
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 6, JUNE 2025 10257

Convolution Filter Compression via Sparse Linear
Combinations of Quantized Basis

Weichao Lan , Yiu-Ming Cheung , Fellow, IEEE, Liang Lan , Juyong Jiang, and Zhikai Hu , Member, IEEE

Abstract— Convolutional neural networks (CNNs) have
achieved significant performance on various real-life tasks. How-
ever, the large number of parameters in convolutional layers
requires huge storage and computation resources, making it
challenging to deploy CNNs on memory-constrained embedded
devices. In this article, we propose a novel compression method
that generates the convolution filters in each layer using a set of
learnable low-dimensional quantized filter bases. The proposed
method reconstructs the convolution filters by stacking the linear
combinations of these filter bases. By using quantized values in
weights, the compact filters can be represented using fewer bits
so that the network can be highly compressed. Furthermore,
we explore the sparsity of coefficients through L1-ball projection
when conducting linear combination to further reduce the storage
consumption and prevent overfitting. We also provide a detailed
analysis of the compression performance of the proposed method.
Evaluations of image classification and object detection tasks
using various network structures demonstrate that the proposed
method achieves a higher compression ratio with comparable
accuracy compared with the existing state-of-the-art filter decom-
position and network quantization methods.

Index Terms— Filter decomposition, network compression,
quantization.

NOMENCALUTURE

{(x, y)} Set of data pairs.
cin, cout Number of input and output channel for a

given convolutional layer.
d Width/height of a convolution kernel.
n Length of filter bases, where n ≪ cin .
Xin, Xout Input and output tensor for a given con-

volutional layer, respectively, where Xin ∈

Rwin×hin×cin and Xout ∈ Rwout ×hout ×cout .
W Weight tensor for a given convolutional

layer, where W ∈ Rd×d×cin×cout .

Received 7 April 2022; revised 20 June 2023, 11 November 2023,
26 February 2024, and 14 June 2024; accepted 8 September 2024. Date
of publication 24 September 2024; date of current version 4 June 2025.
This work was supported in part by NSFC/Research Grants Council (RGC)
Joint Research Scheme under Grant N_HKBU214/21; in part by the General
Research Fund of RGC under Grant 12201321, Grant 12202622, and Grant
12201323; in part by RGC Senior Research Fellow Scheme under Grant
SRFS2324-2S02; and in part by NSFC under Grant 61906161. (Correspond-
ing author: Yiu-Ming Cheung.)

Weichao Lan, Yiu-Ming Cheung, and Zhikai Hu are with the Depart-
ment of Computer Science, Hong Kong Baptist University, Hong Kong,
SAR, China (e-mail: cswclan@comp.hkbu.edu.hk; ymc@comp.hkbu.edu.hk;
cszkhu@comp.hkbu.edu.hk).

Liang Lan is with the Department of Interactive Media, Hong Kong Baptist
University, Hong Kong, SAR, China (e-mail: lanliang@hkbu.edu.hk).

Juyong Jiang is with Hong Kong University of Science and Technol-
ogy (Guangzhou), Guangzhou 511458, China (e-mail: jjiang472@connect.
hkust-gz.edu.cn).

Digital Object Identifier 10.1109/TNNLS.2024.3457943

Wt t th convolution filter, where Wt
∈

Rd×d×cin .
q Number of blocks that a convolution filter

is split into, where q =
cin
n .

{A1, . . . , Am} Set of m filter bases with full-precision
values, where {A1, . . . , Am} ∈ Rd×d×n .

{B1, . . . , Bm} Set of m filter bases with binarized values,
i.e., the binarized version of {A1, . . . , Am}.

{I1, . . . , Im} Set of m filter bases with integer values,
i.e., the multibit version of {A1, . . . , Am}.

G Sparse coefficient, where G ∈ Rm×
cin
n ×cout .

I. INTRODUCTION

CURRENTLY, deep convolutional neural networks
(CNNs) have become one of the most popular tools in

various fields, such as computer vision [1], [2], [3], natural
language process [4], [5], and speech recognition [6], due
to their effectiveness and remarkable performance. However,
a CNN model with good performance usually consists of
a large number of parameters, which requires substantial
storage space and time-consuming computation. A typical
example is the ResNet-50 with 50 layers, which requires
over 95 MB of memory to store the model and 3.8 billion
floating-point operations (FLOPs) for a single prediction.
Although powerful GPUs and CPUs can help deal with
computationally complex tasks when training the network, the
significant resource consumption still limits the applications
of deep CNNs on resource-constrained devices such as mobile
phones, smart watches, and other edge devices at the stage
of inference. Therefore, to make deep CNNs deployable on
resource-constrained devices, it is desired that the number
of parameters in CNNs can be reduced significantly through
compression.

In recent years, various model compression methods have
been proposed, demonstrating that CNN models can still
function normally while the memory and computing time
will be saved significantly after discarding redundancy. These
methods can be roughly categorized into five groups: 1) net-
work pruning [7], [8], [9]: removing redundant components
such as channels and filters; 2) network quantization [10],
[11]: using the low-bit representation of parameters; 3) filter
decomposition [12], [13]: approximating the original filter with
lightweight kernels; 4) knowledge distillation [14]: training
shallower models based on larger and deeper models; and
5) compact model design [15], [16], [17]: directly designing a
more compact network with special operations such as spatial
convolution and shift convolution. Typically, the compact
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networks can be further pruned or optimized based on actual
requirements. Recently, redesigned lightweight models have
attracted more attention due to their impressive success in
various tasks. These methods aim to establish deep neural
networks with fewer parameters and lower storage consump-
tion to achieve high efficiency, which also provides more
choices for automatic compression like neural architecture
search (NAS) [18].

