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Abstract—Hashing has recently sparked a great revolution in cross-modal retrieval because of its low storage cost and high query

speed. Recent cross-modal hashing methods often learn unified or equal-length hash codes to represent the multi-modal data and

make them intuitively comparable. However, such unified or equal-length hash representations could inherently sacrifice their

representation scalability because the data from different modalities may not have one-to-one correspondence and could be encoded

more efficiently by different hash codes of unequal lengths. To mitigate these problems, this paper exploits a related and relatively

unexplored problem: encode the heterogeneous data with varying hash lengths and generalize the cross-modal retrieval in various

challenging scenarios. To this end, a generalized and flexible cross-modal hashing framework, termed Matrix Tri-Factorization Hashing

(MTFH), is proposed to work seamlessly in various settings including paired or unpaired multi-modal data, and equal or varying hash

length encoding scenarios. More specifically, MTFH exploits an efficient objective function to flexibly learn the modality-specific hash

codes with different length settings, while synchronously learning two semantic correlation matrices to semantically correlate the

different hash representations for heterogeneous data comparable. As a result, the derived hash codes are more semantically

meaningful for various challenging cross-modal retrieval tasks. Extensive experiments evaluated on public benchmark datasets

highlight the superiority of MTFH under various retrieval scenarios and show its competitive performance with the state-of-the-arts.

Index Terms—Cross-modal retrieval, matrix tri-factorization hashing, varying hash length, semantic correlation matrix

Ç

1 INTRODUCTION

WITH the explosive growth of multi-modal data in social
networks, the relevant data from different modalities

often endow semantic correlations, and there is an immedi-
ate need for effectively analyzing the data across different
modalities. In recent years, cross-modal retrieval, which ena-
bles similarity search across heterogeneous modalities, has
attracted a great amount of attention in information retrieval
community. In the general setting of the problem, a user
searches for semantically relevant results of one modality in
response to a query item of another different modality, e.g.,
images that visually illustrate the topic of a textual query, or
textual descriptions that concretely describe the contents of a
visual query. Nevertheless, the multi-modal data usually
span in different feature spaces, and such heterogeneous
property has been widely considered as a great challenge to
cross-modal retrieval. In order to eliminate such diversity

between different modalities, an intuitive way is to learn a
common latent subspace so that the mapping features in
such subspace can be directly compared [1], [2], [3]. How-
ever, the main drawback of these subspace methods is the
level of computational complexity to deal with the large-
scale and high dimensional multi-modal data.

In recent years, cross-modal hashing [4], [5] is gaining
significant popularity due to its low storage cost, fast
retrieval speed and impressive retrieval performance. It
aims to transform the high-dimensional data into compact
binary codes and generate similar binary codes for the rele-
vant samples from different modalities. Although various
kinds of cross-modal hashing attempts have been investi-
gated to correlate the heterogeneous modalities, it remains a
challenging task to achieve efficient cross-modal retrieval
mainly due to the complex integration of semantic gap, het-
erogeneity and diversity within the heterogeneous data
samples. For instance, the feature representations of hetero-
geneous modalities often have different physical meanings
and numerical dimensionalities with incomparable space
structures. Further, as shown in Fig. 1, the heterogeneous
data may be practically paired (i.e., one-to-one correspon-
dence) or unpaired (e.g., a text paragraph depicts multiple
images), and the semantics of each sample may be marked
as either single label or multiple labels [6]. Therefore, the
widespread existence of these complex multi-modal data
has significantly increased the demand of more effective
cross-modal hashing technologies to tackle these challeng-
ing scenarios.

In the literature, the pioneer cross-modal hashing methods
[7], [8] select to separate the equal-length hash code learning
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for different modalities, and these works often build a weak
connection between heterogeneous data samples. To mitigate
this problem, the majority of recent cross-modal hashing
approaches project the multi-modal data into a common
semantic space and utilize a unified hash code to represent
the heterogeneous data point, in either supervised fashion
where the labels are provided, or unsupervised fashionwhere
the labels are unavailable. Nevertheless, these approaches
mainly focus on the paired multi-modal collections, and very
little work [9] has been designed to handle the unpaired
multi-modal scenarios. In addition, as shown in Fig. 1, an
even more challenging scenario may arise in cross-modal
retrieval, i.e., the hash representations from heterogeneous
modalities could be generally encoded and stored by different
code lengths in the database, e.g., a text paragraph is discrimi-
natively encoded by 10 bits while an image by 12 bits. This is
practically reasonable because the feature dimensions of het-
erogeneous modalities often differ significantly, which neces-
sitates the different hash lengthes for better representation.
Note that, the high retrieval performance for many
hashing methods empirically depends on the appropriate
selection of code length [10], [11], [12]. On the one hand, the
big length of hash code is able to reduce the false collisions
(i.e., non-neighbor samples falling into the same bucket) and
generally yields high precision. On the other hand, the long
hash representation of a low-dimensional multimedia data
significantly increases the sparsity of the Hamming space,
which may induce potential noise and result in a low recall
rate. The main reason lies in that the collision probability that
two codes of similar instances fall into the same hash bucket
decreases exponentially as the code length increases. An
example is illustrated in Fig. 1. It can be found that two short
hash codes of semantically similar instances derived fromhet-
erogeneous modalities result in zero Hamming distance,
while the mappings to long hash length representations
induce nonzero Hamming distance. Under such circumstan-
ces, the long hash codesmay result in low recall performance.
Therefore, an inappropriate hash length selection may make
it uncompetitive for challenging cross-modal retrieval tasks,
e.g., a very low-dimensional text query to retrieve high-
dimensional relevant image samples.

Remarkably, the representations of multi-modal data in
terms of unified or equal-length hash codes are the common
ways to facilitate cross-modal retrieval, and it seems that
there is no previous work to surpass such representation

assumption. In practice, the code length is of crucial impor-
tance to the quality of hash codes because it can be treated as a
trade-off between the discriminative power and redundancy.
Suppose that the hash lengths of q1 and q2 (in general q1 6¼q2)
bits with respect to image and text modalities are optimal for
single-modal retrieval, and the best performance can be
acquired when the code length reaches an optimal number.
Under such circumstances, the hash length setting of q bits
(q 6¼q1 and q 6¼q2) will naturally bring the negative effect to the
retrieval performance. An illustrative example tested onMIR-
Flickr dataset [13] is shown in Fig. 2, it can be found that the
best retrieval performances are not usually achieved by large
hash codes, and the optimum retrieval results with respect to
each modality are not usually produced by the same hash
length settings. Therefore, the strictly equalized hash length
representation of heterogeneous modalities may inherently
sacrifice their representation capability and scalability because
it cannot guarantee the learned binary codes to be semanti-
cally discriminative for heterogeneous data representation.

In practice, the feature dimensions of heterogeneous
modalities may be significantly different, and such physical
difference heuristically motivates us to consider different
hash lengths for heterogeneous data representations. To the
best of our knowledge, varying hash length encoding of
multi-modal data and its application to cross-modal retrieval
have yet to be explored. In this paper, we break the limita-
tions of equalized hash length representation by allowing
varying hash length encoding for different modalities, and
seamlessly treat the paired or unpairedmulti-modal data col-
lections in an integrated way. To this end, a generalized and
flexible hashing framework, termed Matrix Tri-Factorization
Hashing (MTFH), is proposed to facilitate various cross-
modal retrieval tasks. Specifically,MTFH is a two-stage hash-
ing framework, which allows for less complex formulations
in comparison with the coupled formulations. In the first
stage, MTFH constructs an affinity matrix by semantic label
supervision, either square or non-square, depending on the
availability of paired or unpaired data samples. Then, the
modality-specific hash codes, of either equal or unequal
lengths, are jointly learned with two semantic correlation
matrices. In the second stage, kernel logistic regression is effi-
ciently utilized to learn the hashmapping functions from fea-
ture space to hash code domain. To sum up, the major
contributions of this paper are highlighted as follows:

� A generalized and flexible cross-modal hashing
framework is developed, which can work seamlessly
in various retrieval tasks including paired or unpaired
multi-modal data, and equal or varying hash length
encoding scenarios.

Fig. 1. Two typical examples show that one image may be annotated
with multi-labels and one text paragraph may depict multiple relevant
images. Meanwhile, the heterogeneous modalities often have different
feature dimensions, and the hash codes of heterogeneous modalities
stored in database may have equal or unequal lengths in practice.

Fig. 2. Single-modal retrieval results obtained by Fast Supervised Dis-
crete Hashing (FSDH) [14] and tested with different hash lengths.
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� MTFH is the first attempt in learning varying hash
codes of different lengths for heterogeneous data
comparable, and the learned modality-specific hash
codes are more semantically meaningful for cross-
modal retrieval.

� An efficient discrete optimization algorithm is devel-
oped for MTFH without relaxation, which can well
reduce the quantization error during the hash code
learning process.

� Extensive experiments on public benchmarks high-
light the advantages of MTFH under various cross-
modal retrieval tasks and show its comparable or in
most cases improved retrieval performance over the
existing counterparts..

The remainder of this paper is organized as follows. In
Section 2, we make an overview of the existing cross-modal
hashing works, and in Section 3 we elaborate the proposed
MTFH framework and its optimization scheme in detail. In
Section 4, we conduct various experiments and comparisons
on popular benchmark datasets. Finally, we draw a conclu-
sion in Section 5.

2 RELATED WORKS

The goal of cross-modal retrieval is to obtain semantically
related data samples in one modality for a query in another
different modality, and its main difficulty is to explicitly
measure the content similarity between the heterogeneous
samples. Since the heterogeneous data of different modali-
ties often reside in different feature spaces, an intuitive way
is to project the heterogeneous data into a common sub-
space and minimizing their heterogeneities. Along this line,
canonical correlation analysis (CCA) [15], aiming to learn a
latent space that can maximize the correlations between the
projected vectors of different modalities, is popularized for
retrieval across different modalities. Accordingly, many rea-
sonable extensions, e.g., bi-linear model (BLM) [16], latent
subspace analysis (LSA) [1], sparse subspace learning
(SSL) [5], [17], and correlated subspace learning (CSL) [2],
[18], have also been developed. Nevertheless, these meth-
ods are generally unsuitable for processing large-scale and
high-dimensional multi-modal data.

Hashing technique [19], [20], [21], favored for its low stor-
age cost and fast query speed, has recently attracted much
attention in cross-modal retrieval domain. Most prior hash-
ing works mainly concentrate on producing binary codes for
datawithin the samemodality, e.g., locality sensitive hashing
(LSH) [22] and its kernelized extension [23], spectral hash-
ing [24] and k-means hashing (KMH) [25]. These hashing
methods provide important theoretical foundations for
cross-modal hashing, whose main challenge is to learn the
compact binary codes that can construct the underlying cor-
relations between heterogeneousmodalities. In the literature,
existing cross-modal hashing methods mainly fall into the
modality-independent and modality-dependent branches.
Modality-independent approaches primarily exploit the sep-
arate hash codes and learn the corresponding hash functions
for differentmodalities individually [7], [8], [26]. For instance,
cross-view hashing (CVH) [8] attempts to learn the indepen-
dent hash codes of different modalities while minimizing
the similarity-weighted hamming distances between them.

