhull algorithm proposed in [50] is employed to draw
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Fig. 6. Procedure of the lip segmentation in the proposed approach.

the boundary of lip, as shown in Fig. 5(e). Fig. 6 shows the
segmentation procedure in the proposed approach.

V. EXPERIMENTAL RESULTS

A. Database and Initialization

To show the performance of the proposed approach,
we utilized three databases.

1) Fisher’s iris database [51] consisting of three classes,
each of which has 50 instances with four attributes.

2) AR face database [52] with 126 persons, each of whom
has 26 images.

3) CVL face database [53] with 114 persons, each of whom
has seven images.

For each image in AR and CVL databases, the part of
face between nostril and chin was clipped by a window of
128 × 128 pixels as the source of segmentation experiment.

Moreover, in the following experiments, we utilized:
c j = xrand( j ), 1 ≤ j ≤ m (37)

Fig. 7. Final centroid number after the clustering performed in Fisher’s
iris database by the proposed method with the different values of m and
initial C .

to initialize the centroids, where rand(i) denotes a number
randomly selected from the set of {1, 2, . . . n} at the j th selec-
tion, and n is the total number of samples. Furthermore, we let
ε = 0.5, ηw = 0.01, and ηr = 0.001.

B. Experiment 1

In this experiment, the method described in Section III
was employed to perform the fuzzy clustering in Fisher’s
iris database. This experiment was conducted with
m = 5, 6, . . . , 15, respectively. Moreover, for each specific m,
the experiments were repeated five times with the different
initial values of C . After the redundant centroids merged
based on (28) and (29), the histogram of final centroid number
is shown in Fig. 7. It can be seen that 47 out of 55 results kept
three centroids, which implies that the true number of classes
can be determined automatically by the proposed method.
Under these 47 trials, in each of which three centroids were
finally kept, we further evaluated the difference between the
final centroids obtained by the proposed method and the
classical FCM, respectively, using the following equation:

error =
√∑3

j=1

∥∥ĉ j − c∗
j

∥∥2

3
(38)

where ĉ j is the final centroid obtained by the proposed
method, c∗

j is the corresponding centroid obtained by the

classical FCM method with the number of clusters set at
the true number of classes, i.e., 3. The histogram of error is
shown in Fig. 8. It can be seen that, with the same number
of centroids, the values of these final centroids obtained from
the proposed approach still have the moderate differences
from those obtained by the classical FCM, although both of
these two methods are clustering-based ones. In general, such
a difference will lead to quite different segmentation results.
We will further demonstrate this in Experiment 4.

C. Experiment 2

To demonstrate the accuracy and robustness of the proposed
method, we separated the source images from AR database
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Fig. 8. Histogram of the error between the cluster centroids obtained by the
proposed method, and the classical FCM with the number of clusters set at
the true number of classes, i.e., 3.

Fig. 9. (a)–(d) Some sample images, which belong to Groups 1–4,
respectively, from AR database.

into the four groups based on the different appearances. The
details are as follows.

1) Group 1: People have no evident mustache with the
mouth closed, as shown in Fig. 9(a).

2) Group 2: People have evident mustache with the mouth
closed, as shown in Fig. 9(b).

3) Group 3: People have no evident mustache with the
mouth opened, as shown in Fig. 9(c).

4) Group 4: People have evident mustache with the mouth
opened, as shown in Fig. 9(d).

Our experiment was conducted on each group, respectively.
For each group, we randomly selected 20 images as the input,
and manually segmented the lip to serve as the ground truth.
Two measures defined in [26] were used to evaluate the
performance of the algorithms. The first measure

OL = 2(A1 ∩ A2)

A1 + A2
× 100% (39)

determines the percentage of overlap between the segmented
lip region A1 and the ground truth A2. The second measure

TABLE I

OVERLAP OF SEGMENTED LIPS WITH THE GROUND TRUTH

TABLE II

SE OF SEGMENTED LIP

is the segmentation error (SE) defined as

SE = OLE + ILE

2 × TL
× 100% (40)

where OLE is the number of nonlip pixels classified as lip
pixels (i.e., outer lip error), ILE is the number of lip pixels
classified as nonlip ones (inner lip error), and TL denotes the
number of lip pixels in the ground truth.

We repeated the experiments with m = 5, 6, . . . , 15.
Tables I and II list the average OL and SE on the different
image groups and m. It can be seen that the segmentation
performance of the proposed approach is robust against m in
all cases we have tried so far. Furthermore, we also utilized
the AR database to investigate the robustness of the proposed
approach against the value selection of the parameters: ε, ηw,
and ηr . From Table III, it can be seen that the performance
of the proposed approach changes slightly over the moderate
variation of these parameters. That is, its performance is robust
against the selection of these parameters to a certain degree
when performing the lip segmentation.