Among the various compression methods, network quan-
tization explores the redundancy in representation to reduce
the number of bits in parameters, achieving considerable com-
pression. One promising approach is to binarize the weights of
convolution filters [10], [19], which has been theoretically and
practically proved to be effective for simplifying the process
of convolution. However, this approach often suffers from
a serious accuracy loss compared to full-precision networks
due to the rough estimate, making it challenging to apply to
complex and large-scale tasks. Some studies have proposed
to improve the performance of binary neural networks by
taking the quantization loss and filter loss into account [20],
[21]. Another concern is that a single binarized filter is inade-
quate to represent the filters with real-values, which motivates
us to explore the efficient combinations of more binarized
filters.

In parallel with network quantization, filter decomposition
focuses on the redundancy in tensors and simplifies the
networks by discarding unimportant kernel components, pro-
viding an optimal solution of a given weight matrix by mini-
mizing the approximation error. Early low-rank approximation
methods utilize mathematical operations such as SVD [22],
Tucker decomposition [12], and CP-decomposition [23] that
decompose the original filters into two to four smaller com-
ponents. For example, [24] decomposes a 2-D w × h kernel
into the multiplication of two small 1-D vectors with the size
of w × 1 and 1 × h, respectively. [12] considers the low-rank
property of both the input channel and output channel, where
a 2-D kernel is decomposed into two 1 × 1 kernels and
one w × h kernel through Tucker decomposition. Despite the
impressive acceleration effect of these filter decomposition
methods, there is still a limitation on the actual compression
in terms of the number of parameters. In addition, the decom-
position often relies on rank selection and involves multiple
or complex decompositions that are time-consuming.

In this article, we therefore propose a new method to
generate quantized convolution filters by stacking sparse linear
combinations of a set of low-dimensional quantized bases.
Through quantized weight values, including binary and multi-
bit quantization, we can then eliminate the redundancy in
representation by reducing the bit number required to store
parameters. To achieve a higher compression ratio, the entire
weight tensor in a given convolutional layer is first split into
several blocks. Each block is estimated as a linear combi-
nation of the quantized bases, and then the entire filter is
reconstructed by stacking these blocks together. Moreover, the
sparsity of coefficients is explored when conducting linear
combination to further reduce storage consumption, which
can also help avoid overfitting by reducing the number of
parameters in the networks [25], [26], [27]. We also develop

an effective algorithm to jointly optimize the quantized bases
and sparse linear coefficients. Without using complex decom-
position operations, the quantized bases in the proposed
method will be learned through training, breaking the com-
pression limitation while alleviating the above issues of filter
decomposition. Due to the sparsity of the linear combination
coefficients and the low memory cost of quantized bases,
the proposed method can achieve a higher compression ratio
with comparable accuracy in comparison with the state-of-
the-art decomposition and quantization methods. The main
contributions of this article are summarized as follows.

1) We propose a novel method to compress convolution
filters by stacking the sparse linear combinations of a
set of learnable low-dimensional quantized filter bases.
The proposed method is flexible and can be easily
generalized to meet different compression requirements
by adjusting the dimensions of filter bases and the
sparsity of coefficients.

2) We develop an effective algorithm to jointly learn and
optimize the sparse coefficients of linear combinations
and quantized filter bases.

3) We conduct experiments on image classification and
object detection tasks, using various network structures
on five benchmark datasets to demonstrate the effective-
ness of the proposed method. The experimental results
show that the proposed method can make a good tradeoff
between accuracy and compression ratio.

II. RELATED WORK

A. Network Quantization

Binary neural networks, whose associated parameters are
binary, can greatly reduce the memory cost since they can be
stored in a low-bit format. In addition, complex computations
such as multiplication can be substituted with cheap operations
like addition and subtraction. BinaryConnect (BC) [19] first
considers binary weights which limits the values in weight
tensors as only 1 or −1. Binarized neural network (BNN) [10]
extends the idea of BC by introducing binarized activations.
Further work in [28] proposes another two binary networks
called binary weight network (BWN) and XNOR-Net, where
full-precision scaling factors are introduced to narrow the gap
between binarized values and real values based on BC and
BNN, respectively. In the existing works, parameters with real
values are reserved for updating during the training process
according to STE strategy [29]. Despite the advantages of
binary neural networks on network acceleration and compres-
sion, the accuracy loss compared to full-precision networks is
still large, making it a challenge to enhance the performance
of binary networks in many tasks.

To improve the accuracy of classical binary neural net-
works, different strategies for quantized algorithms have been
explored. For example, Li et al. [30] proposed a ternary
weight network (TWN) and obtained the ternary weight with
the corresponding scaling factory by minimizing the weight
fitting error. Mix-precision quantization methods [11], [31],
[32] are also applied to fine-tune the quantized network
for efficient allocation of computation resources. Recently,
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effective optimization algorithms have been popular for binary
neural networks [33], [34]. Furthermore, MCN [20] recovers
the unbinarized filters and optimizes the network based on
joint losses. Bi-Real Net [35] utilizes shortcuts to transfer
the real-valued feature maps before binarization, so that more
information in the network can be preserved and the rep-
resentational ability will also be improved. DSQ [36] uses
the three-segment tanh function to fit the quantized function,
which solves the problem that the quantized function is not
derivable. In addition, Ding et al. [37] introduced distribution
loss to adjust regularization and control the activation distri-
butions. For multibit quantization, it has been proven to be
effective to quantize the weights and activations to multibit
fixed-point numbers such as the Ristretto framework [38],
which conducts statistical analysis on the distribution of
parameters for quantization. LQ-Nets [39] explores nonuni-
form quantization, which uses a set of floating-point values
as the basis to represent the quantized values, and learns the
basis by minimizing the quantization error. Wang et al. [40]
binarized the activations to 0 or +1, exploring the sparsity
of feature representations. The recent work [41] combined
network quantization with NAS to explore bit-level sparsity.
Although the performance of these quantized networks is
encouraging, the expression ability will be degraded due
to the weight and activation quantization. Therefore, it is
inspired to increase filter variations to compensate for accuracy
degradation and obtain better representation [42].

