
5080 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 7, JULY 2024

Deep Tensor Spectral Clustering Network via
Ensemble of Multiple Affinity Tensors
Hongmin Cai , Senior Member, IEEE, Yu Hu , Fei Qi , Bin Hu , Fellow, IEEE,

and Yiu-ming Cheung , Fellow, IEEE

Abstract—Tensor spectral clustering (TSC) is an emerging ap-
proach that explores multi-wise similarities to boost learning.
However, two key challenges have yet to be well addressed in
the existing TSC methods: (1) The construction and storage of
high-order affinity tensors to encode the multi-wise similarities
are memory-intensive and hampers their applicability, and (2)
they mostly employ a two-stage approach that integrates multiple
affinity tensors of different orders to learn a consensus tensor
spectral embedding, thus often leading to a suboptimal clustering
result. To this end, this paper proposes a tensor spectral clustering
network (TSC-Net) to achieve one-stage learning of a consensus
tensor spectral embedding, while reducing the memory cost. TSC-
Net employs a deep neural network that learns to map the input
samples to the consensus tensor spectral embedding, guided by
a TSC objective with multiple affinity tensors. It uses stochastic
optimization to calculate a small part of the affinity tensors, thereby
avoiding loading the whole affinity tensors for computation, thus
significantly reducing the memory cost. Through using an ensemble
of multiple affinity tensors, the TSC can dramatically improve
clustering performance. Empirical studies on benchmark datasets
demonstrate that TSC-Net outperforms the recent baseline meth-
ods.

Index Terms—Clustering, tensor spectral clustering, deep neural
networks, clustering ensemble.

I. INTRODUCTION

C LUSTERING aims at partitioning samples into underly-
ing clusters in an unsupervised manner. Over the past

decades, clustering has been widely used in plenty of fields,
including computer vision [1] and bioinformatics [2], to name

Manuscript received 8 February 2023; revised 15 October 2023; accepted
29 January 2024. Date of publication 5 February 2024; date of current version
5 June 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2022YFE0112200, in part by
the National Natural Science Foundation of China under Grants U21A20520
and 62325204, in part by the Science and Technology Project of Guangdong
Province under Grant 2022A0505050014, in part by the Key-Area Research
and Development Program of Guangzhou City under Grant 202206030009, in
part by the NSFC / Research Grants Council (RGC) Joint Research Scheme
under Grant N_HKBU214/21, and in part by the General Research Fund of
RGC under Grants 12201321, 12202622, and 12201323, and in part by RGC
Senior Research Fellow Scheme under Grant SRFS2324-2S02. Recommended
for acceptance by M. Salzmann. (Corresponding author: Yiu-ming Cheung.)

Hongmin Cai, Yu Hu, and Fei Qi are with the Department of Computer Science
and Engineering, South China University of Technology, Guangdong 510641,
China (e-mail: hmcai@scut.edu.cn).

Bin Hu is with the School of Medical Technology, Beijing Institute of
Technology, Beijing 100811, China (e-mail: bh@bit.edu.cn).

Yiu-ming Cheung is with the Department of Computer Science, Hong Kong
Baptist University, 999077, Hong Kong (e-mail: ymc@comp.hkbu.edu.hk).

Digital Object Identifier 10.1109/TPAMI.2024.3361912

a few. Among various clustering techniques, spectral clustering
(SC) [3], [4] is a common one due to its simplicity and graph-
theoretic interpretation. Nevertheless, data in computer vision
or bioinformatics are complex [5], [6], where they are often
high-dimensional and contaminated by noise [7]. SC relies on
an affinity matrix to characterize pairwise similarities, which
fall short in providing satisfactory clustering performance for
such complex data [8], [9]. Converging evidence [10], [11]
suggests that dealing with high-dimensional and noisy data
requires characterizing more complex similarities, and thereafter
tensor spectral clustering (TSC) [12] has been developed re-
cently as a promising solution. TSC employs high-order affinity
tensors to characterize multi-wise similarities among samples
instead of merely pairwise similarities as in previous methods.
It has been shown that such high-order affinity tensors are ro-
bust against noise and capable of characterizing comprehensive
spatial structure for high-dimensional data to achieve a better
performance [13].

The seminal TSC method was proposed in [11], [14], which
constructs a third order affinity tensor to encode ternary sim-
ilarities and utilizes the multilinear singular value decomposi-
tion (SVD) of the constructed affinity tensor to yield a tensor
spectral embedding, which is an approximation of the cluster
indicator matrix. Recently, another TSC method, IPS2 [13], has
shown that multiple affinity tensors of different orders have
complementary information to each other for clustering, and
integration of them can improve the accuracy and robustness
of clustering. IPS2 specifically proposes an integrative method
that combines a fourth order affinity tensor with a second order
affinity tensor, i.e., an affinity matrix, to learn a consensus
tensor spectral embedding, which has been shown to boost the
clustering performance in several benchmark datasets. Although
TSC methods have advanced so far, two key challenges that
hamper their applicability remain less explored.

One crucial challenge is that TSC methods need to construct
and store the whole high-order affinity tensor, which is memory-
intensive. If one is to construct a Kth order affinity tensor
for m samples, the general memory cost is O(mK). Taking
K = 3 and m = 1000 as an example, one can check that the
memory cost is nearly 7.451 GB if the resulting affinity tensor is
stored in double-precision floating points. Such a prohibitively
high memory cost becomes an insurmountable roadblock and
severely inhibits the applicability of TSC. To alleviate this issue,
most TSC methods have adopted sampling techniques such as
column sampling [10], Nyström approximation [11], or iterative

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2747-7234
https://orcid.org/0000-0001-8006-7659
https://orcid.org/0000-0001-7128-7764
https://orcid.org/0000-0003-3514-5413
https://orcid.org/0000-0001-7629-4648
mailto:hmcai@scut.edu.cn
mailto:bh@bit.edu.cn
mailto:ymc@comp.hkbu.edu.hk

CAI et al.: DEEP TENSOR SPECTRAL CLUSTERING NETWORK VIA ENSEMBLE OF MULTIPLE AFFINITY TENSORS 5081

Fig. 1. Workflow of the proposed tensor spectral clustering network (TSC-Net). The notations used in this figure are defined in Table I. TSC-Net maps the
input data to the tensor spectral embedding under the corresponding objective, where the orthogonalization layer is at the top to ensure that the output meets the
orthogonal constraint.

sampling [12] to construct a sparse affinity tensor, in which
most of the elements are zero. However, sampling techniques
inevitably incur the information loss of the affinity tensor and
may result in performance degradation.