D. Experiment 3

To evaluate the performance of the proposed method under
the different capture environments, we randomly selected
50 images from AR and CVL databases, respectively. These
raw images were further clipped by 128 × 128 and reindexed.
Moreover, for each image, we also randomly assigned m an
integer from the set {5, 6, . . . , 15} to conduct the lip segmenta-
tion. For images from either AR or CVL database, the average
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TABLE III

SE ON AR DATABASE BY THE PROPOSED APPROACH WITH THE DIFFERENT SETTINGS OF PARAMETERS: ε , ηw , AND ηr

TABLE IV

AVERAGE OVERLAP AND SE OBTAINED BY LIEW03, LEUNG04, WANG07, FCM, AND THE

PROPOSED METHOD FOR THE IMAGES FROM AR AND CVL DATABASES

Fig. 10. (a) and (b) Histograms of OL and SE of the selected images from
AR database. (c) and (d) Histograms of OLs and SEs of the selected images
from CVL database.

OL and SE were calculated. The two rightmost columns in
Table IV list the average OL and SE values obtained by the
proposed method. Fig. 10 shows the histograms of OL and SE
for images from each database. Once again, it can be seen
that the proposed approach is robust against the preassigned
number of clusters.

E. Experiment 4

We demonstrated the performance of the proposed approach
in comparison with four existing methods, i.e., Liew03 [26],
Leung04 [30], Wang07 [31], and classical FCM. We chose
the methods based on two rules: 1) they have been utilized
for lip segmentation or extraction, and 2) they have similar
clustering-based theoretical background.

We implemented these algorithms on the same images
utilized in Experiment 3. The experimental result is shown
in Table IV. The algorithm parameters in the existing methods
are set according to the original paper. As for our work, the
preassigned number of clusters is easily set as long as it is
greater than or equal to the true one. That is, it was set to ten
for the lip segmentation task.

Fig. 11. (a) Sample of the input image for Wang07 in the experiment.
(b) and (c) Corresponding segmentation results obtained by Wang07 and the
proposed method without postprocessing, respectively.

Fig. 12. (a) Sample of the input image for the proposed method in
the experiment. (b) and (c) Corresponding segmentation results obtained by
Wang07 and the proposed method without postprocessing, respectively.

It can be seen that the proposed approach outperforms
Liew2003, Leung04, and FCM methods in most cases we have
tried so far, and has a competitive advantage with the much
smaller SE values in comparison with Liew2003 and Wang07.
Furthermore, when we implemented Wang07 for comparative
studies, we actually utilized the image clips employed in [31]
(the size of input image is various so as to make the most
parts occupied by lip region), as shown in Fig. 11, rather
than 128 × 128 image clips as the input of Wang07. It is
found that the performance of Wang07 somewhat depends
on the image clips. For example, if we utilize 128 × 128
as the inputs of Wang07, the segmentation results become
deteriorate, as shown in Fig. 12, where the image in Fig. 11(a)
is the same as the one in Fig. 12(a), i.e., 4 − MV C − 007F
in CVL. This implies that the proposed algorithm has more
robust performance in comparison with Wang07. The results of
Liew2003 and Leung04 are sensitive to the setting of cluster
number. It can be seen that the lip segmentation given by
these two methods becomes worse when the cluster number
is not appropriately selected. In addition, Leung04 method
utilized the elliptic shape to model the lip. Its result would
degrade if the beard and teeth around the mouth disturb the
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TABLE V

RUNNING TIME OF DIFFERENT METHODS

clustering process. Compared with the proposed method, it can
be seen that the SE in Liew2003 and Leung04 is much higher,
and the OL is much lower. That is, the proposed method
outperforms both of them.

The average running time of these methods running at a
machine with an Intel(R) Core(TM) Two Duo CPU E7500
2.93-GHz CPU is shown in Table V. It can be seen that the
proposed method does not show its superiority on the compu-
tational cost. In fact, the computation cost would not become
the bottleneck of lip-reading system due to the development of
high-speed CPU. The real bottleneck is the automatic selection
of cluster number for the lip segmentation.