Another representative work is multi-modal latent binary
embedding (MLBE) [26], which regards the binary latent fac-
tors as hash codes and employs a probabilistic model to learn
the hash functions from multi-modal data independently.
However, these methods often build a weak connection
between heterogeneous modalities and their retrieval per-
formances need further improvement.

Modality-dependent approaches mainly learn the unified
or correlated hash codes to characterize the multi-modal
data, which can be roughly categorized into unsupervised
and supervised branches. Without semantic label supervi-
sion, unsupervised cross-modal hashing intuitively learns
the hash codes from original feature space to Hamming
space. For instance, inter-media hashing (IMH) [6] first
exploits the intra-view and inter-view consistency in a com-
mon Hamming space, and then utilizes the linear regression
to generate the hash codes. Collective matrix factorization
hashing (CMFH) [27] employs the joint matrix factorization
to learn the unified hash codes for varying multi-modal data,
while latent semantic sparse hashing (LSSH) [28] produces a
unified hash code via the latent semantic sparse representa-
tion. In addition, fusion similarity hashing (FSH) [29] pre-
serves the fusion similarity from multiple modalities and
learns the semantically correlated hash codes for heteroge-
neous data representations. Although these methods are able
to capture the semantic correlations between heterogeneous
modalities, the hash codes learned in an unsupervised way
are not discriminative enough and the corresponding cross-
modal similarity is notwell preserved in theHamming space.
Consequently, these approaches are restricted by the seman-
tic gap that the high-level semantic hash description of a data
sample differs from its low-level feature descriptor, which
therefore degrade the retrieval performance.

Supervised cross-modal hashing often utilizes the seman-
tic labels or relevance feedbacks to mitigate the semantic
gap between heterogeneous modalities, which can produce
more compact hash codes to boost the retrieval perform-
ance. Along this line, semantic correlation maximization
(SCM) [12] utilizes the label information to maximize the
semantic correlation, while semantic preserving hashing
(SePH) [30] constructs an affinitymatrix by label supervision
to approximate hash codes. In addition, co-regularized hash-
ing (CRH) [10], parametric local multi-modal hashing
(PLMH) [11], heterogeneous translated hashing (HTH) [31],
quantized correlation hashing (QCH) [32], supervisedmatrix
factorization hashing (SMFH) [33] and hetero-manifold reg-
ularisation hashing (HMRH) [34], have also been developed
for cross-modal retrieval. It is noted that these supervised
methods transform the semantic information of given labels
into pairwise similarities and slightly relax the original dis-
crete learning problem into a continuous learning manner,
which may yield less effective binary codes due to the accu-
mulated quantization error. To resist such optimization
problem, discrete cross-modal hashing (DCH) [35] and
cross-modal discrete hashing (CMDH) [36] attempt to
directly learn the compact binary codes under a discrete opti-
mization framework. However, these two methods are only
designed for the paired multi-modal instances. To adapt
unpaired multi-modal data collections, recent generalized
semantic preserving hashing (GSePH) [9] factorizes
the supervised affinity matrix to handle four different
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cross-modal retrieval scenarios, i.e., single label-paired
(SL-P), single label-unpaired (SL-U), multi label-paired
(ML-P) and multi label-unpaired (ML-U) scenarios. Similar
to most previous works, this method encodes the multi-
modal data with equal hash lengths, which may limit its
representation discriminability and scalability in real-world
applications, for reason that the data from different modali-
ties may be practically stored by different hash lengths.

In recent years, deep neural networks have also been
exploited to achieve cross-modal hashing [37], [38], [39].
Differing from conventional cross-modal hash learning
methods, these approaches attempt to combine the high-
level feature learning and hash code learning in an inte-
grated way, whereby the feature representations can be
optimized with hash code learning through error back-
propagation. Although these deep methods have shown
outstanding performance on many benchmarks, they are
always constrained by computational complexity and
exhaustive search for learning optimum model parameters.
Another potential limitation is that these approaches cannot
well close the semantic gap between the Hamming distance
on binary codes and the metric distance on high-level repre-
sentations. In addition, these methods generally utilize the
unified hash code to represent the heterogeneous data
points and depend highly on paired multi-modal data col-
lections. Therefore, it is still desirable to develop a flexible
cross-modal hashing framework practically.

3 MATRIX TRI-FACTORIZATION HASHING

Hashing maps the high-dimensional features into low-
dimensional binary codes, while preserving the similarities
of data from original space. Although multi-modal relevant
data often share the similar semantics, the heterogeneous
data samples may not have one-to-one correspondence and
their corresponding hash codes could be practically stored in
different lengths. As a typical multi-modal data processing
method, matrix factorization [27], [33] has shown its effec-
tiveness for cross-modal hashing, but often limits its applica-
tion domain in unified hash code learning and paired multi-

modal data collections. To the best of our knowledge, there
has been no previous work on exploring varying hash codes
of different lengths for cross-modal retrieval. In this section,
we present an efficient matrix tri-factorization hashing
(MTFH) framework to facilitate various kinds of cross-modal
retrieval tasks, which can work seamlessly in various set-
tings including paired or unpaired multi-modal data collec-
tions, and equal or varying hash length encoding scenarios.
To integrate all these challenging tasks, we describe the pro-
posed MTFH framework with only two modalities and its
extension problem will be carefully discussed in Section
4.10. The schematic pipeline of the proposed cross-modal
retrieval framework is shown in Fig. 3.

3.1 Notations and Problem Formulation

Suppose that we have training data with two different
modalities X2Rn1�d1 and Y2Rn2�d2 , with n1; n2 (in some
cases n1 6¼n2) being the numbers of data samples and d1; d2
(in general d1 6¼d2) the feature dimensions of these two
modalities, respectively. The provided training labels for
both modalities are Lx 2 Rn1�c and Ly 2 Rn2�c, where c is
the number of semantic categories. More specifically, only
one of the c entries is equal to 1 if the data is annotated with
single semantic label (e.g., Li

x ¼ ½0 0 1 0 0�), and more than

one entries will be equal to 1 if this data is marked with mul-
tiple semantic labels (e.g., Lj

y ¼ ½1 0 1 0 1�).
As suggested in [30], the semantic affinity matrix with

embedding supervision can be efficiently utilized to learn
hash codes of training instances. Accordingly, we first con-

struct an affinity matrix Sij¼hLi
x;L

j
yi or Sij¼e�kLix�L

j
yk22

�
s for

both single and multi-label retrieval tasks, where h�; �i is the
normalized inner product and s a constant factor. As demon-
strated in [9], an effective hash code learning scheme is to
find the optimal hash codes from S2Rn1�n2 directly and

attempt to factorize S as: S! 1
q1
UBT, U2Rn1�q1 , B2Rn2�q1 ,

where the rows inU (resp. B) are the hash codes for the items
in X (resp. Y) and q1 is length of hash code. Note that, the val-
ues of hash codes are often mapped into f�1; 1g for simple
computation, and it can be easily mapped into f0; 1g. It is

Fig. 3. The proposed generalized and flexible MTFH framework, which explicitly correlates the heterogeneous modalities. Note that, MTFH can han-
dle both paired or unpaired multi-modal data collections, and equal or varying hash length encoding scenarios.
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noted that such a factorization can only generate the hash
codes of equal length for multi-modal instances, which is
unsuitable for different hash length encoding scenario.

Let q2 (in general q2 6¼q1) represent another code length
and V2Rn2�q2 is the targeted hash matrix of Y, it is impera-
tive to learn the correlation between B and V. Since the
rows of both B and V characterize the hash codes of the
same instance, they share the semantic consistency intrinsi-
cally. Therefore, we consider a semantic correlation matrix

H12Rq1�q2 to map VT into BT, i.e., H1V
T!BT, and propose

to factorize S into three matrices: S! 1
q1
UH1V

T. Such a

decomposition is a typical matrix tri-factorization (MTF)
form [40], [41], and H1 can map the hash code length of Y
from q2 to q1, while maintaining the semantic consistency.
For cross-modal retrieval with different hash lengths, it is
also necessary to map the hash code length of X from q1 to

q2. Further, we rewrite 1
q1
UH1V

T as 1
q2
Uðq2q1 H1ÞVT, and the

length of rows in Uðq2q1 H1Þ becomes q2. That is, H1 serves as
a function of building the semantic connection between two
hash representations in the same modality and ensuring the
heterogeneous data comparable between different modali-
ties. Nevertheless, it is infeasible to derive a single H1 to
maintain the semantic consistency between different hash
representations for both X and Y. To tackle this problem, we
propose to utilize another semantic correlation matrix

H22Rq1�q2 for the semantic correlation in X, and alterna-

tively factorize S as: S! 1
q2
UH2V

T. It is noted that these tri-

ple decompositions have the constraint that the elements of
U and V take values in f�1; 1g, and such two factorizations
might not exist. To mitigate these problems, we consider the
following regularized least squares problem:

min
U;V;H1;H2

a
���S� 1

q1
UH1V

T
���2
F
þð1�aÞ

���S� 1

q2
UH2V

T
���2
F

s:t: U2f�1; 1gn1�q1 ;V2f�1; 1gn2�q2

VHT
1 2f�1; 1gn2�q1 ;UH22f�1; 1gn1�q2 ;

(1)

where k � kF is the Frobenius norm, and a a constant to bal-
ance two learning parts. Remarkably, the objective function
in Eq. (1) is essentially a challenging combinatorial optimi-
zation problem, which is highly non-convex (usually NP
hard) and cannot be solved trivially by an off-the-shelf
solver. Often, a possible solution might involve a deep
search of optimal values, which is computationally intracta-
ble [42]. Since there are several discrete constraints in
Eq. (1), especially VHT

1 2f�1; 1gn2�q1 and UH22f�1; 1gn1�q2 ,
it is impractical to obtain their optimal solutions simulta-
neously. To tackle this problem, we introduce two auxiliary
variables bU and bV to separate these constraints and refor-
mulate the Eq. (1) to an approximated one that it can be
solved efficiently by employing a regularization algorithm

min
U;V;bU;bV;H1;H2

a
���S� 1

q1
UbUT

���2
F
þð1�aÞ

���S� 1

q2
bVVT

���2
F

þ bðkbU�VHT
1 k2F þ kbV�UH2k2F Þ

þ �ðkH1k2F þ kH2k2F Þ
s:t: U 2 f�1; 1gn1�q1 ;V 2 f�1; 1gn2�q2

bU 2 f�1; 1gn2�q1 ; bV 2 f�1; 1gn1�q2 ;

(2)

where b is the penalty parameter and � the regularization
parameter. With an appropriate b, the solution of Eq. (2) is
highly close to Eq. (1). However, the optimization in Eq. (2) is
still formulated as a mixed-integer optimization problem,
which is still non-convex and normally intractable due to the
discrete constraints on binary codes. In order to simplify the
optimization in Eq. (2) and obtain a feasible solution, an intu-
itive way is to replace the constraint set f�1; 1gwith the con-
tinuous valued interval ½�1; 1� and make the problem
computationally tractable. Although this relaxation scheme
greatly reduces the hardness of the optimization by discard-
ing the discrete constraints, the approximated solution may
accumulate large quantization error as the code length
increases. Under such circumstances, the generated binary
codes are less effective [43], whichmay significantly degrade
the cross-modal retrieval performances. This is mainly
because the discrete constraints are not treated adequately
during the learning procedure. As introduced in [35], [43],
the discrete optimization technique is able to learn the binary
codes directly under discrete constraints, while simulta-
neously reducing the quantization error. Inspired by these
works, we propose an efficient discrete optimization algo-
rithm to solve Eq. (2), and alternately minimize the variables
by an iterative framework until the convergence is reached.

