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Abstract—In multi-view environment, it would yield missing
observations due to the limitation of the observation process. The
most current representation learning methods struggle to explore
complete information by lacking either cross-generative via simply
filling in missing view data, or solidative via inferring a consistent
representation among the existing views. To address this problem,
we propose a deep generative model to learn a complete generative
latent representation, namely Complete Multi-view Variational
Auto-Encoders (CMVAE), which models the generation of the
multiple views from a complete latent variable represented by a
mixture of Gaussian distributions. Thus, the missing view can be
fully characterized by the latent variables and is resolved by esti-
mating its posterior distribution. Accordingly, a novel variational
lower bound is introduced to integrate view-invariant information
into posterior inference to enhance the solidative of the learned
latent representation. The intrinsic correlations between views are
mined to seek cross-view generality, and information leading to
missing views is fused by view weights to reach solidity. Benchmark
experimental results in clustering, classification, and cross-view
image generation tasks demonstrate the superiority of CMVAE,
while time complexity and parameter sensitivity analyses illustrate
the efficiency and robustness. Additionally, application to bioinfor-
matics data exemplifies its practical significance.

Index Terms—Deep generative models, incomplete multi-view
problem, multi-view learning, representation learning.
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I. INTRODUCTION

MULTIPLE views of data in real-world applications are
collected by different measurements to represent various

characteristics of an object. Concrete examples include reporting
news in different languages, describing events with images,
audio and text, and detecting organs through different imag-
ing mechanisms to obtain multi-modal medical images. These
semantically coherent multi-view samples are connected by a
consensus representation. Typically, limitations or deviations
in measurement methods result in individual views containing
insufficient information, while different views can complement
each other [1]. In several radical cases, there may even be missing
views, making it difficult to obtain complementary information
from other views, so-called incomplete multi-view problem.

In recent years, there has been a growing body of research
in multi-view representation learning, which is concerned with
the problem of exploiting complementary information to learn
integrated representations. Representative techniques include
correlation-based [2], [3], similarity-based [4], [5], graphical
model-based [6], [7] and neural network-based [8], [9] multi-
view learning approaches. They perform model learning based
on the assumption that all views of each sample are fully ob-
served. However, for incomplete multi-view data, these methods
will inevitably degrade or even collapse.

To solve the incomplete multi-view problem, various in-
complete multi-view learning algorithms have been proposed
recently. In concrete, the prevalent solutions can be roughly
classified into three strategies. The first strategy attempts to fill
in the missing view data by assuming that the learned multi-
view representation contains complete information, followed by
off-the-shelf task driving processing. [10], [11] presented the ap-
proaches to first impute the missing values by matrix completion,
and then performed weighted non-negative matrix factorization
(NMF) by setting the filled data lower weight. Besides, gener-
ative adversarial networks (GAN) based approaches [12], [13]
leveraged the power of generative network to impute the missing
views. However, this strategy relies heavily on the effectiveness
of data completion and is usually ineffective when the missing
rate is high. The second strategy is to group samples into multiple
paired subsets according to the availability of data sources by
assuming the data for each subset is complete and then learn mul-
tiple models on these groupings for post-fusion [14], [15]. Al-
though it is more efficient than learning on each individual view,
this inflexible grouping strategy greatly increases computational

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2747-7234
https://orcid.org/0000-0001-8848-4801
https://orcid.org/0009-0000-2711-5113
https://orcid.org/0000-0002-5911-7727
https://orcid.org/0000-0001-5435-7871
https://orcid.org/0000-0003-3514-5413
https://orcid.org/0000-0002-2081-9369
https://orcid.org/0000-0001-7629-4648
mailto:hmcai@scut.edu.cn
mailto:202110187947@mail.scut.edu.cn
mailto:puremorning@yeah.net
mailto:puremorning@yeah.net
mailto:202220143120@mail.scut.edu.cn
mailto:zhangyue@gpnu.edu.cn
mailto:bh@bit.edu.cn
mailto:zhangfa@bit.edu.cn
mailto:ymc@comp.hkbu.edu.hk


3638 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 5, MAY 2024

Fig. 1. Solid arrows represent the process of generation, the solid lines indicate the intrinsic correlations between views, while the dashed arrows represent the
process of variational inference. (The sampling operation is omitted). (a) Multi-view observations are obtained from a shared latent variable through different
generative processes. The latent variable is assumed to represent a mixture of multiple posteriors mixing different semantic properties. (b) Complete multi-view VAE
is proposed to model the intrinsic transformations between views and preserve the weight of views, which can facilitate the synthesis of the complete latent variable.

complexity when facing data with a large number of views. The
last strategy focuses on inferring the latent information on the
missing views by assuming that the cross-views are generative.
Partial multi-view clustering [16], [17] presented a joint partial
alignment method to explore the complementary and consensus
information of the available views. In [18], [19], the embedding
space of both views was learned by cross-view learning, fol-
lowed by distilling latent information across views. This allows
for more efficient usage of available views to infer potentially
shared information, but the completeness of the latent represen-
tation is not guaranteed. To deal with general requirements, we
summarize the following desiderata for incomplete multi-view
representation learning:

1) Completeness: The learned multi-view representation
contains complete information, which describes task-
relevant information for all different views of observation.

2) Cross-generative: Multi-view representation learned from
available views has the ability to generate missing sam-
ples, which can also corroborate the completeness of the
learned representation.

3) Solidative: There exists conservative information inherent
to multi-view sampling that is not altered by the absence of
views, e.g., the weight of views, the intrinsic correlations
between views. Making full use of this information can
enhance the solidative of the learned representation.

In this paper, we propose a deep generative model for
multi-view representation learning, namely Complete Multi-
view Variational Auto-Encoders (CMVAE). As demonstrated
in Fig. 1, multi-view observations are considered to be gener-
ated from a shared latent variable containing various attributes,
which is therefore assumed to be a mixture of densities from
multiple variational posteriors. For incomplete multi-view prob-
lem, CMVAE seeks to learn a complete generative latent rep-
resentation accompanied by view-invariant information. First,
view-peculiar latent variables are inferred from the correspond-
ing posteriors. Then, the implicit information of the missing
views can be predicted from the existing views by the intrinsic
correlations between them. By weighting the integration of
multiple view-peculiar latent variables, a complete generative
latent variable is finally obtained.