B. Filter Decomposition

In a general neural network, tensor operations occupy
most of the computation cost. Subsequently, decomposi-
tion or approximation of tensors has been a favorable
method for compression and acceleration, which uses sev-
eral low-rank matrices to approximate the original full-rank
weights. Zhang et al. [43] assumed a low-rank property of
the output feature to estimate the original weight with the
production of two low-rank matrices. PENNI [44] conducts
SVD on the weight tensors to obtain a small number of
bases with lower dimensions. Binary weighted decomposition
(BWD) [45] expands each filter in a convolutional layer
into the production of several binary filters and full-precision
scaling factors. In addition to decomposed binary filters, ABC-
Net [46] further approximates full-precision activations with
the linear combination of some preset binary activation bases.
Compared to XNOR-Net, ABC-Net achieves better results by
applying multiple binary weights and activations, but the
complexity also increases at the same time [47].

Some works have also explored the concept of the linear
combination of convolutional filters [25], [48]. Correlative
filters are generated and combined in [49] to optimize the
structure of CNN. Octave convolution [50] decomposes the
feature maps to save memory and computing resources, and
expands the receptive field with better recognition effect
through special processing of low-frequency information.
Basis Filter [48] proposes to learn a set of filter basis and
combine the generated activations to achieve lower complexity.
In contrast, the proposed method stacks linear combinations
of filter bases themselves rather than combining activations.

Furthermore, the basis filter trains the basis based on the
original weight and jointly minimizes the approximation
error, leading to cumulative memory and computational cost.
In contrast, the proposed method is completely independent
of original weights that can be trained from scratch without
supplementary requirements. Besides, we also binarize the
values in filter bases for a higher compression ratio.

C. Compact Models

Designing compact models with fewer parameters and
FLOPs has attracted more attention recently. MobileNet [15]
applies depthwise convolution and pointwise convolution to
improve efficiency. The variants MobileNetV2 [51] introduces
residual and linear block, and MobileNetV3 [52] combines
compression with NAS [18] for better performance. Shuf-
fleNet [53] utilizes channel shuffle and group convolution to
transfer information among different groups. EspNetv2 [16]
introduces group point-wise and dilated separable convolu-
tion operations, increasing the receptive field of convolution
kernels. In addition to cheaper convolution operations, the
shift operation [54] has also been applied to build compact
networks. Jeon and Kim [55] designed an active shift layer
(ASL) to save memory. Then, the sparse shift layer (SSL) in
FE-Net [56] dismisses the senseless shift operation for accel-
eration. MnasNet [57] treats multiple metrics as optimization
objectives and achieves better performance than MobileNetV2.
Although the recent lightweight models have successfully
saved much memory and computation cost, the remaining
1 × 1 point-wise convolution still contains redundancy that
can be further reduced [58].

III. PRELIMINARIES

This section provides a brief introduction to convolution
filters. The main notations are listed in Nomenclature.

Convolution Filter: In general, a convolutional layer in a
CNN transforms a 3-D tensor with width, height, and depth
to another tensor with the same dimensions. For a given layer,
we represent the input and output tensor as Xin ∈ Rwin×hin×cin

and Xout ∈ Rwout×hout×cout , respectively. Then, the weight tensor
can be written as a 4-D tensor W ∈ Rw×h×cin×cout , where the
four dimensions refer to the width, height of the convolution
kernel and the number of input and output channels. Typically,
the kernel is square-shaped, where the width w and height h
are set at the same value d. Let “Conv” denote the convolution
operation. Then, the output of a convolutional layer can be
calculated as

Xout = σ(Conv(Xin, W) + b) (1)

where b is the bias and σ(·) represents the activation function
usually chosen to be Rectified Linear Unit (ReLU) function in
CNN. Then, we can obtain the final output Ŷ through pooling
and fully connected layers.

Given a set of data pairs {(x, y)}, the training of a standard
CNN can be regarded as a minimization problem

arg minL(Ŷ, y) = arg min
W,b

L( f ((W, b); x), y)

= arg min
W,b

L( f (Xout), y) (2)
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Fig. 1. Proposed method to approximate convolution filters. The convolution filters are reproduced by the linear combinations of a set of low-dimensional
quantized filters {B1, B2, . . . , Bm} with sparse coefficients G. (a) Convolution filters approximation for a given layer. Each column G t in G is a coefficient
vector to generate the t th convolution filter Wt . (b) Detailed information for approximating. The t th filter Wt is first split into cin/n blocks, where each block
is a linear combination of {B1, B2, . . . , Bm}.

where y is the given image label or ground truth and Ŷ is
the predicted value of network. L(·) denotes a predefined loss
function such as least-square loss and cross-entropy loss for
classification, while f (·) represents the operations in pooling
and fully connected layers. This objective function can be
solved by any popular optimizer such as stochastic gradient
descent (SGD) to learn the parameters of weight W and bias
b. During training, the output of each convolutional layer is
first computed in forward propagation. Then, the gradients
are calculated and the parameters are updated in backward
propagation. In this way, a CNN can be trained to achieve
good performance.

IV. METHODOLOGY

A. Convolution Filters Approximation

In the commonly used filter decomposition methods for
compressing CNNs, the original large weight matrix is repre-
sented as the multiplication of several low-rank matrices [43].
However, these methods still use full-precision bases and fixed
rank, which limit the compression performance. To overcome
these limitations, we propose a new kind of quantized convolu-
tion filter, which contains multiple low-dimensional quantized
bases and sparse coefficients to approximate the original
convolution filters. Instead of decomposing the original weight
tensor, which is complex and laborious, the proposed method
generates the filter bases and coefficients randomly at the
beginning and learns them directly during training. Moreover,
the dimensions of quantized bases in the proposed method can
be adjusted in advance according to the specific requirements
of the compression ratio. For further compression, we also
propose to first split the whole weight tensor into several
blocks and then apply the stacking technique.