3.2 Optimization Phases

The optimization problem in Eq. (2) is a mixed binary opti-
mization problem, which is non-convex with respect to
matrix variables U;V; bU; bV, H1 and H2. Remarkably, it is
convex with respect to any single variable while fixing the
other ones. Accordingly, an alternating optimization tech-
nique can be adopted to iteratively and efficiently solve the
optimization problem until the convergence is reached. In
the following, we elaborate the proposed discrete optimiza-
tion algorithm in details.

H-Step. Learn H1 and H2 by holding U;V; bU and bV fixed,
then the sub-optimization problemsderived in Eq. (2) becomes

min
H1

bkbU�VHT
1 k2F þ �kH1k2F ;

min
H2

bkbV�UH2k2F þ �kH2k2F :
(3)

Accordingly, H1 and H2 can be computed by a regular-
ized linear regression respectively, and their closed-form
solutions are

H1 ¼ bUTVðVTVþ �b�1IÞ�1;

H2 ¼ ðUTUþ �b�1IÞ�1UT bV;
(4)

where I is an identity matrix.
U-Step. Learn U by fixing variables V; bU; bV;H1;H2, and

the sub-optimization of Eq. (2) is further simplified as

min
U

akS� 1

q1
UbUTk2F þ bkbV�UH2k2F

s:t: U 2 f�1; 1gn1�q1 :

(5)

The problem in Eq. (5) is NP-hard for directly optimizing
the binary code matrix U. As indicated in [43], a closed-
form solution for one row of U can be achieved by fixing all
the other rows. By expanding each item, we can rewrite
Eq. (5) as follows:
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min
U

akSk2F � 2a

q1
TrðSTUbUTÞ þ a

q21
kUbUTk2F

þ bkbVk2F � 2bTrðbVTUH2Þ þ bkUH2k2F
s:t: U 2 f�1; 1gn1�q1 ;

(6)

where Trð�Þ is the trace norm. According to the algebraic
operation of the trace, Eq. (6) can be further simplified as

min
U

a

q21
kUbUTk2F þ bkUH2k2F � 2TrðP1UÞ

s:t: U 2 f�1; 1gn1�q1 ;

(7)

where P1¼ a
q1
bUT

STþbH2
bVT. Specifically, coordinate descent

method has received extensive attention in recent years due
to its effectiveness for solving large-scale optimization prob-
lems [44]. As suggested in [35], [43], we can learn U bit by
bit and the discrete coordinate descent method can be uti-
lized for optimization [43]. Without loss of generality, let u
and bu denote the lth column ofU and bU, h2 and p1 represent
the lth row of H2 and P1, U

0, bU0 and H0
2 are the correspond-

ing matrices of U, bU and H2, respectively, excluding u, bu
and h2, we have

kUbUTk2F ¼ constþ kubuTk2 þ 2TrðbU0U0TubuTÞ
¼ constþ 2buT bU0U0Tu

(8)

kUH2k2F ¼ constþ kuh2k2 þ 2TrðH0
2
T
U0Tuh2Þ

¼ constþ 2h2H
0
2
T
U0Tu

(9)

TrðP1UÞ ¼ constþ p1u; (10)

where kubuTk2 ¼ TrðbuuTubuTÞ ¼ n1TrðbubuTÞ ¼ n1�n2 ¼ const,

kuh2k2 ¼ TrðhT
2 u

Tuh2Þ ¼ n1TrðhT
2 h2Þ ¼ const.

By integrating Eqs. (8), (9) and (10) together, we obtain
the following optimization problem:

min
u

a

q21
buT bU0U0T þ bh2H

0
2
T
U0T � p1

� �
u

s:t: u 2 f�1; 1gn1 :
(11)

Then, the solution of u can be computed by

u ¼ sign pT
1 � a

q21
U0ðbU0ÞTbu� bU0H0

2h
T
2

� �
: (12)

bU-Step. Fix U;V; bV;H1;H2, and update bU, then the sub-
optimization problem in Eq. (2) becomes

minbU akS� 1

q1
UbUTk2F þ bkbU�VHT

1 k2F

s:t: bU 2 f�1; 1gn2�q1 :

(13)

Similarly, a closed-form solution for one row of bU can be
achieved by fixing all the other rows. By expanding each
item, we can rewrite Eq. (13) as follows:

minbU akSk2F � 2a

q1
TrðSTUbUTÞ þ a

q21
kUbUTk2F

þ bkbUk2F � 2bTrðbUTVHT
1 Þ þ bkVHT

1 k2F
s:t: bU 2 f�1; 1gn2�q1 :

(14)

Since affinity matrix S is a fixed item and kbUk2F ¼ n2�
q1 ¼ const, the above equation can be further simplified as

minbU
a

q21
kUbUTk2F � 2TrðP2

bUÞ

s:t: bU 2 f�1; 1gn2�q1 ;

(15)

where P2 ¼ a
q1
UTSþ bH1V

T. Let p2 denote the lth row of P2,

we can obtain TrðP2
bUÞ ¼ constþ p2bu. According to Eq. (8),

the solution of bu can be achieved by

bu ¼ sign pT
2 � a

q21
bU0U0Tu

� �
: (16)

V-Step. Learn V by fixing the variables U; bU; bV;H1;H2,
the sub-optimization problem in Eq. (2) can be simplified as

min
V

ð1� aÞkS� 1

q2
bVVTk2F þ bkbU�VHT

1 k2F
s:t: V 2 f�1; 1gn2�q2 :

(17)

Similarly, a closed-form solution for one row of V can be
achieved by fixing all the other rows. By expanding each
item, we can rewrite Eq. (17) as follows:

min
V

ð1� aÞkSk2F � 2ð1� aÞ
q2

TrðST bVVTÞ

þ ð1� aÞ
q22

kbVVTk2F þ bkbUk2F
� 2bTrðbUTVHT

1 Þ þ bkVHT
1 k2F

s:t: V 2 f�1; 1gn2�q2 :

(18)

Since S and bU are the fixed items, the above equation can
be further simplified as

min
V

1� a

q22
kbVVTk2F þ bkVHT

1 k2F � 2TrðP3VÞ

s:t: V 2 f�1; 1gn2�q2 ;

(19)

where P3¼ 1�a
q2

bVTSþ bHT
1
bUT. Without loss of generality, let

v, bv and h1 denote the tth column of V, bV and H1 respec-
tively, p3 represent the tth row of P3, V

0, bV0 and H0
1 are the

corresponding matrices of V, bV and H1 respectively exclud-
ing v, bv and h1, we have the following equations:

kbVVTk2F ¼ constþ kbvvTk2 þ 2TrðV0ðbV0ÞTbvvTÞ
¼ constþ 2vTV0ðbV0ÞTbv (20)

kVHT
1 k2F ¼ constþ kvhT

1 k2 þ 2TrðH0
1V

0TvhT
1 Þ

¼ constþ 2hT
1H

0
1V

0Tv
(21)

TrðP3VÞ ¼ constþ p3v: (22)
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By integrating the Eqs. (20), (21) and (22) together, we can
obtain the following optimization problem:

min
v

1� a

q22
bvT bV0V0T þ bhT

1H
0
1V

0T � p3

� �
v

s:t: v 2 f�1; 1gn1 :
(23)

Then, the solution of v can be calculated as

v ¼ sign pT
3 � 1� a

q22
V0ðbV0ÞTbv� bV0H0

1
T
h1

� �
: (24)

bV-Step. FixU;V; bU;H1;H2, and update bV, then we get the
following sub-optimization problem:

minbV ð1� aÞkS� 1

q2
bVVTk2F þ bkbV�UH2k2F

s:t: bV 2 f�1; 1gn1�q2 :

(25)

By expanding each item, we can rewrite Eq. (25) as
follows:

minbV ð1� aÞkSk2F � 2ð1� aÞ
q2

TrðST bVVTÞ

þ ð1� aÞ
q22

kbVVTk2F þ bkbVk2F
� 2bTrðbVTUH2Þ þ bkUH2k2F

s:t: bV 2 f�1; 1gn1�q2 :

(26)

Since S is a fixed item and kbVk2F ¼ n1�q2 ¼ const, the
above equation can be further simplified as

minbV
1� a

q22
kbVVTk2F � 2TrðP4

bVÞ

s:t: bV 2 f�1; 1gn1�q2 ;

(27)

where P4¼ 1�a
q2

VTSTþbHT
2U

T. Let p4 denote the kth row of

P4, we can obtain TrðP4
bVÞ ¼ constþ p4bv. By integrating

Eq. (20), the solution of bv can be computed by

bv ¼ sign pT
4 � 1� a

q22
vV0T bV0

� �
: (28)

Accordingly, the optimum elements in Eq. (2) can be
obtained iteratively via alternatingminimization techniques.

Algorithm 1. The Proposed E-RCD for Hash Code
Updating

input: hash matrix B 2 f1;�1gn�q, ensemble round r;

output: updated hash matrix B̂;
1: denote bl as the lth column of B;
2: for t ¼ 1 : r do
3: independent selection at each iteration;
4: repeat
5: choose index lwith uniform probability from f1; . . . ; qg;
6: update bt

l via discrete hash learning;
7: until (all columns are updated )
8: end for
9: return B̂ ¼ signfB1 þ B2 þ � � � þ Brg.

3.3 Updating Scheme

During the coordinate descent optimization, only one vari-
able is updated at each iteration, while all the others remain
fixed. There are several strategies to select the coordinate
index, including cyclic coordinate descent (CCD), random-
ized coordinate descent (RCD) and greedy coordinate
descent (GCD) [45]. More specifically, CCD updates varia-
bles in a cyclic order, while RCD chooses variables ran-
domly based on some distribution. Differently, GCD
measures the coordinate index by the magnitude of gradi-
ent. Since the optimization in our framework is a discrete
optimization problem, GCD scheme is improper for this
case. In [35], [43], discrete cyclic coordinate (DCC) descent
scheme is selected to update the binary hash codes. Remark-
ably, DCC is still an approximated solution to discrete hash-
ing and may fall into a local minima [35], [44]. To alleviate
the possible trapping in local minimum, a straightforward
way is to repeat the optimization procedures several times
with different random initializations. As discussed in [45],
empirical studies have proved that RCD locally converges
to the global minimum at a geometric rate with high proba-
bility. Specifically, we utilize the ensemble RCD (E-RCD) to
derive the hash codes more reliably.