The main contributions of our work are as follows,
� A deep multi-view generative model is proposed to

learn complete generative latent representations. By using

variational inference, a novel variational lower bound of
joint likelihood is developed with the introduction of joint
variational posterior as a Gaussian mixture.

� By optimizing the posterior for each view, a shared
Gaussian mixture distribution variable can be inferred,
from which multi-view variants can be derived to cross-
generate data samples from another view.

� View-invariant information is learned to enhance the sol-
idative of the latent representation when encountering view
missing. Precisely, the implicit information of missing
views can be predicted by modelling the linear transfor-
mations between view-peculiar latent variables, resulting
in the view weights being invariant to ensure the accurate
depiction of mixture Gaussian distributions.

� From both quantitative and qualitative perspectives, the
results of the benchmark experiments demonstrate the
superiority of the learned generative yet complete latent
representation, while the time complexity and parameter
sensitivity analyses illustrate the efficiency and robustness
of CMVAE. In addition, the application on bioinformatics
data verifies its the practical value.

II. RELATED WORKS

A. Multi-View Representation Learning

Multi-view representation learning is defined as a representa-
tion learning procedure for discovering the underlying patterns
of multi-view data. Canonical Correlation Analysis (CCA) [20]
and its variants [2], [3], [21], [22] are typical representation
learning model for two views data. CCA-based methods aim
to learn the consistent representations by maximizing the total
correlation. Recently, many notable multi-view representation
learning approaches have been proposed to handle more than
two views. MDcR [23] applies kernel matching to regularize
the correlation between multiple views in the common low-
dimensional latent space. DMF-MVC [24] extracts consistent
representation by leveraging semi-non-negative matrix factor-
ization. MULPP [25] utilizes pairwise and higher-order correla-
tions to realize flexible view consistency while maintaining local
structure to obtain complementary information. To combine
information specific to each single view, SIMM [26] introduces
confusion adversarial loss and orthogonality constraints to ex-
ploit view-shared and view-specific representations. DGF [27]
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explicitly models both multi-view consistency as well as multi-
view inconsistency in a unified optimization model. In addi-
tion, there are many outstanding works leveraging probabilistic
generative models for representation learning, which will be
introduced in detail in Section II-C. Intuitively, the consistency
information between views decreases with the number of views,
while the inconsistency is opposite, making multi-view con-
sensus learning methods difficult to handle. This paper focuses
more on extracting complete information from multiple views
to preserve the characteristics of different views.

B. Incomplete Multi-View Representation Learning

To deal with the incomplete multi-view problem, an increas-
ing number of studies have recently focused on incomplete
multi-view representation learning. They can be classified into
three categories based on the exploitation of cross-view infor-
mation. (1) Missing filling method aims at imputing the missing
data to form the complete multi-view data and then utilizing con-
ventional multi-view learning technique. CoKL [28] collectively
completes the kernel matrices of the datasets by optimizing
the alignment of common instances. MVL-IV [29] generates
incomplete view data from the shared subspace learned from
the observed view. CRA [30] stacks residual autoencoders to
learn complex relationship among multiple views to impute the
missing data. VIGAN [12] utilizes GAN to generate the missing
views and then learns the shared latent space of all views. (2)
Grouping-and-learning method is to group samples into multi-
ple paired subsets based on available data, which are then divided
into multiple learning tasks. iMSF [14] divides samples based
on the availability of data sources, and then uses sparse learning
to learn shared feature sets. IMG [31] separates the samples into
complete and incomplete multi-view data. A compact global
structure is then learned by using Laplacian graphs of complete
instances in a low-dimensional space. MoPoE-VAE [15] trains
different multi-view models by different subsets of groupings
to cope with different view missing cases. (3) Cross-view
learning method infers potential information on the missing
data by performing cross-view learning directly from the ex-
isting view data. PVC [16] projects the incomplete data into a
low-dimensional common subspace regularized by lF -norm and
l1-norm. iCmSC [19] explores correlations between incomplete
cross-view data and learns a consistent subspace representation
to improve clustering performance. CPM-nets [17] partitions
partial multi-view data by focusing on the completeness and
generality of the learned representations. GSRIMC [32] focuses
on exploring the useful information behind the subgraph struc-
ture, while avoiding to perform complex feature recovery tasks.
DCP [33] unifies consistent representation learning and missing
data recovery by jointly optimizing dual constraint loss and dual
prediction loss from an information-theoretic perspective. This
paper is concerned with this category, i.e., making full use of
existing data to predict the hidden features of missing views and
integrate them into a unified representation.

C. VAE in Multi-View Scheme

We begin with a natural assumption that there is a shared latent
variable on multiple observations generated from multi-view

measurement [34]. Once the variant samples are well gener-
ated together, the completeness of the latent representation is
achieved. However, the intractable integral calculations involved
make it difficult to optimize this generative model directly, i.e.,
maximizing the joint likelihood function. Variational inference
technique is one of the solutions used to convert the difficult
computation problem into optimization problems. Variational
Auto-encoders (VAE) [35] is a successful paradigm on single-
view data by combining the deep neural network under the
framework of Stochastic Gradient Variational Bayes (SGVB).

Recently, many generative models leveraging the VAE frame-
work have been proposed for multi-view representation learn-
ing. We review the models for constructing variational lower
bounds by introducing different joint variational posteriors that
elaborate specific inference processes for latent representations.
VCCAP [3] utilizes dual variational autoencoders to nonlinearly
project two view data into a consistent latent space by maximiz-
ing the correlation between views. In DMVC-VAE [40], an auto-
weighted fusion module is embedded into the posterior inference
process to obtain the shared latent representation which is set as
a mixture of Gaussian distributions for clustering. MVAE [36]
models the joint posterior as a Product-of-Experts (PoE) [37].
PoE produces a clearer distribution by aggregating information
from multiple unimodal posteriors, but this is not conducive
to optimizing the individual posteriors, which is important for
learning a balanced distribution. MMVAE [38] assumes that
the joint posterior is a Mixture-of-Experts (MoE). MMVAE
only takes unimodal posteriors into account during training by
pairwise optimization, such that the latent representation of any
view can reconstruct observations from other views and its own
view. The drawback is that information from other posteriors
cannot be combined in one-pass inference. mmJSD [39], on
the other hand, adds learning of a common latent variable
to aggregate view-peculiar latent variables. MoPoE-VAE [15]
combines PoE and MoE to construct the variational lower bound
of joint likelihood, theoretically combining the advantages of
each. They are computationally scalable to the number of views,
it decomposes allm view data into 2m subsets, and optimizes the
2m combined encoders separately to deal with any missing view.
However, this would render the method intractable to handle
for tasks with a large number of views. The aforementioned
incomplete multi-view learning methods either suffer from high
computational complexity or ignore the difference information
between views, which motivates the proposed CMVAE to re-
duce the computational complexity of multi-view VAEs and
learn generative yet complete representations to improve the
performance of clustering or classification.

