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Cross-Modal Hashing Method With Properties of
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Abstract—Cross-modal hashing (CMH) has attracted consider-
able attention in recent years. Almost all existing CMH methods
primarily focus on reducing the modality gap and semantic gap,
i.e., aligning multi-modal features and their semantics in Hamming
space, without taking into account the space gap, i.e., difference
between the real number space and the Hamming space. In fact,
the space gap can affect the performance of CMH methods. In
this paper, we analyze and demonstrate how the space gap affects
the existing CMH methods, which therefore raises two problems:
solution space compression and loss function oscillation. These
two problems eventually cause the retrieval performance deteri-
orating. Based on these findings, we propose a novel algorithm,
namely Semantic Channel Hashing (SCH). First, we classify sample
pairs into fully semantic-similar, partially semantic-similar, and
semantic-negative ones based on their similarity and impose differ-
ent constraints on them, respectively, to ensure that the entire Ham-
ming space is utilized. Then, we introduce a semantic channel to
alleviate the issue of loss function oscillation. Experimental results
on three public datasets demonstrate that SCH outperforms the
state-of-the-art methods. Furthermore, experimental validations
are provided to substantiate the conjectures regarding solution
space compression and loss function oscillation, offering visual
evidence of their impact on the CMH methods.

Index Terms—Cross-modal retrieval, hashing, Hamming space,
loss oscillation, solution space compression.

I. INTRODUCTION

CROSS-MODAL retrieval [1], [2], [3], which seeks to re-
trieve information across different modalities, has received

increasing attention in the literature. Existing methods primarily
concentrate on addressing modality gap [4] and semantic gap [5]
in this task, i.e., achieving the alignment of multi-modal features
and their semantics. Consequently, these approaches typically

Manuscript received 14 June 2023; revised 9 April 2024; accepted 21 April
2024. Date of publication 23 April 2024; date of current version 5 November
2024. This work was supported in part by the NSFC/Research Grants Council
(RGC) Joint Research Scheme under Grant N_HKBU214/21, in part by the
General Research Fund of RGC under Grant 12201321, Grant 12202622 and
Grant 12201323, in part by the RGC Senior Research Fellow Scheme under
Grant SRFS2324-2S02, in part by the National Natural Science Foundation of
China (NSFC) under Grant 62306181, and in part by the Natural Science Foun-
dation of Guangdong Province under Grant 2024A1515010163. Recommended
for acceptance by N. Sebe. (Corresponding author: Yiu-Ming Cheung.)

Zhikai Hu, Yiu-Ming Cheung, and Weichao Lan are with the Department
of Computer Science, Hong Kong Baptist University, Hong Kong, China (e-
mail: cszkhu@comp.hkbu.edu.hk; ymc@comp.hkbu.edu.hk; cswclan@comp.
hkbu.edu.hk).

Mengke Li is with the Guangdong Laboratory of Artificial Intelligence
and Digital Economy (SZ) and Visual Computing Research Center, Shenzhen
University, Shenzhen 518060, China (e-mail: limengke@gml.ac.cn).

Codes are available at https://github.com/hutt94/SCH.
Digital Object Identifier 10.1109/TPAMI.2024.3392763

map multi-modal data into a common semantic space, with the
anticipation that samples possessing similar semantics cluster in
this space. Among them, real number-based cross-modal (RCM)
methods are a popular branch that employs a real number space
as this semantic space. Although these methods [6], [7], [8]
have achieved promising results in their application domains,
storing multi-modal data with real numbers is inefficient and
cumbersome for storage and retrieval.

To achieve fast retrieval with low storage, hash techniques [9],
[10], [11] have been developed, forming a new promising branch
of cross-modal hashing (CMH) methods. In CMH methods,
the common semantic space is defined as a Hamming space,
where all samples are stored as discrete hash codes, and their
similarity can be easily calculated by the XOR operation, re-
ducing storage costs and improving retrieval efficiency. Owing
to these advantages, CMH methods have gained popularity
and emerged as the preferred choice for cross-modal retrieval
task [12]. However, since multi-modal data are initially stored in
the real number space but later mapped to the Hamming space,
an additional space gap, namely the difference between these
two spaces, needs to be bridged. Regretfully, almost all existing
CMH methods focus on bridging the aforementioned modality
gap and semantic gap but ignore the space gap. Moreover,
they usually simplify the space gap into discrete attribute of
hash codes and have proposed corresponding solutions such
as discretely updating hash codes [13], [14], [15], [16] and
minimizing quantization error [17], [18]. However, they over-
look the key differences between these two spaces. Specifically,
different from the real number space, Hamming space holds
three special properties. Property 1: The number of points is
finite in Hamming space. Property 2: The similarity values
between points in Hamming space are discrete and finite. Let
us take the commonly used cosine similarity as an example.
The set of values of the cosine similarity between two points
in a k-dimensional Hamming space is a discrete finite set,
denoted as C = {1− 2dH/k|dH = 0, 1, 2, . . ., k}, where dH
is the Hamming distance between the two points. The size
of C is |C| = k + 1. Property 3: For any anchor in Hamming
space, the Hamming distances between it and all points in
the space follow the Binomial distribution B(k, 1/2). As a
result, such overlook limits their performance on cross-modal
retrieval.

In this paper, we will analyze the impact of these three proper-
ties on the CMH methods. We focus primarily on the supervised
learning paradigm as labels can often indicate more precise
semantic information. As previously mentioned, the existing
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Fig. 1. There are two commonly used constraints in CMH methods to dis-
tribute semantically dissimilar samples, i.e., keeping them orthogonal or apart
as far as possible. However, the special properties of Hamming spaces make these
two constraints problematic in CMH methods, as they can lead to compression
of the solution space.

CMH methods primarily address the semantic gap by gather-
ing semantically similar samples and separating semantically
dissimilar ones. It turns out that more similar samples can be
retrieved from the retrieval set. Generally, there are two com-
mon strategies for separating semantically dissimilar samples:
making them orthogonal [19], [20] or keeping them apart as far
as possible [21], [22], [23]. Unfortunately, both of them will
raise the problem of solution space compression, i.e., samples
in the retrieval set are forced to be distributed in a confined
space. For example, orthogonal constraint, as proposed in [24],
[25], aims at enforcing semantically dissimilar samples to have
orthogonal hash codes. That is, their corresponding hash codes
should have a Hamming distance of k/2 in a k-dimensional
Hamming space. Conversely, samples with similar semantics
should have hash codes that are as close as possible, preferably
less than k/2 away from each other. In this way, given any
sample x in the training set T as an anchor, the hash codes
of the rest samples in set T /x are expected to be distributed
in the Hamming space within k/2 of its corresponding hash
code, which we denote as S(x). Unfortunately, nearly half of
the Hamming space is not utilized in S(x). Finally, the overall
solution space for the training setT is the intersection of solution
spaces of all samples, i.e.,∩x∈T S(x). As pointed out by Property
1, the number of points in the Hamming space is finite, and as a
result, the more training samples in T , the more compressed the
overall solution space is, which may result in insufficient space
for separating semantically dissimilar samples. Additionally, the
space of semantically similar samples is also compressed, as
illustrated in Fig. 1.

