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Abstract—For long-tailed distributed data, existing classification models often learn overwhelmingly on the head classes while ignoring
the tail classes, resulting in poor generalization capability. To address this problem, we thereby propose a new approach in this paper, in
which a key point sensitive (KPS) loss is presented to regularize the key points strongly to improve the generalization performance of
the classification model. Meanwhile, in order to improve the performance on tail classes, the proposed KPS loss also assigns relatively
large margins on tail classes. Furthermore, we propose a gradient adjustment (GA) optimization strategy to re-balance the gradients of
positive and negative samples for each class. By virtue of the gradient analysis of the loss function, it is found that the tail classes
always receive negative signals during training, which misleads the tail prediction to be biased towards the head. The proposed GA
strategy can circumvent excessive negative signals on tail classes and further improve the overall classification accuracy. Extensive
experiments conducted on long-tailed benchmarks show that the proposed method is capable of significantly improving the
classification accuracy of the model in tail classes while maintaining competent performance in head classes.

Index Terms—Long-tailed classification, long-tailed visual recognition, class imbalance, imbalance learning

1 INTRODUCTION

VISUAL recognition problems have achieved immense suc-
cess, thanks to the advent of deep convolutional neural
networks (CNNs) and the availability of large-scale, high-
quality annotated datasets such as ImageNet ILSVRC 2012 [1]
and Places [2]. In such datasets, both the training and testing
data have been artificially balanced. That is, each class has
roughly the same number of training samples. However,
from the practical point of view, the number of samples for
different classes varies greatly due to the different difficulties
in data collection. As a result, real-world datasets generally
have skewed distributions with a long tail [3], [4]. That is, a
few dominant categories (called head classes) occupy most of
the samples, while most of the remaining categories (called
tail classes) are associated with rarely few samples. Neverthe-
less, small sample size does not mean that the tail classes are
unimportant. For example, when classifying mammals, train-
ing samples of endangered animals such as tigers and snow
leopards are more difficult to obtain than those of common
animals like cats and dogs. It is still need to be correctly classi-
fied when the given query belongs endangered animal. There-
fore, in order to show the equal importance of each class, their
sample size should be roughly the same during the test stage
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even if the training data is long-tailed. Unfortunately, training
on long-tailed data will raise a problem, i.e., a biased learning
process for the classification model, because the instance-rich
head classes usually contribute to an overwhelmingly large
quantity of negative samples for tail classes. Consequently,
the learned classification model tends to have serious poor
performance in the tail classes during testing.

A straightforward solution to address the issue of long-
tailed data is re-balancing the distribution of different clas-
ses to mitigate the extreme imbalance of the training set. In
the literature, two such representative techniques are re-
sampling and re-weighting. Re-sampling methods usually
sample the training images of different classes with differ-
ent variants of sampling rates to make the class-wise sample
sizes roughly balanced. Existing commonly used re-sam-
pling methods include under-sampling ones (e.g., see [5],
[6], [7], [8]), which randomly remove training samples from
head classes, and over-sampling ones (e.g., see [9], [10], [11],
[12]), which randomly replicate training samples from tail
classes. Re-weighting methods (e.g., see [13], [14], [15], [16])
balance the contribution proportion of each class to the clas-
sification model through the multiplicative parameters on
the loss function. To increase the impact of tail classes in the
training process, the multiplicative parameters are inversely
proportional to the number of class samples. It is expected
that these two techniques can make the distribution of train-
ing data closer to that of the testing data which is uniformly
distributed. One limitation of the re-balancing methods,
however, is over-fitting on tail classes because of duplicated
training on the tail class samples that provide essentially
insufficient information. There are several attempts, such as
class-level re-weighting [17], [18], [19] and re-margining
[20], [21], [22], to alleviate this issue. Recently, Cui et al. [14]
proposed to re-weight the softmax cross-entropy loss by the
“effective number” of each class. Cao et al. [20] adopted
both re-weighting and re-sampling techniques to train a
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Fig. 1. Different kinds of points in feature space. Key points: the points
located in Zone 1 have small distance from the anchor vectors of both
Class 1 and Class 2. Non-key points: the points falling in Zone 2 are far
away from the anchor vectors of Class 1 and Class 2. Simple points: the
points located in Zone 3 (or Zone 4) have smaller distance with the
anchor vector of Class 1 (or Class 2).

neural network. They used a label-dependent regularizer to
re-weight the tail classes stronger than the head classes and
trained the network by a deferred re-sampling strategy.

Empirical studies have shown the success of the afore-
mentioned approaches in their application domains, but
they all ignore the differences between the points in embed-
ding space and treat them equally. In fact, different kinds of
points in embedding space may contribute differently to the
classification model from the practical viewpoint. Hence,
we define three kinds of points based on their importance.
Based on the fact that if the two classes that are most likely
to be misclassified from each other can be predicted cor-
rectly, the remaining classes are relatively easy to be classi-
fied, we use these two classes for illustration without loss of
generality. We name these two most difficult classes Class 1
and Class 2, and the remaining classes are other classes. As
shown in Fig. 1, when assigning labels for the points in
Class 1 and Class 2, the three kinds of points are:

e Key point: The points located in Zone 1 have a small
distance from the anchor vectors of both Class 1 and
Class 2. These points are most likely to be misclassi-
fied, because they are close to the anchor vectors of
both Class 1 and Class 2. We call this kind of point as
key point, which should be paid more attention to.

e Non-key point: The points falling in Zone 2 are far
away from the anchor vectors of Class 1 and Class 2.
This kind of point belongs to other classes, because it
is far away from the anchor vectors of Class 1 and
Class 2. We need not pay much attention to them.
We call the points in Zone 2 as non-key points.

e  Simple point: The points located in Zone 3 (or Zone 4)
have a smaller distance with the correct anchor vec-
tor. This kind of point is relatively easy to be classi-
fied. We name the points in Zone 3 and Zone 4 as
simple points.

Increasing the overall classification accuracy of the classi-
fication model require to make key points more separable.
Therefore, key points should be regularized more strongly.

Based on the above analysis, we introduce the margins
which are the distance between the class boundary to the
decision boundary" to treat the aforementioned three kinds
of points differently. In order to improve the separability of
key points, their margin needs to be larger than that of non-
key points. Unfortunately, most existing methods ignore
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(a) Class boundary of softmax cross- (b) Class boundary of the loss function
entropy loss function. in Cao et al.’s work [20].