III. PROPOSED METHOD

In this section, a generic multi-view probabilistic generative
model, the vanilla multi-view VAE (VMVAE), is first proposed
for multi-view representation learning. To efficiently optimize
the latent variable model, a variational lower bound for the
joint likelihood function is constructed by introducing a mix-
ture of Gaussian distributions as the joint variational posterior.
Next, to meet the three desiderata for incomplete multi-view
representation learning, we present CMVAE where a novel
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joint variational posterior is proposed, which extract implicit
correlations among views and learns invariant weights across
views to realize a complete generative latent representation.

A. Vanilla Multi-View VAE

Given am views datasetX ={X(v) ∈ Rn×dv}mv=1, each view
collection consisting of n i.i.d samples, X(v) =

{x(v)
1 ,x

(v)
2 , . . .,x

(v)
n }. We denote uniform sampling from

this finite dataset as p̃(X ). To estimate the true density
of multi-view variables, one aims to approximate the real
distribution p(X ) ∈ P from the hypothesis space of distribution
family P by p̃(X ) nicely via minimization their KL divergence,

minDKL (p̃(X )‖p(X )) = maxEp̃(X ) [log p(X )]

= max
1

n

n∑
i=1

log p
({

x
(v)
i

}m
v=1

)
,

(1)

Note that minimizing the KL divergence is equivalent to maxi-
mizing the log likelihood. To ease the reading, we will omit the
subscript i and denote {∗(v)}mv=1 as {∗(v)} in the following.

Under the assumption that the density p({x(v)}) is achieved
through the marginalization of a shared latent continuous vari-
able z, the generation process of multi-view variables can be
formulated by,

p
({

x(v)
})

=

∫ m∏
v=1

pθ(v)

(
x(v)|z

)
p(z)dz. (2)

Since the integral is intractable, it is potentially difficult to
directly calculate the marginalization. Similar to VAE [35], we
turn to maximize the Lower BOund on the Evidence (ELBO)
LELBO(p({x(v)})) by introducing a joint variational posterior
q(z|{x(v)}),

log p
({

x(v)
})

≥ LELBO

({
x(v)

})
= −DKL

(
q
(
z|
{
x(v)

})
‖p(z)

)
+ Eq(z|{x(v)})

[
log p

({
x(v)

}
|z
)]
. (3)

The former is KL divergence from the prior p(z) to the joint vari-
ational posterior q(z|{x(v)}), which drives variational inference
close to our hypothesis on z. The latter reveals the process of
variational inference and generation.

Once a specific posterior model is established, a shared
latent representation can be learned from multiple variables
through the inference process. Therefore, it is crucial to choose
a highly expressive and easily computable density as the joint
variational posterior. Different strategies for modelling the joint
posterior inference process are discussed in Section II-C. We
believe that the complete implicit semantic information of
events is complexly distributed, where only limited proper-
ties are actually observed at once. Therefore, we prefer to
model the joint variational posterior with a mixture of Gaussian

distributions,

q
(
z|
{
x(v)

})
=

m∑
v=1

λvqφ(v)

(
z|x(v)

)

=

m∑
v=1

λvN
(
z; μφ(v)

(
x(v)

)
, Σφ(v)

(
x(v)

))
,

(4)

where λv denotes the non-negative normalized coefficient for
the v-th component, satisfying λv ≥ 0 and

∑m
v=1 λv = 1. The

mean and covariance of multivariate Gaussian distribution w.r.t
z can be obtained from the encoder with parameters φ(v).
Consequently, the lower bound on the evidence p(x(v)) can be
rewritten as,

LELBO = −DKL

(
m∑
v=1

λvqφ(v)(z|x(v))‖p(z)
)

+

m∑
v=1

λvEq
φ(v) (z|x(v))

⎡⎣ m∑
j=1

log pθ(v)(x(j)|z)
⎤⎦ .

Note that the KL divergence term is difficult to compute analyt-
ically, we turn to approximate its upper bound.

Lemma 1: For all non-negative measurable functions fi :
R → [0,∞) satisfying

∫
fi(x)dx = 1, defining a weighting

function g(x) =
∑m
i λifi(x), with λi ≥ 0 and

∑m
i λi = 1,

one has∫ m∑
i

λifi(x) log g(x)dx ≤
m∑
i

λi

∫
fi(x) log fi(x)dx.

Proof: Let fi be a probability density function, and g(x)
be a mixture of density with m components of fi. Consider
Efi(x)[log

g(x)
fi(x)

], by utilizing Jensen’s inequality, we have,

Efi(x)

[
log

g(x)

fi(x)

]
≤ E

[
fi(x)

g(x)

fi(x)

]
= log

(∫
g(x)dx

)
= 0.

Thus, it can be showed that
∫
fi(x) log g(x)dx ≤∫

fi(x) log fi(x)dx.
With Lemma 1, the new objective of VMVAE is formulated

by,

LVMVAE = −
m∑
v=1

λvDKL

(
qφ(v)

(
z|x(v)

)
‖p(z)

)

+

m∑
v=1

λvEq
φ(v)(z|x(v))

⎡⎣ m∑
j=1

log pθ(v)

(
x(j)|z

)⎤⎦
≤ LELBO. (5)

The proposed VMVAE is enlightened by (5). The summation
of KL-divergences drives the unimodal variational posteriors
to approach the prior individually, while the summation of their
expectations reveals alternatively variational inference followed
by full view generation. Notably, the greater expectation of v-th
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view over all views, indicating the more complete information
it contains, and therefore the greater the weight λv. The whole
model is illustrated in Fig. 1(a).