Let B2f1;�1gn�q be the representative symbol of updat-
ing hash code matrix, where n is the number of learning
samples and q is the code length. Accordingly, the optimiza-
tion procedure of the proposed E-RCD is explicitly summa-
rized in Algorithm 1. Please note that a large number of
rounds in ensemble learning could increase the computa-
tional load during the updating process. Fortunately, it is
practically adequate to run only a few rounds (e.g., r¼3) in
ensemble updating process. Consequently, each elements in
Eq. (2) can be obtained iteratively by repeating each updat-
ing process until the procedure converges or reaches maxi-
mum iterations. The main procedures of the proposed
MTFH approach are summarized in Algorithm 2.

Algorithm 2.Matrix Tri-Factorization Hashing (MTFH)

input: S 2 f1; 0gn1�n2 , q1, q2, parameters a;b;
output: U;V;H1;H2;
1: initializeH1;H2 as randommatrices, andU;V; bU; bV as binary

randommatrices with elements in f�1; 1g;
2: repeat
3: updateH1;H2 via Eq. (4);
4: compute u via Eq. (12), update U via Algorithm 1;
5: compute bu via Eq. (16), update bU via Algorithm 1;
6: compute v via Eq. (24), update V via Algorithm 1;
7: compute bv via Eq. (28), update bV via Algorithm 1;
8: until (convergency or reaching maximum iterations)
9: return U;V;H1;H2.

3.4 Learning Hash Functions

The hash function builds the mapping relation from input
features of each modality to binary codes [46]. In general,
learning hash functions for any bit of the hash code can be
transformed into a predictive model learning process, and
any binary classifier such as linear projections or non-linear
projections can be selected to learn the hash function. In the
literature, many different hash functions are explored and
the most common hash function is the linear hash function,
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which projects the input feature vector by a linear transfor-
mation followed by an element-wise sign operation.
Although linear hash function is very simple to use, it can-
not capture the nonlinearity embedded in real-world data.
To handle non-linear mapping, kernel logistic regression,
capable of modelling non-linear mappings, is popularized
to learn the projections from features to hash codes [7], [30].
For simplicity, we select modality X for illustration. That is,
a non-linear function f first maps the sample xi into the
reproducing kernel Hilbert space (RKHS) as fðxiÞ, and then
a linear function f in the RKHS space brings the input to the
hash code domain. To learn such projection in RKHS for the
kth bit (1 � k�q1), we need to learn the projection f

ðkÞ
x by

minimizing the following function:

min
f
ðkÞ
x

Xn1
i¼1

log 1þ e�b
ðkÞ
i

fðxiÞfðkÞx

� �
þ h f ðkÞ

x

�� ��2
2
; (29)

where b
ðkÞ
i 2f�1; 1g is the ith entry in bðkÞ, and h is a parame-

ter for weighting the regularizer. For features coming from
modality X, we can learn a set of hash functions FX ¼
ffð1Þx ; f

ð2Þ
x ; . . . ; f

ðq1Þ
x g. Similarly, we can also learn a set of

hash functions FY ¼ ff ð1Þ
y ; f

ð2Þ
y ; . . . ; f

ðq2Þ
y g to map the features

from Y to the hash code domain. For the testing data x and
y coming respectively from X and Y modalities, the hash
codes can be computed as: hx ¼ signðFXðxÞÞ and hy ¼
signðFYðyÞÞ.

3.5 Hash Codes for Out-of-Sample Extension

For any data point not in the training set, we can predict its
hash code with the corresponding probability obtained
from kernel logistic regression. For instance, given an
unseen instance x from the modality X, the corresponding
output probability for the kth bit of its predicted hash code
hl
x can be calculated as

Prðhk
x ¼ bjxÞ ¼ 1þ e�bfðxÞfðkÞx

� ��1

; (30)

where b2f�1; 1g denotes the binary state in hash code and

f
ðkÞ
x is the kth projection function in kernel logistic regres-
sion. Accordingly, for unseen instances, x and y, respec-
tively, from modalities X and Y, we can get their
corresponding hash codes hk

x at the kth bit and ht
y at the tth

bit as follows:

hk
x ¼ signðPrðhk

x ¼ 1jxÞ � Prðhk
x ¼ �1jxÞÞ

ht
y ¼ signðPrðht

y ¼ 1jyÞ � Prðht
y ¼ �1jyÞÞ: (31)

These two modality-specific hash codes are learned inde-
pendently for single-modal retrieval, and their hash lengths
may be different. Fortunately, with semantic correlation
matrices H1 and H2, these hash codes can be further trans-
formed into the semantically equivalent patterns to adapt to
cross-modal retrieval

bhx ¼ signðhxH2Þ; bhy ¼ signðhyH
T
1 Þ: (32)

3.6 Complexity Analysis

The computational complexity of the proposed MTFH
framework mainly involves the optimization in the training

phase. The time complexity of each iteration consists of
updating fH1;H2g, U, bU, V and bV, which respectively,
involves the computational complexity of Oðq2nþq3Þ,
Oððq2n2þq3nÞrÞ, Oðq2n2rÞ, Oððq2n2þq3nÞrÞ and Oðq2n2rÞ,
where n¼maxðn1; n2Þ, q¼maxðq1; q2Þ and r is ensemble
round. Therefore, the overall complexity is approximated as
Oððrq2n2þðrq3þq2Þnþq3ÞtÞ, where t is the number of itera-
tions to convergence and it is usually less than 20 in practice.
In most experiments, the final solution does not substantially
change if we utilize a large round number, and therefore it is
appropriate to set the ensemble round r at a very small value
(e.g., r¼3). Therefore, the proposed discrete optimization
scheme is suitable for practical cross-modal hashing tasks,
andmore discussions concerning to the large-scale data proc-
essingwill be included in Section 4.10.

4 EXPERIMENTS

In this section, we conduct a series of quantitative experi-
ments on public benchmarks and validate the effectiveness
of the proposed approach on various challenging retrieval
tasks. The source code is made publicly available at: https://
github.com/starxliu/MTFH.

4.1 Datasets and Evaluation Protocol

In the experiments, three popular multi-modal datasets, i.e.,
Wiki,1 MIRFlickr2 and NUS-WIDE,3 are selected for testing,
and the main description of each dataset is briefly described
as follows:

Wiki dataset consists of 10 categories and 2,866 image-text
pairs from the public Wikipedia articles [2]. Specifically, the
image is described by a 128-dimensional SIFT feature vec-
tor, while the text article is characterized by a 10-dimen-
sional feature vector that is computed by the Latent
Dirichlet Allocation (LDA) model. The whole Wiki dataset
is split into a training set of 2,173 instances and a testing set
of 693 instances.

MIRFlickr dataset comprises 25,000 image-text pairs col-
lected from the popular Flickr website [13], where the
images are annotated with textual tags. Specifically, each
image is described by a 150-dimensional edge histogram
descriptor, while the text is represented by a 500-dimen-
sional feature vector derived from its binary tagging vec-
tors. Each image-text pair is annotated with one or more of
24 semantic labels. As suggested in [30], we remove the
instances whose textual tags appear less than 20 times or
label is not annotated, and take out 5 percent of the dataset
as the query set and the remaining parts as the training set.

NUS-WIDE dataset includes 269,548 image-text pairs with
81 manually annotated concepts in total [47]. Specifically,
each image is represented by a 500-dimensional SIFT fea-
ture vector, while each text is described by a 1,000-dimen-
sional bag-of-words (BoW) vector. Since some of the labels
are scarce and a large part of concepts contain little samples,
186,577 annotated instances are selected from the top 10
most frequent concepts to guarantee that each concept has
abundant training samples (abbreviated as NUS-WIDE-All).

1. http://www.svcl.ucsd.edu/projects/crossmodal/
2. http://press.liacs.nl/mirflickr/
3. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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As NUS-WIDE-all is a larger dataset, it is generally impossi-
ble to learn the hash functions on the whole database.
Therefore, we randomly select 100,000 labeled image-text
pairs from NUS-WIDE-all database to construct a small
dataset (abbreviated as NUS-WIDE-100k), with 5 percent
pairs as the query set and the remaining parts as the train-
ing set. For NUS-WIDE-all dataset, we keep the training
samples and testing samples as the same as the selection in
NUS-WIDE-100k, and utilize the learned hash functions to
generate the hash codes of remaining samples.

The quantitative performance is evaluated by the popu-
lar mean Average Precision (mAP) over all queries in the

query set [30]: 1
nq

Pnq
i¼1

1
mi

Pmi
k¼1 pðkÞdðkÞ, where nq is the sam-

ple size of query set, mi is the number of ground-truth
neighbors relevant to query i in the database, pðkÞ denotes
the precision of top k retrieved results, and dðkÞ¼1 if the kth
retrieved sample is relevant, otherwise dðkÞ¼0. Given a
query of one modality, the goal of each cross-modal task is
to find the relevant neighbors from the database of another
modality. That is, the relevant instances corresponding to a
given query are defined as those share as least one semantic
label with the query. The larger mAP generally indicates
the better retrieval performance. We take the testing set of
one modality as the query set to retrieve the relevant data of
another modality, including retrieving text with given
image (I!T) and retrieving image with given text (T!I). In
the experiments, we fix a¼0:5, �¼0:1 and b¼0:1.

4.2 Baseline Methods

As surveyed in Section 2, there exist many cross-modal hash-
ing works. It is noted that the recent deep cross-modal hash-
ing methods integrate the high-level feature learning and
hash learning together, and our framework is totally differ-
ent from thoseworks. In that sense, it is really difficult to per-
form a relatively fair and meaningful comparison with these
approaches appropriately. Specifically, we compare the pro-
posed MTFH with eight well known cross-modal hashing
methods, including two unsupervised methods, i.e., CMFH
[27] and FSH [29], and six supervised approaches, i.e.,
SMFH [33], SCM [12], SePH [30], GSePH [9], DCH [35] and
SRLCH [48]. Those algorithms have been briefly introduced
in Section 2 and considered to be the current state-of-the-arts
in cross-modal hash learning. Note that, some other competi-
tive works are already reportedwithin these works.

For the selected baselines, we utilize the source codes
kindly provided by the respective authors. The parameters
are initialized as the authors have given in their original
papers. As SePH [30] and SMFH [33] are computationally
expensive, it is difficult to learn their corresponding hash
functions on a larger training set. For the implementation of
these two works, we follow their data processing sugges-
tions and sample a subset of 5,000 instances, respectively
from the retrieval sets of larger MIRFlickr and NUS-WIDE
datasets, to form the training sets. For the other baselines,
the training samples are initialized as the same as in the
data description. All the experiments are implemented
using MATLAB and conducted on a computer running at
an Intel Xeon E5-2609 1.90 GHz processer with 128 GB
memory. In the experiments, we perform five runs for each
algorithm and take the average performance for illustration.