Fig. 1 illustrates the idea of the proposed method to approx-
imate convolution filters for a given layer. Specifically, the
original weight tensor W ∈ Rd×d×cin×cout for a given layer is
reconstructed from a set of m low-dimensional binary bases
{B1, B2, . . . , Bm} where Bi ∈ {1,−1}

d×d×n with n ≪ cin and
a sparse full-precision coefficient G ∈ Rm×(cin/n)×cout as shown
in Fig. 1(a). The input is first split into q = (cin/n) parts,

then the t th convolution filter Wt
∈ Rd×d×cin is approximated

by stacking q low-dimensional convolution filter blocks Wt
i ∈

Rd×d×n , i.e., Wt
= [Wt

1, Wt
2, . . . , Wt

q ]. As shown in Fig. 1(b),
each building block Wt

i is a linear combination of the binary
bases {B1, B2, . . . , Bm}, that is,

Wt
i = G t

1i B1 + G t
2i B2 + · · · + G t

mi Bm =

m∑
j=1

G t
j i B j (3)

where G t
∈ Rm×(cin/n) is a coefficient matrix and each

scaling factor G t
j i is an element in this matrix. Then, the t th

convolution filter will be approximated as

Wt
=

[
Wt

1, Wt
2, . . . , Wt

q

]
=

 m∑
j=1

G t
j1B j ,

m∑
j=1

G t
j2B j , . . . ,

m∑
j=1

G t
jqB j

. (4)

The proposed idea concatenates q low-dimensional filter
blocks with the depth n to form a high-dimensional filter
with depth cin. Each low-dimensional filter block is a linear
combination of m binary bases, which are shared across all
convolution filters for a given layer. Therefore, in a given
convolution layer, we only need to store the binary bases
{B1, B2, . . . , Bm} and the sparse coefficient tensor G. Since
each binary value can be stored in 1-bit, the memory cost
of m binary bases is d × d × n × m bits. To store the
sparse coefficient tensor G, we can use the popular coordinate
(COO) list, which utilizes arrays to store nonzero values and
their corresponding coordinates. Then, the memory cost for
storing G using COO is nnz(G) × 4 × 32 bits, where nnz(G)

denotes the number of nonzeros values in G. Compared with
the original weight tensor W ∈ Rd×d×cin×cout whose memory
cost is d × d × cin × cout × 32 bits, the compression ratio
of proposed method can be computed as

d × d × cin × cout × 32
nnz(G) × 4 × 32 + d × d × n × m

. (5)

Let s to denote the sparsity rate of the coefficient tensor G,
we have nnz(G) = m × q × cout × (1 − s). Besides, we use
k to denote a preset ratio between the number of binary bases
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Algorithm 1 ϵ − L1 Ball Projection [59]
Input: vector v ∈ Rn , L1 ball radius r , tolerance t
Output: new sparse vector v

1: If ∥v∥ ≤ r(1 + t) return v
2: low = 0; up = ∥v∥∞; b = ∥v∥1
3: while b > r(1 + t) or b < r do
4: θ = (up + low)/2
5: b =

∑n
i=1 max(0, |vi | − θ)

6: If b ≤ r thenup = θelselow = θ

7: end while
8: for i = 1 to n do
9: vi = sign(vi ) ∗ max(0, |vi | − θ)

10: end for

and output channels, that is, k = (m/cout). Thus, (5) can be
rewritten as

1
k×q×cout×(1−s)×4

cin×d×d +
k

q×32

. (6)

It is worth noting that the term (k/(q × 32)) remains
constant when the hyperparameters k and q are predetermined.
Considering the presence of multiple convolutional layers in
a CNN, each with varying input cin or output channels cout,
and sparsity s, our approach to obtain the total compression
ratio is to count the number of parameters of all binary
weights and full-precision coefficients in the entire network.
In an experiment, the coefficient sparsity of each layer is
controlled at a similar level, we count the sparsity of each
layer and calculate the average value to approximately estimate
the number of nonzero parameters in coefficients. Then, the
final compression ratio is computed as the ratio between the
total bit number of parameters in the original and compressed
model. For example, assume the total number of parameters in
convolutional layers of the original network is No. In the com-
pressed model, the number of binary weights and full-precision
coefficients is Nb and Nc, respectively, with an average sparsity
of sa . Then, similar to (5), the final compression ratio of the
compressed model is

No × 32
Nc × (1 − sa) × 4 × 32 + Nb

. (7)

B. Sparsity of Coefficient

As shown in (6), we seek a sparse solution for G to achieve
a higher compression ratio. For the coefficient G ∈ Rm×q×cout ,
each column g ∈ Rm represents the scaling factor to generate
each filter block Wt

i as in (3).
It has been well-known that the sparsity property cannot

only save the storage and computational cost of the networks
but also prevent overfitting [25], [26], [27]. For example,
Liu et al. [60] designed sparse convolution kernels via decom-
position to reduce the redundancy in weights. A learnable
sparse transform (LST) is proposed in [61], which converts
the features into a more sparser domain. NNCS [62] explores
sparse representations of weight parameters in the transform
domain. In general, achieving sparsity through regularization

Algorithm 2 Training Compressed CNN With Linear Combi-
nation of Stacked Small Binary Filters

Input: training data pairs {(x, y)}, hyperparameter for
L1 projection r (radius) and t (tolerance), parameter for
binary filter q and m
Output: compressed network

1: Random Generate proxy variables {A1, . . . , Am} and coef-
ficient G based on CNN configuration q and m

2: for iter = 1 to maxIter do
3: Get a minibatch of training data {(x, y)}

4: for l = 1 to L do
5: Get m binary filter bases {B1, . . . , Bm} according to

Eq. (10)
6: Apply Algorithm 1 on each column g of coefficient

G to achieve sparsity
7: end for
8: Conduct forward propagation
9: Compute the loss based on Eq. (8)

10: Conduct backward propagation based on Eq. (11)
11: Clip the binarized weights in the range of {−1, 1}
12: Update parameters using any popular optimizer
13: end for

is one of the popular methods such as L0 [63] and L1 [64]
regularization. In our proposed method, the sparse coefficients
are obtained by ϵ − L1 ball projection [59]. As described in
Algorithm 1, the radius of L1-ball is constrained between λ
and (1 + ϵ)λ. Then, the original dense vector is projected
onto the L1-ball after finding a proper threshold θ through
bisection. The element will be changed to zero if its absolute
value is smaller than the threshold θ so that sparsity can be
achieved. Compared to a random set threshold, ϵ − L1 ball
projection can calculate a more accurate threshold based on
the distribution of data.