The other challenge is that the existing TSC methods mostly
employ a two-stage approach that integrates multiple affinity
tensors to learn a consensus tensor spectral embedding, which
often leads to a suboptimal clustering result. For example, the
representative IPS2 [13] has proposed a two-stage approach,
which first solves the tensor spectral embedding from a fourth
order affinity tensor and the second order affinity tensor inde-
pendently and then yields a consensus one by simply averaging
them. Though demonstrating promising clustering performance
in several benchmark datasets, the above two-stage approach
disconnects the multiple affinity tensors in the process of reach-
ing the consensus tensor spectral embedding and may lead to
unsatisfactory performance.

Recently, deep neural network (DNN) has become a popular
technique to learn underlying nonlinear mappings [15] in ma-
chine learning and computer vision. Since TSC methods can
be regarded as a nonlinear mapping from an original sample
space to an embedding space, a modern DNN with nonlinear
activation functions is able to approximate such a nonlinear
mapping [15], [16], [17]. As such, the DNN can be applied to
learn the mapping from the input samples to the tensor spectral
embedding. Subsequently, this paper aims to develop a DNN-
based TSC method to reduce memory cost, while providing a
joint framework to integrate multiple affinity tensors of different
orders.

Accordingly, a tensor spectral clustering network, abbreviated
as TSC-Net, is proposed. The TSC-Net is designed to learn
a consensus tensor spectral embedding to integrate multiple
affinity tensors in a stacked neural network. We instantiate
the integrated method with the second, third, and fourth order
affinity tensors. The stochastic gradient descent is thus applied
to optimize the TSC-Net. The stochastic optimization allows us

to calculate a small part of the affinity tensors at each time while
circumventing storing the whole affinity tensors, thus decreasing
the memory cost by a significant amount. For example, if the
mini-batch size of the stochastic gradient descent is mb, the
memory cost to calculate a subset of the Kth order affinity
tensor for a mini-batch is O(mK

b). Considering the same case
above with K = 3 and choosing mini-batch size mb = 128, the
memory cost is about 0.016 GB if the affinity tensor of the
mini-batch is stored in double-precision floating points, which
is only 0.214% of the memory cost when storing the whole third
order affinity tensor.

In training, TSC-Net, consisting of an embedding network
and an orthogonalization layer, learns the mapping from the
input samples to the tensor spectral embedding via the standard
TSC objective proposed in [10], [11], [12]. In testing, the input
samples are propagated through TSC-Net to obtain the tensor
spectral embedding, followed by the k-means algorithm to yield
the cluster labels. The network structure is illustrated in Fig. 1.
Empirical evaluations on benchmark datasets demonstrate the
effectiveness of the proposed method by comparison with recent
baselines.

The main contributions of this paper are as follows.
1) A tensor spectral clustering network, TSC-Net, is pro-

posed to learn to map the input samples to the spectral
embedding via stochastic optimization, thereby reducing
the memory cost without sacrificing the clustering perfor-
mance.

2) The proposed TSC-Net can seamlessly integrate multi-
ple affinity tensors in a joint framework. We instantiate
TSC-Net to integrate the second, third, and fourth order
affinity tensors to demonstrate the improved clustering
performance over nine recent baselines.

3) Extensive experiments on benchmark datasets have been
conducted to verify the effectiveness of the proposed
method in comparison to current competitors in terms of
clustering performance and memory cost.

5082 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 7, JULY 2024

Fig. 2. ACC performance along with memory cost comparison of TSC-Net and its competitors on (a) Synthetic-Data, (b) Lung, (c) GLI-85, (d) MNIST,
(e) Reuters, and (f) USPS. Note that SC-MSVD, TMM, and IPS2 are not able to run on MNIST, Reuters, and USPS due to out-of-memory issues.

The remainder of this article is structured as follows. We
first make an overview of the related works in Section II. Next,
Section III details our proposed TSC-Net. In Section IV, we
conduct experiments to demonstrate the effectiveness of our
proposed method. Finally, we draw a conclusion in Section V.

II. RELATED WORKS

A. Tensor Spectral Clustering

Suppose we have m samples with n features, denoted by a
matrix X = [x1;x2; . . . ;xm] ∈ Rm×n. The aim of clustering
is to assign these samples into c disjoint clusters.

Spectral Clustering: The classic spectral clustering [3] starts
by computing an affinity matrix or a second order affinity tensor
T (2) ∈ Rm×m, where every element T (2)

ij represents the pair-
wise similarity between the corresponding two samples xi and
xj . Subsequently, one can obtain the embedding Y ∈ Rm×c by
a trace minimization problem

min
Y ∈Rm×c

−Tr
(
Y �T̃ (2)

Y
)

s.t. Y �Y = Ic, (1)

where T̃ (2)
= D−1/2T (2)D−1/2 is the normalized affinity ma-

trix and Dii =
∑

j T
(2)
ij is the corresponding diagonal degree

matrix.
The performance of spectral clustering pins on the pairwise

similarity in the affinity matrix. However, the pairwise similar-
ities are easily broken by noise contamination [18] or concen-
tration effect [19] in data with high dimensions. To address this
issue, recent works of tensor spectral clustering [13] attempted
to use high-order tensor affinity among more than two samples
to compensate for the inefficacy within the pairwise similarities.

Tensor Spectral Clustering: The basic goal of tensor spectral
clustering is to determine to which clusters these samples belong
based on the multi-wise similarities encoded in an affinity tensor.
It has recently been proposed to characterize complex multi-wise
similarities in an affinity tensor to achieve a better performance
than pairwise similarity based approaches [20], [21], [22], [23],
[23], [24], [24], [25], [26], [27]. Specifically, several works
applied a combination of Euclidean distances among samples
to construct the multi-wise similarities encoded in the affinity
tensor and then employed high-order SVD or tensor trace norm
maximization to derive the tensor spectral embedding matrix
for clustering. For instance, Ghoshdastidar et al. [11] proposed
a multilinear SVD method to decompose the affinity tensor
and showed that this decomposition amounted to clustering
samples by maximizing the squared associativity of the partition.
Ghoshdastidar et al. [10] applied a trace optimization on the
affinity tensor and developed a tensor sampling strategy [12] to
save the computational cost.

Specifically, the K-wise similarities among m samples
can be characterized by a Kth order affinity tensor T (K) ∈

R

K︷ ︸︸ ︷
m×m · · · ×m, in which an element of T (K) represents the

similarity ofK corresponding samples. For instance, one can use
scaled Gaussian distance to compute the second order affinity
tensor, i.e., the affinity matrix, defined by

T (2)
i,j = exp

(
dij/σ

2
)
, ∀i, j ∈ [m].

For the third order tensor affinityT (3), one can use anchor-based
distance, defined by

T (3)
i,j,k = exp (−max {dij , dik, djk}) , ∀i, j, k ∈ [m].