B. Complete Multi-View VAE

The proposed vanilla multi-view VAE faces a pitfall when
dealing with missing views. When there are m views, 2m

inference paths need to be constructed [15] and thus render
the method intractable as the number of views increases. Either
the inference about missing views is abandoned, which would
be biased by the view weights and cause a large ELBO slack.
To tackle this issues, one can exploit the intrinsic correlations
between views, thereby using the extracted representation to
engineer a learning function to deal with incomplete multi-view
problem. Let ({z(v)}, c) denote the view-peculiar and complete
generative latent variables. The two type of latent variable can
be modeled by a linear transformation z(w) = z(v)Cvw, Cvw ∈
Rdz×dz . This correlation enables interconversion in linear spaces
of the same dimension, and will not change due to unobservable
views. For a random variable obeying the Gaussian distribution,
giveny ∼ N (μ, Σ), whose linear transformation distribution is
yC ∼ N (μC, CTΣC) under the statistical principle. It is noted
that, similar to work [41], under the assumption of nonlinearity,
correlations between views can be more flexible and fitted by
using neural networks.

In this way, we introduce a novel joint variational posterior
as,

q
({

z(v)
}
, c|
{
x(v)

})
=

m∑
v=1

λvq
({

z(v)
}
, c|x(v)

)

=

m∑
v=1

λvqψ

(
c|
{
z(v)

}) m∏
w 
=v

q
(
z(w)|z(v)

)
qφ(v)

(
z(v)|x(v)

)
,

(6)

where q(z(w)|z(v))qφ(v)(z(v)|x(v))=N (z(w); μφ(v)(x(v))

Cvw, CTvwΣφ(v)(x(v))Cvw). Here the generative latent
variable qψ(c|{z(v)}) is obtained from multiple view-peculiar
variables under the fusion network with parameter ψ, i.e.,
c ∼ N (μψ({z(v)}), Σψ({z(v)})).

Under the joint inference model (6), the framework of com-
plete multi-view VAE is shown in Fig. 1(b). All view-peculiar
encoders are optimized to learn a balanced representation, and
the fusion network is leveraged to aggregate information from
all views. When one view is missing, the latent representation
can be predicted by other available view information and learned
invariant correlations. For example, given an available view v
and an unobservable view u, the inference process for view u
can be formulated by,

λuq
({

z(v)
}
, c|x(u)

)
= λuqψ

(
c|
{
z(v)

})
m∏
w 
=u

q
(
z(w)|z(u)

)
q
(
z(u)|z(v)

)
qφ(v)

(
z(v)|x(v)

)
. (7)

Eq. (7) shows how the weights of the learned distributions
remain valid once the latent variables of the unobservable views
are modeled.

To correctly model the correlations between view-peculiar la-
tent variable, it is desired to approximate the true transformations
by minimizing the KL-divergence,

minDKL

(
p
(
z(w)|z(v)

)
‖q
(
z(w)|z(v)

))
= maxEp(z(w)|z(v))

[
log q

(
z(w)|z(v)

)]
. (8)

Therefore, the objective of CMVAE can be rewritten as,

LCMVAE = −
m∑
v=1

λvDKL

(
q
({

z(v)
}
, c|x(v)

)
‖p(c)

)

+
m∑
v=1

λvEq({z(v)},c|x(v))

⎡⎣ m∑
j=1

log pθ(v)

(
x(j)|c

)⎤⎦
+

m∑
v=1

m∑
w 
=v

Ep(z(w)|z(v))

[
log q

(
z(w)|z(v)

)]
. (9)

Note that the third term of (9) calculates only the available paired
views.

Lemma 2: For any multivariate random variable x ∈ RJ ,
and its density function p(x), given q(x) = N (x;μ, I), we
have,

Ep(x) [log q(x)] ≤ −J
2
log 2π < 0.

Proof: By using Monte Carlo estimation to approximate the
expectation, we take T samples of xt from the density p(x),

Ep(x) [log q(x)]

=
1

T

T∑
t=1

log
1√
(2π)J

exp

(
−1

2
(xt − μ)T (xt − μ)

)

= −J
2
log 2π − 1

2T

T∑
t=1

‖xt − μ‖22

≤ −J
2
log 2π < 0.

With Lemma 2, by simply setting the covariance matrix
of q(z(w)|z(v)) as identity matrix, the objective of CMVAE
can be seen as the lower bound of the joint likelihood func-
tion, i.e., log p({x(v)}) ≥ LELBO({x(v)}) ≥ LCMVAE({x(v)}).
Finally, the maximization of the joint likelihood function is
converted into the maximization of the CMVAE objective.

C. Numerical Scheme to Solve CMVAE

The (9) characterize an unified objective function for optimiz-
ing the parameters of view-peculiar encoders, pairwise correla-
tion matrices, fusion network and multiple decoders. For opti-
mization using Stochastic Gradient Variational Bayes (SGVB),
the sampling operations of ({z(v)}, c) should be mapped to the
deterministic functions. By the reparameterization trick [35]
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Algorithm 1: Optimization Procedure of CMVAE.
Input: Multi-view dataset X ; Statistical model of the prior
p(c) = N (0, I); Setting T = 1 and the dimensionality of
latent variables.

Parameter: Initialize parameters {φ(v)}, {θ(v)}, ψ with
random values, λv =

1
m and Cvw with identity matrix.