C. Training Process

Note that the input Xin ∈ Rwin×hin×cin for a given convolu-
tional layer has been split and the original filter is divided into
q = (cin/n) parts. During training, the parameters that need to
be learned and updated in the proposed methods are the set of
binary bases {B1, B2, . . . , Bm} and coefficient matrix G. Based
on the optimization problem in (2), the objective function of
our proposed method can be defined as

min
cout∑
t=1

L

f

σ

 q∑
i=1

Conv

Xin(i),

m∑
j=1

G t
i j B j

, y


s.t. B j ∈ {−1, 1} (8)

where L(·) is the loss function. In a given layer, the convo-
lution operation in this objective actually contains two stages:
the linear combination of low-dimensional binary bases with
coefficients first constructs the whole filter and then the new
compact filter is convoluted with the input. The drawback is
that repeated convolution operations may occur if the same
bases are selected at the same position regardless of the
coefficient. Therefore, we design a more efficient strategy to
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implement the convolution
m∑

j=1

G t
i j Conv(Xin(i), B j ). (9)

This transform means that all the bases can be first convo-
luted with the input and get a set of the feature maps, then
we can compute the results as the linear combination of these
feature maps. This property is easy to prove based on the
law of commutation. In this way, the repeated time-consuming
convolution operations can be eliminated so as to reduce
computational cost.

In this framework, the computation process for a given
convolutional layer in the proposed method contains two
stages: compute m feature maps, which requires d2

· cin ·wout ·

hout ·m FLOPs; then construct new feature map through linear
combination and stacking with q · wout · hout · cout · m · (1 − s)
FLOPs, where s represents the sparsity of coefficient.

During forward propagation, in order to get the binary
bases and make it easier to back propagate the gra-
dients, we introduce a set of full-precision intermediate
bases {A1, A2, . . . , Am} ∈ Rd×d×n . Then, the binary bases
{B1, B2, . . . , Bm} ∈ Rd×d×n are obtained through sign func-
tion, that is,

b = sign(a) =

{
1, if a ≥ 0
−1, otherwise

(10)

where b and a are the elements in B and A. Besides, the
ϵ−L1 ball projection in Algorithm 1 is applied on each column
of G so that we can obtain the sparse coefficient.

In backward propagation, the strategy of STE [29] is applied
since the gradient of the sign(·) function in (10) is almost
zero everywhere that is obviously not conducive to backward
propagation. The core idea of STE is to map the original
continuous float parameters to {−1, 1} to calculate the output
of the network in forward propagation, and then directly
update the original float parameters instead of the binary
ones in backward propagation. Let L(·) still denote the loss
function, the process of calculating the gradient under STE
can be formulated as

∂L(a)

∂a
=

∂L(b)

∂b
∂b
∂a

=
∂L(b)

∂b
1|a|≤1. (11)

For example, the gradient of the set of binary bases is

∂L(Ai )

∂Ai
=

∂L(Bi )

∂Bi

∂Bi

∂Ai
=

∂L(Bi )

∂Bi
. (12)

After obtaining the gradient, we can then update the
parameters. In this process, the magnitude of some values in
full-precision weight may be beyond the binary range, so a
clip operation is necessary to eliminate this effect. The whole
process for training in the proposed method is summarized in
Algorithm 2.

V. TERNARY AND MULTIBIT QUANTIZATION

A. Threshold-Based Ternary Quantization

In addition to 1 and −1 in binary neural networks,
TWN [30] further introduces zero values to improve expres-
sive ability. Although TWN has an additional “0” state, the

computation will not increase since “0” does not require an
extra multiplication operation. Similar to binary quantization
where the threshold is set to 0, ternary quantization also tries to
find a proper threshold. We compute the threshold based on an
assumption that the values in weight tensors satisfy the normal
or uniform distributions, as described in [30]. The threshold
is then estimated as

β ≈ 0.7 × E(|W|) =
0.7
n

n∑
i=1

|Wi |. (13)

After obtaining the threshold β, the weight tensor can be
quantized to ternary values as

f = ternarize(w) =


1, if w > β

0, if |w| ≤ β

−1, if w < −β.

(14)

B. Multibit Quantization

The weight values in BNN are quantized to +1 or −1, which
can be represented in a single bit. In this way, the network
will be compressed about 32.0×. However, binary quantization
will lead to more information and accuracy loss compared to
full precision. In contrast, fixed-point numbers reserve more
information, where the processing logic is also simple and
efficient. A common method is to reduce 32-bit numbers to
fixed 8-bit numbers, which include only 28 possible values.
In the simplest case, we can calculate the minimum and
maximum weights of a layer and evenly divide the range
between them into 255 intervals, thus the weight values can
be set according to the closest edge. Considering the balance
between compression ratio and performance, we apply a new
function to quantize the low-dimensional convolution filters
into multibit

I = integer(A) = round
(

A
max(|A|)

× 2b
)

(15)

where A is still the original filter with full-precision and
b donates the bit numbers we need to compress. Thus, the
objective function for optimizing the indicator matrix G and
the set of integer filter bases {I1, . . . , Im} will be changed to

min
cout∑
t=1

L

f

σ

 q∑
i=1

m∑
j=1

G t
j i Conv

(
Xin(i), I j

), y


s.t. Ii j ∈ {−2b, 2b

}. (16)