CAI et al.: DEEP TENSOR SPECTRAL CLUSTERING NETWORK VIA ENSEMBLE OF MULTIPLE AFFINITY TENSORS 5083

Here, the metric dij is computed by ||xi − xj ||22. Here, the scale
σ is set as the median distance between a point to its third
neighbor [15]. The fourth order affinity tensor T (4) is defined as
in [13], which uses the ratio-based pair-to-pair similarities. The
Fisher-ratio-like fourth-order tensor affinity among four samples
is defined by

T (4)
i,j,k,l = exp

(
−dij + dkl + dil + djk

dik + djl

)
, ∀i, j, k, l ∈ [m].

where dij denotes the distance between samples xi and xj .
The tensor spectral clustering methods seek to find a consen-

sus low dimensional embedding Y through minimizing a total
associativity [10] between the embedding Y with the ensemble
of second, third, and fourth orders as follows,

min
Y

−
c∑

s=1

{
T (2) ×1 Y

�
:,s ×2 Y

�
:,s

+ αT (3) ×1 Y
�
:,s ×2 Y

�
:,s ×3 Y

�
:,s

+βT (4) ×1 Y
�
:,s ×2 Y

�
:,s ×3 Y

�
:,s ×4 Y

�
:,s

}
s.t. Y �Y = Ic. (2)

whereα andβ are two hyperparameters for balancing the affinity
tensors of various orders and c stands for the number of clusters.
The operator ×k between a tensor A and a vector U is called
mode-k product and is defined as,

Definition 2.1. (Mode-k Product): Let A ∈ Rm1×m2···×mK

be a Kth order tensor and U ∈ Rq×mk be a matrix. The mode-k
product ofA andU is aKth order tensor denoted byA×k U ∈
Rm1×···×mk−1×q×mk+1···×mK such that

(A×k U)r1,...,rk−1,t,rk+1,...,rK

=

mk∑
rk=1

Ar1,...,rk−1,rk,rk+1,...,rKU t,rk . (3)

Similar to the conventional spectral embedding, each row
of the consensus embedding Y represents a sample in the
embedding space, and the final cluster labels can be derived
by performing a subsequent k-means algorithm on Y .

The tensor spectral clustering methods have achieved superior
performance when dealing with high-dimension low-sample-
size (HDLSS) data [28], [29], [30]. However, the tensor spectral
clustering methods share a common limitation, i.e., they need
to construct and store the whole affinity tensor before deriving
the tensor spectral embedding. The expensive memory costs to
store the whole affinity tensor make the existing TSC methods
less applicable for real-world tasks.

B. Deep Clustering

Deep clustering [31], [32] aims to integrate clustering and
deep neural networks into a unified framework. Most deep clus-
tering methods incorporate deep auto-encoder to extract features
from complicated high-dimensional data to facilitate cluster-
ing, where there is a mutual boosting between clustering and
deep feature representation. For example, DEC [33] attempt to
achieve learning cluster centers and deep discriminating feature

TABLE I
DEFINITION OF NOTATIONS

simultaneously, supervised by a clustering objective. In [34],
deep self-evolution clustering (DSEC) has been proposed to
train the network alternately with chosen pairs of samples.
In [35], DCCM has been proposed to use pseudo-labels by a
self-supervision scheme to guide clustering and to minimize
mutual information to prune discriminative representations. A
partition confidence maximization (PICA) [36] has been pro-
posed to minimize a cluster partition uncertainty index, thereby
learning the most confident clustering allocation. Recently, a
group of deep clustering introduced self-expression to learn
an affinity matrix with deep auto-encoders. One representative
work, a deep subspace clustering network (DSC-Net), has been
proposed in [37], which incorporated a self-expression module
with a deep auto-encoder. The above deep clustering methods
seek to mine discriminating features via exploiting deep neural
networks. Alternatively, several recent works leverage deep neu-
ral networks to reduce the intensive computational cost of tradi-
tional clustering methods like spectral clustering. For instance,
SpectralNet [15] learns a nonlinear mapping that can embed
input data points into the spectral embedding, and demonstrate
an effective memory cost reduction. SCANDLE [31] utilizes
an adaptive neighbors technique to achieve spectral embedding
with adaptively estimated affinities.

III. METHOD

This section details our proposed tensor spectral clustering
network (TSC-Net). For ease of presentation, the main notations
used in this paper are summarized in Table I. The network
structure and objective function of TSC-Net are detailed in
Section III-A, and an alternating training algorithm to optimize
TSC-Net is shown in Section III-B. Next, the advantage of
TSC-Net compared with the existing TSC methods in terms of
memory cost is discussed in Section III-C.

A. Tensor Spectral Clustering Network

The major problem of existing TSC methods is that they
need to construct and store the whole Kth order affinity tensor

5084 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 7, JULY 2024

before conducting tensor spectral embedding, which is memory-
intensive and thus less applicable. To address the memory-
intensive issue, we propose a tensor spectral clustering network
(TSC-Net) that maps the input samples X to the tensor spectral
embedding Y and trains it with stochastic optimization. The
intuition behind TSC-Net is that the tensor spectral embedding
Y can be regarded as a nonlinear mapping from an original
sample space, X , to the embedding space, and a modern neural
network with nonlinear activation functions is able to approxi-
mate such a nonlinear mapping [15], [16], [17]. Accordingly, the
proposed TSC-Net is allowed to approximate the tensor spectral
embedding and can be trained in a stochastic manner to avoid
storing the wholeKth order affinity tensor. As a result, TSC-Net
enables a significant reduction of memory cost.

Formally, TSC-Net is defined as a neural network F :
Rm×n → Rm×c that maps the m input samples to their cor-
responding tensor spectral embedding with possible parameters
of neural networks introduced in the next. More specifically, the
neural network maps the data matrix X to the tensor spectral
embedding as Y = F(X), where the ith row of Y denotes the
tensor spectral embedding for the sample xi in the data matrix.

Network Architecture: To achieve such a mapping while con-
sidering the orthogonal constraint for Y , the neural network F
is designed as follows. As shown in Fig. 1, the neural network F
have the collection of learnable parameters {{W q}Qq=1,W ort}
and can be separated into two major parts:

1) an embedding network that maps the data matrix X to the
intermediate representation Ỹ . To be more specific, the
embedding network withQ layers performs the layer-wise
mapping as Hq = g(Hq−1W q), for q ∈ [Q], where H0

corresponds the input data matrix X , HQ corresponds to
the intermediate representation Ỹ ,W q denotes the weight
matrix for the qth fully-connected layer, and g denotes the
ReLU activation function

2) an orthogonalization layer with weight matrix W ort ∈
Rc×c that maps the intermediate representation Ỹ to Y =
Ỹ W ort to ensure the orthogonal constraint, i.e., Y �Y =
Ic. The elaboration of the orthogonalization layer will be
presented in Section III-B.