VI. CONCLUSION

This paper has proposed a cooperative learning-based clus-
tering method for lip segmentation without knowing the true
cluster number in advance. This method features that the
overlapped (or close) cluster centroids in pattern space can
be merged into one from the viewpoint of objective function
value. Then, an iterative algorithm is utilized to minimize
the proposed objective function by superposing the redundant
centroids. At each iterative step, not only is the winner updated
to adapt to an input data, but also the other centroids are
adjusted with a specific cooperation strength, so that they are
each close to the winner. As a result, the clustering perfor-
mance is robust against the preassigned number of clusters.
Based upon this method, a lip segmentation scheme has been
presented. Experimental results have shown its efficacy in
comparison with the existing counterparts.

APPENDIX I

We can obtain a mapping hm : ηm → H min
ηm

by solving the

following optimization problem, where H min
ηm

is the minimum
of H (C | xi) subject to δH (C | xi ) = ηm :

min : 1 −
m∑

j=1

[
p
(
c̃i

j | xi
)]2

s.t. :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
m∑

j=1

[
p
(
c̃i

j | xi
) − p

(
c̃i

j−1 | xi
)

p
(
c̃i

m | xi
)

]2

= ηm

m∑
j=1

p
(
c̃i

j | xi
) = 1

p
(
c̃i

j | xi
) ≥ 0

p
(
c̃i

j | xi
) ≤ p

(
c̃i

k | xi
)

if j < k.

(41)

Using the substitution

p
(
c̃i

j | xi
) =

j∑
k=1

a2
k , ak ∈ R (42)

the optimization problem can, therefore, be simplified as

min : 1 −
m∑

j=1

⎛
⎝

j∑
k=1

a2
k

⎞
⎠

2

s.t. :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
k=1

a4
k + (ηm − 1)

(
m∑

k=1

a2
k

)2

= 0

m∑
k=1

(m + 1 − k)a2
k = 1.

(43)

Subsequently, the corresponding Lagrange function is

�m(a1, . . . , am, α, β)

= 1 −
m∑

j̃=1

⎛
⎝

j̃∑
k=1

a2
k

⎞
⎠

2

+ α

⎡
⎣

m∑
k=1

a4
k + (ηm − 1)

(
m∑

k=1

a2
k

)2
⎤
⎦

+ β

[
m∑

k=1

(m + 1 − k)a2
k − 1

]
(44)

where α and β are Lagrange multipliers.
Thus, the constrained extrema of (43) are the extreme points

of (44), which can be obtained by solving the following
equations:

∇al ,α,β�m = 0 (l = 1, 2, . . . , m) (45)

which can be further expressed as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1

m∑
j̃=1

⎛
⎝

j̃∑
k=1

a2
k

⎞
⎠−αa1

[
a2

1 + (ηm −1)

m∑
k=1

(
a2

k

)]= mβa1

2

a2

m∑

j̃=2

⎛
⎝

j̃∑
k=1

a2
k

⎞
⎠

− αa2

[
a2

2 + (ηm − 1)

m∑
k=1

(
a2

k

)] = (m − 1)βa2

2
. . .

al

m∑

j̃=l

⎛
⎝

j̃∑
k=1

a2
k

⎞
⎠

− αal

[
a2

l + (ηm − 1)

m∑
k=1

(
a2

k

)] = (m − l + 1)βal

2

. . .

am

m∑
k=1

a2
k − αam

[
a2

m + (ηm − 1)

m∑
k=1

(
a2

k

)] = βam

2
m∑

k=1

a4
k + (ηm − 1)

(
m∑

k=1

a2
k

)2

= 0

m∑
k=1

(m + 1 − k)a2
k = 1.

(46)

For any of the first m equations in (46), i.e., ∇al �m = 0,
we fix al̃ (l̃ = 1, . . . , l − 1, l + 1, . . . , m) and α. Therefore,
a2

l can be represented as a linear function with respect to β:

(m − l + 1 − αηm)a2
l + l − m − 1

2
β

+
m∑

j=l

⎛
⎝

j∑
k=1,k �=l

a2
k

⎞
⎠− α(ηm − 1)

m∑
k=1,k �=l

(
a2

k

) = 0. (47)
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Fig. 13. Functional relationship hm between ηm and H min
ηm with (a) m = 2, (b) m = 3, (c) m = 4, (d) m = 5, (e) m = 6, and (f) m = 7, respectively, where

the horizontal axis represents the value of δHm , and the vertical axis represents the value of H min
ηm .

Subsequently, we can eliminate al and obtain a quadratic
polynomial of β via substituting (47) into ∇α�m = 0.