During the training, the original low-dimensional filters
are converted to integer filters based on (15) in forward
propagation. Similar to binary methods, the STE strategy is
also applicable to backward propagation. Then, the gradient
of quantized bases in a loss function with integer values will
be

∂L(Ai )

∂Ai
=

∂L(Ii )

∂Ii

∂Ii

∂Ai
=

∂L(Ii )

∂Ii
. (17)

The training of ternary and multibit networks is similar to
binary models, where quantization is applied in the forward
and backward process while continuous weights are still used
when updating parameters. This is also a common technique
in training quantized networks.
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VI. EXPERIMENTAL RESULTS

This section demonstrates the evaluation of the proposed
method. Experiments are conducted on popular classification
datasets, including CIFAR-10, CIFAR-100 [65], Tiny Ima-
geNet [66], and ImageNet [67]. Besides, the Pascal VOC
datasets are used for object detection tasks. We first compare
the accuracy and compression ratio with state-of-the-art binary
and decomposition methods. Then, we explore the effect of
hyper-parameters in the proposed method.

A. Experiment Setting

For comparison, we select binary neural networks like
BC [19], BNN [10], BWN, XNOR [28], and filter decom-
position methods such as PENNI [44] and ABC-Net [46].
In addition, previous compression methods that stack single
binary and full-precision filters, such as SLBF [68] and
LegoNet [69], are also considered. “BLC” denotes our pro-
posed method of linear combination with binary bases, while
“TLC” and “MLC” refer to ternary and multibit quantization,
respectively. We report several metrics including the accuracy,
compression ratio, and coefficient sparsity, where the ratio is
calculated according to the bit number of parameters. We focus
on the convolutional layers for the compression since the
parameters of fully connected layers can be further compressed
using other methods like SVD.

1) Network Structure: For the image classification task,
we primarily choose VGG-16 [70] and ResNet-18 [1] as
our fundamental structures, while ResNet-101 is selected for
object detection. In general, VGG-16 contains 13 convo-
lutional layers and three fully connected layers, while the
ResNet-18 model includes 18 convolutional layers followed
by a fully connected layer. In our experiments, we simplify the
structures by replacing the fully connection layers with average
pooling layers. All the convolution filters except for the first
layer are constructed using the proposed method, i.e., a linear
combination of low-dimensional binary bases with sparse
coefficients. The networks are trained 500 epochs from scratch
with an initial learning rate of 0.01, which is adjusted using
cosine annealing. In addition, the batch normalization layers
with scaling and shifting are applied and Adam [71] with
0.0005 weight decay is used as the optimizer. The parameters
for the competitors are set according to their original papers.

2) Datasets:
a) CIFAR-10 and CIFAR-100: The CIFAR-10 dataset

consists of 60 000 32 × 32 colorful images in ten classes, and
each class has 6000 images with 50 000 training images and
remained 10 000 for testing. The difference of CIFAR-100 is
that it contains 100 classes.

b) ImageNet: ImageNet is a widely used dataset with
1000 different classes. It has around 1.2 M colored images
for training and 50k images for validation where the image
size is various.

c) Tiny-ImageNet: Tiny-ImageNet is actually a subset
of ImageNet. It contains 200 classes and each class has
500 photographs for training, 50 for validation, and 50 for
testing, with a lower resolution of 64.

3) Hyper-Parameters: q = (cin/n) represents that the
original filter is split into q blocks, and k = (m/cout) means the

ratio between the number of binary bases and output channels.
We set different values of these two parameters to assess the
tradeoff between accuracy and compression ratio. The impact
of different coefficient sparsity will also be explored.

B. Comparison With the State-of-the-Art Methods

1) Binary Neural Networks: Tables I–III present a com-
parison of the performance of different quantized networks.
On ImageNet, the proposed method achieves much higher top-
5 accuracy using ResNet-18. When applying ResNet-50, the
proposed method outperforms other competitors with 73.0%
top-1 accuracy. The proposed method is also able to compress
lightweight models such as MobileNet. It is notable that we
only compress the 1 × 1 pointwise convolution layers in
MobileNet since they occupy most of the model parameters.
The results show that the proposed method can achieve com-
parable accuracy to a full-precision MobileNet-V2 network.
On Tiny-ImageNet in Table II, the proposed method achieves
larger accuracy than other competitors, where the accuracy gap
compared with full-precision VGG-16 network is only 0.98%.

On the CIFAR dataset in Table III, the proposed method
achieves better accuracy than other methods and the improve-
ment is encouraging when applying ResNet-18. We improve
the accuracy of classical binary neural networks such as
BNN [10] and XNOR-Net [28] by around 3% on CIFAR-10
dataset and up to 6% on CIFAR-100, which is even close to
the full-precision network. For example, the network obtains
a comparable accuracy of 74.61% on CIFAR-100. Regarding
the recent binarized networks like RBNN [82] and ReCU [75],
the proposed method is superior to them with respect to accu-
racy. It is clear that the proposed method outperforms other
quantization methods to some extent, providing a promising
way to improve the accuracy of quantized models.

2) Filter Decomposition and Compact Model: In Table IV,
we provide the comparison results with decomposition meth-
ods. The recent work PENNI [44] is a compression method
that combines network pruning and tensor decomposition. It is
shown that the proposed method can achieve much better
performance on accuracy on ResNet-18. Although we use
more bases than PENNI, the compression ratio is still higher
since the values in these bases are binarized, and more bases
may provide more useful information for learning features
to get higher accuracy. With respect to compact models like
SLBF [68] and LegoNet [69], the accuracy gap compared to
fully network is also narrowed. On the whole, the results
demonstrate the effectiveness of our proposed method in
improving compression performance.