Fig. 2. Class boundaries of different loss functions, where angular dis-
tance is used. The 6, axis represents angular distance between sample
features and the anchor vector of Class 1, while the 6, axis is for the
angular distance of Class 2. Shaded points with red textures represent
key points. The denser the texture, the more important this is.

this. Fig. 2 shows the margins in the existing methods. For a
clear visualization, we use the angular distance as the metric
and transform the points into the coordinate axis. We can
see that most previous methods (for example, see [8], [23],
[24]) use the basic softmax cross-entropy loss, which ignores
margins. Their class boundary coincides with the decision
boundary, which is shown in Fig. 2a. In the literature, Cao
et al. ’s work [20] take the margins into consideration, but it
allocates the same margins between key and non-key
points, namely m; = m/ and my = mj, as shown in Fig. 2b.

In this paper, we propose a key point sensitive (KPS) loss
that makes the key points more separable as well as
increases the model performance on tail classes. To make
the samples with key points easier to separate, we regular-
ize the key points strongly by multiplying the proposed
label-dependent factors on the predicted scores of the
points. In order to increase the classification accuracy on
tail classes, the proposed loss simultaneously encourage
relatively large margins between points of tail versus head
classes through the class-based margins. Besides the modifi-
cation of the loss function, we also design a gradient adjust-
ment optimization strategy. In the loss of softmax cross-
entropy form, those instances in head classes contribute a
large quantity of negative samples to tail classes. In this
case, the penalty signal overwhelmingly suppresses stimu-
lus signal for tail classes, causing bias in the learning pro-
cess of the classifier. To balance the gradient signals, we
propose the class-based scale parameters to narrow down
the overwhelming gradients of negative samples for the tail
classes. Experiments on benchmark datasets have shown
that the proposed KPS loss and optimization strategy can
obtain higher classification accuracy for long-tailed data.

In summary, the main contributions of this paper are as
follows.

1)  We propose a key point sensitive loss, which signifi-
cantly improves tail class classification accuracy
while compromises little on head classes. Consider-
ing that key points have a greater impact on overall

1 Some papers, for example, see [25], [26] and [27], name the bound-
ary determined by training objective as decision boundary, while the
decision boundary in [20] means the boundary defined by the standard
cross-entropy function during testing. To make them distinguishable,
we call the boundary determined by the training objective as class
boundary and that defined by the standard cross-entropy function
which is used during testing as decision boundary.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 28,2023 at 08:22:58 UTC from IEEE Xplore. Restrictions apply.



4814

accuracy than non-key points and a large margin
helps improve the classification accuracy, KPS loss
assigns large margins for key points and tail classes,
which can increase the model classification accuracy
on long-tailed datasets.

2) We propose a gradient adjustment optimization
strategy to prevent tail class from overwhelming
suppression. In the softmax cross-entropy loss func-
tion, the penalty signal overwhelmingly suppresses
stimulus signal for tail classes. We utilize class-based
scale parameters to re-balance positive and negative
gradient signals for each class, which can further
improve the overall classification accuracy.

3) We conduct extensive experimentation on several
benchmarks. The results show that the new loss with
the proposed gradient adjustment optimization
strategy can significantly improve the performance
of the model in tail classes, meanwhile maintaining
the competent performance of the head classes.

The rest of this paper is organized as follows. We make
an overview of long-tailed classification approaches in Sec-
tion 2. Then, the proposed KPS loss and the gradient adjust-
ment optimization strategy are described in details in
Section 3. Experimental results and discussions are pro-
vided in Section 4. Finally, we give the concluding remarks
in Section 5.

2 RELATED WORK

In this section, we make an overview of class re-balancing
methods, data augmentation methods and two-stage meth-
ods that are widely used to alleviate the class-imbalanced
problem in long-tailed datasets.

2.1 Class Re-Balancing Methods

The most commonly used class re-balancing methods bal-
ance the impact caused by class distribution differences,
which include re-sampling, re-weighting and re-margining,
to name a few.

The most important two manners of re-sampling meth-
ods include under-sampling the head classes [9], [11], [12]
and over-sampling the tail classes [6], [7], [8]. However,
under-sampling that discards a large amount of samples in
head classes will deface the generalization ability when the
imbalance ratio is extreme. Over-sampling which duplicates
samples of tail classes usually causes over-fitting [23].

Re-weighting methods direct the network to allocate more
attention to the samples in tail classes than head classes
through the loss function through assigning large weights to
tail classes [15]. Some methods like focal loss [28], Meta-
Weight-Net [29] and cost-sensitive SVM [16], [30] can achieve
fine-grained control though the sample dependent costs.
Some methods, for example, see [15] and [31], assign weights
inversely proportional to the number of samples of different
classes. However, re-weighting methods yield poor perfor-
mance on head classes [14] and lead to optimization difficulty
under the case of extremely imbalanced data and large-scale
scenarios [32], [33]. Accordingly, Cui et al. [14] proposed to
replace the sample frequency with the effective number of sam-
ples to re-weight the loss function. Recently, many works [17],
[18], [19], [34], [35], [36] re-weight the loss function based on
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the gradients of different classes to overcome the problem of
negative gradient over-suppression. For example, to reduce
the influence of negative samples for tail classes, Tan et al.
proposed equalization loss [34] and equalization Loss v2 [17],
which introduced a weight term for each class on loss function
and gradient, respectively.

Re-margining methods [20], [21], [22] adjust the decision
margin towards different classes. For example, LDAM [20]
increases the margin for tail classes and decreases it for
head classes based on class frequency. Feng et al. [21]
increased the margin for rare class by the approximate
mean classification score.

The re-weighting and re-margining methods all have supe-
rior performance to the vanilla empirical risk minimization.
Nevertheless, the loss functions of these methods do not con-
sider the different influences of key and non-key points.

2.2 Data Augmentation Methods

Naively re-balancing the objective usually results in harsh
over-fitting to tail classes because it is inherently unable to
deal with the lack of tail class information. To alleviate the
issue of fewer samples in tail classes, a canonical solution is to
augment tail classes for more training samples. Traditional
methods including rotation, horizontal flipping, and erasing
are widely employed for maintaining the prediction invari-
ance of CNN models [37], [38], [39]. Mixup is another kind of
data augmentation technique, which convexly combines a
pair of inputs and the associated labels to obtain new samples
to train the network. Training image mixup [40] generates
new training samples by weighted linear interpolating two
randomly sampled examples and their labels, which can
reduce adversarial perturbations in CNNs and improve
model robustness [41]. In contrast, manifold mixup [42], Cut-
Mix [43] and Remix [24] conduct mixup strategy on two ran-
dom samples in the feature space. They exploit semantic
interpolations. The diversity of augmented samples is inher-
ently limited by the small amount of training data in tail clas-
ses because these methods are typically performed based on
modification and /or combination of input images. A recently
proposed implicit semantic data augmentation (ISDA) tech-
nique [44] also performs data augmentation in feature space.
Different from manifold mixup, ISDA transforms deep
features towards certain meaningful semantic directions.
Nevertheless, ISDA may lead to inferior performance in the
long-tailed scenario, because scarce data in tail classes is insuf-
ficient to obtain reasonable covariance for the method to aug-
ment tail classes.