Another commonly used constraint in CMH methods
is to keep semantically dissimilar samples apart as far as
possible [12], [26], [27], which, however, can also lead to a
compressed solution space. As pointed out by Property 3, the

Hamming distances between two hash codes follow the Bino-
mial distribution B(k, 1/2), implying that the corresponding
space has fewer points as the distance from an anchor increases
when dH > k/2. To achieve this constraint, all semantically
dissimilar samples of a given anchor x, denoted as the set X−,
are expected to be as far away as possible from x. However,
it will force the samples in X− to be compressed into a small
space, which ultimately prevent the separation of semantically
dissimilar samples within the set X−. Although in practical
training procedure, semantically similar samples set X+ and
semantically dissimilar samples set X− can balance each other,
this balance only works when the number of classes is small and
training samples of each class are balanced. As the number of
classes and samples increases, this balance may fail, and the side
with more samples usually prevails, finally compresses the space
of its opposite side, as shown in Fig. 1. Overall, excessively
stringent constraints imposed on semantically dissimilar
samples will result in solution space compression. More detailed
analyses of this issue will be provided in Section IV-C-1.

In addition to the problem of solution space compression,
the existing CMH methods face another issue of loss function
oscillation, wherein the gradient at the optimal solution is non-
zero, preventing the loss function from consistently decreasing.
Specifically, in the prevailing supervised CMH paradigm, the
similarity s between the labels of a sample pair is commonly
employed as the supervisory information to guide the learning of
their corresponding hash codes, whose similarity is denoted as c.
To accomplish this, we usually define a loss functionf(s, c), e.g.,
f(s, c) = (s− c)2 [24], [28], [29], and learn hash functions and
hash codes by minimizing it, i.e., minc f(s, c). Notably, since
f is often continuous while the similarity values of hash codes
are discrete, as pointed out by Property 2, this setup can lead to
the problem of loss function oscillation. Specifically, once the
argmincf(s, c) /∈ C, we can only select a value c′ ∈ C that is the
closest to s to obtain the optimal solution. Obviously, the cor-
responding gradient is not zero at this point, i.e., ∇f(s, c′) �= 0
(see Section III-C-2). That is, the gradient of the optimal solution
can be non-zero. This implies that even if the optimal solution
has been found, the corresponding sample pairs will continue
to contribute to the gradient and may jump out of the optimal
solution in the next epoch, leading to the problem of loss function
oscillation.

To address the aforementioned two issues, this paper pro-
poses a novel CMH method, namely Semantic Channel Hashing
(SCH). Specifically, to avoid the problem of solution space com-
pression, we classify sample pairs into three categories based on
the similarity calculated by their labels: fully semantic-positive
samples, partially semantic-positive samples, and semantic-
negative samples. Different constraints are then imposed on their
corresponding hash codes, ensuring that the entire Hamming
space is utilized effectively. Specifically, in Hamming space,
the fully semantic-positive samples are expected to be as close
as possible to each other, and the partially semantic-positive
samples are distributed in a relatively close range in an orderly
manner, while the distances between semantic-negative samples
need to be farther than k/2. Moreover, to alleviate the oscillation
of the loss function, we extend the Hamming distances assigned
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to different samples in the first step into semantic channels,
ensuring that the gradient of the loss function is zero at the
optimal solution. In summary, the key contributions of this paper
are as follows:
� We present an analysis of three characteristics of space gap

in CMH task and explain how they hinder existing CMH
methods. Subsequently, it is found that current CMH meth-
ods suffer from the problems of solution space compression
and loss function oscillation. This insight would inspire
future researchers in the design of CMH algorithms.

� To address the identified problems, we propose a novel
algorithm SCH. By handling sample pairs with different
similarities differently, we enable the full utilization of the
Hamming space. Moreover, the introduction of the seman-
tic channel helps alleviate the problem of loss function
oscillation.

� Experimental results on three public datasets demonstrate
the superior retrieval performance of the proposed SCH.
Furthermore, we have designed experiments to validate our
analyses of solution space compression and loss function
oscillation. By comparing SCH with two commonly used
loss functions, we provide a better understanding of the
motivation and effectiveness of SCH.

The remainder of this paper is organized as follows. In Sec-
tion II, we make an overview of cross-modal retrieval methods
and efforts to cope with discrete attribute of hash codes in recent
years. Section III details the proposed algorithm, and Section IV
presents the experimental results and analyses. Finally, we draw
a conclusion in Section V.

II. RELATED WORK

A. Real Number-Based Cross-Modal Methods

Real number-based cross-modal methods aim to project
multi-modal data into a common real number space. One of
the most classical approaches is Canonical Correlation Analysis
(CCA) [30], which learns a common representation of multi-
modal data by maximizing the pairwise correlation between
them. Many extensions, such as RCCA [31] and ml-CCA [32],
have been subsequently proposed. Another typical method is
Semantic Correlation Match (SCM) [5], which proposes three
hypotheses: correlation matching for unsupervised methods, se-
mantic matching for supervised ones, and their combination, se-
mantic correlation matching, laying the foundational framework
for subsequent cross-modal retrieval methods. Recently, deep
neural networks have demonstrated exceptional abilities in var-
ious tasks [33], [34] and have been introduced into cross-modal
retrieval tasks. For example, Feng et al. [6] and Hu et al. [35] used
two auto-encoders to extract common features of multi-modal
data, and Wei et al. [36] proposed a new baseline for cross-modal
retrieval based on convolutional neural networks (CNN) visual
features. Inspired by generative adversarial nets (GAN) [37], He
et al. [38] and Wang et al. [7] employed adversarial learning
to minimize the modality gap. Although they have achieved
satisfactory performance, they still suffer from huge storage
costs and low retrieval speed.