4.3 Results of Equal Hash Length Encoding

As surveyed in Section 2, almost all existing cross-modal
hashing methods choose either unified or equal-length hash
codes for multi-modal data representation. For fair compari-
son, we first set q1¼q2 to learn the equal-length hash codes
and vary the hash length from 16 to 128 bits (i.e., 16, 32, 64
and 128). Meanwhile, we select both random (rnd) and k-
means (km) sampling scheme in kernel logistic regression,
and record the mAP scores on all four benchmark datasets.
Table 1 displays the quantitative comparisons of cross-
modal retrieval performances with state-of-the arts base-
lines, while Fig. 4 shows their precision-recall curves. It can
be found that the proposed MTFH approach has achieved
the comparable cross-modal retrieval performances in dif-
ferent hash length settings, and outperformed most base-
lines, i.e., CMFH [27], SMFH [33], FSH [27], SCM [12],
SePH [30] and GSePH [9].

For the small Wiki dataset, DCH [35] has yielded very
competitive mAP scores in I!T task (i.e., 32, 64 and 128
bits), while SRLCH [48] has resulted the larger mAP scores
in T!I task (i.e., 16 and 32 bits). However, their retrieval
performances often degrade on the larger datasets. Compar-
atively speaking, the proposed MTFH approach has deliv-
ered very competitive cross-modal retrieval performance on
the Wiki dataset, and simultaneously yielded the best
retrieval performance on the larger datasets. The main rea-
son lies that the Wiki dataset is a single-label dataset, while
the other datasets are multi-label databases. For single-label
dataset, some examples belonging to only one semantic
label may have significantly different features. Under such
circumstances, the features can be utilized to increase the
discrimination power of hash code learning. Therefore,
DCH and SRLCH are designed to jointly learn the hash
functions and unified binary codes, which can produce very
promising results on the Wiki dataset. For the multi-label
dataset, the semantic labels are able to depict each instance,
and the modality-specific hash codes derived from the pro-
posed MTFH approach are more semantically meaningful
than those generated from DCH and SRLCH. As a result,
the proposed MTFH has yielded the best retrieval perfor-
mance on the larger datasets. For T!I task, the mAP scores
obtained by the proposed MTFH_km approach are higher
than 0.80 and 0.75, respectively evaluated on the MIRFlickr
and NUS-WIDE-100k datasets. For the largest NUSWIDE-
All dataset, the hash codes of out-of-sample data can be
well obtained and the proposed MTFH method has also
delivered the best cross-modal retrieval performances. The
main superiorities contributed to these very competitive
performances are three-fold: 1) The modality-specific hash
codes derived from MTFH are more discriminative and
interpretable to characterize the heterogeneous data sam-
ples, while the unified hash representation may degrade
their representation capability to represent both modalities.
2) MTF is more beneficial for revealing the latent structures
within the heterogeneous samples, which can well charac-
terize the native relations between data samples within the
same modality and correlate the semantics between hetero-
geneous samples. Accordingly, the hash codes learned by
the MTFH are more semantically meaningful than that gen-
erated by traditional matrix bi-factorization methods [9],
[27]. 3) The hash functions learned from the discriminative
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Fig. 4. Precision-recall curves obtained by different approaches and tested on different datasets, in which the representative code lengths, i.e., 32, 64
and 128 bits, are selected for evaluation.

TABLE 1
Quantitative Comparisons of Cross-Modal Retrieval Performance (mAP) on Different Datasets,

and the Best Results Are Highlighted in Bold

Task Method
Wiki MIRFlickr NUS-WIDE-100k NUS-WIDE-All

16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128

I!T

CMFH [27] 0.2172 0.2231 0.2316 0.2395 0.5683 0.5684 0.5687 0.5693 0.3428 0.3434 0.3433 0.3432 0.3658 0.3689 0.3689 0.3681

SMFH [33] 0.2698 0.2900 0.2929 0.3009 0.5913 0.5997 0.5956 0.5986 0.3612 0.3613 0.3628 0.3635 0.3668 0.3678 0.3690 0.3692

FSH [29] 0.2235 0.2316 0.2408 0.2474 0.5893 0.6027 0.6006 0.6022 0.4927 0.4986 0.5015 0.5057 0.4930 0.5000 0.5093 0.5133

SCM_orth [12] 0.1561 0.1416 0.1336 0.1339 0.5899 0.5800 0.5738 0.5689 0.3990 0.3813 0.3666 0.3572 0.3975 0.3787 0.3665 0.3559

SCM_seq [12] 0.2341 0.2410 0.2445 0.2569 0.6280 0.6345 0.6385 0.6490 0.5275 0.5414 0.5481 0.5498 0.5266 0.5378 0.5406 0.5436

SePH_rnd [30] 0.2702 0.3013 0.3135 0.3181 0.6727 0.6804 0.6799 0.6857 0.5347 0.5472 0.5533 0.5574 0.5264 0.5389 0.5539 0.5527

SePH_km [30] 0.2770 0.2964 0.3153 0.3138 0.6736 0.6789 0.6822 0.6851 0.5381 0.5517 0.5556 0.5654 0.5357 0.5526 0.5681 0.5724

GSePH_rnd [9] 0.2690 0.2906 0.3101 0.3001 0.6544 0.6664 0.6768 0.6842 0.5194 0.5399 0.5489 0.5699 0.4997 0.5436 0.5428 0.5496

GSePH_km [9] 0.2778 0.2882 0.3044 0.3040 0.6460 0.6649 0.6725 0.6835 0.5018 0.5370 0.5595 0.5715 0.5006 0.5408 0.5571 0.5590

DCH [35] 0.3410 0.3692 0.3710 0.3783 0.6777 0.6730 0.6883 0.6885 0.5706 0.5939 0.5982 0.6072 0.5108 0.5383 0.5480 0.5501

SRLCH [48] 0.3268 0.3345 0.3225 0.3381 0.6166 0.5924 0.6526 0.6327 0.4362 0.4572 0.4506 0.4612 0.3478 0.3517 0.3513 0.3582

MTFH_rnd 0.3260 0.3523 0.3454 0.3388 0.7515 0.7568 0.7592 0.7636 0.6507 0.6557 0.6744 0.6741 0.5949 0.6144 0.6243 0.6228

MTFH_km 0.3413 0.3533 0.3511 0.3349 0.7471 0.7606 0.7651 0.7676 0.6554 0.6591 0.6759 0.6751 0.6021 0.6184 0.6282 0.6271

T!I

CMFH [27] 0.4902 0.5077 0.5173 0.5348 0.5646 0.5652 0.5649 0.5653 0.3464 0.3472 0.3473 0.3474 0.3687 0.3698 0.3692 0.3698

SMFH [33] 0.6085 0.6274 0.6308 0.6445 0.5890 0.5909 0.5915 0.5954 0.3524 0.3524 0.3529 0.3538 0.3587 0.3593 0.3606 0.3605

FSH [29] 0.4805 0.4804 0.5127 0.5182 0.5865 0.5970 0.5965 0.5969 0.4751 0.4785 0.4822 0.4879 0.4729 0.4807 0.4883 0.4909

SCM_orth [12] 0.1521 0.1330 0.1258 0.1207 0.5893 0.5802 0.5719 0.5661 0.3873 0.3714 0.3602 0.3574 0.3883 0.3699 0.3589 0.3546

SCM_seq [12] 0.2257 0.2459 0.2494 0.2535 0.6176 0.6234 0.6285 0.6369 0.4952 0.5076 0.5157 0.5174 0.4956 0.5031 0.5124 0.5104

SePH_rnd [30] 0.6428 0.6493 0.6570 0.6672 0.7252 0.7306 0.7374 0.7397 0.6231 0.6491 0.6577 0.6654 0.6103 0.6360 0.6507 0.6487

SePH_km [30] 0.6402 0.6543 0.6585 0.6674 0.7313 0.7320 0.7381 0.7442 0.6310 0.6546 0.6628 0.6702 0.6143 0.6428 0.6533 0.6649

GSePH_rnd [9] 0.6478 0.6644 0.6679 0.6762 0.6894 0.7046 0.7313 0.7367 0.5871 0.6234 0.6419 0.6638 0.5720 0.6334 0.6308 0.6442

GSePH_km [9] 0.6445 0.6639 0.6683 0.6755 0.6663 0.7113 0.7269 0.7441 0.5595 0.6379 0.6593 0.6764 0.5780 0.6289 0.6482 0.6550

DCH [35] 0.6980 0.7160 0.7172 0.7195 0.7455 0.7559 0.7825 0.7921 0.6939 0.7276 0.7287 0.7473 0.4926 0.5171 0.5254 0.5298

SRLCH [48] 0.7132 0.7184 0.7330 0.7437 0.6004 0.5796 0.6342 0.6053 0.5175 0.5346 0.5423 0.5470 0.3467 0.3466 0.3469 0.3471

MTFH_rnd 0.7037 0.7150 0.7365 0.7399 0.7965 0.8067 0.8198 0.8303 0.7486 0.7760 0.7912 0.7938 0.6788 0.6980 0.7213 0.7201

MTFH_km 0.7020 0.7134 0.7339 0.7368 0.8044 0.8146 0.8172 0.8352 0.7567 0.7797 0.7945 0.8044 0.6973 0.7096 0.7326 0.7307
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hash codes are more efficient for mapping from features to
hash codes, whereby the hash codes for out-of-sample data
can be well computed.

As suggested in [35], we further utilizemAP@Kand topK-
precision to measure the retrieval performances within the
top-ranked K retrieved items. Specifically, topK-precision
reflects the change of precision with respect to the number of
top-ranked K instances presented to the users. For these two
metrics, larger value generally indicates the better retrieval
performance. As displayed in Table 2, we record the repre-
sentative mAP@50 values in typical MIRFlickr and NUS-
WIDE-100k datasets. It can be found that the proposed

MTFH approach yields the comparable mAP@50 values
with DCH when tested on MIRFlickr, and outperforms the
state-of-the-art baselines on NUS-WIDE-100k. Meanwhile,
the representative topK-precision curves (i.e., 32 and 128
bits) are shown in Fig. 5, it can be seen that the proposed
MTFH method always yields the highest precision scores
than the baselines with the number of retrieved instances (K)
changes. This indicates that the proposedMTFH approach is
capable of returning much more similar samples at the
beginning, which is very important for a practical retrieval
system. Therefore, the proposed MTFH associated with
equal hash length setting is very competitive to the state-of-
the-art cross-modal retrieval baselines.