2.3 Two-Stage Training Methods

Two-stage training strategy includes imbalanced training
and balanced fine-tuning [45]. The first stage, namely the
imbalanced training, utilizes the original long-tailed dataset
to train the network. The second stage usually uses re-sam-
pling or re-weighting to fine-tune the classifier and should
be applied with a small learning rate. Recently, Cao et al.
[20] proposed LDAM to encourage large margin to the tail
classes to improve the generalization. This method trains
the network with the original dataset in the first stage and
applies deferred re-weighting (DRW) in the second stage.
LDAM with DRW significantly improves the performance
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Fig. 3. Margins of different loss functions and their comparison under binary-classes scenarios, where the 6, and 6, axes represent the angular dis-
tance between the sample features and the class anchor vectors of w;, and w, respectively, and m, » and m/ , represent class margins.

on tail classes. Decoupling learning [46] and Bilateral-
Branch Network (BBN) [23] both proposed to decouple the
learning of representation and classifier. Decoupling learn-
ing first uses imbalanced data for representation obtaining
and then exploits a balanced sampling strategy to adjust the
classifier. BBN takes a two-branch structure with an adap-
tive fusion operation at the end of the network. One branch
of this model focuses on the head classes through directly
sampling from the original imbalanced data, and the other
branch focuses on the tail classes through reversed sam-
pling the data. Such decoupling of representation and clas-
sifier learning is another fruitful avenue of exploration.

In addition, many other methods of different learning
paradigms, e.g., ensemble learning [47], [48], [49], [50], [51],
meta-learning [52], [53], and knowledge transfer [32], [54],
are also proposed to address long-tailed problems. These
methods all show effectiveness, but significantly increase
model parameters or optimization difficulty.

3 PROPOSED METHOD

3.1 Basic Notation and Two Lemmas
This section defines the notation used in this paper. Let
{z,y} denote a training sample from the training set 7,
where z is the input training image and y € {1,...,C} is the
corresponding label. We use n; to represent the number of
training samples of class j and use N = 3¢ =17 to represent
the total number of training samples. f € R” denotes the
representation in feature space of x and is the input of the
last fully connected layer. D is the dimension of the feature.
We use z € RY to represent the output of the last fully con-
nected layer of the CNN model. W € R”*C represents the
classifier weight matrix, then, z = WTf. z is the class score
vector. w; (j € {1,...,C}) represents the jth column of W
and is called class anchor vector. z; = W; Tf i 1s the predicted
score of class j. We use the name target score” and non- target
score to represent z, = w, f and z; = w| f, j # y, respectively.
The subscript y represents the ground truth class label here.
Two lemmas used in this paper are introduced as
follows:

Lemma 1. [55] When the number of classes C is smaller
than twice the feature dimension D (i.e., C < 2D), any
two class anchors can be distributed at least /2 apart on
a hypersphere of dimension D.

Lemma 2. [56] For the binary classification case (C' = 2), the
loss function with margin of the target class is:

U+, f) =

Z(—, f)

VV+ log(l + €m+ . 6—2)
W*lOg(lrf*emf . Z) ?

where W.,T > 0 and m4 € R are weights, temperature
parameter, and margins. The loss in Eq. (1) is Fisher con-
sistent for the balanced error iff

o))

Wy oT-my) 1-—p @
W_ oT-m.) p ’
where o(2) = (1 +exp(—2))"", p= P(y = +) is the prior

probability of y = +

3.2 Proposed Model: Key Points Sensitive Loss
3.2.1 Intuition

To simplify the interpretation, we use the two classes that
are most likely to be confused by the classification model to
elucidate the direct intuition of our KPS loss, because the
remaining classes will be relatively easy to be classified
when these two classes are separated. We name these two
classes Class 1 and Class 2, respectively. Without loss of
generality, we set Class 1 and Class 2 as head and tail clas-
ses (i.e. n1 > ny), respectively. Considering we have a sam-
ple z, from Class 2, correctly classifying x, requires:

3)

29 > 2.

Eq. (3) can incorporate a margin to increase the class separa-
bility:
(4)

Zy — My > 21,

where my can be the label distribution dependent aware
margin (LDAM) [20] that is chosen as my = C' - ny~/* based
on the empirical Rademacher complexity [59], C is a con-
stant. Different with Eq. (3), my helps to assign relatively
larger margin to tail class. From Eq. (4), we find that a large
predicted score z;, (i = 1,2) will weaken the function of the
margin m;. In order to maintain the consistency of the influ-
ence of margin on different predicted scores, motivated by

2 Some literature, e.g., see [57] and [26], names z; as logit, but the
logit function is actually the natural log of the odds. Here, z; has yet to
become a ratio and is without the natural log operation. In order to
make the meaning of z; clearer, we adopt the name ‘score’ used in [58].

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 28,2023 at 08:22:58 UTC from IEEE Xplore. Restrictions apply.



4816

[25], we can normalize the output of the linear classifier:

win

=——'_—— = cosb,, (%)
W 11511l

Norm(z;)

where 0; means the angle between class anchor vector W;
and feature f. Eq. (5) means that cosine similarity is used to
measure the distance between features and class anchor
vectors. Then, Eq. (4) can be changed to:

cosfy —ms > cosb). (6)

Eq. (6) decides the class boundary of LDAM for two classes,
which can be seen in Fig. 3a. It can be observed that the mar-
gins of different classes have two properties:

1)  The points fall in tail class (Class 2) has larger mar-
gins than head class, i.e., my > m; and mj, > m].

2) The points with different importance are both
assigned the same margins, i.e.,, m; = m/ and my =
m.