B. Cross-Modal Hashing Methods

Cross-modal hashing methods can be roughly divided into
unsupervised [39], [40], [41] and supervised ones [42], [43],
[44], [45]. Unsupervised methods typically leverage paired data
to learn the correlations between modalities. For instance, Ding
et al. [46] proposed Collective Matrix Factorization Hashing
(CMFH) to learn unified hash codes from the original multi-
modal data features. Su et al. [47] and Liu et al. [48] proposed
different algorithms for constructing similarity matrices to guide
hash code learning. Other approaches enhance CMH methods
by drawing inspiration from the application of deep learning
in other domains. For instance, Hu et al. [49] proposed a new
method to automatically learn useful information from unsuper-
vised CMH methods through knowledge distillation to supervise
the learning of hash codes. Hu et al. [50] and Zhang et al. [51]
respectively integrated the contrastive learning and graph neural
network into the CMH methods, which have achieved promising
results.

Supervised methods usually achieve better performance due
to the utilization of label information. The mainstream approach,
e.g., [19], [22], [23], [52], [53], is to construct a similarity
matrix by using labels and preserve these similarity relations in
Hamming space. Traditional matrix factorization-based CMH
methods [52], [54], [55], [56] often employ orthogonal con-
straints to preserve relationships in the similarity matrix, aiming
to ensure that semantically dissimilar samples are orthogonal.
Building upon this foundation, various methods have been pro-
posed. For example, Mandal et al. [24] used matrix factorization
to obtain hash codes that can be adaptable to a wide range of
scenarios. Liu et al. [20] proposed to use matrix tri-factorization
decomposition to learn hash codes of varying lengths for data of
different modalities. Wang et al. [57] were the first to propose
replacing traditional dense hash codes with high-dimensional
sparse hash codes. In contrast, deep hashing methods [12], [21],
[22], [23] often adopt strategies that aim to keep semantically
dissimilar samples as far as possible. In addition to this aim, they
introduced other modules to facilitate the learning of hash codes.
For example, Jiang et al. [21] were the pioneers in employing
a deep model for CMH and devised a scheme for discretely
updating hash codes. Inspired by GAN and self-supervised
learning, Li et al. [22] proposed a self-supervised framework to
learn hash codes and minimize the modality gap by adversarial
learning. Zhang et al. [23] utilized two intra-modal and inter-
modal asymmetric networks to further align the semantics of
different modalities. Furthermore, inspired by metric learning,
some methods combine triplet loss [58], [59] with hashing
techniques. By leveraging the similarity relationships within
triplets, these approaches, e.g., [60], [61], aim to enlarge the
distance between semantically similar and dissimilar samples,
yielding promising results.

More recently, several new deep learning models, such as
Transformer [62], Bidirectional Encoder Representations from
Transformers (BERT) [63], and Vision Transformer (ViT) [64],
have gained popularity in the multi-modal domain. These mod-
els have also been adopted by some CMH methods, e.g., [26],
[27], to extract highly expressive image and text features, which
subsequently enhances their retrieval performance.
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C. Bridging the Space Gap

Existing methods usually simplify the space gap to the discrete
attribute of the hash code. As hash codes are discrete, optimizing
loss functions is usually challenging. Some methods, e.g., [46],
[65], attempt to simplify the discrete constraint into continuous
constraint, which inevitably results in quantization errors and
negatively impacts retrieval performance. To address this issue,
Gong et al. [17] proposed a method that learns a rotation of
zero-centered data to minimize quantization errors. Specifically,
an orthogonal matrix is learned to rotate the hash code, which
has been used in some subsequent work [16], [66]. In contrast,
Shen et al. [13] retained the discrete constraints and proposed
a discrete cyclic coordinate (DCC) descent method that can
update hash codes in a discrete manner row by row. Although
this method has achieved good performance in the CMH meth-
ods [15], [20], it is often time-consuming due to the row-by-row
update. To this end, Gui et al. [14] proposed a closed-form
solution of hash codes by reformulating the regression loss. This
approximation solution only requires one operation to update the
entire hash code matrix in a discrete manner, significantly im-
proving training efficiency. This optimization method has been
widely adopted in subsequent traditional CMH methods [16],
[53], [57], [67] and its efficiency has been extensively verified.
Due to the requirement of function continuity for automatic
differentiation in deep learning, it is challenging to apply the
discrete update strategy to the deep learning-based CMH meth-
ods. To address this, Cao et al. [68] proposed to use tanh(β·)
as activation function in the last hash layer, which can gradually
approximate the sign function as the value of β increases. It
aims to reduce the quantization error while maintaining function
continuity for automatic differentiation.

Some works [69], [70] also mention the issue of solution space
compression that differs from the definition in this paper. Specif-
ically, they aim to narrow the solution space of parameters in
the models to make the models converge to the optimal solution
more rapidly. Besides, loss oscillation can arise from various
factors, such as mini-batch training [71], non-differentiable reg-
ularization terms [72], and noisy labels [73]. Momentum [71]
is designed to dampen loss oscillation caused by mini-batch
training, and its mechanism has been extensively discussed [74],
[75]. Wu et al. [72] proposed a smoothing regularization to alle-
viate oscillation. In this paper, we focus more on loss oscillation
caused by the discreteness of hash codes.

III. PROPOSED METHOD

A. Notation and Problem Definition

In this paper, we focus on the cross-modal retrieval task of
image and text modalities. Specifically, the dataset consists of n
image-text pairs {xI

i , x
T
i }ni=1, where xI

i ∈ Rd1 and xT
i ∈ Rd2

represent the i-th image and text samples, respectively. The
original image and text data are denoted as XI = {xI

i }ni=1 and
XT = {xT

i }ni=1, respectively. Their corresponding labels are
denoted as L = {li}ni=1, and each label li ∈ {0, 1}c, where c is
the number of classes. In the training stage, our goal is to learn
two hash functions f I and fT that project the image and text

data into k-bit hash codes BI = {bIi }ni=1 and BT = {bTi }ni=1,
respectively, where bI,Ti = f I,T (xI,T

i ) ∈ {−1, 1}k. Afterward,
the whole multi-modal dataset will be projected into the Ham-
ming space to form a retrieval set. In the test stage, given a query
q, it is first mapped into its corresponding hash code by f I,T and
then, the Hamming distance is utilized to search for the most
relevant hash codes in the retrieval set, which are then returned
as retrieval results.

B. Overview

For clear illustration, in Section III-B and III-C, we will use
xi and bi to represent the i-th sample and its hash code of both
modalities, respectively, i.e., xI

i and xT
i , and bIi and bTi .

The core idea of SCH involves the allocation of an appropriate
Hamming distance to the hash codes bi and bj of samples
xi and xj in the training stage, based on their similarity Sij ,
as illustrated in Fig. 2. In this paper, this Hamming distance
is referred to as λij . The cosine distance of their labels is
initially utilized to establish the similarity Sij . Using Sij , we
then assign a semantic channel, comprising of an appropriate
Hamming distance λij and a channel width τ , to samples xi and
xj . Subsequently, this semantic channel is utilized to steer the
learning of their corresponding hash codes bi and bj as well as
hash functions f I,T .