1: while not reaching the maximal epochs do
2: for v in m views do
3: Calculate (μφ(v)(x(v)), Σφ(v)(x(v))) through v-th

encoder and then sample z
(v)
t by (10);

Implement
z(w) = z(v)Cvw, ∀w ∈ 1, 2, . . .,m, w 
= v;
Calculate (μψ({z(v)}), Σψ({z(v)})) through the
fusion network and then sample ct by (11);

4: for j in m views do
5: Generate {x(v)} by m decoders.
6: end for
7: end for
8: Update {φ(v)}, {θ(v)}, ψ, Cvw, λv by maximizing

(12).
9: end while
Output: The complete generative latent representation c.

for the continuous variable, we sample the t-th latent represen-
tations by,

z
(v)
t = μφ(v) +Rφ(v)ε

(v)
t (10)

ct = μψ +Rψεt (11)

where Rφ(v)RT
φ(v) = Σφ(v) , ε

(v)
t ∈ N (0, I) and RψR

T
ψ =

Σψ, εt ∈ N (0, I).
By using Monte-Carlo estimators, the objective of CMVAE

can be further written as,

LCMVAE

({
x(v)

})
=

m∑
v=1

λv

T

T∑
t=1

⎡⎣ m∑
j=1

log pθ(v)(x(j)|ct)− log qψ

(
ct|
{
z
(v)
t

})

−
m∑
w 
=v

log q
(
z
(w)
t |z(v)t

)
− log qφ(v)

(
z
(v)
t |x(v)

)
+ log p(ct)

⎤⎦
− 1

2

m∑
v=1

m∑
w 
=v

‖z(w)
t − μφ(v)

(
x(v)

)
Cvw‖22, (12)

where T denotes the number of Monte Carlo samples and is
usually set to be 1. The partial derivatives of each parameter
combination are then calculated and used in the stochastic back-
propagation technique. The partial derivatives of each parameter
combination are then calculated as follows,

∂L
∂θ(v)

=

m∑
j=1

λj

T

T∑
t=1

∂

∂θ(v)
log pθ(v)

(
x(v)|c(j)t

)
, (13)

∂L
∂ψ

=

m∑
v=1

λv

T

T∑
t=1

∂

∂c
(v)
t

[
m∑
j=1

log pθ(v)

(
x(j)|c(v)t

)

+ log p
(
c
(v)
t

)]
·
(
∂μψ
∂ψ

+
∂Rψ

∂ψ
· εt
)

− ∂

∂ψ
log qψ

(
c
(v)
t |
{
z
(v)
t

})
, (14)

∂L
∂Cvw

=
λv

T

T∑
t=1

∂

∂c
(v)
t⎡⎣ m∑

j=1

log pθ(v)

(
x(j)|c(v)t

)
+ log p

(
c
(v)
t

)⎤⎦
(
∂μψ

∂z
(w)
t

+
∂Rψ

∂z
(w)
t

· εt
)

· z(v)t

− ∂

∂Cvw
log q

(
z
(w)
t |z(v)t

)
+
(
zwt − μφ(v)

(
x(v)

)
Cvw

)
· μφ(v)

(
x(v)

)
,

(15)

∂L
∂φ(v)

=
λv

T

T∑
t=1

∂

∂c
(v)
t

⎡⎣m∑
j=1

log pθ(v)

(
x(j)|c(v)t

)
+log p

(
c
(v)
t

)⎤⎦
(
∂μψ

∂z
(v)
t

+
∂Rψ
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· εt
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·
(
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∂φ(v)
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∂φ(v)
· ε(v)t

)

− ∂

∂φ(v)
log qφ(v)

(
z
(v)
t |x(v)
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, (16)

∂L
∂λv

=
1

T

T∑
t=1

m∑
j=1

log pθ(j)
(
x(j)|c(v)t

)
− log q

({
z
(v)
t

}
, c

(v)
t |x(v)

)
+ log p

(
c
(v)
t

)
. (17)

The concrete optimization procedure of CMVAE is summa-
rized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of multi-view latent represen-
tations based on three different aspects. The approximation of
the joint data distribution is measured in terms of log-likelihood.
The completeness is assessed by the clustering task and classi-
fication task compared to state-of-the-art incomplete multi-view
learning algorithms. The cross-generative of the latent repre-
sentation is demonstrated by qualitative results of cross-view
image generation. In addition, the efficiency and stability of the
proposed model are verified by time complexity and parameter
sensitivity analysis. Finally, the practical significance of the
model is demonstrated by applying it on real-world generated
bioinformatic data.
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TABLE I
STATISTICS ON TESTED NINE DATASETS

A. Experimental Settings

Model setup: For the clustering and classification task, the
architectures of qφ(v)(z(v)|x(v)) and pθ(v)(x(v)|c) are fully con-
nected networks with dv-500-500-1204-256 and 256-1024-500-
500-dv neurons, respectively, where dv is the dimensionality
of each view. The fusion network q(ψ)(c|{z(v)}) concatenates
multiple view-peculiar latent representations, followed by a
fully connected layer with dimensionality D. For cross-view
image generation, we set up the encoders and decoders as CNN
network, whose specific architecture follows MoPoE-VAE [15].
Adam optimizer [42] is utilized to maximize the objective func-
tion, and set the learning rate to be 0.001 with a decay of 0.9 for
every 10 epochs.

Datasets: We adopt the following seven benchmark datasets
ranging from small samples to large-scale and two real-world
bioinformatic datasets, and the detailed statistics are shown in
Table I.
� MSRC-V1 [43] consists of 240 images and 9 object cate-

gories. We select 7 of the whole object classes, namely tree,
building, airplane, cow, face, car and bicycle, and extract
HOG, LBP features as 2 views.

� Notting-Hill [44] is widely used video face dataset for
clustering, which collects 4660 faces across 76 tracks of
the 5 main actors from the movie ’Notting Hill’. We use
the multi-view version provided in [45], consisting of 550
images with three kind of features, i.e., LBP, gray pixels,
and Gabor features.

� Handwritten digit [46] contains 2000 samples with 10
numerals from 0 to 9 with five views which are respec-
tively extracted by Fourier coefficients, profile correlations,
Karhunen-Love coefficient, Zernike moments, and pixel
average extractors.

� Caltech101-20 is a subset of the object recognition
dataset [47] containing 20 classes and 6 different views
with a total of 2386 samples, including Gabor features,
wavelet moments, CENTRIST features, histogram of ori-
ented gradients, GIST features and local binary patterns.

� BDGP [48] contains 2500 images in 5 categories, and each
sample is described by a 1750-D image vector and a 79-D
textual feature vector.

� Animal [49] contains 10158 animal images divided into 50
categories. Two types of deep features extracted by [50]
and [51] respectively are considered as two views.

� PolyMNIST [15] dataset consists of a total of 60,000 sam-
ples of 5 different MNIST images that have different back-
grounds and writing styles, but have the same numerical
labels.