Intuitively, points with different importance should be
treated differently. Because non-key point has the angler
distance larger than 7/2 to both class anchor vectors (Zone
2 in Fig. 3), it may not actually fall into either class as
Lemma 1 indicated. Thus, there is no need to pay much
attention to this kind of point. In contrast, the key points are
close to both class anchor vectors (Zone 1 in Fig. 3). If these
points can be classified correctly, the classification accuracy
can be improved. Therefore, we assign larger margins to the
key points to make them easier to be classified. However,
blindly increasing the margins results in compressing the
feature space area of each class. In the extreme case, all sam-
ples in each class shrink to one point, where the diversity of
the features will disappear, leading to worse generalization.
Take this into consideration, we set relatively small margin
for non-key points, namely m; > m} and ms > m). Non-
key points are too far from the anchor vectors of both classes
to be assigned to either class according to Lemma 1. There-
fore, assigning small margins of these points does not affect
the overall classification accuracy. We can move the class
boundary as Fig. 3b shown without compressing the feature
space area and reducing feature diversity. Fig. 3c shows the
comparison before and after the movement of class
boundary.

3.2.2 Considering KPS Loss for Two Classes

We can observe that the margins of Eqs. (3), (4) and (6) are
the same for all points in the score space because their
slopes of the class boundary in their corresponding score
space are equal to 1. We prefer to assign a larger margin for
key points, i.e. those points that are close to the anchor vec-
tors of both classes. That is, points with larger scores have
larger margins, thus we introduce a label-dependent factor
r; called radius to make the slope of the class boundary
non-1. As a result, m; (¢ =1,2) shown in Fig. 3 can be
enlarged and the key points can be more separable. Accord-
ingly, the class boundary function is rewritten as:

9+ cOSBy —my > 11 - COSOy. (@)
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The class boundary defined by Eq. (7) is shown in Fig. 3b.
Suppose ¥(n) represents a non-decreasing function. The
margin m;x1/¥(n;) can encourage relative large margins
for tail classes. The property 1, namely ms > m; and m}, >
m/, can be maintained to ensure the good performance of
the model in the tail class. We expect that the features of tail
class samples can be clustered tightly around the class
anchor vector so that they can be correctly classified rela-
tively easily. Therefore, cos6; for tail classes should be rela-
tively large. To encourage large cos6; for tail classes and
regularize key points strongly at the same time, we set
rixyr(n;). The class boundary leaves larger margin for key
points, namely m; > m} and my > m.

3.2.3 Selection of Margin and Radius

According to Cao et al. [20], the margin can be chosen as
m; = % for class i. However, Menon et al. [56] pointed out

that this margin is not fisher consistent in minimizing the
balanced error. We consider to obtain the expression of m;
based on Lemma 2. Then, the following equation can be
obtained:

14+e™™ _1-p

14+e~ M2 T p e

Ite~™ _ n/N

1+e~™M2 7 ng/N = ®
1+e”™ _ny

14e ™2 T ng?

where p = P(y = 2). Suppose C; - n; > 1, we can have:

my = —log(Cy-ny — 1)
9)
~ —log (C; - m1).
Since my > 0, we add a constant C’ > 0 to Eq. (9):
m; = —log(Cy-ni)+C'
1 (Cy-ny) a0
= C,, —logny,

where (), should satisfy C;, € R and C, > log nymaz, Nmax 1S
the largest class size. Eventually, we choose the general
expression of margin m; as:

Since radius r; has opposite monotonicity with m;, for
simplicity, we set:

r; = logn; + C, (12)

for a constant C,.

3.2.4 Extending KPS Loss to Multiple Classes

We use z; to represent the modified score of the jth class in
Eq. (7) for convenience, i.e.,

(13)

Zj = 1 cos 6,

where r; is the class-based hyper-parameter and 0; is
learned via a CNN model. To extend the loss to multi-class
case, we first extend the binary classification loss to hinge
loss, and then use LogSumExp function to replace the max
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function and softplus function log (1 + €”) to smoothly relax
max(z,0). The KPS loss for multiple classes can be
expressed as follows:

c 3
log S €T —Zy+my
Lkps(z,y) = log (1 te (ZHJ#} ) J J)

C 3.
=log 1+ Li-tisy
eéyf'my
Zy—my
- I - (14)

g — c =
Fy =My L Zj
€ + Z]:Lﬁé?] €

This is in the form of the well-known cross-entropy loss.
However, the modified score Z; is small, which is not
conducive to convergence. As suggested in [60] and [61], we
use a large number s to scale Z;. Eventually, the loss func-
tion is expressed as:
es-(ry cos Oy —my)

5-(ry cos By —my) + Z]C:I " 575 080 ’

Lyps(z,y) = —log
e

(15)

3.2.5 Analysis of KPS Loss and Comparison With
Previous Methods

Bring the radius (Eq. (12)) and the modified score (Eq. (13))
back to KPS loss for multiple classes (Eq. (14)), because

ri-cost; _ elog n;- cos 0;+C; cos b;

e

=n; cosb; eC,» cos 6;

(ni . eC,‘) Cosg,/./.

(16)

Therefore, we have

ey oS Oy—my

ey €08 Oy—my + Z](/‘:l ity e’ cost;

Lgps(w,y) = —log

= 710 S SH: .
g (ny . eCr) Cm‘)y.efmy + Z]C:Lj#y (nj . eCT) cos 6

(ny . 6) cos By e~ My

(ny . (i) cos Gy.e—my 4 Z?:l,]#y (nj . 6) cos0;

x —log

a7

We can notice that KPS loss re-weights the loss through
the output probability of different classes. In Eq. (17), the
item n; - e acts as an attractor that requires the tail classes to
be clustered closer than the head classes. The item e™™
leaves larger margin for tail classes. It is intuitively more
reasonable because the hidden space capacity is finite.

In comparison with the previous methods, the proposed
KPS loss has three characteristics that make it more appro-
priate for long-tail datasets: (1) KPS loss adopts class-based
margin which assigns relatively large margin for tail class.
Previous methods [26], [58], [62] do not consider severe
class imbalance data and set the same margin for all classes.
(2) KPS loss adopts cosine similarity to avoid bias caused
by feature norm and class anchor norm. The margin

4817
23 N p— Decision boundary L’ 0, 4
Class boundary #
Class 1 Class1
Class 2
Class 2
0, 4 o

(a) angle penalty (b) cosine penalty

Fig. 4. Schematic plot of angle penalty and cosine penalty.

modification losses [18], [63] utilize the inner product to
measure the similarity between the feature and class anchor,
but a feature or an anchor vector with large norm will cause
privilege. (3) KPS loss makes the slopes of different class
boundaries different in the score space, so that larger mar-
gins can be assigned to the points with higher scores (i.e.,
the key points). In this way, samples that are prone to mis-
classification can be further separated. The prior margin
modification methods [18], [20], [56], [63] utilize additive
margin. The slopes of the different class boundaries are all
equal to 1. The margins are the same for different kinds of
points.