4.4 Results of Unequal Hash Length Encoding

The proposed MTFH framework is the first attempt to gen-
erate varying hash codes of different lengths for multi-
modal data representation. To validate the flexibility and
effectiveness of the proposed framework, we set q1 6¼q2 and
conduct a series of experiments with unequal hashing
length settings, e.g., the hash lengths corresponding to
image and text modalities are set at 16 (I-16) and 32 (T-32)
bits, respectively. The mAP values obtained by unequal
hash length settings are displayed in Fig. 6, it can be seen
that the best retrieval performances are not always achieved
by the equal hash length representations, and varying hash
length encoding scheme has also delivered very competitive
cross-modal retrieval performance. For instance, if the
MTFH_rnd method is selected, the best I!T retrieval
results tested on the MIRFlickr and NUS-WIDE-100k data-
sets are generated by hash pair I-64&T-128. The similar
results can be also found in their average retrieval perform-
ances. The main reason lies that the feature dimensions cor-
responding to the image and text modalities are different,

TABLE 2
Representative Cross-Modal Retrieval Performance (mAP@50)

Obtained by Different Approaches, and the Best Results
Are Highlighted in Bold

Method

MIRFlickr NUS-WIDE-100k

I!T T!I I!T T!I

32 128 32 128 32 128 32 128

CMFH [27] 0.5257 0.5798 0.5701 0.5846 0.4026 0.4200 0.4052 0.4267

SMFH [33] 0.6915 0.7052 0.6691 0.6928 0.4291 0.4327 0.4025 0.4240

FSH [29] 0.6804 0.6960 0.6744 0.6951 0.5734 0.5706 0.6024 0.5883

SCM_orth [12] 0.6510 0.6593 0.6682 0.6394 0.5168 0.4540 0.5124 0.4594

SCM_seq [12] 0.7061 0.7217 0.7160 0.7395 0.6230 0.6464 0.6366 0.6509

SePH_rnd [30] 0.7260 0.8546 0.8301 0.8652 0.5813 0.5993 0.7299 0.7635

SePH_km [30] 0.7237 0.8563 0.8276 0.8703 0.5798 0.5956 0.7335 0.7681

GSePH_rnd [9] 0.6773 0.8370 0.8106 0.8655 0.5996 0.6133 0.7702 0.7873

GSePH_km [9] 0.6679 0.8398 0.8119 0.8727 0.6082 0.6166 0.7808 0.7936

DCH [35] 0.7723 0.8885 0.8923 0.9013 0.6396 0.6301 0.8231 0.8171

SRLCH [48] 0.7480 0.7849 0.8284 0.7675 0.7670 0.8645 0.7510 0.8495

TMFH_rnd 0.7713 0.8932 0.8619 0.8992 0.7337 0.7723 0.8687 0.8766

TMFH_km 0.7739 0.8887 0.8624 0.8935 0.7272 0.7753 0.8616 0.8814

Fig. 5. The representative topK-precision curves tested on MIRFlickr and NUS-WIDE-100k datasets.

Fig. 6. Cross-modal retrieval results obtained by the proposed MTFH with varying hash length settings, and the best results are highlighted in bold.
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and such difference makes the varying hash length encod-
ing scheme to be efficient for heterogeneous data represen-
tation. Further, we record the mAP scores by fixing the hash
length of one modality to be constant and varying the hash
bits of another modalities to be different. Typical examples
are shown in Fig. 7, it can be found that the larger code
length does not always improve the cross-modal retrieval
performance and the optimum retrieval results are not usu-
ally achieved by the equal hash length encoding scenarios.
It is noted that the varying hash length encoding of different
modalities has delivered the comparable and even better
retrieval performances. For instance, the hash pair I-80&
T-100 has achieved the better retrieval performances (i.e.,
larger mAP scores) than that obtained by hash pair
I-100&T-100, when tested on MIRFlickr dataset. That is, the
proposed MTFH method can shorten the hash bits of one
modality to index relevant samples without degrading the
performances. Therefore, the hash representations of het-
erogeneous modalities encoded by different code lengths
are feasible and meaningful, especially when the feature
dimensions of heterogeneous modalities differ sharply.

Further, we evaluate the recall rates by using unequal
hash lengths. As the feature dimension of text modality in
the Wiki dataset is only equal to 10, we fix the hash length
of image modality to be 128, and report the recall rates by
varying the hash bits of text modality from 16 to 128. Mean-
while, we also record the recall scores with equal hash
length encoding scenarios, i.e., I-16&T-16, I-32&T-32 and I-
64&T-64. As shown in Table 3, it can be found that the best
recall rates are not achieved by the equal hash length repre-
sentations. For instance, the hash pair I-128&T-64 has
achieved the best recall rate of I!T task when the top 500
instances are searched. The main reason lies in that the
image-text pairs are not always optimally encoded by the
equal hash lengths due to their different sample size and
distinct feature dimensions, thereby the strictly equalized
hash length setting cannot guarantee the learned binary
codes to be semantically discriminative for heterogeneous
data representation. Another possible reason is that a bit
long hash representation of low-dimensional text data may
result in low recall, since the collision probability that two
codes fall into the same hash bucket may decrease exponen-
tially as the code length increases. It is noted that the recall
rates are not improved when we search the relevant sam-
ples with higher number of bits, e.g., I-128&T-128. Under
the circumstances, the proposed MTFH method incorporat-
ing with less hash bits could save the storage memory,
which we will discuss it in Section 4.10. Therefore, the
proposed varying hash length encoding scheme is beneficial
to produce more effective hash code for heterogeneous
data representation and performance improvements. More
importantly, the proposed cross-modal retrieval framework

is particularly adaptive to an even more challenging sce-
nario, i.e., the hash representations from heterogeneous
modalities are encoded and stored by different lengths in
the database. The experimental results have shown its flexi-
bility with outstanding performances.

4.5 Results of the Unpaired Scenario

The experiments reported in Sections 4.3 and 4.4 mainly
focus on the paired multi-modal data collections. For the
unpaired data collections, we further evaluate the proposed
MTFH method on both single-label unpaired (SL-U) and
multi-label unpaired (ML-U) scenarios. That is, multi-modal
data from different modalities may not have one-to-one cor-
respondence, e.g., 100 images and 90 text documents share
the same semantic tag “flower”.

For SL-U, each data point is associated with a single label,
but there does not exist one-to-one correspondence between
the data of two modalities. In this case, the Wiki dataset is
selected for evaluation. Similar to [9], we keep the text
modality unchanged and randomly select 90 percent of
images as ‘unpair-1’ and vice verse as ‘unpair-2’. For ML-U,
each data point is associated with multiple labels, but there
also does not exist one-to-one correspondence between the
data of two modalities. In this case, MIRFlickr dataset is
selected for evaluation, and we follow the same organizing
way as SL-U to form the unpaired data fromMIRFlickr data-
set. Specifically, the training set itself serves as the retrieval
set while the query set is kept unchanged as in the paired
cases. Except for GSePH [9], other cross-modal retrieval algo-
rithms developed for paired multi-modal collections are not
applicable to handle this unpaired scenario. We follow the
data processingways in [9] to artificially construct the paired
training sets and heuristically implement the CCA [15], IMH
[6], CMFH [27] and DCH [35] for meaningful comparison. In
GSePH and MTFH, the random (rnd) sampling scheme is
selected in kernel logistic regression.

The cross-modal retrieval performances tested on unpai-
red data are shown in Table 4. It can be observed that CCA
and IMH methods have delivered relatively lower mAP
scores, while CMFH and GSePH approaches have also
degraded their retrieval performances in unpaired multi-
modal data collections. By contrast, our proposed MTFH
method significantly outperforms these baseline methods.
For I!T task, themAP values obtained by GSePH and tested
on MIRFlickr dataset drop slightly on both unpaired tasks,
which are all less than 0.69. Relatively speaking, our

Fig. 7. Cross-modal retrieval results by fixing the hash length of one
modality and varying the hash length of another modality.

TABLE 3
Recall Rates Obtained by MTFH and Tested with

Different Hash Lengths on Wiki Dataset

Bit length Recall rates of I!T task with different ranking instances.

50 100 250 500 750 1000 1500 2000

I-16&T-16 0.0489 0.0981 0.2370 0.3781 0.4891 0.5952 0.7802 0.9440

I-32&T-32 0.0507 0.1021 0.2401 0.3828 0.5109 0.6199 0.8134 0.9536

I-64&T-64 0.0530 0.1058 0.2499 0.3959 0.5185 0.6302 0.8116 0.9587

I-128&T-128 0.0542 0.1076 0.2515 0.3876 0.5131 0.6288 0.8121 0.9554

I-128&T-16 0.0366 0.0741 0.1807 0.3041 0.4117 0.5272 0.7423 0.9444

I-128&T-32 0.0514 0.1028 0.2417 0.3935 0.5241 0.6340 0.8327 0.9640

I-128&T-64 0.0565 0.1133 0.2669 0.4093 0.5240 0.6263 0.8007 0.9503

The best results are highlighted in bold.
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proposed MTFH method yields the very competitive I!T
performances and the corresponding mAP values are higher
than 0.73. By artificially pairing the training samples, we
notice that DCH has achieved the promising retrieval per-
formances, especially for the T!I task on the Wiki dataset.
However, the mAP scores obtained by DCH were relatively
unstable when tested on MIRFlickr dataset. In contrast to
this, our proposed MTFH has achieved very stable perfor-
mance on MIRFlickr dataset and the corresponding mAP
values are always higher than the results obtained by DCH.
That is, our proposed MTFH approach can not only handle
various unpaired multi-modal data collections, but also pro-
duce relatively stable retrieval performance on different
retrieval tasks.

4.6 Results of Single-Modal Retrieval

The majority of existing cross-modal hashing methods often
learn unified hash codes to characterize the paired multi-
modal data. As shown in Fig. 8, if the unified hash codes are
utilized to represent the heterogeneous data points, these
approaches naturally yield the same retrieval performance in
both single-modal and cross-modal retrieval tasks. In contrast
to this, the hash codes of heterogeneous modalities derived
from the proposed MTFH approach are different, and these

learned modality-specific hash codes can be well utilized for
single-modal retrieval. As indicated in FSH [29], the integra-
tion of multiple modalities often improves the search perfor-
mance, and we further evaluate our learned hash codes on
single-modal retrieval, i.e., image-to-image (I!I) and text-to-
text (T!T). Specifically, the random (rnd) sampling scheme is
adopted in kernel logistic regression. Meanwhile, we select
three competing single-modal hashing baselines, i.e., Iterative
Quantization (ITQ) [49], Scalable Graph Hashing (SGH) [50]
and Fast Supervised Discrete Hashing (FSDH) [14], and one
representative cross-modal hashing (non-unified hash repre-
sentation), i.e., FSH [29], for meaningful comparison. Note
that, the other unified hash representations are not selected
because these works naturally yield the same retrieval per-
formances in both single-modal retrieval and cross-modal
retrieval, as shown in Table 1.