Compared algorithms: Two baselines and six state-of-the-
art algorithms are used to compare the clustering performance,
including:
� Best Single View (BSV) selects the best k-means clustering

results among all single views.
� Concat method stacks the features of all views and con-

ducting k-means clustering on it.
� DCCA [2] extracts flexible nonlinear representations with

respect to the correlation objective measured on two views
data.

� DCCAE [22] extends DCCA by using autoencoders to
extract common low-dimensional embeddings, and jointly
optimizes the correlation objective and reconstruction loss.

� VCCAP [3] leverages deep generative models to implement
a natural idea that multiple views can be generated from a
shared latent variable.

� UEAF [52] reconstructs the hidden information of missing
views with preserving the local structure, and considers the
adaptive importance of different views.

� CPM [17] learns a unified latent representation by jointly
considering completeness and structure, which is highly
flexible and generalizable to incomplete multi-view data.

� COMPLETER [33] learns informative and consistent rep-
resentations by maximizing the mutual information be-
tween different views, and recovers missing views by min-
imizing the conditional entropy of different views through
dual prediction.

Incomplete data construction: To preprocess the dataset ac-
cording to the settings in [17], we set the missing rate η =
{0, 0.1, 0.2, 0.3, 0.4, 0.5}, then randomly selected η × n×m
samples as missing data. Then random instances were removed
from each view, in the case that all samples were guaranteed to
retain at least one view.

B. Joint Likelihood Approximation

The value of the variational lower bounds affects the portrayal
of the data distribution, as well as the accuracy of the inference of
the posterior. This conclusion can be derived from the following
equation,

log p
({

x(v)
})

= DKL

(
q
(
z|
{
x(v)

})
‖p
(
z|
{
x(v)

}))
+ LVMVAE

= DKL

(
q
({

z(v)
}
, c|
{
x(v)

})
‖p
({

z(v)
}
, c|
{
x(v)

}))
−

m∑
v=1

m∑
w 
=v

Ep(z(w)|z(v))

[
log q

(
z(w)|z(v)

)]
+ LCMVAE.

It can be seen that when the variational lower bound is larger,
the smaller the KL divergence term is, which means that the
variational posterior is closer to the true posterior. We conduct
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Fig. 2. Variation of the objective values in terms of training iteration for (a) VMVAE, and (b) CMVAE, on the Handwritten dataset. The convergence values
reached by ELBO decrease as the missing rate increases, while CMVAE ultimately achieves a higher ELBO value. (c) The pronounced difference in ELBO values
on the Caltech101-20 dataset verifies that CMVAE has a tighter lower bound, especially with large amounts of information missing.

experiments on the datasets Handwritten and Caltech101-20 for
VMVAE and CMVAE, respectively, and the results are shown
in Fig. 2. By observing the results, three conclusions can be
drawn: i) The ELBO of both VMVAE and CMVAE decrease to
different degrees as the missing rate increases, which verifies
that the more difficult it is to estimate the joint data distribution
as the missing rate increases. ii) CMVAE converges more slowly
in the initial stage, which is caused by the increased complexity
of the posterior inference process, but the ELBO value is larger
than that of VMVAE in the final stage, which indicates that the
posterior inference of CMVAE is better than that of VMVAE.
iii) CMVAE is less sensitive to the missing rate, which can be
seen more clearly in Fig. 2(c). This demonstrates that learning
view-invariant information has a facilitating solidative on latent
representation learning in the case of missing views.

C. Clustering Performance Evaluation

To further verify the effectiveness of the learning of latent
representation by VMVAE and CMVAE, we conduct k-means
directly on the latent representation z and c, respectively.

For BSV, Concat, DCCA, DCCAE, and VCCAP methods, we
simply impute missing data as the mean of all samples in each
view. Since CCA-based models can only handle two view data,
we tested all two view combinations and finally reported the best
clustering score.

For fairness, the parameter settings for the compared meth-
ods are done according to their authors’ suggestions for their
best clustering performances. All algorithms were replicated 10
times on the six datasets and the mean and standard deviation
were recorded.

Evaluation metrics: For a comprehensive analysis, we use
two popular clustering metrics including Normalized Mutual
Information (NMI), Accuracy (ACC). The higher the values of
these indicators, the better the clustering performance.

Clustering results and analysis: We tested ten methods on six
multi-view datasets, suffering from different missing rates. The
experimental results are summarized in Figs. 3 and 4. It can be
observed that i) the multi-view learning approaches uniformly
outperform the BSV and Concat clustering methods, especially
when the samples are corrupted by missing views. The reason

is that neither the BSV nor the Concat method exploits the
relationship between different views. ii) CCA-based methods
generally underperform than incomplete multi-view learning
approaches, because filling missing values directly with the
mean is inefficient, while targeted handling of missing data
can more accurately mine missing view information. iii) The
performance drop of all models is more pronounced as the
missing rate increases for datasets with two views compared
to datasets with three or more views. Because under the same
missing rate, for samples with missing views, the fewer views
have more missing information, making it difficult to recover
complete view information.

By comparing the proposed model CMVAE with other in-
complete multi-view clustering approaches, CMVAE is not the
best performer when the view missing rate is small, but as
the missing rate increases, the robustness of CMVAE is the
best across six datasets. Taking the results of Caltech101-20
as an example, when η = 0.1, the ACC of CMVAE is 55.61%,
while COMPLETER is the best score of 60.34%, and when
η = 0.5, CMVAE achieves the best score of 50.78%, while
COMPLETER drops to 49.78%. Besides, it can be observed that
CMVAE has less fluctuation in clustering performance at each
missing rate compared to other incomplete multi-view learning
methods. This illustrates the improvement from a more complete
representation is more pronounced compared to other learning
techniques.

On the other hand, comparing VMVAE and CMVAE, it can
be seen that the clustering performance of CMVAE degrades to
a weaker extent than VMVAE as the missing rate increases.
This side-by-side confirms the point made in Section IV-B
that CMVAE has a better posterior inference capability and
extracting view invariant information plays a role.