TSC-Net achieves the tensor spectral embedding by minimiz-
ing the following objective:

min
{W q}Qq=1,W ort

Lobj = −
c∑

s=1

{
T (2) ×1 Y

�
:,s ×2 Y

�
:,s

+ αT (3) ×1 Y
�
:,s ×2 Y

�
:,s ×3 Y

�
:,s

+βT (4) ×1 Y
�
:,s ×2 Y

�
:,s ×3 Y

�
:,s ×4 Y

�
:,s

}
.

(4)

The orthogonalization layer withW ort is implemented to ensure
Y �Y = Ic. Different from the original TSC model, which is
solved by a memory-intensive tensor decomposition [10], [11],
[12], the proposed TSC-Net can be trained with a stochastic
optimization under (4) with less memory requirement. This will
be concretely illustrated in Section III-B.

B. Alternating Stochastic Optimization Algorithm

One major advantage of the proposed TSC-Net is that it allows
us to optimize the tensor spectral embedding in a stochastic
manner and merely needs to construct a small part of the affinity
tensor, thus reducing the memory cost. To optimize TSC-Net
with (4), we propose an alternating stochastic optimization
algorithm, which is an iterative scheme and alternates between
the embedding stage and the orthogonalization stage. More
concretely, let us assume the algorithm runs Ω epochs. In each
epoch, we randomly sample T = m/mb iterations to ensure
walking through the entire data matrix, where m and mb denote
the whole data size and mini-batch size, respectively, and T
is assumed to be an integer for simplicity. In each iteration, mb

samples are randomly sampled. In what follows, suppose we are
in an arbitrary possible epoch ω ∈ [Ω], and we omit the notation
about ω for simplicity. For a possible iteration t ∈ [T], the index
It ⊆ {1, 2, . . . ,m} of the randomly sampled samples of size
|It| = mb, and the mini-batch XIt , the algorithm iteratively
alternates between:

Orthogonalization stage:
1) Forward passing to obtain the intermediate representation

Ỹ
(t)

It
2) Updating orthogonalization layer

W
(t)
ort =

(
L(t)−1

)�
, (5)

where L(t) ∈ Rc×c is a lower triangular matrix derived by

the Cholesky decomposition as Ỹ
(t)

It
�Ỹ

(t)

It
= L(t)L(t)�.

As such, the mini-batch of the output of TSC-Net, Y (t)
It

=

Ỹ
(t)

It
W

(t)
ort , can meet the orthogonal constraint and can be

verified by the Theorem 3.1.

In practice, the full rankness of Ỹ
�
Ỹ can be ensured

by adding sufficiently small numbers, e.g., 10−5, to the
diagonal elements. It is noteworthy that the orthogonal
constraint works for a mini-batch of samples to prevent
trivial solutions, and the orthogonal constraint across mini-
batches during stochastic optimization is not required.

3) Continuing forward passing: Y (t)
It

= Ỹ
(t)

It
W

(t)
ort .

Theorem 3.1. Given a matrix Ỹ ∈ Rm×c and suppose Ỹ
�
Ỹ

is full rank, a lower triangular matrix L ∈ Rc×c is derived by

the Cholesky decomposition of Ỹ
�
Ỹ as Ỹ

�
Ỹ = LL�, then

Y = Ỹ (L−1)� satisfies the orthogonal constraint.

Proof. If Ỹ
�
Ỹ is full rank with the Cholesky decomposition

Ỹ
�
Ỹ = LL� andY = Ỹ (L−1)�, one can check thatY �Y =

L−1Ỹ
�
Ỹ (L−1)� = L−1LL�(L−1)� = Ic. �

Embedding Stage: By fixing W
(t)
ort , one then uses the stochas-

tic gradient descent to update the embedding network parameters
including {W q}Qq=1

W (t+1)
q = W (t)

q − η
∂Lobj

∂W
(t)
q

. (6)

CAI et al.: DEEP TENSOR SPECTRAL CLUSTERING NETWORK VIA ENSEMBLE OF MULTIPLE AFFINITY TENSORS 5085

Algorithm 1: Training and Testing of TSC-Net.
Input:
Data matrix X = [x1;x2; . . . ;xm];
Mini-batch size mb;
The hyperparameters α.
Output:
Trained TSC-Net F ;
Clustering labels;
Training
1: Randomly initializing the collection of network

parameters {{W q}Qq=1,W ort};
2: while not reaching convergence criterion do
3: Randomly sampling a mini-batch of mb samples;
4: Constructing the affinity tensors T (2), T (3), and

T (4) for the mb samples;
Orthogonalization Stage:

5: Updating W ort by (5);
Embedding Stage:

6: Updating {W q}Qq=1 by (6);
7: end while
Testing
8: Forward passing all the samples through F to obtain

the tensor spectral embedding Y ;
9: Performing k-means on Y to obtain the clustering

labels.

where η denotes the learning rate, and the detailed derivation of
∂Lobj

∂W
(t)
q

is provided in Appendix A, available online.1 One can

check that only mb samples are required in such an updating
with O(m2

b +m3
b +m4

b) memory cost for the affinity tensors.
When finishing an epoch, we reshuffle the data matrix before

continuing to the next epoch. The convergence criterion is set
as either reaching the maximum epoch Ω = 300 or the relative
changes of the objective (4) during successive epochs in training
is less than a predefined threshold ε = 10−3. Once TSC-Net is
trained, all the parameters, {{W q}Qq=1,W ort}, are freezed. In
the testing, the whole samples are propagated through TSC-Net
to obtain the tensor spectral embedding Y , and the k-means
algorithm is employed on it to obtain the cluster labels. These
algorithmic procedures are summarized below in Algorithm 1.

C. Memory Cost Comparison of TSC-Net and Existing
Methods

This subsection centers on how much the proposed TSC-Net
or TSC-Net can reduce the memory cost in comparison to the
existing TSC methods. The stochastic optimization introduced
in the previous section allows TSC-Net or TSC-Net to calculate
a small part of the affinity tensors at each time and avoid
constructing the whole affinity tensor, while most of the existing
TSC methods use tensor decomposition, e.g., [10], [11], [12],
and require loading the whole affinity tensor. Hence, in contrast

1https://github.com/Huyu2Jason/Publication_Appendix/blob/main/TPAMI-
2023-01-0162-appendix.pdf

to the conventional TSC, our proposed TSC-Net and TSC-Net
enables a reduction of memory cost.