C. Semantic Channel Hashing

1) Appropriate Hamming Distance: First, we estimate the
relationships between samples by utilizing the cosine similarity
of labels, i.e., Sij = cos(li, lj) ∈ [0, 1]. Based on different Sij ,
the relationships between samples (xi, xj) can be grouped into
three categories:

1) Sij = 0 if the labels of samples xi and xj are totally
different, we term them semantic-negative samples and
denote them as (xi, x

−
j );

2) Sij ∈ (0, 1) if samples xi and xj share some of their
labels, we term them partially semantic-positive samples
and denote them as (xi, x

+
j );

3) Sij = 1 if the labels of samples xi and xj are the same,
we term them fully semantic-positive samples and denote
them as (xi, x

⊕
j ).

It can be seen that, while the similarityS is informative enough
to capture the nuances of semantic-positive samples, it fails to
differentiate among semantic-negative samples where Sij = 0.
However, it is important to acknowledge that the semantic-
negative samples set X− = {x−

j } associated with any sample xi

also encompasses different semantic relationships. If we were
to impose the same strict constraint, e.g., orthogonal constraint,
on all semantic-negative samples in the limited Hamming space,
it would inevitably lead to the solution space compression. In
this regard, this paper proposes to adopt a differential strategy
to handle these three types of samples. Specifically, we impose
relatively strict constraint on both fully and partially semantic-
positive samples, while constraining semantic-negative samples
with relatively loose constraint.

To achieve this, we first utilize S to estimate the appropriate
Hamming distance between different samples. The Hamming
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Fig. 2. Semantic channel hashing aims to determine the appropriate Hamming distance based on known information Sij and use this distance to supervise
the learning of hash codes bi and bj . First, the similarity Sij between two samples is calculated by their corresponding labels. Then, the appropriate Hamming
distances, including lower bound λlij and upper bound λuij , are estimated by Sij . The Hamming distance between corresponding hash codes bi and bj is expected

to stay in the range [λlij , λ
u
ij ], i.e., λlij ≤ dH(bi, bj) ≤ λuij .

distance between the hash codes bi and bj of the samples xi and
xj can be computed by

dH(bi, bj) =
k

2
(1− cos(bi, bj)). (1)

Intuitively, if two samples share a similar semantic relation-
ship, we expect cos(bi, bj) to be larger, and vice versa. Thus,
cos(bi, bj) is proportional to Sij . Subsequently, we replace
cos(bi, bj) in Eq. (1) with Sij to estimate the appropriate Ham-
ming distance between them as follows:

λij =
k

2
(1− Sij). (2)

Obviously, λij is bounded by the interval [0, k/2] due to the
restriction of Sij ∈ [0, 1]. This implies that half of the Ham-
ming space remains unused. The underlying cause of this issue
is the lack of detailed description for the relationship among
semantic-negative samples, which are crudely characterized by
Sij = 0. To optimize the utilization of the remaining Hamming
space, for any sample xi, we propose to allocate the space within
k/2 for semantic-positive samples x+

j and x⊕
j , and reserve the

space beyond k/2 for semantic-negative samples x−
j , which can

greatly alleviate the problem of solution space compression. The
specific implementation will be described in Section III-D.

2) Semantic Channel: It is apparent that λij is not always an
integer in Eq. (2) and would cause the loss function to oscillate if
it is directly utilized to constrain the Hamming distance between
hash codes, such as through Mean Squared Error (MSE) loss
LMSE = (λij − dH(bi, bj))

2. This is because the gradient at the
optimal solution of the loss function is not always zero in discrete
cases. As shown in Fig. 3(a), when λij is not an integer, the
optimal solution of the loss functionLMSE can only be achieved
at point c, where the gradient is not zero. To avoid this situation,
we expand λij into a channel to ensure that the optimal solution
of the loss function falls within the set D = {0, 1, 2, . . ., k}.
Specifically, we introduce the concept of a semantic channel with

Fig. 3. Gradients at optimal solution of MSE loss and the proposed semantic
channel, under discrete situation.

upper and lower bounds denoted as λu
ij and λl

ij , respectively,
which can be obtained from the following formula:{

λl
ij = λij − τ

λu
ij = λij

, (3)

where τ ∈ Z+ is the width of the target semantic channel. We
aim for the optimal solutiondH(bi, bj) to fall within the semantic
channel. That is,

λl
ij ≤ dH(bi, bj) ≤ λu

ij . (4)

It needs to guarantee that τ is an integer greater than 1, so that
[λl

ij , λ
u
ij ] ∩ D �= ∅ is always established. This way, to prevent

oscillations in the loss function, we only need to ensure that
the loss function achieves its minimum value when dH(bi, bj)
satisfies Eq. (4), as shown in Fig. 3(b).

D. Loss Function

1) Semantic-Negative Samples: For semantic-negative sam-
ples (xi, x

−
j ), it is desired that their corresponding hash codes

(bi, b
−
j ) are distant from each other in the Hamming space. How-

ever, as discussed in Section III-C, the similarity Sij = 0 does
not provide specific information about the exact distance range
for dH(bi, b

−
j ). Therefore, in the absence of the semantic channel
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and setting λl
ij = k/2, our focus is solely on the lower bound

λl
ij of (xi, x

−
j ). Specifically, we aim for the Hamming distance

dH(bi, b
−
j ) to exceed the lower bound λl

ij , i.e., λl
ij ≤ dH(bi, b

−
j ),

ensuring their semantic negativity, without requiring a precise
magnitude. Consequently, we can define the loss function for
semantic-negative samples as follows:

Lneg =

{I,T }∑
∗

n∑
i,j

max{0, λl
ij − dH(b∗i , b

∗−
j )}. (5)

This loss function comprises four components. The terms
dH(bIi , b

I−
j ) and dH(bTi , b

T−
j ) represent the Hamming distances

between hash codes from the same modality, ensuring intra-
modal similarity. On the other hand, the terms dH(bIi , b

T−
j ) and

dH(bTi , b
I−
j ) represent the Hamming distances between hash

codes from different modalities, ensuring inter-modal similarity.
2) Partially Semantic-Positive Samples: The loss function

for partially semantic-positive samples involves ensuring the
proper distribution of their corresponding hash codes (bi, b

+
j ).