In addition, inspired by [26], the margin and radius can
also be applied to the angle. Let us take the binary classifica-
tion case as an example. Accordingly, the class boundary is
then expressed as:

o0y + My < 7104. (18)

We can combine the angle penalty and cosine penalty in a
unified framework with r;, 7;, m; and m;, (i = 1,2) as the
hyper-parameters. Hence, we have:

(19)

T - €08 (Fo0y + My) — Mg > 71 - cos (7161).

The class boundaries of angle penalty and cosine penalty
are shown in Fig. 4. For cosine penalty, we can use the mar-
gin m; to avoid the intersection of class boundary and deci-
sion boundary, but the class boundary of angle penalty
inevitably intersects the decision boundary. In addition, the
cosine penalty is easier to calculate than the angle penalty,
because the acquisition of the angle 6; needs to calculate the
arc cosine. Thus, we choose the cosine penalties, i.e., Eq. (7),
as the class boundary which is equivalent to #; = 1 for ¢ =
1,2,y = 0in Eq. (19).

3.3 Gradient Adjustment Optimization Strategy
3.3.1 Analysis of Gradient

For a given sample x with the label y, we use %; to represent
the final score of sample = belonging to class i, namely

. JricosO;—m;, i=y
s {ri cos 6;, ity (20)
The loss function is:
) esiy
Lkps(z,y) = —log (py), withp, = —& 21

Z 1 eb"é]' ’

J
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For a given training sample, the gradients on Z; is:

OLxps _ [s-(pi—1),

1=y

e 22
i FY @22)

It shows that samples of class y punish the classifier of
other classes w.r.t. s-p;, (i #y). If class y belongs to the
head class, it will contain an enormously greater instance
number than that of tail classes. Then, the classifier of tail
classes will receive penalties in most samples and rarely get
positive signals. In this case, the predicted probabilities of
tail classes are severely suppressed, leading to low classifi-
cation accuracy.

To alleviate this gradient over-suppression problem,
some previous works (e.g., see [19], [34], [36]) directly
ignore the gradient from samples of head class for the tail
class by the weights based on class sizes. The predicted
probability p; of class ¢ given by the loss function of these
methods is:

e

bi==g (23)
Do Wie

where @;,j # i is 1 for head class and less than 1 for tail
class. Eq. (23) can achieve: (1) for tail classes, only positive
samples propagate gradients; (2) for head classes, the nega-
tive gradients propagated to tail classes are reduced. How-
ever, the sum of predicted probability for all classes of one
training sample is not equal to 1, i.e, Y7, 5 # 1 . It does
not conform to the property of probability.

In this paper, we introduce an adjustable scale parameter
s; for class i to re-balance the gradient signal of each class.
Because we want to decrease the gradients of head classes
and increase that of the tail classes in Eq. (22) during optimi-
zation, s; should be set to a decreasing number with respect
to n;, which has the same trend with m;. Accordingly, we
set:

S; :Cs-mi, (24)

for the constant C; > 0. The KPS loss with gradient adjust-
ment (GA) optimization strategy is:

651/‘5‘1/

Lgps—ga(x,y) = —log (py), with p, = 207 (25)
J

e

Thce predicted probability given by Eq. (25) satisfies that
ZL:1 ﬁ7 =1

3.3.2 Analysis of Scale Parameters

5%

For the original p; = <&, it is well known that the
e

=1 . . .
smaller the scale parameter s is, the more uniformly p; is
distributed. As s increases, p; will quickly decay for non-
maximum scores and approach 1 for the maximum

score. The extreme cases are: (1) when s=0, p, =

1/C fori={1,2,---,C}; ) when §— 00, p; =
1, i=M . . .

{O7 i M M 1is the class with the maximum score. If

s is relatively small, there will be more classes providing
gradients, which means more non-target classes will vote
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for the class boundary. When s is large, only classes
with high scores will provide gradients. That is to say,
the samples that are prone to be misclassified will partic-
ipate in class boundary voting. In the early stage of
training, we hope that all samples participate in the
training to the same degree in order to converge quickly.
Besides, simply scaling down the gradients of head class
samples increases the risk of false positives for tail clas-
ses, because samples of other classes that are misclassi-
fied into tail classes receive less penalty. Therefore, we
set s; at the same value for all classes in the early stage
of training. When the model converges to a certain
extent, we calculate s; by Eq. (24) for class i. The net-
work will give more positive signals to the tail class in
this way. At the same time, the classifier can pay more
attention to distinguish the samples from tail classes that
are prone to be confused.

The overall training procedure is summarized in Algo-
rithm 1.

Algorithm 1. KPS Loss With Gradient Adjustment
Optimization

Require: Training dataset 7;
A CNN network ¢((x,y); w) which is parameterized by w.

1. foriter =1to Iy do
2: Sample batch samples B from 7 with batch size of b;
3 L((z,y);0) =52 es Lres(@,y);
4: w=0w—aV,L((z,y);w);
5: end for
6: foriter = Iy+ 1to I; do
7 Sample batch samples B from 7 with batch size of b;
8: L((z,y);0) = %Z(:Ir,y)EB Lirs-ca(z,y);
9: w=w-—aV,L((z,y);w);
10: end for

3.4 Time-Complexity Analysis

For a given sample, the time-complexity of the original soft-
max cross-entropy loss is O(C') where C is the number of
classes. It is linear with the input dimension of the loss func-
tion. Egs. (15) and (25) show that KPS loss only adds scalar
addition and multiplication compared with the original
softmax cross-entropy loss. Therefore, KPS loss has O(C)
time-complexity, which only adds negligible burden on the
training process.

4 EXPERIMENTS

4.1 Datasets
4.1.1 Long-Tailed CIFAR

The original CIFAR datasets [64] consist of 50,000 color
images of size 32 x 32 for training and 10,000 images with
the same size for testing. CIFAR-10 and CIFAR-100 consist
of 10 classes and 100 classes, respectively. To create the
long-tailed versions (CIFAR-10-LT and CIFAR-100-LT), we
follow Cui et al. ’s setting [14] by down-sampling training
images per class with the exponential function n; =
N, X ', where i is the class index (0-indexed), N, is the
number of training samples in original CIFAR and u €
(0,1). The test set remains unchanged. The imbalance ratio
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TABLE 1 TABLE 2
SuMMARY OF DATASET SuMMARY OF Basic SETTING

Dataset CIFAR-10-LT CIFAR-100-LT ImageNet-L T iNaturalist 2018 = Dataset CIFAR-10- CIFAR-100- ImageNet-LT iNaturalist

f Classes 10 100 1000 8142 LT LT 2018

Imbalance ratio 100,50 100, 50 256 500 Backbone ResNet-32 ResNet-32 ResNet-50, ResNet-50