It is difficult to conduct an exact memory cost comparison
between TSC-Net and the existing TSC methods since TSC-Net
involves not only constructing the affinity tensors but also train-
ing the neural network parameters. It is informative to compare
IPS2 [13] and TSC-Net in terms of memory cost on m samples.
IPS2 needs to store a second order affinity tensor and a fourth or-
der affinity tensor withO(m2 +m4)memory cost. By assuming
the batch size is mb, TSC-Net only needs O(m2

b +m3
b +m4

b)
memory cost for the affinity tensors at each time due to the
stochastic gradient descent. Taking m = 1000 and mb = 128 as
an example, the actual affinity tensor cost of IPS2 and TSC-Net
are 931.320 GB and 0.252 GB, respectively, if the corresponding
affinity tensors are uniformly stored in double-precision floating
points. Additionally, according to the recent literature [38], the
stochastic optimization of training the neural network parame-
ters usually costs less than 1 GB of memory, so the total memory
cost of TSC-Net is less than 0.252 GB (affinity tensors) + 1 GB
(training neural network parameters) = 1.252 GB. In a nutshell,
TSC-Net is much more memory-efficient compared with IPS2 as
the sample size increases. In Section IV, we will experimentally
demonstrate the memory cost of TSC-Net on several benchmark
datasets with different sample sizes ranging from 50 to 70,000.

IV. EXPERIMENTS AND RESULTS

In this section, the proposed TSC-Net is evaluated on bench-
mark datasets in comparison with several baseline methods.
Specifically, the proposed TSC-Net is assessed in terms of mem-
ory cost and performance improvement, especially compared
with state-of-the-art TSC methods. Afterward, ablation studies
are conducted to verify the effectiveness of the ensemble of
multiple affinity tensors. Finally, the hyperparameter analysis
and convergence behavior analysis are presented. Due to space
limitations, the noise-robustness testament of TSC-Net-234 and
its competitors are provided in Appendix B, available online.2

A. Experiment Setup

Software Environment: All our experiments were performed
on a desktop computer with a 3.70 GHz Intel(R) Core(TM) i7-
8700 K CPU, 64.0 GB of RAM, and GTX 1080 Ti 10 G. The
code is based on Python 3.6, TensorFlow 1.15.

Evaluation Metrics: Following the convention in the clus-
tering literature [3], [11], we employed three metrics for per-
formance comparison throughout all experiments: Accuracy
(ACC), Normalized Mutual Information (NMI), and Purity (Pu-
rity). For all three metrics, higher numerical values consistently
indicate better clustering performance.

Benchmark Datasets: In the experiments, six benchmark
datasets were adopted to evaluate the performance of the pro-
posed method and the compared methods, and the corresponding
statistics are shown in Table II. Particularly, Synthetic-Data

2https://github.com/Huyu2Jason/Publication_Appendix/blob/main/TPAMI-
2023-01-0162-appendix.pdf

https://github.com/Huyu2Jason/Publication_Appendix/blob/main/TPAMI-2023-01-0162-appendix.pdf
https://github.com/Huyu2Jason/Publication_Appendix/blob/main/TPAMI-2023-01-0162-appendix.pdf
https://github.com/Huyu2Jason/Publication_Appendix/blob/main/TPAMI-2023-01-0162-appendix.pdf
https://github.com/Huyu2Jason/Publication_Appendix/blob/main/TPAMI-2023-01-0162-appendix.pdf

5086 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 7, JULY 2024

TABLE II
STATISTICS ON SIX BENCHMARK DATASETS

adopted from [13] is composed of 50 samples from three clus-
ters, drawn from i.i.d Normal distributions with an equal stan-
dard deviation of 0.5 and a different mean of 1, 2.5, and 5, with
each sample having 500 features. Lung [39] and GLI-85 [40]
are two typical bioinformatics datasets of high dimensionality.
MNIST [41] and USPS3 are two typical image datasets, while
Reuters [42] is a popular documentation dataset.

Compared Methods: As baselines to our method, the com-
petitors fall into three categories. (1) traditional clustering in-
cluding: [3] (SC, NIPS-2002) and k-means. (2) Tensor spec-
tral clustering including Spectral Clustering Using Multilinear
SVD [11] (SC-MSVD, AAAI-2015), Uniform hypergraph par-
titioning: Provable tensor methods and sampling techniques [12]
(TMM, JMLR-2017), Integrating tensor similarity and pair-
wise similarity [13] (IPS2, TPAMI-2022). (3) Deep clustering
including Variational deep embedding: an unsupervised and
generative approach to clustering (VaDE, IJCAI-2017) [43],
Unsupervised deep embedding for clustering analysis (DEC,
ICML-2016) [33], Spectral clustering using deep neural net-
works (SpectralNet, ICLR-2018) [15], Spectral Clustering With
Adaptive Neighbors for Deep Learning (SCANDLE, TNNLS-
2021) [31].

Implementation Details: With regard to the architecture of
TSC-Net, the fully connected layers similar to [15] were
employed consistently. Specifically, the embedding network
involves the first two fully connected layers with both 1024
neurons followed by the ReLU activation function, the third fully
connected layer with 512 neurons followed by the ReLU acti-
vation function, and the last classification layer with c neurons
followed by the Tanh activation function. By contrast, the or-
thogonalization layer is automatically inferred by Theorem 3.1.
TSC-Net is trained by Adam optimizer with the learning rate
0.001 and the maximum epoch Ω = 300, where the mini-batch
size is set as 128 if the sample size m is larger than 128 or
as m/5 otherwise. The grid search method was used to find
the task-related hyperparameters for α and β, both from the set
[0.001, 0.01, 0.1, 1, 10, 100]. The sensitivity analysis is shown
in Section IV-E. Regarding the compared methods, we adopted
their default settings, as stated in the original articles.

In addition, the above datasets were all pre-processed by an
auto-encoder, in line with the experimental setting as in [15],
[31]. Specifically, the auto-encoder from [43] was employed to

3[Online]. Available: https://www.kaggle.com/bistaumanga/usps-dataset

extract the deep feature representation of each dataset. Subse-
quently, all the experiments were conducted based on the deep
feature representation instead of the original feature. For a fair
comparison, we ran each method 50 times on each dataset and
calculated the mean values of the corresponding metrics.

B. Clustering Performance Comparison on Benchmark
Datasets

1) Comparison With Existing TSC Methods: Table III
presents the comparison of the proposed TSC-Net with state-
of-the-art TSC methods, including IPS2. TSC-Net consistently
outperforms all the TSC methods on all the metrics on the bench-
mark datasets, if other TSC methods are available to perform
experiments. Specifically, TSC-Net is superior to IPS2 by 3.7%,
13.4%, and 16.0% in terms of ACC on Synthetic-Data, Lung,
and GLI-85, respectively. The IPS2 is quite relevant to TSC-Net
since it leverages the second and fourth order affinity tensors to
obtain the consensus tensor spectral embedding. However, it per-
forms the affinity ensemble to obtain the consensus embedding
in a two-stage manner. By contrast, TSC-Net allows multiple
affinity tensor to integrate in a one-stage manner, enhances and
quality of the learned embedding, and thus increase the clus-
tering performance. Fig. 3(a)–(c) provides a visual explanation
of the T-SNE results on learned spectral embedding for each
method. In those figures, TSC-Net obtains a more discriminating
cluster boundary than IPS2, which is consistent with better
clustering performance.