D. Classification Performance Evaluation

In this section, we evaluate the effectiveness of VMVAE and
CMVAE for classification task on six datasets with different
missing rates. The multi-view unified latent representations z
and c are respectively fed into fully connected layers with the
softmax activator. Network parameters are jointly optimized by
adding cross-entropy loss.
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Fig. 3. Clustering performance comparison in terms of NMI and accuracy by tested ten methods under different missing rates, on (a) MSRC-V1, (b) Notting-Hill,
and (c) Handwritten.

Fig. 4. Clustering performance comparison in terms of NMI and accuracy by tested ten methods under different missing rates, on (a) Caltech101-20, (b) BDGP,
and (c) Animal.
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TABLE II
CLASSIFICATION ACCURACY COMPARISON UNDER DIFFERENT MISSING RATE ON THREE DATASETS (MEAN ± STANDARD DEVIATION)

For conventional multi-view learning methods, missing views
are filled with mean values based on available samples in the
same class. The CCA-based model reported the best classifica-
tion scores for two views.

We divide 80% of the dataset as training set and 20% as testing
set. All algorithms were repeated 10 times of five-fold cross-
validation on six datasets according to the parameter settings
suggested by the authors, and the mean and standard deviation
of the accuracy were calculated.

Classification results and analysis: The experimental results
are summarized in Tables II and III. Combined with the clus-
tering results, the following three conclusions can be drawn: i)
Compared with the conventional multi-view learning method,
the incomplete multi-view learning method maintains advan-
tages in the classification task under different missing rates, and
due to the addition of labels, it is more robust to the missing
view data than the clustering task. ii) CMVAE is still the best
performing algorithm on the six datasets and the most robust
to missing data. A total of 22 optimal performances and 5
sub-optimal performances were obtained across 30 classification

metrics across six datasets. The second place is the CPM model,
which has won 6 first places and 9 s places. It is worth noting
that in the case of the Notting-Hill dataset and low missing rates,
the adversarial strategy employed by CPM forces the generated
data to obey the distribution of the observed data bringing an
advantage to latent representation learning. On the other hand,
when the missing rate is large, CMVAE has a large margin to
lead. For example, when the missing rate is 0.5, CMVAE has
an average accuracy advantage of 4.95% compared to CPM.
iii) Compared with VMVAE, CMVAE also has a significant
improvement in classification tasks. Combined with the results
of clustering, it can be explained that mining the correlation
between views and making full use of view invariant information
is helpful for learning complete latent representations in the
absence of views.

E. Cross-View Image Generation

To test the cross-generative of the latent representation, we
conducted cross-view image generation experiments comparing
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TABLE III
CLASSIFICATION ACCURACY COMPARISON UNDER DIFFERENT MISSING RATE ON THREE DATASETS (MEAN ± STANDARD DEVIATION)

MoPoE-VAE [15] on PolyMNIST dataset, and the qualitative
results are shown in Fig. 5. We selected five digits [0, 4, 6, 7, 9],
which are more difficult to distinguish among handwritten digits,
and constructed five training sets for each digit. MoPoE-VAE,
VMVAE and CMVAE were trained on these five subsets to
obtain five models for cross-view image generation under the
following five given conditions: (1) digit 0 containing only view
1. (2) digit 4 containing only view 2. (3) digit 6 containing
only view 3. (4) digit 9 containing only view 4 and (5) digit
7 containing views 2, 3, 4, 5.

It can be seen that in the first four cases, the quality of the im-
ages generated by CMVAE is significantly improved compared
to MoPoE-VAE and VMVAE, as evidenced by the clarity of
the data and the background details. The possible reason is that
MoPoE-VAE poorly preserves view-specific factors of variation,
while CMVAE captures the underline transformations of back-
ground, allowing learning a more complete latent representation.
And comparing the first four cases to the fifth, there is a further
improvement in the quality of the generation, suggesting that

more complete view data can provide tighter evidence lower
bounds. This also confirms the benefit of CMVAE having a larger
ELBO value than VMVAE.

F. Time Complexity and Parameter Sensitivity Analysis

The previous experiments on clustering, classification and
cross-view image generation demonstrate the superiority and
effectiveness of CMVAE in learning to generative yet complete
multi-view representations from quantitative and qualitative per-
spectives, respectively. Furthermore, the efficiency and stability
of CMVAE are illustrated by analyzing the time complexity and
parameter sensitivity.

Time Complexity: Denotes input data with batch size as n, the
maximal dimension across all views as d and the dimension of
the latent representation as D. The computational complexity
of the encoder and decoder for m views is O(nmdD) for
CPM, COMPLETER, VMVAE and CMVAE. The computa-
tional complexity of the discriminator for m views is O(md)
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Fig. 5. Visualization on cross-view image generation. (a) For each sample of 0, 4, 6, and 9, there are only one view are observed, while the others are missing.
For the sample 7, there are only one missing view. The observed samples are used for generating the remaining view images by (b) MoPoE-VAE, (c) VMVAE, and
(d) CMVAE. As can be seen, CMVAE shows the best detail in terms of figures structure and background, which is clearly contrasted in the first view, highlighted
by the green box.

TABLE IV
TIME COMPLEXITY AND RUNNING TIME ANALYSIS FOR

HANDWRITTEN DATASET

for CPM, and the complexity of the latent variable transfor-
mations is O(m2D2) for CMVAE and COMPLETER. Due to
the need to face meet view missing cases, MoPoE-VAE con-
struct 2m posteriori inferences with computational complexity
O(n2mdD). In general, d > n� D > m, so the theoretical
time complexity ranking is MoPoE-VAE>CPM>COMPLETE
= CMVAE>VMVAE.

Additionally, we tested the runtime for 20 iterations on the
Handwritten dataset on a computer equipped with an NVIDIAÂ
RTX 2070 GPU, where n = 256 and D = 10. The mean and
standard deviation of the 10 tests are computed and summarized
in Table IV. The results show that VMVAE has the fastest
running time, followed by CMVAE, which is close to COM-
PLETER. The actual test runtime are generally consistent with
the theoretical results.

Parameter Sensitivity: To investigate the effect of the output
neurons of fusion network q(ψ)(c|{z(v)}), i.e., the dimensional-
ity of latent variable c, on the classification accuracy. We chose
three datasets BDGP, Caltech101-20 and Animal corresponding
to cluster classes K of 5, 20, 50 respectively. The dimension-
ality of the latent variable were selected from D = [K, 16, 32,
64, 128, 256] in turn, and classification test was performed at the
missing rate of η = [0, 0.1, 0.2, 0.3, 0.4], respectively.