Since the similarity value Sij provides specific information
about how close they should be, we use the upper and lower
bounds from Eq. (3) simultaneously to constrain the distance
of (bi, b

+
j ). The goal is to have their distance be close, but not

excessively close. Thus, we define the distance of (bi, b
+
j ) to

satisfy the condition λl
ij ≤ dH(bi, b

+
j ) ≤ λu

ij , where the upper
bound λu

ij maintains the proximity of the distance, while the
lower bound λl

ij prevents the distance from being too small.
This leads to the following formulation for the loss function of
partially semantic-positive samples:

{I,T }∑
∗

n∑
i,j

max{0, λl
ij − dH(b∗i , b

∗+
j ), dH(b∗i , b

∗+
j )− λu

ij}. (6)

In Eq. (6), only one of the three terms can be positive at most.
When dH(bi, b

+
j ) < λl

ij , only the second term λl
ij − dH(bi, b

+
j )

is positive, indicating that b+j is too close to bi. Similarly,
when λu

ij < dH(bi, b
+
j ), only the third term dH(bi, b

+
j )− λu

ij

is positive, indicating that b+j is relatively far from bi. Only
when λu

ij ≤ dH(bi, b
+
j ) ≤ λl

ij , all three terms are non-positive,
indicating that the distance between (bi, b

+
j ) is appropriate, close

but not excessively so. Therefore, Eq. (6) can be reformulated
as follows:

Lppos =

{I,T }∑
∗

n∑
i,j

max{0, λl
ij − dH(b∗i , b

∗+
j )}

+

{I,T }∑
∗

n∑
i,j

max{0, dH(b∗i , b
∗+
j )− λu

ij}. (7)

3) Fully Semantic-Positive Samples: For fully semantic-
positive samples (xi, x

⊕
j ), their similarity Sij = 1 represents

the strongest constraint between the two samples, indicating
that they should have highly similar hash codes (b,ib

⊕
j ). From

Eq. (3), the lower bound λl
ij for fully semantic-positive sam-

ples is always negative, i.e., −τ . As a result, the second term
λl
ij − dH(bi, b

⊕
j ) in Eq. (6) is always non-positive. Therefore,

Algorithm 1: SCH.

Require: Training dataset T = {XI ,XT ,L};
An image backbone network f I(XI ;ωI) which is
parameterized by ωI and learning rate γI ;
A text backbone network fT (XT ;ωT ) which is
parameterized by ωT and learning rate γT .
Two hyper-parameters α and β.

1: for iter = 1 to maximum iteration do
2: Sample batch samples B from T ;
3: Estimate the similarities for samples in B;
4: Estimate the appropriate Hamming distances for

samples in B via Eq. (2);
5: Assign appropriate semantic channels for samples in

B via Eq. (3);
6: Update the parameters of image backbone via

ωI = ωI − γI∇ωIL((XI ,XT ,L);ωI);
7: Update the parameters of text backbone via

ωT = ωT − γT∇ωTL((XI ,XT ,L);ωT );
8: end for

we only need to consider the upper bound λu
ij , which ensures that

the hash codes of fully semantic-positive samples are kept close
to each other in the Hamming space. Consequently, for fully
semantic-positive samples, Eq. (6) can be simplified as follows:

Lfpos =

{I,T }∑
∗

n∑
i,j

max{0, dH(b∗i , b
∗⊕
j )− λu

ij}. (8)

4) Overall Loss Function: Combining these three losses
Lneg , Lppos, and Lfpos, the overall loss function can be derived
by

L = Lppos + αLfpos + βLneg, (9)

where α and β are two hyper-parameters. To address the time-
consuming construction of positive and negative sample pairs
when implementing the loss function in Eq. (9), we introduce
an equivalent matrix form of the loss function

L = ||Wl � σ(Λl −BB�)||F + ||Wu � σ(BB� − Λu)||F ,
(10)

where Λl = [λl
i,j ]

n×n, Λu = [λu
i,j ]

n×n, σ(·) = max{0, ·}, and
� is matrix dot product. Wl and Wu are two weight matrices
that are defined as follow:

Wl
ij =

⎧⎨
⎩
1, Sij ∈ (0, 1)
β, Sij = 1
0, Sij = 0

,Wu
ij =

⎧⎨
⎩
1, Sij ∈ (0, 1)
0, Sij = 1
α, Sij = 0

.

(11)
It is worth noting that in Eq. (10), we opt to use the || · ||F instead
of || · ||1. This choice is made because when deriving Eq. (10),
the additional denominator in the gradient, i.e., 1

||·||F , allows for
the consideration of the global distribution between positive
and negative samples during the update process. Algorithm 1
summarizes the overall training procedure of the proposed SCH.

5) Relation With Triplet-Margin Loss: The triplet-margin
loss is a commonly used loss function in rank-based
cross-modal hashing methods [60], [61]. The objective of the
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Fig. 4. Difference between the proposed loss and triplet-margin loss. In the
proposed loss, absolute distance is considered, i.e., λl1 < d1 < λu1 and λl2 < d2.
In contrast, triplet-margin loss cares more about relative distance, i.e.,d2 − d1 −
m > 0.

triplet-margin loss is to increase the distance between semantic-
negative samples compared to the distance between semantic-
positive samples. The typical formulation of the triplet-margin
loss is:

{I,T }∑
∗

n∑
i,j

max{0,m+ dH(b∗i , b
∗+
j )− dH(b∗i , b

∗−
j )}, (12)

where m controls the desired distance threshold in the triplet-
margin loss. Our proposed loss function shares certain simi-
larities with the triplet-margin loss in terms of the underlying
idea. The difference between them is that our loss is based
on absolute distances, while the triplet-margin loss primarily
focuses on relative distances. Consider three samples: an anchor,
a positive sample, and a negative sample, as illustrated in Fig. 4.
Let d1 denote the distance between the anchor and the positive
sample, and d2 denote the distance between the anchor and the
negative sample. The triplet-margin loss aims to ensure that
d2 is larger than d1 by a margin of m, i.e., d2 − d1 −m >
0. However, the specific value of d1 is less concerned. In
contrast, our proposed loss simultaneously constrains both d1
and d2, with the conditions λl

1 < d1 < λu
1 and λl

2 < d2. This
constraint can be approximated as d2 − d1 − (λl

2 − λu
1 ) > 0,

which is consistent with the formulation of the triplet-margin
loss.

The proposed loss offers two advantages over the triplet-
margin loss. First, it eliminates the need for a hyper-parameter.
In the triplet-margin loss, the parameter m plays a critical
role, but its selection is often based on empirical observation.
Additionally, adjusting m becomes necessary when the dimen-
sion of the Hamming space changes. In contrast, the proposed
loss does not rely on any hyper-parameter, which simplifies
the training process. Second, in the triplet-margin loss, con-
structing triplet tuples can be time-consuming and computa-
tionally intensive. This process involves identifying suitable
anchor-positive-negative combinations, which can impede the
efficiency of the model in terms of training time and computa-
tional resources [76]. The proposed loss, on the other hand, does
not require the explicit construction of triplets, making it more
efficient.