Table 5 shows the single-modal retrieval results on repre-
sentative datasets. It can be observed that hash codes of
equal lengths derived from the proposed MTFH method
have always delivered a better single-modal retrieval
performance than that generated from both representative
single-modal hashing methods (i.e., ITQ [49], SGH [50] and
FSDH [14]) and non-unified hash representation method
(i.e., FSH [29]). Meanwhile, as compared in Table 1, the
single-modal retrieval performances obtained by MTFH are
generally better than most results that produced by unified
hash representations (e.g., CMFH [27], SePH [30] and
GSePH [9]). This demonstrates that the proposed MTFH
framework is able to produce more distinguished binary
codes for both heterogeneous modalities, which subse-
quently improves the single-modal retrieval performance.
That is, the proposed MTFH method not only exhibits the

TABLE 4
Retrieval Results (mAP) of Unpaired Multi-Modal Data

Collections, and the Best Results Are Highlighted in Bold

Method
Wiki (I!T/T!I) MIRFlickr (I!T/T!I)

unpair-1 unpair-2 unpair-1 unpair-2

CCA [15] 0.176/0.156 0.178/0.154 0.581/0.579 0.581/0.579

IMH [6] 0.176/0.156 0.178/0.154 0.581/0.579 0.581/0.579

CMFH [27]

16 0.196/0.496 0.205/0.452 0.567/0.564 0.567/0.563

32 0.204/0.509 0.231/0.491 0.568/0.566 0.568/0.564

64 0.215/0.532 0.232/0.492 0.568/0.565 0.568/0.564

128 0.220/0.534 0.240/0.507 0.568/0.566 0.568/0.564

GSePH [9]

16 0.257/0.453 0.268/0.422 0.651/0.631 0.653/0.645

32 0.273/0.477 0.279/0.438 0.648/0.633 0.658/0.635

64 0.283/0.483 0.298/0.456 0.665/0.665 0.675/0.663

128 0.288/0.490 0.292/0.466 0.676/0.670 0.681/0.668

DCH [35]

16 0.324/0.692 0.304/0.636 0.661/0.745 0.675/0.741

32 0.336/0.717 0.354/0.668 0.657/0.738 0.673/0.737

64 0.349/0.716 0.379/0.683 0.666/0.760 0.679/0.750

128 0.347/0.723 0.384/0.690 0.686/0.796 0.690/0.771

MTFH

16 0.329/0.711 0.316/0.727 0.733/0.759 0.754/0.808

32 0.342/0.727 0.343/0.736 0.757/0.811 0.757/0.819

64 0.355/0.734 0.330/0.749 0.761/0.820 0.759/0.827

128 0.340/0.707 0.365/0.742 0.765/0.832 0.767/0.824

Fig. 8. The illustration of different hash representation for single-modal
retrieval and cross-modal retrieval tasks.

TABLE 5
Results (mAP) of Single-Modal Retrieval on Paired

Multi-Modal Data, and the Best Results Are Highlighted in Bold

Method Bit length
Wiki MIRFlickr NUS-WIDE-100k

I!I/T!T I!I/T!T I!I/T!T

ITQ [49]

32 0.114/0.414 0.573/0.583 0.381/0.353

64 0.113/0.414 0.552/0.578 0.381/0.349

128 0.111/0.414 0.575/0.562 0.383/0.349

SGH [50]

32 0.121/0.440 0.582/0.579 0.338/0.373

64 0.120/0.460 0.583/0.581 0.339/0.371

128 0.120/0.486 0.583/0.579 0.339/0.369

FSDH [14]

32 0.215/0.555 0.663/0.694 0.492/0.523

64 0.245/0.610 0.661/0.699 0.483/0.518

128 0.276/0.667 0.672/0.715 0.511/0.556

FSH [29]

I-32&T-32 0.161/0.519 0.592/0.605 0.462/0.521

I-64&T-64 0.165/0.520 0.590/0.604 0.469/0.538

I-128&T-128 0.167/0.536 0.593/0.607 0.467/0.537

MTFH

I-32&T-32 0.363/0.738 0.748/0.823 0.662/0.797

I-64&T-64 0.363/0.748 0.760/0.820 0.675/0.805

I-128&T-128 0.373/0.740 0.768/0.830 0.683/0.795

I-32&T-64 0.355/0.739 0.754/0.819 0.666/0.793

I-32&T-128 0.366/0.736 0.759/0.827 0.665/0.809

I-64&T-32 0.362/0.744 0.759/0.816 0.673/0.780

I-64&T-128 0.383/0.746 0.761/0.832 0.678/0.795

I-128&T-32 0.378/0.734 0.763/0.811 0.679/0.782

I-128&T-64 0.376/0.749 0.763/0.823 0.690/0.796
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flexibility in cross-modal retrieval, but also shows very com-
petitive performance in single-modal retrieval task.

Further, the proposed MTFH framework is able to jointly
learn the modality-specific hash codes with different hash
length settings, and some derived hash codes with varying
lengths have also boosted the single-modal retrieval perfor-
mance. For instance, the learned multi-modal hash codes,
e.g., I-128&T-64, yield the best I!I retrieval performance on
the NUS-WIDE-100k dataset. That is, the hash codes derived
from the couple lengths, i.e., I-128&T-64, are more semanti-
cally meaningful for single-modal retrieval on NUS-WIDE-
100k dataset. The experimental results have shown its scal-
ability in single-modal retrieval tasks.

4.7 Results of CNN Visual Features

With the development of convolutional neural network
(CNN), the visual features obtained from the pretrained or
fine-tuned CNN models have demonstrated to be effective
for cross-modal retrieval [51], and the improved performance
can be achieved based on classic cross-modal retrieval meth-
ods, such as CCA [15] and three-view CCA [52]. Accordingly,
we evaluate the proposed MTFH on the Wiki, Pascal Sen-
tence [53] and Pascal VOC 2007 [54] datasets, and their CNN
visual features are publicly shared by work [51]. Specifically,
the off-the-shelf fine-tuned CNN visual features, i.e., FT-fc7,
are selected for evaluation [51]. Meanwhile, we carefully
implement CCA [15], three view CCA (T-V CCA) [52], deep
Semantic Matching (deep-SM) [51], CMFH [27], SePH [30],
GSePH [9] and DCH [35] for comparison. Comparing with
the hand-crafted visual features, the dimensionality of CNN
feature is large, i.e., 4,096. Therefore, we typically set the code
length to 32 and 128, and equalize the hash length of two het-
erogeneousmodalities for fair evaluation.

The representative cross-modal retrieval performances
evaluated on the fine-tuned CNN visual features are dis-
played in Table 6, it can be observed that both of DCH [35]
and the proposed MTFH method yield the better retrieval
performances than the results produced by other competing
baselines, i.e., CCA [15], T-V CCA [52], deep-SM [51],

CMFH [27], SePH [30] and GSePH [9]. We notice that
DCH [35] has delivered very competitive mAP scores in Pas-
cal sentence dataset (i.e., 128 bits), but its retrieval perfor-
mance degrades on the Wiki and Pascal VOC 2007 datasets.
Comparatively speaking, the proposedMTFH approach often
boosts the retrieval performances in different hash length set-
tings, and significantly outperforms most state-of-the-art
baselines, especially on the Wiki and Pascal VOC 2007 data-
sets. For instance, the Wiki dataset is a very popular multi-
modal dataset, and the CNN visual features can further bene-
fit the cross-modal retrieval performance. If the hash length is
set at 128 bits, the mAP scores obtained by MTFH are higher
than 0.5 and 0.8, respectively, evaluated on I!T and T!I
tasks. This demonstrates that the learned hash projection
functions can well map the CNN visual features into compact
hash codes. That is, the proposed MTFH framework is appli-
cable to various kinds of sample features and the experimen-
tal results have demonstrated its efficiency.

4.8 Effects of Discrete Optimization

Within the proposed MTFH framework, an efficient discrete
optimization algorithm is proposed to jointly learn the
modality-specific hash codes without relaxation. Sine the
relaxation scheme may accumulate large quantization error
as the code length increases, DCH [35] utilizes a discrete
cyclic coordinate decent (DCC) algorithm to learn and
update each hash bit in a cyclic order, which is evidently an
approximate solution to the discrete hashing and may fall
into a local minimum during the learning process. To allevi-
ate this problem, we improve DCC and utilize the E-RCD to
derive the hash codes more reliably.

Further, we compare DCC with the proposed E-RCD in
solving the same objective function, i.e., Eq. (2). We take the
paired Wiki dataset for testing, and learn the hash codes of
equal lengths (i.e., 32 bits and 128 bits) for evaluation. As the
solutions of both DCC and E-RCD depend on the initial val-
ues ofmodel parameters, we run ten times for both optimiza-
tions. Note that, similar results can be also found in
MIRFlickr andNUS-WIDE datasets, as well as other retrieval
tasks (i.e., unequal hash length encoding, unpaired multi-
modal data collection, single-modal retrieval and CNN
visual features). Fig. 9 shows the changes of the correspond-
ing mAP values tested by DCC and E-RCD within ten trials,
and Table 7 displays their statistical properties. As compared
in Table 1, the proposed MTFH framework solved by DCC
directly also yields satisfactory performance in both retrieval
tasks (I!T and T!I), and always outperforms most state-of-
the-art baselines, i.e., CMFH [27], SMFH [33], FSH [27],
SCM [12], SePH [30] andGSePH [9]. For instance, the average
mAP values derived from 128 bits and computed from ten
trials reach up to 0.3342 and 0.7284, respectively, evaluated
on I!T and T!I tasks.

As shown in Fig. 9, it can be further found that DCC has
produced a very small mAP value especially for a trial per-
formed onT!I task (128 bits), while inducing a larger fluctua-
tion on different trials. That is, the mAP values corresponding
to the maximum-minimum (Max-Min) difference and stan-
dard deviation are a bit large. The main reason lies in that
DCC optimization is an approximate solution and may fall
into a local minimumduring the learning process, whichmay
produce unstable retrieval performances. In contrast, the

TABLE 6
Results (mAP) of Cross-Modal Retrieval on CNN Visual
Features, and the Best Results Are Highlighted in Bold

Method
Wiki Pascal Sentence Pascal VOC 2007

I!T/T!I I!T/T!I I!T/T!I

CCA [15] 0.272/0.287 0.307/0.372 0.635/0.643

T-V CCA [52] 0.311/0.316 0.338/0.438 0.689/0.714

Deep-SM [51] 0.398/0.354 0.446/0.478 0.823/0.776

CMFH [27]
32 0.184/0.265 0.323/0.424 0.382/0.703

128 0.187/0.325 0.361/0.490 0.279/0.339

SePH [30]
32 0.476/0.734 0.497/0.690 0.749/0.877

128 0.520/0.774 0.543/0.729 0.784/0.912

GSePH [9]
32 0.494/0.762 0.428/0.574 0.763/0.900

128 0.508/0.777 0.463/0.646 0.802/0.946

DCH [35]
32 0.433/0.782 0.587/0.799 0.536/0.838

128 0.456/0.793 0.605/0.801 0.577/0.876

MTFH
32 0.544/0.724 0.594/0.779 0.749/0.883

128 0.523/0.809 0.604/0.787 0.805/0.961
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proposed E-RCD algorithm can not only yield very competi-
tive performance in various retrieval tasks, but also achieve a
relatively stable retrieval performance. The average mAP val-
ues derived from ten trials do not change significantly,
whereby the values of max-min difference and standard devi-
ation are always lower than the results generated by the DCC
optimization. The experimental results consistently validate
the advantage of the proposed E-RCD scheme in discrete opti-
mization, and the proposed MTFH learning framework is
beneficial to producemore effective and stable hash codes.