The results are shown in Fig. 6, where it can be seen that
no matter what the missing rate is, the classification accuracy
changes only slightly when the dimensionality D ≥ K, and
decreases significantly when comparingD < K. This illustrates
the stability of the model with respect to the dimensionality of

the latent variables, and can also provide a basis for the operator
to set the number of neurons, which is most directly done by
setting D = K.

G. Application to Bioinformatic Data

The seven benchmark datasets analyzed in Table I rely on
artificially incomplete multi-view data, where the proposed
model achieves superior performance compared to state-of-
the-art multi-view learning methods. This does not reflect the
real-world situation, in which data may encounter measure-
ment bias and flexible correlations between views. We therefore
seek to demonstrate CMVAE on bioinformatic multi-omics data
including Multiome PBMC and Multiome BMMC datasets.
(1) Multiome PBMC.1 Human peripheral blood mononuclear
cell (PBMC) profiles generated by the 10× Genomics Multi-
ome ATAC and RNA kit with 11,909 cells, measuring 36,601
genes and 108,377 open chromatin peaks simultaneously. (2)
Multiome BMMC [53]. Single-cell multi-omics data collected
from bone marrow mononuclear cells (BMMC) from 12 healthy
human donors. Half of the samples were measured using paired
RNA and ATAC kits, and half were measured using single-cell
gene expression kits only, for a total of 69,249 cells, 13,431
genes, and 116,490 open chromatin peaks. Quality control and
preprocessing is performed on both datasets. Gene expression
is filtered for high variant genes as 4,000 genes per cell and
log(x+ 1) transformed. In addition, open chromatin peaks
are binarized and 40,000 variable peaks are selected and log-
normalized.

We compare CMVAE to other state-of-the-art cellular typing
methods (1) MOFA+ [54] utilizes computationally efficient vari-
ational inference to reconstruct low-dimensional representations
of data and model variation in multi-omics single-cell genomic
data. (2) Seurat-v4 [55] introduces ”weighted nearest neighbor”
analysis to understand the relative utility of each genomic feature
in each cell for comprehensive analysis of multi-omics data.
(3) MultiVI [56] leverages three variational autoencoders for
gene expression, chromatin accessibility, and protein abundance

1https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/
1.0.0/pbmc_granulocyte_sorted_10k

https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
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Fig. 6. Classification accuracy of latent variable dimensions D under different missing rate η on (a) BGDP, (b) Caltech101-20, and (c) ANIMAL datasets. The
number of classes is denoted by K.

Fig. 7. Visualization results of multi-view latent representations using UMAP on Multiome PBMC dataset. Different colors represent different cell types. Through
CMVAE, NK cells are more distinctly divided into two clusters in the embedding space, and the best cell typing performance for the ARI indicator is obtained.

Fig. 8. Visualization results of multi-view latent representations using UMAP on Multiome BMMC dataset. Different colors represent different cell types.
Through CMVAE, Plasma cell cluster can be more clearly separated, and the best cell typing performance for the ARI indicator is obtained.

and estimates integrated cellular states by aligning and merging
three modal latent states, driving missing view imputation from
consistent information. For MOFA+ and MultiVI, we run with
default parameters. In Seurat-v4, we first compute the Weighted
Nearest Neighbor (WNN) graph, and then to obtain embeddings
in the latent space, we run supervised PCA using the default
parameters.

We directly perform Uniform Manifold Approximation and
Projection for Dimension Reduction (UMAP) [57] on the latent
variables learned by MOFA+, Seurat-v4, MultiVI and CMVAE.
Figs. 7 and 8 are the visualization results on the Multiome
PBMC and BMMC datasets respectively. As shown in Fig. 7, the
clusters obtained by CMVAE and Seurat-v4 are overall tighter,
while the significant differences between CMVAE and the other
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TABLE V
PERFORMANCE COMPARISON OF CELL TYPING

models are marked by red circles. CMVAE clearly divides the
NK cell population into two clusters, which implies that NK can
be classified into two subtypes, and this is in fact the case, as [58]
has classified NK cells in the Multiome PBMC dataset into two
subtypes CD56 (bright) NK cells and CD56 (dim) NK cells.
In addition, as shown in Fig. 8, CMVAE and Seurat-v4 have
better discrimination for Plasma cells in the hidden variable
distribution. This suggests that CMVAE makes it possible to
detect more subtle differences in the hidden variable distribution
by mining the correlations between RNA and ATAC, which is
biologically meaningful.

To quantitatively assess the performance of the different
methods, we use some common biological protection metrics
the same as in [59], including Adjusted Rand Index (ARI),
Normalized Mutual Information (NMI), Average Silhouette
Width (ASW) of cell type which measure the degree of re-
tention of biological variation. The results are summarized in
Table V, where CMVAE achieved the best performance in both
multi-omics datasets. Specifically, in the fully paired Multiome
PBMC dataset, CMVAE performs close to Seurat-v4, while far
outperforming MultiVI in the NMI and ARI metrics at 4.17%
and 10.16%, respectively, whereas, in the incompletely paired
Multiome BMMC dataset, the CMVAE is still substantially
ahead of MultiVI, while MultiVI outperforms Seurat-v4. This
suggests that (i) the specific settings of the incomplete view
learning method play a role in incomplete view data. (ii) The
proposed complete multi-view representation learning outper-
forms the multi-view consistent learning in the view complete
or missing case because learning complete information helps to
distinguish small differences between samples.

V. CONCLUSION

In this paper, we have put forward the complete multi-view
VAE (CMVAE) to learn a complete generative latent representa-
tion under view absence. Specifically, view-invariant informa-
tion mining is introduced into the inference process of latent
variables, allowing the missing view information to be compen-
sated. The variational inference process includes exploiting the
intrinsic transformations between views for interconversion and
keeping the view weights invariant to avoid misrepresentation

of the latent variable. Benchmark experiments, time complexity,
parameter sensitivity analysis, and bioinformatics applications
have been conducted to demonstrate the effectiveness, effi-
ciency, robustness and practical significance of the proposed
multi-view variational lower bound under the VAE framework.
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