On the other hand, β can be calculated by solving (46).
To be specific, adding the first m equations in (46), then using
the last two equations in (46), we have

a2
1

m∑

j̃=1

⎛
⎝

j̃∑
k=1

a2
k

⎞
⎠+ a2

2

m∑

j̃=2

⎛
⎝

j̃∑
k=1

a2
k

⎞
⎠+ · · · + a2

m

m∑

j̃=1

a2
k = β

2
.

(48)

Finally, we can obtain

β = 2
m∑

j=1

⎛
⎝

j∑
k=1

a2
k

⎞
⎠

2

= 2
(
1 − H sta

ηm

)
(49)

where H sta
ηm

can be calculated by the possible stationary
point of (44). Substituting (49) into the quadratic polynomial
determined by (47) and ∇α�m = 0, we can obtain a quadratic
polynomial with respect to H sta

ηm
. That is, for (44), the number

of stationary points is 0, 1, or 2. Based on the extreme value
theorem, this number can be further fixed to 2, corresponding
to global maximum and minimum, respectively.

Suppose the minimum of Lagrange function �m−1 is
obtained at the point (a1, a2, . . . , am−1, α, β). According
to (46), �m has the stationary point at
(0, a1, a2, . . . , am−1, α, β) as long as H sta

ηm
= H sta

ηm−1
. Let the

Hessian matrix of �m−1 at (a1, a2, . . . , am−1, α, β) be Hm−1.
Then, the Hessian matrix of �m at (0, a1, a2, . . . , am−1, α, β)
can be represented recursively as

Hm =
[

4αa2
1 + 2β A
B Hm−1

]
(50)

where A = [0, 0, . . . , 0] and B = [0, 0, . . . , 0]T .

As we know, the entropy value of a random variable will
tend to zero as the variable becomes certainty. Thus, we sup-
pose that p(c̃i

1 | xi) = a2
1 → 0 and p(c̃i

m |xi) = ∑m
j=1 a2

j → 1
when the constrained minimum in (43) is obtained. Under this
situation, Hm is a positive definite matrix. Moreover, as stated
above, since there is only one minimum stationary point in �m

as given a specific ηm , (0, a1, a2, . . . , am−1, α, β) must be the
global minimum of (44). Thus, hm can be represented by the
following recursion approximatively:

hm(ηm−1) ≈ hm−1(ηm−1) (51)

as shown in Fig. 13.
When ηm−1 ∈ (0, (k − 1)/k] with k = 2, 3, . . . , m − 1, the

curves of hm(ηm−1) and hk(ηm−1) are coincident (see Fig. 14).
Then, (51) can be further formulated as

hm(ηm−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hm−1(ηm−1), ηm−1 ∈
(

0,
m − 2

m − 1

]

hm−2(ηm−1), ηm−1 ∈
(

0,
m − 3

m − 2

]

. . .

h2(ηm−1), ηm−1 ∈
(

0,
1

2

]

0, ηm−1 = 0.

(52)

Subsequently, substituting (49) and ∇α�m = 0 into
∇a1�m = 0, we can obtain

H sat
ηm

= α
∑m

k=1 a2
k

m
ηm + αa2

1 − α
∑m

k=1 a2
k + m − 1

m
. (53)

When the minimum of (53) is achieved, and m → +∞,
we have

H min
η+∞ = η+∞. (54)
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Fig. 14. Curve of H min
η8

= h8(η8). When η8 ∈ (0, (k − 1/k)] with k =
1, 2, . . . , 7, the corresponding curve segments are coincident with hk (η8).

TABLE VI

MSE BETWEEN THE NUMERICAL SIMULATION RESULT Ĥ min
ηm

AND IDEAL VALUE H min
ηm = ηm OVER m

Based on (52), the relationship between ηm and H min
ηm

can
be written approximatively as

H min
ηm

≈ ηm . (55)

APPENDIX II

We conduct an experiment to justify the validity of
Lemma 1. First, we select an input xi in pattern space
randomly, and calculate the corresponding H min

ηm
for different

ηm ∈ (0, (m − 1)/m] by interior point method. Then, we uti-
lize the mean square error (MSE) to evaluate the bias between
the numerical simulation result, denoted by Ĥ min

ηm
, and the

desired value, i.e., H min
ηm

= ηm . Moreover, this experiment
is repeated with m = 2, 3, . . . , 8. For each m, we select five
different values of xi , each of which is a sample generated
by (26).

Table VI lists the average MSE over m. It can be seen
that the error is tiny and tends to constant over m with the
ignorable fluctuation. This implies that Lemma 1 is indeed
valid empirically.
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