2) Comparison With Deep Clustering Methods: Table III
also presents the comparison of the proposed TSC-Net with
recent deep clustering methods, including SpectralNet, SCAN-
DAL, and DEC. TSC-Net uniformly outstrips all these deep
clustering methods in all the metrics on the benchmark datasets.
Particularly, TSC-Net achieves improvement in comparison to
SpectralNet by 19.4%, 12.2%, 10.7%, 1.4%, 2.2%, and 3.9%
in terms of ACC on Synthetic-Data, Lung, GLI-85, MNIST,
Reuters, and UPSP, respectively. SpectralNet is most relevant to
TSC-Net since SpectralNet leverages the second order affinity
tensors to obtain the tensor spectral embedding based on a deep
neural network. By contrast, TSC-Net leverages the ensemble
of the second, third, and fourth order affinity tensors to achieve
a better clustering performance. The performance gap between
TSC-Net and SpectralNet illustrates that different affinity ten-
sors can complement each other in terms of improving clustering
performance.

C. Memory Cost Comparison on Benchmark Datasets

In this subsection, the memory cost comparison of TSC-Net
and the existing TSC methods is demonstrated on the benchmark
datasets. The memory costs of the existing TSC methods, SC,
and k-means are evaluated by Matlab 2019a software since their
public codes are all based on Matlab. Differently, the memory
costs of TSC-Net and deep clustering methods are evaluated
by the Nvidia-SMI software, as they are based on Nvidia GPU
(GTX 1080 Ti).

Apart from the clustering performance shown in Table III,
Fig. 2(a)–(f) demonstrates the clustering performance and

https://www.kaggle.com/bistaumanga/usps-dataset

CAI et al.: DEEP TENSOR SPECTRAL CLUSTERING NETWORK VIA ENSEMBLE OF MULTIPLE AFFINITY TENSORS 5087

TABLE III
PERFORMANCE COMPARISON ON SYNTHETIC-DATA, LUNG, AND GLI-85 (MEAN AND STANDARD DEVIATION %)

Fig. 3. From the top to the bottom, the T-SNE visualization of (a) SC; (b) IPS2, (c) DEC, and (d) TSC-Net on Synthetic-Data, Lung, and GLI-85, to demonstrate
the quality of the embedding learned by each clustering method. As can be seen, TSC-Net can learn a more separable embedding with more clear class boundaries.

5088 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 7, JULY 2024

Fig. 4. The ACC performance of our proposed TSC-Net with respect to the varying hyperparameter α and β on (a) Synthetic-Data (b) Lung (c) GLI-85
(d) MNIST (e) Reuters (f) USPS.

TABLE IV
ABLATION STUDIES ON THE ENSEMBLE OF MULTIPLE AFFINITY TENSOR IN TSC-NET

memory cost comparison among TSC-Net and its competitors.
Combining results from those tables, one can notice that TSC-
Net achieves better clustering performance while its memory
cost is relatively lower in comparison with other TSC methods
like IPS2. Specifically, in Lung, whose sample size is 100, the
memory cost of IPS2 is 2.2578 GB, whereas the one of TSC-Net
is 0.1352 GB. Such a cost gap stems from the fact that TSC-Net
adopts the batch-wise stochastic gradient for optimization with-
out having to load the whole affinity tensors and saves the cost
significantly. The results are in accordance with the memory cost
analysis in Section III-C, indicating that our method achieves a
better clustering performance while reducing the memory cost.

Notably, IPS2, TMM, and SC-MSVD fail to perform on large-
scale datasets like MNIST (70,000 samples), Reuters (10,000
samples), and USPS (9298 samples) because the memory cost

of constructing the affinity tensors is prohibitively high. In
comparison, TSC-Net adopts the batch-wise stochastic gradient
and only needs to construct and store a small part of affinity
tensors on the basis of the batch size, which translates into a
relatively low memory cost for large-scale datasets.

D. Ablation Study on Ensemble of Multiple Affinity Tensors

In Table IV, the ablation study of the ensemble of multiple
affinity tensor results is illustrated to verify the contribution of
each affinity tensor for clustering. Specifically, different com-
binations of affinity tensors are taken into consideration, where√

means being incorporated and × means being removed.
From Table IV, one can notice that all the incorporated affinity
tensors, i.e., the second, third, and fourth order ones, contribute

CAI et al.: DEEP TENSOR SPECTRAL CLUSTERING NETWORK VIA ENSEMBLE OF MULTIPLE AFFINITY TENSORS 5089

Fig. 5. Objective function values of TSC-Net with the number of the epochs on six benchmark datasets.

to the clustering improvement. In particular, the ensemble of all
three affinity tensors achieves the best clustering performance
compared with other combinations that incorporate only part
of the three. The performance improvements between TSC-Net
and the second-best competitor are by 1.4%, 2.5%, 2.7%, 0.9%,
0.7%, and 2.2% in terms of ACC on Synthetic-Data, Lung,
GLI-85, MNIST, Reuters, and UPSP, respectively. Also, one can
find that the clustering performance by different affinity tensors
is task-dependent. For instance, using solely fourth order affinity
achieves better clustering performance than solely using third
or second order affinity tensor on Synthetic-Data, Lung, and
GLI-85, while solely using fourth order affinity achieve worse
performance than solely using third order affinity tensor on
MNIST and Reuters. This phenomenon indicates that different
affinity tensors contribute unequally to clustering performance,
depending on specific tasks.

E. Hyperparameter Analysis

TSC-Net has two hyperparameters, i.e., α and β, and their
different numerical values of them imply different weight con-
tributions of the corresponding affinity tensors. The previous
section illustrates how combining various affinity tensors is
task-dependent, and thus we consider using the grid search
technique to find the task-optimal hyperparameters α and β
both from the set [0.001, 0.01, 0.1, 1, 10, 100]. We show the
hyperparameter sensitivity in terms of ACC on Synthetic-Data,

TABLE V
RUNNING TIME (IN SECONDS) OF TSC-NET ON THE SIX BENCHMARK

DATASETS

Lung, GLI-85, MNIST, Reuters, and UPSP in Fig. 4. From the
figures, we find that TSC-Net comes with a relatively stable ACC
performance under a wide range of hyperparameters across all
six datasets.