IV. EXPERIMENT

A. Experiment Setting

1) Datasets: To validate the effectiveness of the proposed
method and its competitors, a series of experiments were con-
ducted on three widely-used datasets, including MIRFlickr [77],
NUS-WIDE [78], and IAPR TC-12 [79].

MIRFlickr comprises 25,000 image-text pairs. It is composed
of 24 different concepts. The images are represented using
raw RGB features, while each text is represented by a 1,386-
dimensional BoW vector. Following [21], we excluded samples
whose textual tags appear less than 20 times, leaving us with a
total of 20,015 image-text pairs. Out of these pairs, we used 2,000
pairs as the test set and reserved the remaining 18,015 pairs for
retrieval purposes. We randomly selected 10,000 samples from
the retrieval set as our training set.

NUS-WIDE comprises 260,648 image-text pairs. Each image-
text pair is assigned at least one label from 81 possible con-
cepts. The images are represented using raw RGB features,
while each text is represented by a 1,000-dimensional BoW
vector. We selected only the samples belonging to the top
10 most frequent concepts, resulting in a total of 186,577
pairs. Out of these pairs, 2,000 pairs were used as the test
set, while the remaining 184,577 pairs were used as the re-
trieval set. Similar to our protocol with MIRFlickr, we ran-
domly selected 10,000 samples from the retrieval set as our
training set.

IAPR TC-12 contains 20,000 image-text pairs, each of which
is annotated with multi-labels from a set of 255 semantic
categories. Each image is represented by a 4,096-dimensional
vector that was extracted by the pretrained CNN-F [80], while
each text is represented by a 2,912-dimensional BoW vector.
Following [50], we randomly selected 2,000 pairs as the test set,
while the remaining pairs were used as both the training and
retrieval sets.

Since only a portion of the MIRFlickr and NUS-WIDE
datasets are used as training samples, to ensure they are represen-
tative of all categories, we uniformly select an equal number of
samples from all categories, forming a comprehensive training
set that covers all categories, same as the settings in [47], [48].
Similarly, we also select an equal number of samples from all
categories to form the test set.

2) Implement Details: As the focus of this paper is not
on model design, we employ the commonly used twin-tower
model, which employs different backbones for each modality.
Specifically, we utilize VGG-19 [81] as the backbone for image
modality, and a 3-layer MLP for text modality. We utilize the
last layer of HashNet [68] as the output layer to ensure discrete
attribute of hash codes. The hyper-parameters α and β are set
to 1. The semantic channel width τ is set to 3. It is generally
accepted that more complex backbones can learn more expres-
sive features. Thus, we also provide a comparison of our method
with some state-of-the-art methods using different backbones in
Section IV-B-4 to demonstrate the effectiveness of our approach.
Additionally, we utilize the SGD optimizer with 0.9 momentum
and 5× 10−4 weight decay. The learning rates of both image
and text net are 0.005 and the training batch size is set to 32.
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TABLE I
MEAN AVERAGE PRECISION (MAP) SCORE COMPARISONS OF ALL APPROACHES ON TWO DATASETS MIRFLICKR AND NUS-WIDE

The proposed SCH is implemented with Pytorch on an NVIDIA
Tesla V100-32G.

3) Compared Methods: We compare the proposed SCH
with some classical shallow-feature based baselines, includ-
ing CVH [82], STMH [83], CMSSH [84], SCM [85],
SePH [19], and several state-of-the-art end-to-end cross-modal
hashing methods, including: DCMH [21], ATFH-N [86],
CHN [87], SSAH [22], EGDH [12], AGAH [61], MSSPQ [45],
HMAH [88], MAFH [89], MIAN [23]. To ensure fair com-
parisons with shallow-feature based baselines, we utilize 4096-
dimensional image features extracted by the pre-trained VGG-
19 network as the input.

4) Evaluation Metrics: We evaluate the retrieval perfor-
mance using two retrieval tasks: Image to Text retrieval (I → T )
and Text to Image retrieval (T → I). In the former, we use
images as queries to retrieve corresponding texts from the
retrieval set, while in the latter, we use texts as queries to
retrieve corresponding images. Considering that all compared
methods are hamming ranking approaches, following the sug-
gestion in [90], we employ three commonly used criteria to
assess retrieval performance: mean Average Precision (mAP),
precision-recall curve, and top-K precision curve. For Hamming
ranking approaches, retrieval time and index memory are solely
dependent on the length of the hash codes. Once hash code
lengths are identical, the retrieval time and storage space on
the same device remain consistent. Therefore, these aspects are
not specifically presented within this paper.

B. Results and Analysis

1) Retrieval Performance: The mAP results on the three
datasets are presented in Tables I and II. The competitors en-
compass three typical approaches: 1) SePH is a classic method
that employs orthogonal constraints to restrict semantic-negative
samples; 2) Most deep methods, such as DCMH, SSAH, and
MIAN, incorporate constraints to keep semantic-negative sam-
ples as far apart as possible; 3) AGAH utilizes triplet-margin
loss. In most cases, SCH outperforms all the compared methods.

TABLE II
THE MEAN AVERAGE PRECISION (MAP) SCORES OF ALL APPROACHES ON THE

IAPR TC-12 DATASET ARE COMPARED

Besides, SCH utilizes a basic twin-tower model and straightfor-
ward network architectures without placing significant emphasis
on the alignment of hash codes across different modalities. In
contrast, competing methods such as SSAH and MIAN incorpo-
rate specialized network structures for text data to extract more
informative text representations. Moreover, ATFH-N, SSAH,
and AGAH introduce adversarial networks to align hash codes,
while SSAH additionally incorporates a network for label in-
formation to enhance the supervision signals. SCH outperform
these competitors even with the simple two-tower model, which
confirms the effectiveness of bridging the space gap.

In addition, we present precision-recall curves on MIRFlickr
and NUS-WIDE datasets with 128-bit hash code length in Fig. 5
and top-K precision curves in Fig. 6. Notably, SCH consistently
achieves the best or second best precision results at the same
recall rates, particularly in the T → I tasks. This observation
indicates that the distribution of hash codes in the retrieved set
has been significantly optimized in terms of Hamming distance,
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Fig. 5. Precision-recall curves of all methods on MIRFlickr and NUS-WIDE
datasets. The code length is 128.