Tail class size 50, 100 5,10 5 2 o _ ResNeXt-50

Head class size 5000 500 1280 1000 Mini-batch size 64 64 128 512
Initial /, 0.1 0.1 0.1 0.2
Weightdecay 2x107% 2x107™* 1x 107 1x 107
l, warm-up Yes Yes No No

. . . Maximum 200 200 180 180

is defined as p = max(n)/min(n),n = {ny,no, -, nc}t. Inthe  epochs

literature, the most widely used p are 50 and 100. I, decay ratio 0.01 0.01 0.1 0.1
l, decay epochs {160,180} {160,180} {120,160} {120,160}

4.1.2 Long-Tailed ImageNet

The original ImageNet-2012 [1] is a large-scale real-world
dataset for classification and localization, which contains
more than 1.2 million images for training and 150,000
images for validation and testing. We follow Liu et al. ’s
work [52] to construct the long-tailed version of ImageNet-
2012 (ImageNet-LT) by truncating a subset with the Pareto
distribution from the balanced version. Overall, this long-
tailed version dataset has 1,000 categories with maximally
1,280 images and minimally 5 images per class. The original
balanced validation data containing 50,000 images are used
for testing in our experiments.

4.1.3 iNaturalist 2018

The 2018 version of iNaturalist species classification and
detection dataset [65] is a real-world long-tailed dataset suf-
fering from extremely imbalanced distributions and thus is
the most challenging version. It includes 437,513 training
images from 8,142 categories. We follow the official training
and validation splits of iNaturalist 2018 in our experiments.

The datasets used in our experiments and their imbal-
ance ratios are summarized in Table 1.

4.2 Basic Setting

We use Pytorch [66] to implement and train all backbones
from scratch by stochastic gradient descent (SGD) with
momentum of 0.9.

4.2.1 Basic Setting on CIFAR-10/100-LT

For CIFAR-10-LT and CIFAR-100-LT datasets, the same
data augmentation strategies with [67] are utilized, namely
randomly cropping a 32 x 32 region from the image that is
flipped with 0.5 probability and padded with 4 pixels on
each side. ResNet-32 is chosen as the backbone network
with weight decay of 2 x 10~%. The number of training
epochs is 200 with a mini-batch size of 64. Learning rate is
initialized to 0.1 and multiplied by 0.01 at the 160th and
180th epoch, respectively. Linear warm-up learning rate
[68] is used in the first five epochs.

4.2.2 Basic Setting on ImageNet-LT and iNaturalist
2018

For ImageNet-LT and iNaturalist 2018, we follow the data
augmentation strategies in [68], namely scaling the shorter
dimension to 256 followed by randomly cropping a 224 x
224 patch from the augmented image or its horizontal flip.

-m,
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For fair comparisons, we adopt the most common practices
which are ResNet-50 [67] and ResNeXt-50 [69] for Image-
Net-LT, and ResNet-50 for iNaturalist 2018, respectively.

The weight decay in all experiments on ImageNet-LT and
iNaturalist 2018 is set as 1 x 10~*. The number of training
epochs is 180. During training, we decay the learning rate by
0.1 at the 120th and 160th epoch, respectively. The mini-batch
size is set as 128 and the learning rate is initialized to 0.1 for
ImageNet-LT. As for iNaturalist 2018 dataset, we use the
mini-batch size of 512 to speed up training. The learning rate
should be increased by the square root of the mini-batch size
according to [70], so the learning rate is initialized to 0.2.

The basic setting used in our experiments is summarized
in Table 2.

4.2.3 Hyper-Parameters Selection

There are hyper-parameters in 7;, m; and s;. In order to sim-
plify the selection of hyper-parameters for different data-
sets, we adopt the following strategy.

For r;, we first normalize the minimum number in the
class number list n = {ni,ny,---,n¢} to a preset number
Tpese to geta temp listr’ = {7, 7}, -, 7 }:

v = log [ n; x —2bese
s\ min(n) /"

Then, we obtain the final list r = {ry, ro, - -
izing the minimum number in r to 1:

(26)

,rc} by normal-

1

T =1 X min(r)’ (27

For m;, we first get a temp list m' = {m|,m},---,my}
based on Eq. (11) by:

m; = maz(r) +1—r;. (28)

Then, the final margin list m = {m;,my, - - -, m¢} is obtained
by normalizing the maximum number in m’ to m,q,:

m

mip = mj X —— . (29)
max(m’)

For s;, we obtain the scale parameter list s = {s,

-, 8¢} by:
(30)
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TABLE 3 TABLE 4
Top-1 ERROR RATES (%) ComPARISON ON Long-TAILED CIFAR Top-1 ERROR RATES (%) ComPARISON ON IMAGENET-LT AND INATURAL-

DATASETS 1sT 2018

Dataset CIFAR-10-LT CIFAR-100-LT  Dataset ImageNet-LT iNaturalist 2018

Backbone ResNet-32 Backbone ResNet-50 ResNeXt-50 ResNet-50

Imbalance ratio 100 50 100 50 CE loss 55.49 53.35 39.89

CE loss 29.64 24.78 63.32 56.15 Focal loss [28] 54.20 - 39.70

Focal loss [28] 29.62 24.75 62.75 55.68 CosFace [62] 55.05 53.00 33.08

CosFace [62] 27.92 22.60 60.79 56.89 ArcFace[26] 55.46 51.51 36.14

ArcFace[26] 26.24 21.81 60.94 56.60 LDAM-DRW [20] 51.20 - 32.00

LDAM-DRW [20] 22.97 18.97 57.96 53.41 CB-Focal [14] - - 38.88

CB-Focal [14] 25.43 20.73 60.40 53.79 Equalization loss [34]  52.70 50.90 38.37

Equalization loss [34] 26.02 - 57.26 - LA loss [56] 51.11 - 31.56

LA loss [56] 19.08 - 56.11 - BBN [23] 5530 B 30.38

BBN [23] 20.18 17.82 57.44 52.98 Meta-learning [53] - - 3245

Meta—learningl [53] 20.00 17.77 55.92 50.84 Decoupling [46] 52.30 50.10 30.70

Meta-learning"* [53] 21.10 17.12 55.30 49.92 KPS loss (Ours) 48.72 4717 29.65

KPS loss (Ours)® 18.77 15.41 54.97 50.82

Note: The best and the second best results are shown in underline bold and
bold, respectively.

" Results are obtained by coping from LA loss [56].