F. Convergence and Running Time of TSC-Net

In this subsection, the convergence and running time of TSC-
Net are investigated. We employed TSC-Net on the benchmark
datasets, including Synthetic-Data, Lung, GLI-85, MNIST,
Reuters, and UPSP, respectively. We then reported the objective
function value of (2) with respect to the increasing epochs in
Fig. 5 and the running time in seconds in Table V. Overall,
the objective function values under the proposed alternative
stochastic optimization monotonically decrease with epochs on

5090 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 7, JULY 2024

all the benchmark datasets, where at the first several epochs,
the values remarkably decrease and then continuously decrease
before the two hundred and fifty epoch. In summary, TSC-Net
achieves a convergence quickly.

V. CONCLUSION

In this paper, we have proposed a tensor spectral clustering
network for reducing the memory cost considerably and inte-
grating multiple affinity tensors in a memory-efficient manner.
Unlike existing methods, which uniformly need to load the
whole affinity tensors, our method maps the input samples into
the tensor spectral embedding with a neural network and allows
for a batch-wise affinity tensor construction, which enables us
to reduce the memory cost. More critically, compared with the
previous method using a two-stage integration, our proposed
method seamlessly ensemble multiple affinity tensors in a one-
stage manner to improve the clustering performance while keep-
ing a low memory cost. Experimental results have demonstrated
that our method achieves considerable performance improve-
ment while enjoying less memory cost on benchmark datasets.

Overall, the proposed method has demonstrated the effective-
ness of high-dimensional data clustering. There are two potential
directions for improvement:

1. Redundancy in Multiple Affinity Tensors: While the pro-
posed method is capable of jointly ensembling multiple affinity
tensors, one potential limitation lies in the redundancy that might
arise in this ensemble process. The inclusion of multiple affinity
tensors for similarity estimation may result in computational
redundancy and increased computational costs. Specifically, the
question of whether the additional complexity of incorporating
multiple affinity tensors consistently improves the clustering
performance needs to be addressed. Future research could ex-
plore strategies to efficiently select or weight the most informa-
tive affinity tensors to mitigate redundancy while preserving the
benefits of ensemble learning.

2. Absence of Mutual Improvement between Clustering and
Feature Learning: Another important aspect to consider is the
reliance solely on the given affinity tensors for tensor spectral
embedding. This implies that the tensor spectral clustering
network does not actively update or adapt the affinity tensors
during the learning process. The absence of mutual improvement
between clustering and deep feature learning is a noteworthy
limitation. Future research directions could explore mechanisms
for dynamically updating the affinity tensors as part of the
learning process. This would allow a network to adapt and
refine the affinity information, potentially leading to improved
clustering results.

REFERENCES

[1] X. Peng, J. Feng, J. T. Zhou, Y. Lei, and S. Yan, “Deep subspace clustering,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 12, pp. 5509–5521,
Dec. 2020.

[2] Y. Zhang, X. Hu, and X. Jiang, “Multi-view clustering of microbiome
samples by robust similarity network fusion and spectral clustering,”
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 14, no. 2, pp. 264–271,
Mar./Apr. 2017.

[3] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Proc. Adv. Neural Inf. Process. Syst., MIT Press, 2001,
pp. 849–856.

[4] D. Huang, C.-D. Wang, J.-S. Wu, J.-H. Lai, and C.-K. Kwoh, “Ultra-
scalable spectral clustering and ensemble clustering,” IEEE Trans. Knowl.
Data Eng., vol. 32, no. 6, pp. 1212–1226, Jun. 2020.

[5] A. Friedman, M. D. Keselman, L. G. Gibb, and A. M. Graybiel, “A multi-
stage mathematical approach to automated clustering of high-dimensional
noisy data,” in Proc. Nat. Acad. Sci. USA, vol. 112, no. 14, pp. 4477–4482,
2015.

[6] J.-J. Liu, Q. Hou, and M.-M. Cheng, “Dynamic feature integration for
simultaneous detection of salient object, edge, and skeleton,” IEEE Trans.
Image Process., vol. 29, pp. 8652–8667, 2020.

[7] B. Byeon and K. Rasheed, “Simultaneously removing noise and selecting
relevant features for high dimensional noisy data,” in Proc. 7th Int. Conf.
Mach. Learn. Appl., 2008, pp. 147–152.

[8] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, and S.
Belongie, “Beyond pairwise clustering,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2005, pp. 838–845.

[9] Z. Tao, H. Liu, S. Li, Z. Ding, and Y. Fu, “Marginalized multiview
ensemble clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 2,
pp. 600–611, Feb. 2020.

[10] D. Ghoshdastidar and A. Dukkipati, “A provable generalized tensor spec-
tral method for uniform hypergraph partitioning,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 400–409.

[11] D. Ghoshdastidar and A. Dukkipati, “Spectral clustering using multilinear
SVD: Analysis, approximations and applications,” in Proc. AAAI Conf.
Artif. Intell., 2015, pp. 2610–2616.

[12] D. Ghoshdastidar and A. Dukkipati, “Uniform hypergraph partitioning:
Provable tensor methods and sampling techniques,” J. Mach. Learn. Res.,
vol. 18, no. 1, pp. 1638–1678, 2017.

[13] H. Peng, Y. Hu, J. Chen, H. Wang, Y. Li, and H. Cai, “Integrating tensor
similarity to enhance clustering performance,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 5, pp. 2582–2593, May 2022.

[14] G. Chao, S. Wang, S. Yang, C. Li, and D. Chu, “Incomplete multi-view
clustering with multiple imputation and ensemble clustering,” Appl. Intell.,
vol. 52, pp. 14811–14821, 2022.

[15] U. Shaham, K. Stanton, H. Li, R. Basri, B. Nadler, and Y. Kluger,
“SpectralNet: Spectral clustering using deep neural networks,” in Proc.
Int. Conf. Learn. Representations, 2018, pp. 1–19. [Online]. Available:
https://openreview.net/forum?id=HJ_aoCyRZ

[16] Y. Han and M. Filippone, “Mini-batch spectral clustering,” in Proc. Int.
Joint Conf. Neural Netw., 2017, pp. 3888–3895.

[17] O. Shamir, “A stochastic PCA and SVD algorithm with an exponen-
tial convergence rate,” in Proc. Int. Conf. Mach. Learn., PMLR, 2015,
pp. 144–152.

[18] C. H. Nguyen and H. Mamitsuka, “Learning on hypergraphs with sparsity,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 8, pp. 2710–2722,
Aug. 2021.

[19] D. François, V. Wertz, and M. Verleysen, “The concentration of fractional
distances,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 7, pp. 873–886,
Jul. 2007.

[20] X. Liu et al., “Late fusion incomplete multi-view clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 10, pp. 2410–2423,
Oct. 2019.

[21] V. Govindu, “A tensor decomposition for geometric grouping and segmen-
tation,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
2005, pp. 1150–1157.

[22] A. Shashua, R. Zass, and T. Hazan, “Multi-way clustering using super-
symmetric non-negative tensor factorization,” in Proc. Eur. Conf. Comput.
Vis., Springer, 2006, pp. 595–608.