4.9 Parameter Sensitivity Analysis

There are three main parameters involved inMTFH learning
framework, i.e., a, � and b. Specifically, a balances two learn-
ing items in Eq. (1). A larger amay emphasize more on hash
code learning (q1 length) of modality X, and conversely (q2
length) of Y. Since our work aims to achieve cross-modal
retrieval, it is natural to set a¼0:5 for balancing two modali-
ties. As indicated in [41], � is insensitive to the least square
optimization, and it is set at 0.1 in most cases. b controls the
learning influence, and we further report the performance of
changing bwhile fixing a and �. That is, several different val-
ues, b¼f0:0001; 0:001; 0:01; 0:1; 1g, are tested on benchmark
datasets (MIRFlickr and NUS-WIDE-100k). The cross-modal
retrieval performances tested with different b values and
obtained by MTFH_rnd are shown in Fig. 9, it can be seen
that the different settings of b just induce a minor fluctuation
on the retrieval performance, and yield very stable retrieval
performance on different retrieval tasks. Therefore, b is also
insensitive to the cross-modal retrieval performance.

Further, similar to SePH [30], we further sample different
training sizes and utilize the learnt hash functions to generate
the hash codes for all instances in training dataset. Typical
examples tested on NUS-WIDE-100k dataset are shown in
Fig. 9, it can be found that the proposed MTFH method
requires a bit larger training set (around 10k for I!T and 30k

for T!I) to produce promising results (better than SePH). For-
tunately, the mAP scores obtained by MTFH increase consis-
tently as the training set grows from 200 to 50k, but which
tend to converge when the training set is larger than 60k.
Comparing with SePH [30], the proposed MTFH method is
computationally more efficient for very large-scale datasets
and can be adapted to various cross-modal retrieval tasks,
including paired or unpairedmulti-modal data collections, in
either equal or varying hash length encoding scenarios.

4.10 Discussion and Analysis

The computational complexity of the proposed MTFH
framework mainly accumulates from the matrix multiplica-
tions, which can be parallelized with modern computing
techniques. In practice, the size of database may be so large
that it is generally impossible to learn hash functions on the
whole database, mainly due to the limitation of computa-
tional resource. One solution to such problem is to learn the
hash functions on a smaller training set and extend it to out-
of-sample instances [30]. Although the proposed MTFH
method requires a semantic correlation matrix to perform
the retrieval task, the multiplication of a small matrix is
very easy to implement and the retrieval time has no sub-
stantial changes. As shown in Table 8, if the equal hash

Fig. 9. Effects of different optimization schemes, parameter values and training set sizes.

TABLE 7
Results (mAP) of Different Optimization Schemes

on Wiki Dataset

Task (bits)
average mAP max-min value standard deviation

DCC/E-RCD DCC/E-RCD DCC/E-RCD

I!T 32 0.3379/0.3555 0.0526/0.0248 0.0163/0.0066
128 0.3342/0.3418 0.0420/0.0227 0.0143/0.0068

T!I 32 0.7141/0.7171 0.0557/0.0274 0.0163/0.0073
128 0.7284/0.7372 0.0741/0.0271 0.0218/0.0071

TABLE 8
The Retrieval Time Tested on 100 Queries (Seconds Averaged

in Five Runs), and mAP Scores Recorded Under
Similar Memory Budget

Metric Method Bit length
WIKI MIRFlickr

I!T T!I I!T T!I

Retrieval
time
(second)

SePH [30]
I-16&T-16 0.0335 0.0279 0.1849 0.1867
I-128&T-128 0.0587 0.0583 0.3997 0.4013

GSePH [9]
I-16&T-16 0.0334 0.0283 0.1805 0.1843

I-128&T-128 0.0585 0.0592 0.4083 0.4075

MTFH

I-16&T-16 0.0340 0.0295 0.1877 0.1916
I-128&T-128 0.0611 0.0608 0.4148 0.4115
I-16&T-128 0.0597 0.0299 0.4103 0.1923
I-128&T-16 0.0345 0.0588 0.1914 0.4087

Retrieval
result
(mAP)

SePH [30] I-64&T-64 0.3135 0.6570 0.6799 0.7374

GSePH [9] I-64&T-64 0.3101 0.6679 0.6768 0.7313

MTFH

I-64&T-64 0.3454 0.7365 0.7592 0.8198
I-32&T-96 0.3572 0.7339 0.7674 0.8213
I-96&T-32 0.3588 0.7342 0.7613 0.8186
I-48&T-80 0.3416 0.7370 0.7680 0.8224
I-80&T-48 0.3390 0.7199 0.7612 0.8280
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length setting is employed, the retrieval times (averaged in
five runs) of 100 queries obtained by SePH [30], GSePH [9]
and MTFH are within the same range. It is noted that the
proposed MTFH method even reduces the retrieval time
when the hash length of one modality is fairly short. For
instance, the hash codes derived from the I-128&T-16 have
significantly reduced the retrieval time of I-128&T-128 in
I!T task, because the shortened hash codes require less
processing in kernel logistic regression and the mapping
from 128 bits to 16 bits can greatly reduce the similarity cal-
culations in retrieval process.

Further, the shortened hash codes would reduce the
amount of storage memory. With the similar retrieval per-
formance, the competing methods require 2q1 bits to store
the paired training instances, while the proposed MTFH
method only needs q1þq2 (q2 <q1) bits to store such paired
instances. For instance, if the number n of training pairs is
very large, performance of I-32&T-128 is comparable to the
result produced by I-128&T-128, but with significantly

reduced storage space, i.e., 96n�320 bits, fH1;H2g2R32�128.

Taking the larger NUS-WIDE-All dataset for example, the
best I!T and T!I retrieval performances obtained by the
baseline methods are generated by SePH_km with hash
pair I-128&T-128, as shown in Table 1. In contrast to this,
the proposed MTFH approach with hash pair I-32&T-128
has yielded the improved retrieval performances over
SePH_km, while saving the storage space of around 17M
(million) bits. Therefore, the proposed MTFH method is
able to store a smaller number of bits when there exist a
large number of multi-modal dataset.

Also, we evaluate the retrieval performances under the
same memory budget (the storage memory of correlation
matrix is ignored due to its very small size). Representative
results are shown in Table 8, it shows that the proposed
MTFH with hash pairs I-48&T-80, I-80&T-48, I-32&T-96 and
I-96&T-32 have yielded the better retrieval performance
than that generated by hash pair I-64&T-64 in SePH [30]
and GSePH [9], while in some cases these varying hash
encoding schemes produce improved retrieval performance
over equal hash length encoding scenario. For instance, the
hash pair I-48&T-80 has delivered the largest mAP score on
I!T task, when tested on MIRFlickr dataset. Therefore, the
proposed MTFH framework is flexible enough to facilitate
different retrieval tasks. It is pointed out that the unequal
hash length encoding of multi-modal data may produce bet-
ter cross-modal retrieval performance with appropriate
length selection, otherwise it may also bring the negative
effect to the retrieval performance. For instance, in case of
I!T task on the Wiki dataset, it can be found that the hash
pair I-128&T-16 shows the poor retrieval performance in
comparison with the pair I-16&T-16. The main reason lies
that the unequal hash length encoding with significantly
different bits may degrade the discriminative power of
mapping codes, which subsequently degrade the retrieval
performance. Therefore, the appropriate length selection in
varying hash length encoding scheme is necessary for het-
erogeneous data representation.

Besides, we notice that the varying hash codes of differ-
ent lengths can be generated by separately training two
hash functions for each modality. However, on the one
hand, the varying hash codes learned in a separate way

naturally weakens the connection within the same modality
and often fails to preserve the semantic similarity between
the heterogeneous samples due to the accumulated error.
On the other hand, the hash codes of different lengths
learned separately cannot be compared directly. In contrast
to this, the proposed MTFH framework exploits an efficient
objective function to jointly learn the modality-specific hash
codes with different lengths, while simultaneously excavat-
ing two semantic correlation matrices to ensure heteroge-
neous data comparable.

It is observed form the experimental results that the pro-
posed MTFH framework can well generalize and facilitate
cross-modal retrieval in various challenging scenarios, and
the merits of using unequal hash codes are three-fold: 1)
The utilization of unequal hash codes can adapt to an even
more challenging cross-modal retrieval scenario, i.e., the
hash representations from heterogeneous modalities are
stored by different code lengths in the database; 2) It is
beyond the limitations of equalized hash length representa-
tion of multi-modal data, by allowing varying hash length
encoding for different data modalities; 3) It often produces
the improved retrieval performance under same memory
budget, while the shorten hash codes could reduce the stor-
age space under similar retrieval performance. It should be
noted that most extensions to multiple modalities either
select the paired multi-modal data for training or employ
the unified hash code for heterogeneous data representa-
tion, e.g., CMFH [27] and SMFH [33]. Specifically, the
semantic affinity matrix with embedding supervision is con-
structed only from two modalities [9], [30]. If the data sam-
ples from heterogeneous modalities are paired, the related
works can be extended to three or more modalities, e.g.,
SePH [30], otherwise it is impractical to project unpaired
data into a common semantic space and utilize a unified
hash code to represent each data point, e.g., GSePH [9]. The
proposed MTFH is, by design, a flexible cross-modal hash-
ing framework to handle both paired and unpaired multi-
modal data collections, in either equal or varying hash
length settings. Evidently, the proposed MTFH approach is
able to handle all retrieval tasks reported in GSePH, while
adapting to unequal hash length encoding scenario.
Remarkably, if the to-be-learnt code lengths of heteroge-
neous modalities are different, it is impractical to unify
them in a common representation. In the current form, the
proposed framework has the bottleneck for extension to
more modalities and we will study it in future work.

5 CONCLUSION

This paper has proposed a generalized and flexible Matrix
Tri-Factorization Hashing (MTFH) framework for efficient
cross-modal retrieval, which can seamlessly work in various
challenging tasks including paired or unpaired multi-modal
data, and equal or varying hash length encoding scenarios.
More specifically, MTFH exploits an efficient objective func-
tion to jointly learn the modality-specific hash codes with
different length settings, while simultaneously learning two
semantic correlation matrices to correlate the semantic con-
sistency between two modalities and ensure the heteroge-
neous data comparable. Meanwhile, an efficient discrete
optimization algorithm is presented for MTFH without
relaxation such that the learned hash codes are more
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effective to preserve the semantic structure of multi-modal
data. As a result, the derived hash codes are more semanti-
cally meaningful than those generated by traditional matrix
hashing methods. To the best of our knowledge, this work
is the first attempt to learn varying hash codes of different
lengths for heterogeneous data comparable and efficient
cross-modal retrieval. Extensive experiments on various
retrieval tasks have verified its outstanding performance.
Our future work will focus on exploiting the optimum hash
length with respect to each modality to carry out cross-
modal retrieval task, as well as the adaptivity on a small
training dataset and the extensions to more modalities.
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