C. Ablation Study

1) Influence of Hyperparameters q and k: Considering the
potential accuracy loss caused by a large compression ratio,
we only evaluate the number of blocks q = {1, 2}. To control
the variables and explore the effect of hyper-parameters q =

(cin/n) and k = (m/cout), we fix the sparsity between 0.92 and
0.97. Based on the theoretical compression ratio described
in (6), a larger k (i.e., the ratio between m and cout) will
lead to a lower compression ratio, but the impact of q is not
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TABLE I
COMPRESSION RESULTS ON IMAGENET

TABLE II
COMPRESSION RESULTS ON TINY-IMAGENET

certain because it depends on other values such as kernel size
and number of channels. We thus analyze the performance
under different settings of hyper-parameters q and k, and the
experiment results are also consistent with this principle. The
results are reported in Table V.

a) CIFAR-10 and CIFAR-100 results: We tune q in {1,
2} and k in {0.4, 0.5, 2} for VGG-16 while {0.3, 0.4, 0.5,
2} for ResNet-18. On the VGG-16 network, we achieve an
accuracy of 91.72% on CIFAR-10 and 69.34% on CIFAR-
100 with 9.8 times compression when setting q = 1, k = 2,
and sparsity as 0.946. The compression ratio increases to 40×

when k reduces to 0.5 but it leads to larger accuracy loss.
For ResNet-18, when setting k = 2 and q = 0.5, we can
compress the model by 35.4× with 3.06% loss compared with
the full-precision network on CIFAR-100. The loss can be
further narrowed by applying larger k = 2, which means
using more binary bases. We also draw the tradeoff curve
of compression ratio and accuracy in Fig. 2. It is obvious

that the network will suffer an accuracy loss if compressed at
a high ratio. Therefore, it is essential to consider a tradeoff
between accuracy and compression ratio when selecting the
hyper-parameters in specific tasks.

b) Tiny-ImageNet results: The top-1 accuracy under
different settings of q and k are reported in Table V(c).
It is encouraging that we can obtain an accuracy close to
a full-precision network with a relatively large compression
ratio. The network can be compressed by 35.6× with 48.98%
accuracy, where the loss of 2.87% is acceptable. In terms of
the hyperparameters, using more binary bases will also lead to
better accuracy. For example, when fixing q = 2, the accuracy
of k = 0.4 is 48.01 % and it can be improved to 49.61% if
k increases to 0.5. Compared with the full-precision network,
we can obtain a significant accuracy of 52.03% with 9.1 times
compression. These results exactly demonstrate the power of
the proposed method on compressing CNNs.

c) ImageNet results: On ResNet-18, we evaluate the
compression ratio and accuracy under three different k values
with q = 2. We are able to compress the model by around 26×

with only 3.1% loss on top-5 accuracy. When reducing the
compression ratio to 8.3× through adjusting k value, the accu-
racy gap between the proposed method and the full-precision
network will be greatly narrowed.

d) Convergence: On the CIFAR-100 dataset, we also
demonstrate the convergence of the proposed method. The
convergence curve is shown in Fig. 3, indicating that the loss
of the proposed method can reach an optimal status after a
certain number of training iterations.
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TABLE III
COMPRESSION WITH QUANTIZATION METHODS ON CIFAR-10 AND CIFAR-100

TABLE IV
COMPRESSION WITH DECOMPOSITION METHODS ON CIFAR-10 AND CIFAR-100

e) Training and inference time: To evaluate the impact
of q and k on training and inference time, we set q = 1 and
k in {0.2, 0.5} and conduct experiments on CIFAR-100 using
VGG-16. As shown in Table VI, the proposed method can also
achieve lower inference latency than a full-precision network.
It can also be observed that the time increases as k increases
due to the consumption of selecting and combining the gen-
erated intermediate feature maps for each block. Since we
have introduced the coefficient matrix G and applied sparsity
operation on it, which will actually increase extra computation
costs to some extent, such as the cost to manage and maintain
the sparsity structure. Besides, like other implementations of
binary networks, we still use the 32-bit floating points format
to store the parameters and conduct computing in our exper-
iments, because the current python framework (i.e., Pytorch
and TensorFlow) does not support storing the data in binary
form and bit type operations, which prevents us from fully

realizing the potential benefits of using lower precision formats
for parameter storage and computations. Consequently, the
observed improvements in training and inference are less sig-
nificant compared to the theoretical expectations. However, for
quantized networks, low-bit computation operations still hold
promise for reducing latency by utilizing some BNN library
frameworks or hardware like FPGA and ASIC. In addition
to applying quantization accelerators, several strategies will
also be considered later to mitigate the negative impact of
extra computations, such as optimizing the implementation of
sparsity operations.

2) Impact of Sparsity: Table V also presents the comparison
results under different sparsity. For example, on CIFAR-
10 using ResNet-18, the accuracy reduces from 94.51% to
94.39% as the compression ratio increases from 2.1× to
10.9×, where the sparsity changes from 0.557 to 0.968 through
adjusting the parameters in Algorithm 1. The same trend can
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TABLE V
COMPRESSION OF DIFFERENT SETTINGS. (a) VGG-16 ON

CIFAR-10 (93.25)/CIFAR-100 (73.55). (b) RESNET-18 ON
CIFAR-10 (95.19)/CIFAR-100 (77.11). (c) VGG-16

ON TINY-IMAGENET (51.85). (d) RESNET-18 ON
IMAGENET TOP-1 (69.3)/TOP-5 (89.2)

also be observed on VGG-16 with the setting of q = 2 and k =

2. The results show that higher sparsity will lead to slightly
lower accuracy while substantially increasing the compression
ratio, where the accuracy loss ranges from 0.1% to 0.3%.
Thus, in order to obtain a good tradeoff between accuracy
and compression ratio, a coefficient with higher sparsity may
be a good choice.