Fig. 6. Top-k precision curves of all methods on MIRFlickr and NUS-WIDE
datasets. The code length is 128.

resulting in the aggregation of samples with similar semantics.
As a result, with the same recall rate, more correct results are
ranked at the top of the retrieval results. This finding is further
supported by the results in Fig. 6, where SCH consistently
demonstrates the highest precision among the top k retrieved
samples (where k ≤ 5000), particularly in the T → I task.

2) Ablation Study: In this section, we investigate the influ-
ence of three types of samples, i.e., semantic-negative sam-
ples (xi, x

−
j ), partially semantic-positive samples (xi, x

+
j ), and

TABLE III
ABLATION STUDY ON MIRFLICKR AND NUS-WIDE DATASETS

fully semantic-positive samples (xi, x
⊕
j ), on the retrieval per-

formance. We implement three variants of SCH: SCH w./o.
Lneg , SCH w./o. Lppos, and SCH w./o. Lfpos. These variants
correspond to the loss function Eq. (9) without Lneg , Lppos,
and Lfpos, respectively. The hash code length is set to 128, and
experiments are conducted on the MIRFlickr and NUS-WIDE
datasets. The results are presented in Table III. It can be observed
that
� The performance of SCH w./o. Lneg shows a signifi-

cant drop, with more than 8% and 10% decrease on the
MIRFlickr and NUS-WIDE datasets, respectively. This
result emphasizes the importance of properly distributing
semantic-negative samples. Specifically, it is crucial to en-
sure that the distance between semantic-negative samples
is greater k/2. It helps prevent semantic-negative samples
from being located near the query during retrieval stage.

� The average performance of both tasks of SCH w./o. Lppos

also shows a significant drop, with approximately 7% and
5% decrease on the MIRFlickr and NUS-WIDE datasets,
respectively. This finding highlights the importance of par-
tially semantic-positive samples, as they contain valuable
and informative data. If only the separation of semantic-
negative samples is ensured, while the positioning of par-
tially semantic-positive samples is neglected, the overall
retrieval performance will still be greatly compromised.

� The performance of SCH w./o. Lfpos shows a drop of
approximately 1% on both tasks and datasets. One possible
reason for this observation is that fully semantic-positive
samples naturally have similar representations and are
prone to clustering together, even without the explicit
constraint Lfpos. Furthermore, the organized arrangement
of partially semantic-positive samples may indirectly en-
courage the gathering of fully semantic-positive samples.

3) Parameter Sensitive: We also investigate the sensitiv-
ity of the parameters α and β. We set their ranges to
{0.001, 0.01, 0.1, 1, 1.5, 2} and report the results in Fig. 7. From
Fig. 7(a) and (c), it can be observed that the proposed SCH
is not highly sensitive to changes in α. This aligns with the
analysis presented in Section IV-B-2, indicating that even with
small values ofα, fully semantic-positive samples tend to cluster
effectively in the Hamming space. Conversely, when using small
values of β (e.g., β = {0.001, 0.01, 0.1}), as shown in Fig. 7(b)
and (d), the performance of SCH experiences a significant drop.
These results also corroborate the earlier analysis, i.e., maintain-
ing a sufficient separation among semantic-negative samples is
crucial. Therefore, small values of β weaken the effectiveness
of Lneg and consequently lead to inferior performance.
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Fig. 7. Parameter sensitive ofα andβ on MIRFlickr and NUS-WIDE datasets.
The code length is 128.

We further conduct experiments on the MIRFlickr and NUS-
WIDE datasets to assess the impact of different values of seman-
tic channel width τ , and the results are presented in Fig. 7(e) and
(f). It is evident that the performance with τ > 0 is higher than
that with τ = 0, providing evidence for the effectiveness of the
semantic channel. Additionally, excessively large values of τ
do not yield significant improvements in retrieval performance.
Considering that τ in Eq. (3) is utilized to determine the lower
bound for semantic-positive samples, the results in Fig. 7 may
suggest that, as long as the upper bound is appropriately de-
termined to ensure that semantic-positive samples are not too
distant, the choice of channel width does not have stringent
constraints, provided that τ > 0 is maintained.

4) Various Backbones: With the widespread use of attention-
based models such as Transformer, BERT, and ViT in the
multi-modal field, some recent cross-modal retrieval methods
have used them as backbones to extract image and text features.
For instance, CMGCAH [27] uses ViT as the backbone of the
image modality, while UniHash [26] uses BERT as the backbone
of the both modalities. To compare with these methods, we
replace the image backbone VGG of SCH with image encoder
(ViT-B/32, ViT-B/16, and ViT-L/14) of CLIP [91], [92]. The

TABLE IV
COMPARISON OF SOTA METHODS UNDER DIFFERENT BACKBONES ON

NUSWIDE DATASET

experimental results are shown in Table IV. It can be observed
that employing multimodal pretrained backbones can further en-
hance the performance of SCH. However, this improvement does
not always persist with an increase in model size. For instance,
despite ViT-L/14 having the most parameters, its performance
is not superior to ViT-B/16. A plausible reason is that, although
ViT-L/14 learns features superior to ViT-B/16 in the real-valued
domain, these differences are attenuated after encoding through
the hash functions.

C. Analyses of Space Gap

In Section I, we analyze how the space gap undermines
existing CMH methods, resulting in the problems of compressed
solution space and loss function oscillation. In this section, we
experimentally verify these two claims.

1) Solution Space Compression: We first introduce two com-
monly used loss functions. The first is the mean square error
(MSE) loss function

LMSE =
∑
i,j

(Sij − Φij)
2, (13)

where Φij is the similarity between hash codes, generally
Φij = cos(bi, bj) is used. Here the modal information is omitted
for brevity. Under this constraint, semantic-negative samples
are required to be orthogonal. The second is the negative log-
likelihood (NLL) loss function

LNNL =
∑
i,j

(log(1 + eΦij )− SijΦij), (14)

which requires semantic-negative samples to be as far away
as possible. We design three models M1-M3 with consistent
backbones, but using Eq. (10), MSE, and NNL as loss functions,
respectively. Their loss functions and aims are summarized in
Table V.