1: Results are obtained by incorporating LDAM [20].

i: Results are obtained by incorporating focal loss [28].

i GA strategy is utilized.

where s, is the scale parameter in the first stage, which is
the same for all classes.

In this way, the parameters that need to be preset are:
Npases Mmaz ANd Spase. We choose npgse = 50 and speqee = 15
experimentally for all datasets. The only hyper-parameter
that need to be adjusted towards different dataset is m,4,-
For CIFAR-10/100-LT, the total classes C' are much smaller
than the dimension of features. So the margin for CIFAR-
10/100-LT can be set relatively large. We choose m;,q, = 0.5
for these two datasets. As for the large-scale datasets,
namely ImageNet-LT and iNaturalist 2018, we select
Mimaz = 0.35 and 0.3, respectively.

4.3 Comparison Methods
We compare our KPS loss to the following three groups of
competing methods:

4.3.1 Baseline Methods

Besides vanilla training with cross-entropy loss (CE loss),
we also employ the recent proposed focal loss [28] that
focuses training on difficult samples as one of our baselines.

4.3.2 Loss Modification Methods

Four recently proposed loss function modification methods
are compared: CosFace [62], ArcFace [26], Label-Distribution-
Aware Margin Loss with deferred re-weighting (LDAM-
DRW)? [20], Class-Balanced focal loss (CB-Focal) [14], Equali-
zation loss [34] and Logit Adjustment loss (LA loss) [56].

3 LDAM-DRW trains the backbone with the original dataset at the
first stage and fine-tunes the classifier with DRW at the second stage. It
is also a two-stage method.

Note: The best and the second best results are shown in underline bold and
bold, respectively.

" Results are obtained by incorporating CE loss.

t: GA strategy is utilized.

4.3.3 Two-Stage Methods

We compare with the recently proposed Bilateral-Branch Net-
work (BBN) [23] and meta-learning [53], which adopt two-
stage fine-tuning strategy and a domain adaptation strategy,
respectively. These two methods achieve good performance
on those four aforementioned commonly used long-tailed
datasets. For ImageNet-LT and iNaturalist 2018 datasets, we
also compare with Decoupling learning [46], which takes the
strategy with post-hoc normalization of the classification
weights and achieves high accuracy on large-scale datasets.

4.4 Comparison Results

Top-1 error rates of baseline and comparison methods are
shown in Tables 3 and 4. We use the results reported in
references ([14], [20], [23], [28], [34], [53], [56]) except the
baseline method. Our re-implemented results are mostly
consistent with references. The slightly inconsistent ones
might be caused by the running environment (e.g., the ver-
sion of CUDA and precision of device), since we keep the
experimental settings consistent with references.

4.4.1  Experimental Results on CIFAR-10/100-LT

We conduct extensive experiments on CIFAR-10-LT and
CIFAR-100-LT with different imbalance ratios. The perfor-
mance comparison of various methods is shown in Table 3.
Our proposed KPS loss achieves the best results in most cases
compared to other methods, including loss modification strat-
egies (i.e., LDAM-DRW, CB-Focal, Equalization loss and LA
loss), two-stage fine-tuning strategy (i.e., BBN), and also two-
stage domain adaptation strategy (i.e., meta-learning). These
methods are all recently proposed state-of-the-arts.

Except for meta-learning, our method obtains significant
improvement across all the datasets compared with other
comparison methods. Comparing KPS loss with baseline
methods (CE loss and Focal loss), we find that KPS loss sig-
nificantly improves the CE loss and Focal loss. Under the
setting of p =100, for instance, KPS loss reduces the
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Fig. 5. Feature distribution of different loss functions. A ResNet-32 is trained on 3 classes from CIFAR-10. 5000, 500 and 1000 samples for Class 1,
Class 2 and Class 3 are randomly selected, respectively. (a1)-(d1) are the feature distributions obtained by different loss functions on training data,

and (a2)-(d2) are on testing data.

baseline methods by more than 10% and 6% top-1 error rate
on CIFAR-10-LT and CIFAR-100-LT, respectively. Com-
pared with the loss modification methods, our proposed
method outperforms these methods in each session by nota-
ble margins. Especially, compared with the most related
method, namely LDAM-DRW, KPS loss reduces the top-1
error rate by 4.20% and 3.56% on CIFAR-10-LT and 2.99%
and 2.59% on CIFAR-100-LT under o = 100 and 50. We can
also clearly observe the superiority of KPS loss compared
with two-stage methods that achieve good performance.
Even though meta-learning incorporating focal loss gets the
best result on CIFAR-100-LT with p = 50, our proposed KPS
loss outperforms it on other datasets. And our method gets
the second best on CIFAR-100-LT with p = 50. Furthermore,
meta-learning adopts two training stages and needs to
explicitly estimate the class-conditioned distribution differ-
ences using a separate network. Our method which only
modifies the loss function based on label distribution is sim-
pler to implement compared with meta-learning.

Additionally, the following observation can be obtained
from Table 3. The two-stage training strategies (i.e. BBN
and meta-learning) are also effective in most cases, since
they could obtain comparable or even better results com-
pared with other state-of-the-art methods. BBN takes two
branches network to learn different distributions training
samples and meta-learning uses a network to estimate
the conditional distribution P(z|y) from head classes and
then transfer it to the tail classes. These strategies are
enlightening.

4.4.2 Experimental Results on ImageNet-LT and
iNaturalist 2018

Table 4 shows the results on two large-scale long-tailed data-
sets. As shown in Table 4, our KPS loss still outperforms

baselines and the competing approaches across these two
datasets, which is consistent with the observation of CIFAR-
10/100-LT. Compared with the baseline methods, our
method reduces the top-1 error rate on ImageNet-LT and
iNaturalist 2018 by more than 6% and 10%, respectively,
which is a significant performance improvement. Addition-
ally, compared to LDAM-DRW, we have achieved notable
improvements, ie., 2.48% and 2.35% improvements on
ImageNet-LT and iNaturalist 2018, respectively. Even com-
pared with the two-stage methods that have achieved signifi-
cant improvements, our method can surpass them.

Moreover, the two-stage fine-tuning strategies also per-
form well. But meta-learning does not perform as well as
long-tailed CIFAR on these two large-scale datasets, proba-
bly because of the loss function that meta-learning incorpo-
rates with.