To analyze the impact of coefficient sparsity in detail, we fix
q = 2 and k = 0.5 and adjust the threshold in Algorithm 1
to obtain different sparsity. We conduct experiments in four
groups on the CIFAR dataset using VGG-16 and ResNet-18.
Fig. 4 depicts the relationship between sparsity and accu-
racy. It can be observed that the four lines show a similar
trend. As the sparsity increases from 0 to around 1, the
accuracy first reaches a maximum and then starts to decrease.
This trend indicates that coefficients that are too sparse or
too dense both result in poor performance. Although it is
difficult to find the exact maximum and the corresponding
sparsity, we can still identify an appropriate setting according
to specific demands, such as lower memory cost or better
accuracy.

D. Ternary and Multibit Quantization

To explore better performance, we also evaluate the ternary
and multibit quantization method on CIFAR-100. In addition

Fig. 2. Tradeoff curve of accuracy and compression ratio on CIFAR-10 using
ResNet-18.

Fig. 3. Convergence curve of test loss/accuracy on CIFAR-100 using
VGG-16. The curves trend to be stable at around 450 epochs, showing that
our model can manage to reach convergence during training.

Fig. 4. Relationship between sparsity and accuracy. We fix q and k to explore
the relationship. The sparsity values are adjusted from 0 to 1 by applying
different thresholds in L1-ball projection.

TABLE VI
COMPARISON ON TRAINING AND INFERENCE TIME. THE

VALUES ARE OBTAINED ON NVIDIA RTX 2070 GPU

to the sparse coefficient, ternary quantization further leads to
sparse weights by introducing zero values. According to the
results in Table VII, the network with ternary weights reserves
more useful information, resulting in a slightly improved
accuracy compared to binary weights. For instance, when
fixing q = 1 and k = 0.5, the accuracy of TLC increases by
approximately 1% on CIFAR-100 using VGG-16. By quan-
tizing the weight into the 4-bit format, the accuracy gap with
full-precision networks decreases from 3.8% to 3.3% under the
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Fig. 5. Detection results on PASCAL VOC 2007. Images in the top row display the detected objects of the full-precision ResNet-101 network, while images
in the bottom row are obtained by our model, that is, quantized ResNet-101 with fewer weight parameters.

TABLE VII
TERNARY AND MULTIBIT QUANTIZATION ACCURACY ON CIFAR-100

setting of q = 2 and k = 2, showing that multibit quantization
is also beneficial to higher accuracy. These results explicitly
illustrate the effectiveness of the proposed method in achieving
compression with various quantization techniques.

E. Object Detection

We also apply the proposed method to an object detection
task to verify its generalization ability. The Pascal VOC with
20 categories is selected as the benchmark dataset, and the
models are constructed as ResNet-101 and VGG-16 backbone
with Faster R-CNN [2] framework. Specifically, we first eval-
uate the proposed model on the VOC2007 train/val set (5011
images) and test on the VOC2007 test set (4952 images) with
a batch size of 4. The models are pretrained on ImageNet for
initialization. To provide more comprehensive results, we also
trained the models on the larger VOC2007 + 2012 train/val
set (16 551 images in total) and tested them on the VOC2007
dataset. Since the task is more challenging than classification,
we retained the first and last block layers in ResNet-101 as
full-precision following the setting in [84]. All the models are
trained for ten epochs, and SGD with a weight decay of 1e-
4 is applied as the optimizer. The initial learning rate is set

TABLE VIII
RESULTS ON PASCAL VOC USING RESNET-101

as 4e-3 and decreases by a factor of 10 at the 8th epoch.
We adopt the mean average precision (mAP) as an evaluation
metric, which is widely used to assess the model performance
in object detection tasks [85].

We first compare the mAP values of our model with full-
precision ResNet-101 in Table VIII. Although there is still
a relatively large margin of mAP compared to full-precision
models on VOC2007, the proposed method outperforms
XNOR-Net and manages to compress the model by around
10×. Some detection examples obtained by trained models on
VOC2007 are shown in Figs. 5 and 6. It is illustrated that the
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Fig. 6. Comparison of detection results trained by VOC2007 and VOC2007 + 2012. Left: Full ResNet-101. Right: the proposed method BLC. The false
positives and missing objects are highlighted in orange and red, respectively.

Fig. 7. Testing AP results of different classes obtained by the trained models
on (a) VOC2007 and (b) VOC2007 + 2012.

proposed method can successfully detect the obvious objects,
and even achieve similar accuracy as the full-precision network
on some classes as shown in Fig. 7. It is also encouraging
that the accuracy gap of each class will be greatly narrowed
when training with more data on VOC2007 + 2012, where
we obtain 75.0% mAP and 4.5× compression using ResNet-
101. When applying VGG-16, the proposed method achieves
8.7× compression and 67.5% mAP, outperforming the other
competitors. Fig. 6 also provides a snapshot for comparison
of detecting results on VOC2007 and VOC2007 + 2012.
Compared with the models trained on fewer data samples,
the same model trained with more data can help eliminate
the false positives (orange) and detect the missing objects
(red). Moreover, the margin of objects can also be detected
more accurately, suggesting the possibility of improving the
performance of binary models on object detection tasks.

VII. CONCLUSION

In this article, we have proposed a novel method for
compressing CNNs. Specifically, we have redesigned the
convolution filters by stacking a linear combination of a
set of low-dimensional quantized bases with corresponding
coefficients, where the sparsity is explored to further save
memory using L1-ball projection algorithm. Detailed analy-
sis of the memory cost and computation process has been
provided as well. In the experiments, we have compared the
performance of the proposed method with the state-of-the-
art binary neural networks and filter decomposition methods.
The results have shown that the proposed method can achieve

a higher compression ratio with comparable accuracy under
the different settings. Furthermore, the compression ratio can
be adjusted through the hyper-parameters to meet up specific
requirements, showing the flexibility of the proposed method
to help achieve a good tradeoff between accuracy and com-
pression. This provides a promising way to deploy CNNs on
resource-constrained platforms.
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