[23] S. Hu and L. Qi, “Algebraic connectivity of an even uniform hy-
pergraph,” J. Combinatorial Optim., vol. 24, no. 4, pp. 564–579,
2012.

[24] G. Li, L. Qi, and G. Yu, “The z-eigenvalues of a symmetric tensor and its
application to spectral hypergraph theory,” Numer. Linear Algebra Appl.,
vol. 20, no. 6, pp. 1001–1029, 2013.

[25] L. Qi, “H -eigenvalues of Laplacian and signless Laplacian tensors,”
Commun. Math. Sci., vol. 12, no. 6, pp. 1045–1064, 2014.

[26] Y. Chen, L. Qi, and X. Zhang, “The fiedler vector of a Laplacian ten-
sor for hypergraph partitioning,” SIAM J. Sci. Comput., vol. 39, no. 6,
pp. A2508–A2537, 2017.

[27] J. Chang, Y. Chen, L. Qi, and H. Yan, “Hypergraph clustering using a new
Laplacian tensor with applications in image processing,” SIAM J. Imag.
Sci., vol. 13, no. 3, pp. 1157–1178, 2020.

https://openreview.net/forum{?}id$=$HJ_aoCyRZ

CAI et al.: DEEP TENSOR SPECTRAL CLUSTERING NETWORK VIA ENSEMBLE OF MULTIPLE AFFINITY TENSORS 5091

[28] W. Yang, C. Hui, D. Sun, X. Sun, and Q. Liao, “Clustering through
probability distribution analysis along eigenpaths,” IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 51, no. 2, pp. 875–884, Feb. 2021.

[29] Y. Chen et al., “KNN-BLOCK DBSCAN: Fast clustering for large-
scale data,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 51, no. 6,
pp. 3939–3953, Jun. 2021.

[30] X. Xu, J. Li, M. Zhou, J. Xu, and J. Cao, “Accelerated two-stage particle
swarm optimization for clustering not-well-separated data,” IEEE Trans.
Syst., Man, Cybern. Syst., vol. 50, no. 11, pp. 4212–4223, Nov. 2020.

[31] Y. Zhao and X. Li, “Spectral clustering with adaptive neighbors for
deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 4,
pp. 2068–2078, Apr. 2023.

[32] J. Cai, J. Fan, W. Guo, S. Wang, Y. Zhang, and Z. Zhang, “Efficient deep
embedded subspace clustering,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2022, pp. 1–10.

[33] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in Proc. Int. Conf. Mach. Learn., PMLR, 2016,
pp. 478–487.

[34] J. Chang, G. Meng, L. Wang, S. Xiang, and C. Pan, “Deep self-evolution
clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4,
pp. 809–823, Apr. 2020.

[35] J. Wu et al., “Deep comprehensive correlation mining for image cluster-
ing,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 8150–8159.

[36] J. Huang, S. Gong, and X. Zhu, “Deep semantic clustering by partition
confidence maximisation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2020, pp. 8849–8858.

[37] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid, “Deep subspace clustering
networks,” in Proc. Adv. Neural Inf. Process. Syst., Curran Associates, Inc.,
2017, pp. 23–32.

[38] M. Tan and Q. Le, “EfficientNetv2: Smaller models and faster training,”
in Proc. Int. Conf. Mach. Learn., PMLR, 2021, pp. 10096–10106.

[39] A. Bhattacharjee et al., “Classification of human lung carcinomas by
MRNA expression profiling reveals distinct adenocarcinoma subclasses,”
in Proc. Nat. Acad. Sci. USA, vol. 98, no. 24, pp. 13790–13795, 2001.

[40] W. A. Freije et al., “Gene expression profiling of gliomas strongly predicts
survival,” Cancer Res., vol. 64, no. 18, pp. 6503–6510, 2004.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” in Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[42] D. D. Lewis, Y. Yang, T. Russell-Rose, and F. Li, “RCV1: A new bench-
mark collection for text categorization research,” J. Mach. Learn. Res.,
vol. 5, pp. 361–397, 2004.

[43] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: An unsupervised and generative approach to clustering,” in
Proc. 26th Int. Joint Conf. Artif. Intell., 2017, pp. 1965–1972.

Hongmin Cai (Senior Member, IEEE) received the
BS and MS degrees in mathematics from the Harbin
Institute of Technology, Harbin, China, in 2001 and
2003, respectively, and the PhD degree in applied
mathematics from Hong Kong University, in 2007.
He is a professor with the School of Computer Sci-
ence and Engineering, South China University of
Technology, Guangzhou, China. He had been a guest
professor with Kyoto University, Japan, in 2019.
His current research interests include bioinformatics,
machine learning, and omics data analysis.

Yu Hu received the bachelor of science degree in elec-
trical engineering and automation from the School of
Information and Electric Engineering, China Univer-
sity of Mining and Technology, Xuzhou, Jiangsu, in
2017, and the PhD degree in computer science from
the School of Computer Science and Engineering,
South China University of Technology, Guangzhou,
China, in 2023. He is a research associate currently
affiliated with the Guangdong Artificial Intelligence
and Digital Economy Laboratory (Pazhou Lab) sit-
uated in Guangzhou. His present research endeavors

revolve around the domains of reinforcement learning, test-time domain adap-
tation, and life-long learning.

Fei Qi received the BS and MS degrees from Xiamen
University, Xiamen, Fujian, China, in 2013 and 2016,
respectively. He is currently working toward the PhD
degree in computer science and engineering with the
South China University of Technology, Guangzhou,
Guangdong, China. His research interests include
machine learning and image processing.

Bin Hu (Fellow, IEEE) received the PhD degree in
computer science from the Institute of Computing
Technology, Chinese Academy of Science, China, in
1998. Since 2008, he has been a professor and the
dean of the School of Information Science and Engi-
neering, Lanzhou University, China. He had been also
guest professorship in ETH Zurich, Switzerland till
2011. His research interests include pervasive com-
puting, computational psychophysiology, and data
modeling.

Yiu-ming Cheung (Fellow, IEEE) received the PhD
degree from the Department of Computer Science
and Engineering, Chinese University of Hong Kong,
Hong Kong. He is currently a chair professor with
the Department of Computer Science in Hong Kong
Baptist University, Hong Kong. His current research
interests include machine learning and visual com-
puting, as well as their applications in data science,
pattern recognition, multi-objective optimization, and
information security. He is the editor-in-chief of IEEE
Transactions on Emerging Topics in Computational

Intelligence. Also, he serves as an associate editor for IEEE Transactions on
Cybernetics, IEEE Transactions on Cognitive and Developmental Systems, Pat-
tern Recognition, Knowledge and Information Systems, and Neurocomputing,
just to name a few. He is a fellow of the AAAS, IET, BCS, and AAIA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