Next, we create a subset of the NUS-WIDE dataset called
NUS-sub. This is done by selecting the 4 most frequent single
labels from NUS-WIDE dataset and assigning them new labels
[1, 0, 0], [0, 1, 0], [0, 0, 1], and [0, 0, 0]. Furthermore, we
select the multi-labels obtained from the combination of the
first three single labels and assigned them new labels [1, 0,
1], [0, 1, 1], [1, 1, 0], and [1, 1, 1]. As a result, we create a
dataset consisting of 8 new classes, and for each class, we select
150 samples for training. The details of the NUS-sub dataset
are presented in Table VI and some samples are presented in
Fig. 8. It is worth noting that samples in classes C1-C7 have both
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TABLE V
THREE DIFFERENT CONSTRAINTS IMPOSED ON HASH CODES

IN CMH METHODS

TABLE VI
SUMMARY OF THE NUS-SUB DATASET

Fig. 8. Some samples of NUS-sub dataset.

semantic-positive and semantic-negative relationships, while
samples in class C8 only have a semantic-negative relationship
with the other 7 classes. We utilize the NUS-sub dataset to train
models M1-M3 and obtained their corresponding hash codes.
The average distance between each class is visualized in Fig. 9.
Comparing Fig. 9(a)–(c), we observe that
� All three models are able to preserve the correct semantic

relationships. For instance, the distances between class C8
and the other classes are the farthest, while class C1 is
farther away from classes C2, C3, and C6 but relatively
closer to classes C4, C5, and C7.

� The distances between each class are compressed in
model M2. Specifically, class C8 remain orthogonal to
the other classes, resulting in a distance of about 8. On
the other hand, compared to model M1, the distances
between classes C1-C7 in M2 are generally reduced by
about 1. This phenomenon suggests that the orthogo-
nal constraint does lead to compression of the solution
space.

� The model M3 exhibits an overemphasis on separating
semantic-negative samples. This is due to the fact that
in Eq. (14), when Sij = 0, min(log(1 + eΦij )) causes
Φij to converge towards −1 indefinitely, resulting in all

semantic-negative samples continuing to contribute to the
gradient during training.

Overall, despite presenting different biases, all three mod-
els successfully preserve the correct semantic relationships.
To further evaluate their performance, we introduce additional
single-label classes C9-C13 to NUS-sub. As a result, each class
in C8-C13 forms a semantic-negative relationship with all other
classes. We train three models on this extended dataset and
visualize the average distance between hash codes among classes
in Fig. 9. When comparing Fig. 9(d)–(f), it is evident that M1
still successfully preserves the correct semantic relationships.
However, due to the orthogonal constraint on M2, the space
encompassing C1-C7 undergoes further compression and some
semantic-negative samples, e.g., C10 and C11, become insepa-
rable. M3 also faces this problem, some semantic-negative sam-
ples are also forced to be squeezed together, as seen with C10 and
C11. As mentioned previously, although the semantic-positive
and semantic-negative samples could balance each other, as the
number of categories and samples increases, this balance will
eventually be disrupted, leading to a compressed space on the
side with a small number of samples. Under this experiment
setting, compared with the close relationship among C1-C7,
which can be regarded as a large group, the connection be-
tween remaining single-label classes C8-C13 are weaker. As
a consequence, the space allocated to C8-C13 are compressed
to accommodate C1-C7. Specifically in Fig. 9(e) and (f), C1-C7
finally compresses the space of C10-C11.

2) Loss Function Oscillation: To investigate the influence of
the semantic channel on loss function oscillation, two variants
of SCH were implemented: SCH1 with the semantic channel
width τ set to 0, and SCH2 with orthogonal constraints replacing
the constraints on semantic negative samples and τ = 0. These
two models and SCH are evaluated on the NUS-sub dataset (13
classes). The loss function and average mAP on the two tasks are
depicted in Fig. 10. To mitigate the impact of large learning rates
on the loss function, the learning rate was reduced to one-tenth
of its previous value every 10 epochs after first 100 epochs. We
calculate mAP score every 20 epochs.

From Fig. 10, it is evident that the loss function of SCH
exhibits the smoothest behavior. Comparing SCH with SCH1,
we can observe the role of the semantic channel in alleviating
the oscillation in the loss function. In contrast, the loss function
of SCH2 still shows noticeable oscillation even after conver-
gence. This phenomenon can be attributed to two reasons. First,
in theory, the absence of a semantic channel means that the
gradient at the optimal solution of the loss function cannot be
guaranteed to be zero. Second, the strict orthogonal constraint
leads to the compression of the solution space, causing certain
squeezed samples to continuously contribute to the gradient.
For instance, in Classes C10 and C11 (as shown in Fig. 9(e)),
which should ideally be orthogonal, they are instead squeezed
together, resulting in a continued contribution of gradients that
counteract this compression. This effect is more pronounced in
terms of the mAP score, as SCH2 exhibits an unstable mAP
value even after convergence. In contrast, both SCH and SCH1
exhibit relative stability after convergence. It is worth noting
that despite setting τ = 0 in SCH1, it still reaches a relatively
stable state. One possible reason for the observation is related to
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Fig. 9. The average distance between all classes of models M1-M3 is computed for a hash code length of 16. (a)–(c) Display the results on the NUS-sub dataset
with 8 classes (C1-C7), while (d)–(f) depict the results on the NUS-sub dataset with 13 classes (C1-C13).

Fig. 10. Loss functions and average retrieval mAP scores of the three models
on the NUS-sub (13 classes) dataset.

Fig. 11. T-sne visualization of hash codes of image and text modalities on
MIRFlickr and NUS-WIDE datasets. The code length is 128.

the activation function tanh(β·) used during training. Although
limβ→+∞ tanh(β·) = sign(·), the hash codes are still not fully
guaranteed to be discrete, and their distances may not strictly
fall within the set D. Comparing SCH1 and SCH2, it can be

found that this loss oscillation can also be alleviated as long as
there is no significant compression of the solution space.

V. CONCLUSION

In this paper, we have addressed the issue of the space gap in
current CMH methods. We have analyzed that the space gap
can lead to two main problems: solution space compression
and loss function oscillation. To address these problems, we
have proposed a novel SCH, where we can exploit the en-
tire Hamming space by classifying pairs of samples into fully
semantic-positive samples, partially semantic-positive samples
and semantic-negative samples, and assigning them different
Hamming distances. In addition, we have also introduced the
concept of semantic channel to alleviate the loss function oscil-
lation. The experimental results on three public datasets demon-
strated the effectiveness of SCH. Furthermore, we have also
designed experiments to demonstrate the impact of the space
gap on the current CMH methods, which helps better understand
the proposed SCH.

While SCH has achieved significant improvement by bridging
the space gap, we have still identified areas for further enhance-
ment: 1) Although we have employed HashNet to obtain discrete
hash codes, this does not guarantee the complete discreteness
of the learned hash codes, which potentially diminishes the
effectiveness of SCH. Minimizing the quantization error of hash
codes during the training process may enhance the performance
of SCH. 2) SCH primarily addresses the space gap and lacks
emphasis on modality alignment, as shown in Fig. 11. Further
aligning modalities on the basis of SCH should be beneficial for
improving retrieval performance.
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