4.5 Ablation Experiment

1) Why is KPS effective? In order to better explain the pro-
posed KPS loss, we use a toy experiment to visualize feature
distributions trained with different loss functions. We train
a ResNet-32 with 3 classes from CIFAR-10 with 30 epochs.
The number of training samples for Class 1, Class 2 and
Class 3 are 5000, 500 and 1000, respectively. The visualiza-
tion is shown in Fig. 5. We can see that most of the points of
Class 3 are far away from Class 1 and Class 2 than 7/2 in
feature space. The points of Class 3 are non-key points for
class 1 and class 2. In Figs. 5al, 5a2, 5b1, and 5b2, we can
observe that CE loss and focal loss have no margins, leading
to difficulty in classifying each class. In Figs. 5c1 and 5c2,
LDAM assigns margins for different classes and can make
each class more separable. But there are some key points
clustered together, so that they are difficult to be classified.
From Figs. 5d1 and 5d2, we can see that our proposed KPS
loss can well cluster the samples in each class and make
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TABLE 5

Top-1 ERROR RATES (%) ON LONG-TAILED CIFAR DATASET
Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance ratio 100 50 100 50
KPS w/o0 GA and DRW 19.85 16.40 55.31 50.92
KPS-DRW 19.09 16.11 58.95 54.30
KPS-GA 18.77 15.41 54.97 50.82

most points become simple points. And the key points
obtained by KPS loss become more separable.

2) What is the effectiveness of GA? To illustrate the effec-
tiveness of our proposed gradient adjustment optimization
strategies, we explore several different optimization strate-
gies on CIFAR-10/100-LT with different imbalance ratios.
Specifically, we test our proposed loss trained with both the
basic SGD without any other optimization strategy (KPS w/
0 GA and DRW) and with DRW [20] (KPS-DRW). The
results are listed in Table 5. We can see that our proposed
gradient adjustment strategy (KPS-GA) can yield better
results than the other strategies. Since Gao et al. [20]
observed that their loss benefits a lot from DRW. We expect
that employing DRW can be similarly beneficial for our KPS
loss. But the experiments show that DRW even hurts the
performance compared with original SGD without optimi-
zation strategy on CIFAR-100-LT. To further analyze the
results, we show the per-class error rate on CIFAR-10/100-
LT with p =100 in Fig. 6. On CIFAR-100-LT, in order to
facilitate visualization, we aggregate the classes into ten
groups according to their label frequency sort order. Group
1 corresponds to the top 10 most frequent classes. Group 2
comprises the second most frequent 10 classes, and so on.
The most frequent 3 classes/groups in CIFAR-10/100-LT
are named Head1l to Head3. The 4 classes/groups appear-
ing with medium frequency are named Midl to Mid4 in
order, and the rest 3 least frequent classes/groups are
named Taill to Tail3 in order. As shown in Fig. 6, compared
with the basic optimization strategy, DRW increases the
performance on tail classes but meanwhile harms that on
head classes. In contrast, the proposed GA improves the
accuracy of the tail classes, and that of the head classes only
slightly decreases or even improves in some cases (e.g., see
Head? in CIFAR-10-LT and Head1 in CIFAR-100-LT).

3) Can KPS loss be combined with other methods? KPS loss can
be trained end-to-end and is easy to attach to other methods.
We conduct the experiment of KPS combined with mixup
strategy [40] and the most recent proposed two-stage method,
i.e. MiSLAS [71]. The results are shown in Tables 6 and 7.

TABLE 6
Comparison of KPS Combined with mixup in Terms of Top-1
Error Rates (%)

Dataset CIFAR-10- CIFAR-100- ImageNet-LT iNaturalist 2018
LT LT

Backbone ResNet-32  ResNet-32 ResNet-50 ResNet-50

Imbalance ratio 100 50 100 50 - -

KPS 18.77 15.41 54.97 50.82 48.72 29.65

KPS w. mixup 17.84 15.07 54.66 49.45 47.05 28.12

Note: GA strategy is utilized.
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TABLE 7
Comparison of KPS Combined with MiSLAS in Terms of Top-1
Error Rates (%)
Dataset CIFAR-10- CIFAR-100-  ImageNet-  iNaturalist
LT LT LT 2018

Backbone ResNet-32 ResNet-32 ResNet-50  ResNet-50
Imbalance ratio 100 50 100 50 - -
MIiSLAS 17.94 1484 52.62 48.28 47.89 29.43
MiSLASw.KPS 17.26 14.36 52.28 47.59 47.74 29.12

Table 6 shows that mixup is an effective strategy for boosting
performance. It can be found that KPS with mixup, which can
be trained end-to-end, is better than MiSLAS in most cases we
have tried thus far. As for the two-stage method as shown in
Table 7, using KPS in the second stage of MiSLAS can indeed
further improve the performance.

4) How does KPS loss perform in the head, middle and tail classes?
We use CIFAR-10-LT and CIFAR-100-LT with p = 100 to pres-
ent the performance on each class/group. Besides KPS loss, the
per-class/group error rates with baseline methods are shown
for comparison. Since CosFace, ArcFace and LDAM-DRW are
the most related methods to our work, Fig. 7 also breaks down
the per-class/group error rate of these methods. Analogous to
Fig. 6, on CIFAR-100-LT, we aggregate the classes into ten
groups based on their frequency-sorted order for ease of visual-
isation. Then, we divide the 10 classes/groups into Head, Mid-
dle and Tail according to the sample frequency. The
corresponding per-class/group accuracy is shown in Fig. 7.
We can observe the following phenomena:

1)  The overall error rate of all methods shows the trend
of Head < Mid < Tail. This is in line with common
sense because head classes have more sample
diversity.

2) Compared with CE loss, CosFace and ArcFace per-
form well on balanced data. The methods for imbal-
anced data, i.e., Focal loss, LDAM-DRW and our
KPS loss can decrease the error rate on tail classes.
LDAM-DRW and KPS loss can also improve the per-
formance on middle classes.

3) The methods for imbalanced data all sacrifice the
performance of the head classes to a certain extent.
The reduction in the head class of KPS loss is insig-
nificant compared to the improvement in the tail
class. For example, on CIFAR-100-LT with p = 100,
KPS loss improves the error rate of Headl by 1.7%,
but reduces that of Taill by more than 10%.

5 CONCLUDING REMARKS

In this paper, we have proposed a KPS loss to solve the clas-
sification problem of long-tailed distribution of training
data, which can unify several recent proposals and over-
come their limitation. This KPS loss is geometrically princi-
pled and has twofold effectiveness: 1) increase the margins
of the samples with key points; 2) encourage a large relative
margin between points of tail versus head classes. In order
to further increase the classification accuracy, we have pro-
posed a gradient adjustment (GA) optimization strategy
that can compensate for the excessive punishment for tail
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